
1

Uma proposta de padronização em mensagens de
commit para sistemas de controle de versão

Bruno Faria, Jorge Melegati, Marco Gerosa
Instituto de Matemática e Estatística – IME USP

Resumo—Esta pesquisa apresenta uma proposta para padrões
da mensagem de commit em sistemas de controle de versão de
forma a entender como estas mensagens afetam a produtividade
dos desenvolvedores em um projeto colaborativo. Foi criado um
comando customizado para o Git que substitui o tradicional
processo de commit por outro cujo objetivo é aprimorar e
padronizar a mensagem final a ser armazenada no sistema.
Resultados preliminares mostraram que a padronização não só
aumenta a eficiência da colaboração entre membros como facilita
o entendimento de modificações de código passado quando uma
tarefa específica como bug hunting precisa ser feita e que pode
estar ligada a modificações de código passadas.

Abstract—This research proposes a standardization for commit
messages in source control systems in order to understand
how the content of these messages affects productivity among
developers in a collaborative environment. A Git command was
created to replace the standard commit process of the Git console
command with the goal to improve and create a pattern for the
final message that is stored in the source control logs. Preliminary
results showed that this method not only increases the efficiency of
collaboration among members while also eases the understanding
of past code changes when a specific task like bug hunting needs
to be made and may be linked to a previous modification.

Keywords—Git, Commit Messages, Repositories, Source Control
Systems

I. INTRODUÇÃO

Projetos de desenvolvimento de software por serem pro-
cessos essencialmente colaborativos e suscetíveis a mudanças,
geralmente são apoiados por sistemas de controle de versão
como Svn e Git. Estes sistemas armazenam, permitem a
atulização e a obtenção de diferentes versões de software [1]
possibilitando não só a colaboração quanto o armazenamento
de informações essenciais sobre o histórico da evolução do
software. A informação armazenada é extremamente valiosa
para entender e acompanhar o desenvolvimento do projeto e,
provavelmente, a principal delas é a mensagem de commit.
O sistema de controle de versão armazena automaticamente
diversas informaóes como quem fez a alteração, quando ela
foi realizada e quais trechos de código foram adicionados ou
removidos entretanto a razão pela qual a mudança ocorreu é
dada pelo desenvolvedor e é a consciência desse que deter-
minará a qualidade dessa informação. Isso já é discutido por
Rockhind [1] desde o início do desenvolvimento das primeiras
ferramentas de controle de versão. Apesar do longo período de
existência da questão, na literatura há poucos estudos sobre os
padrões e características das mensagens de commit forneci-
das pelo desenvolvedor. Entendemos que mensagens quando

melhor elaboradas e com um certo grau de padronização
podem facilitar não só o processo de colaboração como a
eficiência geral do processo de desenvolvimento. Esse ponto
é levantado por Linus Torvalds, o desenvolvedor do kernel do
sistema operacional Linux, que leva o seu próprio nome, e é
um dos mais usados do planeta, e um dos criadores do Git,
um dos mais usados sistemas de controle de versão, em [2].
Este trabalho propõe uma extensão para o Git substituindo o
processo padrão de commit de mensagens por uma sequência
de passos que incentive o desenvolvedor a fornecer mais
informações, além de padronizar a mensagem final que será
armazenada nos logs.

II. TRABALHOS RELACIONADOS

Nesta etapa, desenvolveu-se um mapeamento da pesquisa
acerca da mensagens de commit para tentar determinar o
quanto esse tópico era discutido. Esse mapeamento procurou
seguir práticas de mapeamentos sistemáticos sem a intenção
de nomear-se como tal.

A. Queries de pesquisa
Em primeiro lugar, foram definidas as queries a serem

executadas nas bases de dados. Elas se encontram listadas a
seguir.

1) "commit message"OR "commit messages"OR "commits
messages"

2) ("source control"ONEAR/5 message) OR ("source
control"ONEAR/5 messages) OR ("version
control"ONEAR/5 message) OR ("version
control"ONEAR/5 messages) OR ("revision
control"ONEAR/5 message) OR ("revision
control"ONEAR/5 messages)

3) ("source control"ONEAR/5 log) OR ("source con-
trol"ONEAR/5 logs) OR ("version control"ONEAR/5
log) OR ("version control"ONEAR/5 logs) OR ("re-
vision control"ONEAR/5 log) OR ("revision con-
trol"ONEAR/5 logs)

4) cvs NEAR/5 message) OR (svn NEAR/5 message) OR
(cvs NEAR/5 log) OR (svn NEAR/5 log) OR (cvs
NEAR/5 logs) OR (svn NEAR/5 logs))

5) ((git NEAR/5 message) OR (git NEAR/5 logs) OR (git
NEAR/5 logs))

Executando essas queries contra as bases de artigos da
IEEE e da ACM, obtivemos uma lista composta de 22 artigos.
A seguir, a partir da leitura dos títulos dos artigos, os dois
primeiros autores do trabalho entraram em concenso entre



2

quais artigos deveriam ser lidos. Após esta etapa, 13 artigos
foram selecionados para uma análise mais cuidadosa. A seguir,
os trabalhos mais relacionados à temática desse trabalho são
discutidos.

B. Trabalhos acadêmicos
Alali et al. [3] mineram repositórios open source para des-

cobrir características e tendências através da análise do número
de arquivos, logs, linhas ou blocos comitados. Uma outra linha
de pesquisa com bastante interesse pelos pesquisadores é a
caracterização de uma modificação no código e como elas
estariam relacionadas. German [4] estuda as características
de um bloco de modificação em um sistema de controle de
versão como o CVS que não cria um bloco de modificações
para agrupar diferentes arquivos alterados em conjunto. Um
grupo de arquivos estaria no mesmo bloco de modificação
se tivesse o mesmo criador, logs e no mesmo espaço de
tempo. Apesar desse problema já ter sido resolvido através
da modificação em blocos, como no SVN e Git, essa linha
pode ainda ser bem explorada porque, muitas vezes, várias
modificações são feitas em sequência para realizar uma tarefa.
Ratsker e Murphy [5] procuram responder porque um código
compartilhado entre outros desenvolvedores é modificado a
fim de evitar que novos bugs sejam reintroduzidos. Os autores
supunham que a mensagem de commit ou o link que relaciona
o bug à modificação poderiam prover informações detalhadas
sobre como este código teria sido modificado, entretanto,
concluem que falta informação no que diz respeito ao motivo
daquela mudança. O trabalho propõe o uso de técnicas de
sumário multi-documento para gerar descrições concisas em
linguagem natural para que o desenvolvedor possa escolher a
melhor ação a ser tomada. Os autores concluem, também, que
o uso de técnicas para aprimorar a descrição relacionada as
mudanças no código ajudam os desenvolvedores a entenderem
o porque que uma modificação foi realizada. Embora este
tipo de informação dependa diretamente da entrada de dados
do desenvolvedor, pesquisas com objetivos de construir essas
informações de maneira automática datam desde 1958 [6].

Como geralmente uma modificação de código é acom-
panhada por novas entradas no log, podemos utilizar estas
mensagens para que outros desenvolvedores possam validar
mudanças, encontrar bugs ou mesmo entender as modificações.
Neste sentido, [7] propõe uma técnica para sintetizar documen-
tações sucintas para modificações arbitrárias em programas de
forma automática. A pesquisa concluiu que para 89% dos
casos, a documentação gerada poderia substituir a entrada
original nos logs que detalham a modificação do código. En-
tender o impacto de pequenas mudanças com relação a falhas,
relacionamento entre tipos de mudanças (i.e, adicionar, deletar
e modificar), o motivo da alteração e as suas dependências foi
estudado por [8] [9] que conclui que mudanças de uma linha
de código podem ocasionar defeitos no códigos para cerca de
2-5% das vezes.

C. A importância do "Por que?"
O histórico de evolução de um software geralmente responde

"o que?"e "como?"uma alteração foi realizada em um projeto,

mas não o motivo daquela alteração ter sido realizada. [5]
tenta encontrar de maneira automática este "Por que?", porém,
nem sempre é possível conseguir essas informações sem que
o usuário a descreva em detalhes. Entender a motivação
vai além da simples realização eficiente de uma tarefa, ela
ajuda que outros desenvolvedores possam entender a razão
de determinadas ações dentro de um projeto de maneira mais
eficiente, por exemplo, chegar a conclusões mais rápidas do
motivo que um novo bug foi inserido no sistema e o que fazer
para resolve-lo.

III. AVALIAÇÃO EMPÍRICA

A primeira etapa do trabalho consistiu em uma avalição
empírica da problemática dos repositórios de sistemas de
controle de versão e as mensagens de commit utilizadas
nesses ambientes. Para isso, foi desenvolvido um questionário
apresentado aos alunos de pós-graduação do instituto ao qual
os autores são afiliados. O desenvolvimento foi realizado de
forma iterativa em duas etapas: na primeira, o questionário
foi apresentado a um grupo menor com o objetivo de obter
informações para refinar o questionário, a segunda foi, de fato,
o questionário final em si. Na primeira etapa, foram obtidas
40 respostas que foram descartadas para a análise final e na
segunda foram 101 respostas. O questionário ajuda a fornecer
um panorama de quais sistemas de controle de versão elas
utilizam ou já utilizaram, se eles utilizam alguma forma de
padronização de mensagens de commits e se essa padroniza-
ção, quando presente, facilitava a busca por onde defeitos ou
novas features tinham sido adicionadas ao códigos. Procurou-
se também traçar um perfil desses desenvolvedores e verificar
se os fatores tempo de experiência e período de projeto tem
influência sobre os resultados. Como resultado, tivemos o SVN
e Git como os sistemas de controle de versão mais utilizados
sendo citados por 90 e 87 dos participantes, respectivamente.
O CVS ainda tem certa representação sendo citado por 33
pessoas. As mensagens de commit são usadas por 73% dos
desenvolvedores para encontrar onde determinado bug ou nova
feature foi adicionado sendo que desses 48% disseram que
a ajuda ocorre frequentemente ou sempre. Disso podemos
concluir que as mensagens de commit, de fato, ajudam a
encontrar onde bugs e/ou novas features foram adicionados.
Também foi avaliado a relação entre o período de trabalho
em um projeto e a percepção da utilização das mensagens
de commit. Entre os participantes, 35 disseram trabalhar em
projetos com duração de 3 ou mais anos sendo que 49%
utilizam as mensagens de commit sempre ou frequentemente
enquanto que na amostra total 48 (48%) disseram o mesmo,
ou seja, não foi possível perceber uma grande diferença na
utilização das mensagens dependendo do período de tempo
dos projetos em que os desenvolvedores estão inseridos. Por
último, procurou-se determinar se a padronização influencia a
utilização das mensagens. Nesse sentido, 36 pessoas afirmaram
utilizar algum tipo de padronização, sendo que 28 (78%)
citaram as mensagens de commits como uma das ferramentas
utilizadas durante a procura de um bug, enquanto que das 57
que afirmaram não usar padronização alguma, apenas 16 (28%)
citaram as mensagens de commit como ferramenta.



3

Apesar da ausência de testes estatísticos rigorosos, o ques-
tionário forneceu fortes indícios sobre algumas premissas
refutando a idéia de que desenvolvedores envolvidos em pro-
jetos mais longos utilizam mais os históricos dos sistemas
de controle de versão do que em projetos mais curtos. Isso
pode indicar que não há um procura muito distante no tempo
nos históricos e/ou que a procura é feita mesmo em projetos
mais curtos. Apesar disso, o questionário também indica que a
padronização de mensagens induziu a utilização de mensagens
de commit na busca de pontos de inserção de defeitos ou de
novas funcionalidades o que justifica o desenvolvimento da
ferramenta proposta por esse trabalho. Além disso, foi possível
confirmar os sistemas de controle de versão mais utilizados:
Git e SVN, o que justifica a escolha do sistema alvo da criação
do plugin.

IV. PROPOSTA DE SOLUÇÃO

Este trabalho propõe a padronização de mensagens de com-
mits em sistemas de controle de versão possibilitando que as
mesmas sejam sempre utilizadas facilitando a busca de pontos
em que defeitos ou mesmo novas funcionalidades tenham
sido adicionados ao código diminuindo o tempo gasto nessas
tarefas e aumentando a produtividade dos desenvolvedores. A
ferramenta que permite a padronização foi concebida de forma
a ser simples e alterar minimamente o fluxo de trabalho do
desenvolver para que o seu interesse em utiliza-la não seja
reduzido devido a uma maior complexidade no processo de
commit.

A. Implementação do protótipo
O Git é um sistema de controle de versão de código aberto

desenvolvido para suportar desde pequenos a grandes proje-
tos [10]. Dada a sua popularidade, ratificada pela avaliação
empírica do início do trabalho, no qual 87% dos entrevistados
utilizam ou já utilizaram o Git, este sistema apresentou-
se como um candidato natural para receber o protótipo. A
implementação de um plugin para Git é feita através da criação
de um script em uma linguagem interpretada sendo que a
primeira linha indicará o interpretador a ser utilizado, seguindo
a padronização do interpretador de comandos Bash. Para que
o Git reconheça o plugin como um novo comando, basta
adicionar o arquivo criado no path do sistema com o nome
git seguido de hífen e do comando desejado. A linguagem
escolhida para a implementação do protótipo foi Python por
conta da sua simplicidade e fácil integração com o sistema
de controle de versão. O plugin foi desenvolvido de forma
a permitir a customização por parte dos usuários, mais es-
pecificamente, os administradores dos repositórios, facilitando
a adaptação da ferramenta para o contexto do projeto e da
equipe. Para isso, a construção da mensagem é realizada por
um encadeamento de classes, cada qual responsável por exigir
uma ação do usuário e formatá-la dando forma à mensagem,
além disso, esse encadeamento é configurável. A configuração
é realizada através de um arquivo que deve permanecer na raiz
do repositório, facilitando o compartilhamento da mesma entre
todos os colaboradores do projeto. Neste arquivo, também é
possível configurar parte do comportamento de cada uma das

classes. A seguir, são listadas as classes implementadas, suas
responsabilidades, exemplos e suas configurações.

Classe: Rótulo
Responsabilidade: Adicionar um rótulo no início da
mensagem para categorizar os commits.
Justificativa: Um rótulo no início da mensagem indicando o
tipo de modificação melhora a visualização do log de
mensagens facilitando a busca por commits específicos seja
diretamente na listagem ou através de um aplicativo de filtro
como o grep. Por exemplo, encontrar onde determinado bug
foi corrigido basta procurar as linhas iniciadas com BUGFIX.

Classe: Resumo
Responsabilidade: Adicionar um resumo com o tamanho
limitado, permitindo que, na listagem de commits, haja uma
mensagem por linha
Justificativa: Como citado por Torvalds [2], é interessante a
limitação do tamanho do resumo permitindo a visualização
do log de mensagens sem quebras de linhas quando mostrado
em um console, o que é bem comum entre os usuários de Git.

Classe: Comentários
Responsabilidade: Permitir que o desenvolver adicione
outros comentários ao final da mensagem de commit
Justificativa: Caso o desenvolvedor deseje adicionar mais
informações, a ferramenta não pode impedi-lo de fazer pois
isso iria contra o princípio da ferramenta que é facilitar o
fornecimento de informações por parte do desenvolvedor.

Classe: Subprojeto
Responsabilidade: Permitir a adição automática de
identificação do subprojeto ao qual o commit se refere
Justificativa: Facilitar a busca por alterações em subprojetos
de repositórios em que isso ocorre. Como no rótulo, permite
o filtro das modificações realizadas apenas no subprojeto de
interesse.
Configurações possíveis: Expressão regular para obter a
qual subprojeto um arquivo modificado pertence, por
exemplo, src/([a-zA-Z]+)/.*.

Classe: Arquivos
Responsabilidade: Adiciona a lista dos arquivos alterados
nesse commit com um rótulo informando o tipo de alteração:
criação, modificação e deleção
Justificativa: Permitir o filtro das mensagens de commits
que alteram determinado arquivo.

Na Figura 1, vemos como essas classes são representadas
nos logs do GitHub.

B. Experimento preliminar e resultados
O protótipo foi aplicado em conjunto com um projeto de

software desenvolvido exclusivamente para o experimento.
Este projeto foi hospedado no GitHub e foi implementado
em Python. Foram dadas uma série de tarefas que um par de
desenvolvedores deveriam executar de maneira colaborativa.
Para cada passo, era pedido que os desenvolvedores fizessem
o commit das alterações no projeto seguindo o novo padrão
do processo de commit desenvolvido para o Git. Ao final,



4

Figura 1. Representação dos logs no GitHub

foi conduzido uma entrevista com os desenvolvedores para
entender se o novo processo de commit ajudou ou não na
execução das tarefas. O resumo do questionário da entrevista
pode ser encontrado no Apêndice B.

Como resultado, concluímos que a ferramenta não repre-
sentou nenhum ônus considerável para a execução das tarefas.
Após um breve período de adaptação necessário para conhecer
o novo processo, os participantes relataram que os passos
adicionais se tornaram pervasivos. Dos 4 desenvolvedores en-
trevistados, todos reconheceram que o gasto maior em finalizar
o commit está no detalhamento da mensagem enviada e não
na estruturação da ferramenta, porém, todos concluíram que
os ganhos nas descrições armazenadas tornam o processo mais
complexo irrelevante.

Em uma das tarefas, um dos desenvolvedores faria a inserção
de um bug no projeto e outro colaborador deveria tentar
encontrar e conserta-lo. Foi questionado se as mensagens de
commit ajudaram a encontrar o bug. 2 dos 4 participantes
entenderam que o histórico mais detalhado e padronizado
ajudaram a encontrar onde o bug foi inserido no projeto.

Todos os participantes concluíram que a utilização da fer-
ramenta em projetos reais valeria a pena. Dos 4 participantes,
3 consideraram que o limite de caracteres imposto pela ferra-
menta poderia prejudicar a descrição da mensagem de commit.

V. CONCLUSÃO

Apresentamos um estudo que investiga a utilização de men-
sagens de commit mais elaboradas e padronizadas dentro de
um ambiente limitado e experimental. O objetivo foi entender
se a ferramenta poderia aumentar de maneira significativa a
complexidade do processo de commit e se o detalhamento
maior da mensagem poderia melhorar a comunicação e pro-
dutividade dentro de um projeto de software.

Embora a utilização da ferramenta tenha sido aplicada
dentro de um ambiente limitado e experimental, concluímos
que a padronização das mensagens poderia tornar o processo
de desenvolvimento de software mais produtivo, especialmente
em ambientes onde há multiplos colaboradores participando
de um projeto e onde o histórico do que foi implementado se
torna ainda mais essencial. Nossas observações sugerem que
a própria proposta da ferramenta incentiva os desenvolvedores
a aprimorarem o conteúdo da descrição da mensagem, mesmo

assim, o sistema automático que inclui o tipo de modifica-
ção que foi realizado e os arquivos afetados já aumentam
significativamente o detalhamento da mensagem de commit,
removendo a necessidade do desenvolvedor de ter que analisar
cada commit separadamente em detalhes.

VI. TRABALHOS FUTUROS

Embora a quantidade de dados coletados durante os ex-
perimentos tenham sido consideravelmente altos e algumas
conclusões importantes puderam ser retiradas, entendemos que
é necessário aplicar a ferramenta em um grupo maior de
indivíduos e por um período de tempo maior. A simplicidade
da ferramenta torna a aplicação do conceito viável a diferentes
sistemas de controle de versão, além de permitir cenários mais
complexos e envolvendo ou não colaboração. Aplicar este
conceito em ambientes de produção reais seja em empresas
ou projetos de colaboração de código aberto será essencial
para comprovar a eficiência real da proposta de padronização
e elaboração de mensagens de commit.

APÊNDICE A
QUESTIONÁRIO DA AVALIAÇÃO EMPÍRICA

1) Qual(is) sistemas de controle de versão você já utilizou?
*

2) Qual o maior período que você trabalhou em um
projeto?

3) Há quanto tempo você utiliza sistemas de controle de
versão? *

4) Você participa de projetos de software com outros
colaboradores? *

5) Você já teve que procurar algum commit para encontrar
onde um bug ou feature foi adicionado? *

6) Quando você procura algum commit específico, qual(is)
elementos você procura usar? *

7) Com que frequência as mensagens de commit ajudaram
a encontrar e/ou corrigir um bug? *

8) Geralmente, nos seus projetos, você e/ou sua equipe
utiliza alguma padronização nas mensagens de commit?
*

9) Se afirmativo, a padronização facilitou encontrar algum
bug ou onde uma feature foi adicionada?

APÊNDICE B
QUESTIONÁRIO DO EXPERIMENTO PRELIMINAR

1) Você percebeu um aumento de tempo ao comitar em
relação a quando não usava a ferramenta?

2) O que você achou do resultado final do log das mensa-
gens de commit?

3) Se 2 for positivo e relatou aumento em 1, essa melhora
de logs de 2 justifica o aumento em 1?

4) Você acredita que as mensagens ajudaram a encontrar
o bug?

5) Você estaria disposto a utilizar essa ferramenta no seu
dia-a-dia? Se for administrador de repositório, adicio-
naria ao seu projeto, senão, indicaria ao seu adminis-
trador?

6) Suguestões, críticas, reclamações?



5

REFERÊNCIAS

[1] M. J. Rochkind, “The source code control system,”
IEEE Transactions on Software Engineering, vol. SE-
1, no. 4, pp. 364–370, Dec. 1975. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6312866

[2] (2014, Nov.) Git website. [Online]. Available:
https://github.com/torvalds/subsurface/blob/master/README

[3] A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typical commit? a
characterization of open source software repositories,” in Program Com-
prehension, 2008. ICPC 2008. The 16th IEEE International Conference
on. IEEE, 2008, pp. 182–191.

[4] D. M. German, “Mining cvs repositories, the softchange experience,”
Evolution, vol. 245, no. 5,402, pp. 92–688, 2004.

[5] S. Rastkar and G. C. Murphy, “Why did this code change?” in Proce-
edings of the 2013 International Conference on Software Engineering.
IEEE Press, 2013, pp. 1193–1196.

[6] H. P. Luhn, “The automatic creation of literature abstracts,” IBM Journal
of research and development, vol. 2, no. 2, pp. 159–165, 1958.

[7] R. P. Buse and W. R. Weimer, “Automatically documenting program
changes,” in Proceedings of the IEEE/ACM international conference
on Automated software engineering. ACM, 2010, pp. 33–42.

[8] R. Purushothaman and D. E. Perry, “Towards understanding the rhetoric
of small changes-extended abstract,” in International Workshop on
Mining Software Repositories (MSR 2004), International Conference
on Software Engineering. IET, 2004, pp. 90–94.

[9] ——, “Toward understanding the rhetoric of small source code chan-
ges,” Software Engineering, IEEE Transactions on, vol. 31, no. 6, pp.
511–526, 2005.

[10] (2014, Nov.) Git website. [Online]. Available: http://git-scm.com/


