Uma proposta de padronizacdo de mensagens de
commit para sistemas de controle de versao

Bruno Faria, Jorge Melegati, Marco Gerosa
Instituto de Matematica e Estatistica — IME USP

Resumo—Esta pesquisa apresenta uma proposta para padroes
da mensagem de commit em sistemas de controle de versao de
forma a entender como estas mensagens afetam a produtividade
dos desenvolvedores em um projeto colaborativo. Foi criado um
comando customizado para o Git que substitui o tradicional
processo de commit por outro cujo objetivo é aprimorar e
padronizar a mensagem final a ser armazenada no sistema.
Resultados preliminares mostraram que a padroniza¢io ndo s6
aumenta a eficacia da colaboracio entre membros como facilita
o entendimento da evolucdo do software quando uma tarefa
especifica como a de busca por problemas precisa ser realizada
e que pode estar ligada a modificacoes anteriores.

Abstract—This research proposes a standardization for commit
messages in source control systems in order to understand
how the content of these messages affects productivity among
developers in a collaborative environment. A Git command was
created to replace the standard commit process of the Git console
command with the goal to improve and create a pattern for
the final message that is stored in the source control logs.
Preliminary results showed that this method not only increases
the productivity of collaboration among members while also eases
the understanding of past code changes when a specific task like
bug hunting needs to be made and may be linked to a previous
modification.

Keywords—Git, Commit Messages, Repositories, Source Control
Systems

I. INTRODUCAO

Projetos de desenvolvimento de software por serem pro-
cessos essencialmente colaborativos e suscetiveis a mudangas,
geralmente sdo apoiados por sistemas de controle de versdo
como Svn e Git. Estes sistemas armazenam, permitem a
atulizacdo e a obtencdo de diferentes versdes de software [1]
possibilitando ndo sé a colaboracio quanto o armazenamento
de informacdes sobre o histérico da evolu¢do do software. A
informagdo armazenada é extremamente valiosa para entender
e acompanhar o desenvolvimento do projeto e, provavelmente,
a principal delas é a mensagem de commit. O sistema de
controle de versdo armazena automaticamente diversas infor-
mades como quem fez a alteracdo, quando ela foi realizada
e quais trechos de codigo foram adicionados ou removidos
entretanto a razdo pela qual a mudanca ocorreu é dada pelo
desenvolvedor e € a consciéncia desse que determinard a qua-
lidade dessa informacao. Isso j4 € discutido por Rockhind [1]
desde o inicio do desenvolvimento das primeiras ferramentas
de controle de versdo. Apesar do longo periodo de existéncia
da questdo, na literatura hd poucos estudos sobre os padrdes
e caracteristicas das mensagens de commit fornecidas pelo

desenvolvedor. Entendemos que mensagens quando melhor
elaboradas e com um certo grau de padronizacdo podem
facilitar ndo s6 o processo de colaboragdo como a eficicia
geral do processo de desenvolvimento. Esse ponto é levantado
por Linus Torvalds em [2], o desenvolvedor do kernel do
sistema operacional Linux, e um dos criadores do Git, um dos
mais utilizados sistemas de controle de versdo. Este trabalho
propde uma extensdo para o Git substituindo o processo padrao
de commit de mensagens por uma sequéncia de passos que
incentive o desenvolvedor a fornecer mais informacdes, além
de padronizar a mensagem final que serd armazenada nos logs.

II. TRABALHOS RELACIONADOS

Desenvolvemos um mapeamento da pesquisa acerca da men-
sagens de commit para tentar determinar o quanto esse topico
jé foi discutido. Esse mapeamento procurou seguir praticas de
mapeamentos sistemdticos sem a intencao de nomear-se como
tal.

A. Queries de pesquisa

Em primeiro lugar, foram definidas as queries a serem
executadas nas bases de dados. Elas se encontram listadas a
seguir.

1) "commit message"OR "commit messages"OR "commits

messages"

2) ("source control"ONEAR/5 message) OR ("source

control"ONEAR/5 messages) OR "version
control"ONEAR/5 message) OR ("version
control"ONEAR/5 messages) OR ("revision
control"ONEAR/5 message) OR "revision

control"ONEAR/5 messages)

3) ("source control"ONEAR/5 log) OR ("source con-
trol"ONEAR/S5 logs) OR ("version control"ONEAR/5
log) OR ("version control"'ONEAR/5 logs) OR ('"re-
vision control"ONEAR/5 log) OR ("revision con-
trol"ONEAR/S logs)

4) cvs NEAR/5 message) OR (svn NEAR/S message) OR
(cvs NEAR/5 log) OR (svn NEAR/5 log) OR (cvs
NEAR/5 logs) OR (svn NEAR/S logs))

5) ((git NEAR/S message) OR (git NEAR/S logs) OR (git
NEAR/5 logs))

Executando essas queries nas bases de artigos da IEEE e
da ACM, obtivemos uma lista composta de 22 artigos. A
seguir, a partir da leitura dos titulos dos artigos, os dois
primeiros autores do trabalho entraram em consenso entre
quais artigos deveriam ser lidos. Apés esta etapa, 13 artigos

foram selecionados para uma andlise mais cuidadosa. A seguir,
os trabalhos mais relacionados a temadtica desse trabalho sdo
discutidos.

B. Trabalhos académicos

Como algumas linhas de pesquisa nesta drea temos Alali et
al. [3] que mineraram repositdrios open source para descobrir
caracteristicas e tendéncias através da andlise do nimero de
arquivos, logs, linhas ou blocos comitados. J4 German [4],
estuda as caracteristicas de um bloco de modificacio em um
sistema de controle de versdo como o CVS que ndo cria
um bloco de modificagdes para agrupar diferentes arquivos
alterados em conjunto. Um grupo de arquivos estaria no
mesmo bloco de modificag@o se tivesse o mesmo criador, logs
e no mesmo espago de tempo. Apesar desse problema ja ter
sido resolvido através da modificacio em blocos, como no
SVN e Git, essa linha pode ainda ser bem explorada porque,
muitas vezes, varias modificagdes sdo feitas em sequéncia
para realizar uma tarefa. Ratsker e Murphy [5] procuram
responder porque um cddigo compartilhado entre outros desen-
volvedores é modificado a fim de evitar que novos bugs sejam
reintroduzidos. Os autores supunham que a mensagem de
commit ou o link que relaciona o bug a modificacdo poderiam
prover informagdes detalhadas sobre como este cédigo teria
sido modificado, entretanto, concluem que falta informacao
no que diz respeito ao motivo daquela mudanga. O trabalho
propde o uso de técnicas de sumdrio multi-documento para
gerar descri¢cdes concisas em linguagem natural para que o
desenvolvedor possa escolher a melhor acdo a ser tomada.
Os autores concluem, também, que o uso de técnicas para
aprimorar a descri¢do relacionada as mudangas no cé6digo
ajudam os desenvolvedores a entenderem o porque que uma
modificacdo foi realizada. Embora este tipo de informacio
dependa diretamente da entrada de dados do desenvolvedor,
pesquisas com objetivos de construir essas informagdes de
maneira automatica datam desde 1958 [6].

Como geralmente uma modificacdo de cédigo € acom-
panhada por novas entradas no log, podemos utilizar essas
mensagens para que outros desenvolvedores possam validar
mudangas, encontrar bugs ou mesmo entender as modificagdes.
Neste sentido, [7] propde uma técnica para sintetizar documen-
tagdes sucintas para modifica¢des arbitrarias em programas de
forma automdtica. A pesquisa concluiu que para 89% dos
casos, a documentacdo gerada poderia substituir a entrada
original nos logs que detalham a modificacdo do cédigo. En-
tender o impacto de pequenas mudancas com relagdo a falhas,
relacionamento entre tipos de mudancas (i.e, adicionar, deletar
e modificar), o motivo da alteracdo e as suas dependéncias foi
estudado por [8] [9] que conclui que mudancas de uma linha
de cdédigo podem ocasionar defeitos no cédigos para cerca de
2-5% das vezes.

Portanto, podemos concluir que apesar de grandes publi-
cacdes na drea, ainda faltam muitos dados para entender
como as mensagens de commit poderiam afetar diretamente a
eficdcia da colaboragdo em ambientes de desenvolvimento de
software, principalmente o acompanhamento de sua evolucio
e o entendimento do "Por que?"que determinada modificacdo
foi realizada.

C. A importancia do "Por que?"

O histérico de evolug@o de um software geralmente responde
"0 que?"e "como?"uma alteracdo foi realizada em um projeto,
mas ndo o motivo daquela alteracdo ter sido realizada. [5]
tenta encontrar de maneira automadtica este "Por que?", porém,
nem sempre € possivel conseguir essas informagdes sem que
o usudrio a descreva em detalhes. Entender a motivagido
vai além da simples realizacdo eficiente de uma tarefa, ela
ajuda que outros desenvolvedores possam entender a razio
de determinadas a¢des dentro de um projeto de maneira mais
eficiente, por exemplo, chegar a conclusdées mais rapidas do
motivo que um novo bug foi inserido no sistema e o que fazer
para resolvé-lo.

ITI. AVALIACAO EMPIRICA

A primeira etapa do trabalho consistiu em uma avaliagdo
empirica da problemadtica dos repositérios de sistemas de
controle de versdo e as mensagens de commit utilizadas
nesses ambientes. Para isso, foi desenvolvido um questionario
apresentado aos alunos de pds-graduacdo do instituto ao qual
os autores sdo afiliados. O desenvolvimento foi realizado de
forma iterativa em duas etapas: na primeira, o questiondrio
foi apresentado a um grupo menor com o objetivo de obter
informagdes para refinar o questiondrio, a segunda foi, de
fato, o questiondrio final em si. Na primeira etapa, foram
obtidas 40 respostas que foram descartadas para a andlise
final e na segunda foram 101 respostas. O questiondrio ajuda
a fornecer um panorama de quais sistemas de controle de
versdo elas utilizam ou ja utilizaram, se eles utilizam alguma
forma de padronizacdo de mensagens de commits e se essa
padronizagdo, quando presente, facilitava a busca por onde
defeitos ou novas features tinham sido adicionadas ao c6digos.
Procurou-se também tracar um perfil desses desenvolvedores
e verificar se os fatores tempo de experiéncia e periodo de
projeto tem influéncia sobre os resultados.

Como resultado, tivemos o SVN e Git como os sistemas
de controle de versdo mais utilizados sendo citados por 90
e 87 dos participantes, respectivamente. O CVS ainda tem
certa representagdo sendo citado por 33 pessoas. As mensagens
de commit sdo usadas por 73% dos desenvolvedores para
encontrar onde determinado bug ou nova feature foi adicionado
sendo que desses 48% disseram que a ajuda ocorre frequente-
mente ou sempre.

Disso podemos concluir que as mensagens de commit, de
fato, ajudam a encontrar onde bugs e/ou novas features foram
adicionados. Também foi avaliado a relag@o entre o periodo de
trabalho em um projeto e a percepcao da utilizagdo das mensa-
gens de commit. Entre os participantes, 35 disseram trabalhar
em projetos com duragdo de 3 ou mais anos sendo que 49%
utilizam as mensagens de commit sempre ou frequentemente
enquanto que na amostra total 48 (48%) disseram o mesmo,
ou seja, ndo foi possivel perceber uma grande diferenga na
utilizacdo das mensagens dependendo do periodo de tempo
dos projetos em que os desenvolvedores estdo inseridos. Por
ultimo, procurou-se determinar se a padronizagdo influencia a
utilizacdo das mensagens. Nesse sentido, 36 pessoas afirmaram
utilizar algum tipo de padronizacdo, sendo que 28 (78%)

citaram as mensagens de commits como uma das ferramentas
utilizadas durante a procura de um bug, enquanto que das 57
que afirmaram ndo usar padronizagdo alguma, apenas 16 (28%)
citaram as mensagens de commit como ferramenta.

O questiondrio também continha um campo para que os
participantes pudessem dar seus comentdrios sobre o tema.
Selecionou-se os seguintes dois comentdrios que corroboram
a motivagdo desse trabalho. No primeiro € levantada a questio
da disciplina dos desenvolvedores em seguir um padrdo de
mensagens mesmo quando este € imposto no projeto:

"Numa equipe grande, nem sempre a padronizagdo
dos commits € levada a sério."

Enquanto que o segundo apresenta as vantagens de se
utilizar uma padronizacdo nas mensagens de commits:

"Eu considero importante as mensagens nos com-
mits. Além de ajudar a encontrar bugs, sdo impor-
tantes pra me ajudar a acompanhar o que os outros
estdo fazendo no cédigo, ou seja, me ajudar com a
revisdo de c6digo enviado por colaboradores."

Apesar da auséncia de testes estatisticos rigorosos, o ques-
tiondrio forneceu fortes indicios sobre algumas premissas en-
tretanto refutou a ideia de que desenvolvedores envolvidos em
projetos mais longos utilizam mais os histéricos dos sistemas
de controle de versdo do que em projetos mais curtos. Isso
pode indicar que ndo hd uma procura muito distante no tempo
nos histéricos e/ou que a procura é feita mesmo em projetos
mais curtos. Apesar disso, o questiondrio também indica que a
padronizacdo de mensagens induziu a utilizagdo de mensagens
de commit na busca de pontos de inser¢do de defeitos ou de
novas funcionalidades o que justifica o desenvolvimento da
ferramenta proposta por esse trabalho. Além disso, foi possivel
confirmar os sistemas de controle de versdao mais utilizados:
Git e SVN, o que justifica a escolha do sistema alvo da criacio
do plugin.

IV. PROPOSTA DE SOLUCAO

Este trabalho propde a padroniza¢do de mensagens de com-
mits em sistemas de controle de versdo possibilitando que as
mesmas sejam sempre utilizadas facilitando a busca de pontos
em que defeitos ou mesmo novas funcionalidades tenham
sido adicionados ao c6digo diminuindo o tempo gasto nessas
tarefas e aumentando a produtividade dos desenvolvedores. A
ferramenta que permite a padronizagdo foi concebida de forma
a ser simples e alterar minimamente o fluxo de trabalho do
desenvolver para que o seu interesse em utiliza-la ndo seja
reduzido devido a uma maior complexidade no processo de
commit.

A. Implementacdo do prototipo

O Git € um sistema de controle de versdo de c6digo aberto
desenvolvido para suportar desde pequenos a grandes proje-
tos [10]. Dada a sua popularidade, ratificada pela avaliagdo
empirica do inicio do trabalho, no qual 87% dos entrevistados
utilizam ou ja utilizaram o Git, este sistema apresentou-se
como um candidato natural para receber o protétipo.

A implementagcdo de um plugin para Git é feita através da
criagdo de um script em uma linguagem interpretada sendo
que a primeira linha indicard o interpretador a ser utilizado,
seguindo a padronizagdo do interpretador de comandos Bash.
Para que o Git reconheca o plugin como um novo comando,
basta adicionar o arquivo criado no path do sistema com
o nome git seguido de hifen e do comando desejado. A
linguagem escolhida para a implementagdo do protétipo foi
Python por conta da sua simplicidade e facil integracdo com
o sistema de controle de versao.

O plugin foi desenvolvido de forma a permitir a custo-
mizagdo por parte dos usudrios, mais especificamente, os
administradores dos repositérios, facilitando a adaptacdo da
ferramenta para o contexto do projeto e da equipe. Para isso, a
construcao da mensagem € realizada por um encadeamento de
classes, cada qual responsdvel por exigir uma a¢do do usudrio e
formata-la dando forma a mensagem, além disso, esse encadea-
mento é configurdvel. A configuragdo é realizada através de um
arquivo que deve permanecer na raiz do repositdrio, facilitando
o compartilhamento da mesma entre todos os colaboradores do
projeto. Neste arquivo, também € possivel configurar parte do
comportamento de cada uma das classes. A seguir, sao listadas
as classes implementadas, suas responsabilidades, exemplos e
suas configuracdes.

Classe: Roétulo

Responsabilidade: Adicionar um rétulo no inicio da
mensagem para categorizar oS cCommits.

Justificativa: Um ré6tulo no inicio da mensagem indicando o
tipo de modificacdo melhora a visualizacdo do log de
mensagens facilitando a busca por commits especificos seja
diretamente na listagem ou através de um aplicativo de filtro
como o grep. Por exemplo, encontrar onde determinado bug
foi corrigido basta procurar as linhas iniciadas com BUGFIX.

Classe: Resumo

Responsabilidade: Adicionar um resumo com o tamanho
limitado, permitindo que, na listagem de commits, haja uma
mensagem por linha

Justificativa: Como citado por Torvalds [2], € interessante a
limitacdo do tamanho do resumo permitindo a visualizagao
do log de mensagens sem quebras de linhas quando mostrado
em um console, o que € bem comum entre os usudrios de Git.

Classe: Comentdrios

Responsabilidade: Permitir que o desenvolver adicione
outros comentdrios ao final da mensagem de commit
Justificativa: Caso o desenvolvedor deseje adicionar mais
informagdes, a ferramenta nao pode impedi-lo de fazer pois
isso iria contra o principio da ferramenta que € facilitar o
fornecimento de informacdes por parte do desenvolvedor.

Classe: Subprojeto

Responsabilidade: Permitir a adicdo automatica de
identificagdo do subprojeto ao qual o commit se refere
Justificativa: Facilitar a busca por alteragdes em subprojetos
de repositdrios em que isso ocorre. Como no rétulo, permite
o filtro das modificagdes realizadas apenas no subprojeto de
interesse.

Configuracdes possiveis: Expressdo regular para obter a

Commits on Oct 28, 2014

E NEWFEATURE atualizacao do readme (M README.md, M git-new-commit)
B bnif

NEWFEATURE novas informacoes de teste (M README.md)
Lo /BN

Commits on Oct 22, 2014

NEWFEATURE Adding debug feature to enable/disable stdout writer. (MM ... -
Jorge Melegati

BUGFIX: files chain was adding not staged files.
Jorge Melegati

NEWFEATURE: medifying subproject chain to use a regex to tell the sub... /-
Jorge Melegati

Figura 1. Representacdo dos logs no GitHub

qual subprojeto um arquivo modificado pertence, por
exemplo, src/([a-zA-Z]+)/.*.

Classe: Arquivos

Responsabilidade: Adiciona a lista dos arquivos alterados
nesse commit com um rétulo informando o tipo de alteracio:
criagdo, modificacdo e delecdo

Justificativa: Permitir o filtro das mensagens de commits
que alteram determinado arquivo.

Na Figura 1, vemos como essas classes sdo representadas
nos logs do GitHub.

B. Experimento preliminar e resultados

O protétipo foi aplicado em conjunto com um projeto de
software desenvolvido exclusivamente para o experimento.
Este projeto foi hospedado no GitHub e foi implementado
em Python. Foram dadas uma série de tarefas que um par de
desenvolvedores deveriam executar de maneira colaborativa.
Para cada passo, era pedido que os desenvolvedores fizessem
o commit das alteracdes no projeto seguindo o novo padrio
do processo de commit desenvolvido para o Git. Ao final,
foi conduzido uma entrevista com os desenvolvedores para
entender se o novo processo de commit ajudou ou ndo na
execucdo das tarefas. O resumo do questiondrio da entrevista
pode ser encontrado no Apéndice B.

Como resultado, concluimos que a ferramenta ndo repre-
sentou nenhum 6nus considerdvel para a execucao das tarefas.
Apds um breve periodo de adaptagdo necessario para conhecer
0 NOvVO processo, Os participantes relataram que 0s passos
adicionais se tornaram pervasivos. Dos 4 desenvolvedores en-
trevistados, todos reconheceram que o gasto maior em finalizar
o commit estd no detalhamento da mensagem enviada e nio
na estruturacdo da ferramenta, porém, todos concluiram que
os ganhos nas descri¢cdes armazenadas tornam o processo mais
complexo irrelevante.

Em uma das tarefas, um dos desenvolvedores faria a insercao
de um bug no projeto e outro colaborador deveria tentar
encontrar e conserta-lo. Foi questionado se as mensagens de
commit ajudaram a encontrar o bug. 2 dos 4 participantes
entenderam que o histérico mais detalhado e padronizado
ajudaram a encontrar onde o bug foi inserido no projeto.

Todos os participantes concluiram que a utilizacdo da fer-
ramenta em projetos reais valeria a pena. Dos 4 participantes,

3 consideraram que o limite de caracteres imposto pela ferra-
menta poderia prejudicar a descri¢do da mensagem de commit.

V. CONCLUSAO

Apresentamos um estudo que investiga a utilizagdo de men-
sagens de commit mais elaboradas e padronizadas dentro de
um ambiente limitado e experimental. O objetivo foi entender
se a ferramenta poderia aumentar de maneira significativa a
complexidade do processo de commit e se o detalhamento
maior da mensagem poderia melhorar a comunicag¢do e pro-
dutividade dentro de um projeto de software.

Embora a utilizacdo da ferramenta tenha sido aplicada
dentro de um ambiente limitado e experimental, concluimos
que a padronizagdo das mensagens poderia tornar o processo
de desenvolvimento de software mais produtivo, especialmente
em ambientes onde ha multiplos colaboradores participando
de um projeto e onde o histérico do que foi implementado se
torna ainda mais essencial. Nossas observagdes sugerem que
a propria proposta da ferramenta incentiva os desenvolvedores
a aprimorarem o contetido da descri¢do da mensagem, mesmo
assim, o sistema automdtico que inclui o tipo de modifica-
¢do que foi realizado e os arquivos afetados ja aumentam
significativamente o detalhamento da mensagem de commit,
removendo a necessidade do desenvolvedor de ter que analisar
cada commit separadamente em detalhes.

VI. TRABALHOS FUTUROS

Os dados coletados durante os experimentos foram bastante
valiosos e algumas conclusdes importantes puderam ser retira-
das, porém, entendemos que € necessdrio aplicar a ferramenta
em um grupo maior de individuos e por um periodo de tempo
maior. A simplicidade da ferramenta torna a aplicacdo do
conceito viavel a diferentes sistemas de controle de versdo,
além de permitir cendrios mais complexos e envolvendo ou
ndo colaboragdo. Aplicar este conceito em ambientes de pro-
ducgdo reais seja em empresas ou projetos de colaboragdo de
c6digo aberto serd essencial para comprovar a eficiéncia real
da proposta de padronizacido e elaboracdo de mensagens de
commit.

AGRADECIMENTOS

Os autores gostariam de agradecer Ana Paula Santos, Rafael
Rossi e Marino Catarino pelos valorosos comentdrios feitos
durante o desenvolvimento do trabalho e, ao final, no texto
deste artigo.

APENDICE A
QUESTIONARIO DA AVALIACAO EMPIRICA

1) Qual(is) sistemas de controle de versdo vocé ja utilizou?
*

2) Qual o maior periodo que vocé€ trabalhou em um
projeto?

3) Ha4 quanto tempo vocé utiliza sistemas de controle de
versdao? *

4) Vocé participa de projetos de software com outros
colaboradores? *

5)
0)
7

8)

9)

1y
2)
3)
4)

5)

6)

[1]

[2]

[3]

[4]

[5]

[8]

[9]

(10]

Vocé ja teve que procurar algum commit para encontrar
onde um bug ou feature foi adicionado? *

Quando vocé procura algum commit especifico, qual(is)
elementos vocé procura usar? *

Com que frequéncia as mensagens de commit ajudaram
a encontrar e/ou corrigir um bug? *

Geralmente, nos seus projetos, vocé e/ou sua equipe
utiliza alguma padronizag¢do nas mensagens de commit?
k

Se afirmativo, a padronizacdo facilitou encontrar algum
bug ou onde uma feature foi adicionada?

APENDICE B
QUESTIONARIO DO EXPERIMENTO PRELIMINAR

Vocé percebeu um aumento de tempo ao comitar em
relacdo a quando ndo usava a ferramenta?

O que vocé achou do resultado final do log das mensa-
gens de commit?

Se 2 for positivo e relatou aumento em 1, essa melhora
de logs de 2 justifica o aumento em 1?

Vocé acredita que as mensagens ajudaram a encontrar
o bug?

Vocé estaria disposto a utilizar essa ferramenta no seu
dia-a-dia? Se for administrador de repositdrio, adicio-
naria ao seu projeto, sendo, indicaria ao seu adminis-
trador?

Suguestdes, criticas, reclamagoes?

REFERENCIAS

M. J. Rochkind, “The source code control system,”
IEEE Transactions on Software Engineering, vol. SE-
1, no. 4, pp. 364-370, Dec. 1975. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=63 12866

(2014, Nov.) Git website. [Online]. Available:
https://github.com/torvalds/subsurface/blob/master/README

A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typical commit? a
characterization of open source software repositories,” in Program Com-
prehension, 2008. ICPC 2008. The 16th IEEE International Conference
on. IEEE, 2008, pp. 182-191.

D. M. German, “Mining cvs repositories, the softchange experience,”
Evolution, vol. 245, no. 5,402, pp. 92-688, 2004.
S. Rastkar and G. C. Murphy, “Why did this code change?” in Proce-

edings of the 2013 International Conference on Software Engineering.
IEEE Press, 2013, pp. 1193-1196.

H. P. Luhn, “The automatic creation of literature abstracts,” IBM Journal
of research and development, vol. 2, no. 2, pp. 159-165, 1958.

R. P. Buse and W. R. Weimer, “Automatically documenting program
changes,” in Proceedings of the IEEE/ACM international conference
on Automated software engineering. ACM, 2010, pp. 33-42.

R. Purushothaman and D. E. Perry, “Towards understanding the rhetoric
of small changes-extended abstract,” in International Workshop on
Mining Software Repositories (MSR 2004), International Conference
on Software Engineering. 1ET, 2004, pp. 90-94.

, “Toward understanding the rhetoric of small source code chan-
ges,” Software Engineering, IEEE Transactions on, vol. 31, no. 6, pp.
511-526, 2005.

(2014, Nov.) Git website. [Online]. Available: http://git-scm.com/

