Uma proposta de padronizacdo em mensagens de
commit para sistemas de controle de versao

Bruno Faria, Jorge Melegati, Marco Gerosa
Instituto de Matematica e Estatistica — IME USP

Resumo—Esta pesquisa apresenta uma proposta para padroes
da mensagem de commit em sistemas de controle de versao de
forma a entender como estas mensagens afetam a produtividade
dos desenvolvedores em um projeto colaborativo. Foi criado um
comando customizado para o Git que substitui o tradicional
processo de commit por outro cujo objetivo é aprimorar e
padronizar a mensagem final a ser armazenada no sistema.
Resultados preliminares mostraram que a padroniza¢io ndo s6
aumenta a eficiéncia da colaboracio entre membros como facilita
o entendimento de modificacdes de codigo passado quando uma
tarefa especifica como bug hunting precisa ser feita e que pode
estar ligada a modificacoes de cédigo passadas.

Abstract—This research proposes a standardization for commit
messages in source control systems in order to understand
how the content of these messages affects productivity among
developers in a collaborative environment. A Git command was
created to replace the standard commit process of the Git console
command with the goal to improve and create a pattern for the
final message that is stored in the source control logs. Preliminary
results showed that this method not only increases the efficiency of
collaboration among members while also eases the understanding
of past code changes when a specific task like bug hunting needs
to be made and may be linked to a previous modification.

Keywords—Git, Commit Messages, Repositories, Source Control
Systems

I. INTRODUCAO

Projetos de desenvolvimento de software por serem pro-
cessos essencialmente colaborativos e suscetiveis a mudangas,
geralmente sdo apoiados por sistemas de controle de versdo
como Svn e Git. Estes sistemas armazenam, permitem a
atulizacdo e a obtencdo de diferentes versdes de software [1]
possibilitando ndo s6 a colabora¢do quanto o armazenamento
de informacdes essenciais sobre o histérico da evolucdo do
software. A informacdo armazenada é extremamente valiosa
para entender e acompanhar o desenvolvimento do projeto e,
provavelmente, a principal delas é a mensagem de commit.
O sistema de controle de versdo armazena automaticamente
diversas informades como quem fez a alteragdo, quando ela
foi realizada e quais trechos de codigo foram adicionados ou
removidos entretanto a razdo pela qual a mudanga ocorreu é
dada pelo desenvolvedor e é a consciéncia desse que deter-
minard a qualidade dessa informag@o. Isso ja é discutido por
Rockhind [1] desde o inicio do desenvolvimento das primeiras
ferramentas de controle de versdo. Apesar do longo periodo de
existéncia da questdo, na literatura hd poucos estudos sobre os
padrdes e caracteristicas das mensagens de commit forneci-
das pelo desenvolvedor. Entendemos que mensagens quando

melhor elaboradas e com um certo grau de padronizacdo
podem facilitar ndo sé o processo de colaboracdo como a
eficiéncia geral do processo de desenvolvimento. Esse ponto
¢ levantado por Linus Torvalds, o desenvolvedor do kernel do
sistema operacional Linux, que leva o seu proprio nome, e &
um dos mais usados do planeta, e um dos criadores do Git,
um dos mais usados sistemas de controle de versdo, em [2].
Este trabalho propde uma extensdo para o Git substituindo o
processo padrdo de commit de mensagens por uma sequéncia
de passos que incentive o desenvolvedor a fornecer mais
informacoes, além de padronizar a mensagem final que serd
armazenada nos logs.

II. TRABALHOS RELACIONADOS

Nesta etapa, desenvolveu-se um mapeamento da pesquisa
acerca da mensagens de commit para tentar determinar o
quanto esse topico era discutido. Esse mapeamento procurou
seguir praticas de mapeamentos sistemdticos sem a intencdo
de nomear-se como tal.

A. Queries de pesquisa

Em primeiro lugar, foram definidas as queries a serem
executadas nas bases de dados. Elas se encontram listadas a
seguir.

1) "commit message"OR "commit messages"OR "commits

messages”

2) ("source control"ONEAR/5 message) OR ("source

control"ONEAR/5 messages) OR ("version
control"ONEAR/5 message) OR ("version
control"ONEAR/5 messages) OR "revision
control"ONEAR/5 message) OR ("revision

control"ONEAR/5 messages)

3) ("source control"ONEAR/5 log) OR ("source con-
trol"ONEAR/5 logs) OR ("version control"ONEAR/S
log) OR ("version control"ONEAR/S logs) OR ("re-
vision control"ONEAR/5 log) OR ("revision con-
trol"ONEAR/S logs)

4) cvs NEAR/S message) OR (svn NEAR/5 message) OR
(cvs NEAR/5 log) OR (svn NEAR/5 log) OR (cvs
NEAR/5 logs) OR (svn NEAR/S logs))

5) ((git NEAR/S message) OR (git NEAR/S logs) OR (git
NEAR/S logs))

Executando essas queries contra as bases de artigos da
IEEE e da ACM, obtivemos uma lista composta de 22 artigos.
A seguir, a partir da leitura dos titulos dos artigos, os dois
primeiros autores do trabalho entraram em concenso entre

quais artigos deveriam ser lidos. Apds esta etapa, 13 artigos
foram selecionados para uma analise mais cuidadosa. A seguir,
os trabalhos mais relacionados a temdtica desse trabalho sdo
discutidos.

B. Trabalhos académicos

Alali et al. [3] mineram repositérios open source para des-
cobrir caracteristicas e tendéncias através da andalise do nimero
de arquivos, logs, linhas ou blocos comitados. Uma outra linha
de pesquisa com bastante interesse pelos pesquisadores é a
caracterizacdo de uma modificagdo no codigo e como elas
estariam relacionadas. German [4] estuda as caracteristicas
de um bloco de modificacio em um sistema de controle de
versdo como o CVS que nfo cria um bloco de modificacdes
para agrupar diferentes arquivos alterados em conjunto. Um
grupo de arquivos estaria no mesmo bloco de modificacdo
se tivesse o mesmo criador, logs e no mesmo espago de
tempo. Apesar desse problema jd ter sido resolvido através
da modificagdo em blocos, como no SVN e Git, essa linha
pode ainda ser bem explorada porque, muitas vezes, vdrias
modificacdes sdo feitas em sequéncia para realizar uma tarefa.
Ratsker e Murphy [5] procuram responder porque um c6digo
compartilhado entre outros desenvolvedores é modificado a
fim de evitar que novos bugs sejam reintroduzidos. Os autores
supunham que a mensagem de commit ou o link que relaciona
o bug a modificacdo poderiam prover informagdes detalhadas
sobre como este cédigo teria sido modificado, entretanto,
concluem que falta informagdo no que diz respeito ao motivo
daquela mudanca. O trabalho propde o uso de técnicas de
sumdrio multi-documento para gerar descricdes concisas em
linguagem natural para que o desenvolvedor possa escolher a
melhor acdo a ser tomada. Os autores concluem, também, que
o uso de técnicas para aprimorar a descricdo relacionada as
mudangas no cédigo ajudam os desenvolvedores a entenderem
o porque que uma modificacdo foi realizada. Embora este
tipo de informacdo dependa diretamente da entrada de dados
do desenvolvedor, pesquisas com objetivos de construir essas
informagdes de maneira automdtica datam desde 1958 [6].

Como geralmente uma modificacdo de cédigo € acom-
panhada por novas entradas no log, podemos utilizar estas
mensagens para que outros desenvolvedores possam validar
mudangas, encontrar bugs ou mesmo entender as modificagdes.
Neste sentido, [7] propde uma técnica para sintetizar documen-
tagdes sucintas para modifica¢des arbitrarias em programas de
forma automdtica. A pesquisa concluiu que para 89% dos
casos, a documentacdo gerada poderia substituir a entrada
original nos logs que detalham a modificacdo do cddigo. En-
tender o impacto de pequenas mudancas com relagdo a falhas,
relacionamento entre tipos de mudangas (i.e, adicionar, deletar
e modificar), o motivo da alteracdo e as suas dependéncias foi
estudado por [8] [9] que conclui que mudancas de uma linha
de cdodigo podem ocasionar defeitos no cédigos para cerca de
2-5% das vezes.

C. A importdncia do "Por que?"

O histérico de evolugdo de um software geralmente responde
"o que?"e "como?"uma alteracdo foi realizada em um projeto,

mas ndo o motivo daquela alteragcdo ter sido realizada. [5]
tenta encontrar de maneira automaética este "Por que?", porém,
nem sempre € possivel conseguir essas informagdes sem que
o usudrio a descreva em detalhes. Entender a motivacdo
vai além da simples realizagdo eficiente de uma tarefa, ela
ajuda que outros desenvolvedores possam entender a razdo
de determinadas a¢des dentro de um projeto de maneira mais
eficiente, por exemplo, chegar a conclusées mais rapidas do
motivo que um novo bug foi inserido no sistema e o que fazer
para resolve-lo.

ITI. AVALIACAO EMPIRICA

A primeira etapa do trabalho consistiu em uma avali¢do
empirica da problemdtica dos repositérios de sistemas de
controle de versdo e as mensagens de commit utilizadas
nesses ambientes. Para isso, foi desenvolvido um questiondrio
apresentado aos alunos de pds-graduacdo do instituto ao qual
os autores sdo afiliados. O desenvolvimento foi realizado de
forma iterativa em duas etapas: na primeira, o questiondrio
foi apresentado a um grupo menor com o objetivo de obter
informagdes para refinar o questiondrio, a segunda foi, de fato,
o questiondrio final em si. Na primeira etapa, foram obtidas
40 respostas que foram descartadas para a andlise final e na
segunda foram 101 respostas. O questiondrio ajuda a fornecer
um panorama de quais sistemas de controle de versdo elas
utilizam ou ja utilizaram, se eles utilizam alguma forma de
padronizacdo de mensagens de commits e se essa padroniza-
¢do, quando presente, facilitava a busca por onde defeitos ou
novas features tinham sido adicionadas ao cédigos. Procurou-
se também tracar um perfil desses desenvolvedores e verificar
se os fatores tempo de experiéncia e periodo de projeto tem
influéncia sobre os resultados. Como resultado, tivemos o0 SVN
e Git como os sistemas de controle de versdo mais utilizados
sendo citados por 90 e 87 dos participantes, respectivamente.
O CVS ainda tem certa representagdo sendo citado por 33
pessoas. As mensagens de commit sdo usadas por 73% dos
desenvolvedores para encontrar onde determinado bug ou nova
feature foi adicionado sendo que desses 48% disseram que
a ajuda ocorre frequentemente ou sempre. Disso podemos
concluir que as mensagens de commit, de fato, ajudam a
encontrar onde bugs e/ou novas features foram adicionados.
Também foi avaliado a relacdo entre o periodo de trabalho
em um projeto e a percep¢do da utilizagdo das mensagens
de commit. Entre os participantes, 35 disseram trabalhar em
projetos com duracdo de 3 ou mais anos sendo que 49%
utilizam as mensagens de commit sempre ou frequentemente
enquanto que na amostra total 48 (48%) disseram o mesmo,
ou seja, ndo foi possivel perceber uma grande diferenca na
utilizagdo das mensagens dependendo do periodo de tempo
dos projetos em que os desenvolvedores estdo inseridos. Por
ultimo, procurou-se determinar se a padronizagfo influencia a
utilizagdo das mensagens. Nesse sentido, 36 pessoas afirmaram
utilizar algum tipo de padronizagdo, sendo que 28 (78%)
citaram as mensagens de commits como uma das ferramentas
utilizadas durante a procura de um bug, enquanto que das 57
que afirmaram ndo usar padronizagdo alguma, apenas 16 (28%)
citaram as mensagens de commit como ferramenta.

Apesar da auséncia de testes estatisticos rigorosos, o ques-
tiondrio forneceu fortes indicios sobre algumas premissas
refutando a idéia de que desenvolvedores envolvidos em pro-
jetos mais longos utilizam mais os histéricos dos sistemas
de controle de versdo do que em projetos mais curtos. Isso
pode indicar que ndo hd um procura muito distante no tempo
nos histéricos e/ou que a procura é feita mesmo em projetos
mais curtos. Apesar disso, o questiondrio também indica que a
padronizacdo de mensagens induziu a utilizacdo de mensagens
de commit na busca de pontos de inser¢do de defeitos ou de
novas funcionalidades o que justifica o desenvolvimento da
ferramenta proposta por esse trabalho. Além disso, foi possivel
confirmar os sistemas de controle de versdo mais utilizados:
Git e SVN, o que justifica a escolha do sistema alvo da criacido
do plugin.

IV. PROPOSTA DE SOLUCAO

Este trabalho propde a padronizacdo de mensagens de com-
mits em sistemas de controle de versdo possibilitando que as
mesmas sejam sempre utilizadas facilitando a busca de pontos
em que defeitos ou mesmo novas funcionalidades tenham
sido adicionados ao cédigo diminuindo o tempo gasto nessas
tarefas e aumentando a produtividade dos desenvolvedores. A
ferramenta que permite a padronizagdo foi concebida de forma
a ser simples e alterar minimamente o fluxo de trabalho do
desenvolver para que o seu interesse em utiliza-la ndo seja
reduzido devido a uma maior complexidade no processo de
commit.

A. Implementacdo do prototipo

O Git € um sistema de controle de versdo de c6digo aberto
desenvolvido para suportar desde pequenos a grandes proje-
tos [10]. Dada a sua popularidade, ratificada pela avaliacdo
empirica do inicio do trabalho, no qual 87% dos entrevistados
utilizam ou ji utilizaram o Git, este sistema apresentou-
se como um candidato natural para receber o protétipo. A
implementagdo de um plugin para Git € feita através da criacio
de um script em uma linguagem interpretada sendo que a
primeira linha indicard o interpretador a ser utilizado, seguindo
a padronizag@o do interpretador de comandos Bash. Para que
o Git reconheca o plugin como um novo comando, basta
adicionar o arquivo criado no path do sistema com o0 nome
git seguido de hifen e do comando desejado. A linguagem
escolhida para a implementacdo do protétipo foi Python por
conta da sua simplicidade e facil integracdo com o sistema
de controle de versdo. O plugin foi desenvolvido de forma
a permitir a customizag¢do por parte dos usudrios, mais es-
pecificamente, os administradores dos repositdrios, facilitando
a adaptacdo da ferramenta para o contexto do projeto e da
equipe. Para isso, a constru¢do da mensagem ¢é realizada por
um encadeamento de classes, cada qual responsavel por exigir
uma acdo do usudrio e formatd-la dando forma a mensagem,
além disso, esse encadeamento € configurdvel. A configuracio
¢ realizada através de um arquivo que deve permanecer na raiz
do repositdrio, facilitando o compartilhamento da mesma entre
todos os colaboradores do projeto. Neste arquivo, também ¢
possivel configurar parte do comportamento de cada uma das

classes. A seguir, sdo listadas as classes implementadas, suas
responsabilidades, exemplos e suas configuragdes.

Classe: Roétulo

Responsabilidade: Adicionar um rétulo no inicio da
mensagem para categorizar oS COmmits.

Justificativa: Um ré6tulo no inicio da mensagem indicando o
tipo de modificagcdo melhora a visualizacdo do log de
mensagens facilitando a busca por commits especificos seja
diretamente na listagem ou através de um aplicativo de filtro
como o grep. Por exemplo, encontrar onde determinado bug
foi corrigido basta procurar as linhas iniciadas com BUGFIX.

Classe: Resumo

Responsabilidade: Adicionar um resumo com o tamanho
limitado, permitindo que, na listagem de commits, haja uma
mensagem por linha

Justificativa: Como citado por Torvalds [2], é interessante a
limita¢do do tamanho do resumo permitindo a visualiza¢do
do log de mensagens sem quebras de linhas quando mostrado
em um console, o que € bem comum entre os usudrios de Git.

Classe: Comentdrios

Responsabilidade: Permitir que o desenvolver adicione
outros comentdrios ao final da mensagem de commit
Justificativa: Caso o desenvolvedor deseje adicionar mais
informagdes, a ferramenta ndo pode impedi-lo de fazer pois
isso iria contra o principio da ferramenta que é facilitar o
fornecimento de informagdes por parte do desenvolvedor.

Classe: Subprojeto

Responsabilidade: Permitir a adicdo automatica de
identificagdo do subprojeto ao qual o commit se refere
Justificativa: Facilitar a busca por alteragdes em subprojetos
de repositdrios em que isso ocorre. Como no rétulo, permite
o filtro das modificagdes realizadas apenas no subprojeto de
interesse.

Configuracdes possiveis: Expressiao regular para obter a
qual subprojeto um arquivo modificado pertence, por
exemplo, src/([a-zA-Z]+)/.*.

Classe: Arquivos

Responsabilidade: Adiciona a lista dos arquivos alterados
nesse commit com um rétulo informando o tipo de alteracio:
criagdo, modificacdo e delegdo

Justificativa: Permitir o filtro das mensagens de commits
que alteram determinado arquivo.

Na Figura 1, vemos como essas classes sdo representadas
nos logs do GitHub.

B. Experimento preliminar e resultados

O protétipo foi aplicado em conjunto com um projeto de
software desenvolvido exclusivamente para o experimento.
Este projeto foi hospedado no GitHub e foi implementado
em Python. Foram dadas uma série de tarefas que um par de
desenvolvedores deveriam executar de maneira colaborativa.
Para cada passo, era pedido que os desenvolvedores fizessem
o commit das alteragdes no projeto seguindo o novo padrdo
do processo de commit desenvolvido para o Git. Ao final,

Commits on Oct 28, 2014

E NEWFEATURE atualizacao do readme (M README.md, M git-new-commit)
= bnif

NEWFEATURE novas informacoes de teste (M README.md)
Lo /BN

Commits on Oct 22, 2014

NEWFEATURE Adding debug feature to enable/disable stdout writer. (MM ... -
Jorge Melegati

BUGFIX: files chain was adding not staged files.
Jorge Melegati

NEWFEATURE: medifying subproject chain to use a regex to tell the sub... /-
Jorge Melegati

Figura 1. Representacdo dos logs no GitHub

foi conduzido uma entrevista com os desenvolvedores para
entender se o novo processo de commit ajudou ou ndo na
execucdo das tarefas. O resumo do questiondrio da entrevista
pode ser encontrado no Apéndice B.

Como resultado, concluimos que a ferramenta ndo repre-
sentou nenhum 6nus considerdvel para a execucao das tarefas.
Ap6s um breve periodo de adaptagdo necessdrio para conhecer
0 Novo processo, Os participantes relataram que 0s passos
adicionais se tornaram pervasivos. Dos 4 desenvolvedores en-
trevistados, todos reconheceram que o gasto maior em finalizar
o commit estd no detalhamento da mensagem enviada e nio
na estruturacdo da ferramenta, porém, todos concluiram que
os ganhos nas descri¢cdes armazenadas tornam o processo mais
complexo irrelevante.

Em uma das tarefas, um dos desenvolvedores faria a inser¢@o
de um bug no projeto e outro colaborador deveria tentar
encontrar e conserta-lo. Foi questionado se as mensagens de
commit ajudaram a encontrar o bug. 2 dos 4 participantes
entenderam que o histérico mais detalhado e padronizado
ajudaram a encontrar onde o bug foi inserido no projeto.

Todos os participantes concluiram que a utilizagdo da fer-
ramenta em projetos reais valeria a pena. Dos 4 participantes,
3 consideraram que o limite de caracteres imposto pela ferra-
menta poderia prejudicar a descricdo da mensagem de commit.

V. CONCLUSAO

Apresentamos um estudo que investiga a utilizacdo de men-
sagens de commit mais elaboradas e padronizadas dentro de
um ambiente limitado e experimental. O objetivo foi entender
se a ferramenta poderia aumentar de maneira significativa a
complexidade do processo de commit e se o detalhamento
maior da mensagem poderia melhorar a comunicag¢do e pro-
dutividade dentro de um projeto de software.

Embora a utilizacdo da ferramenta tenha sido aplicada
dentro de um ambiente limitado e experimental, concluimos
que a padronizagdo das mensagens poderia tornar o processo
de desenvolvimento de software mais produtivo, especialmente
em ambientes onde hd multiplos colaboradores participando
de um projeto e onde o histérico do que foi implementado se
torna ainda mais essencial. Nossas observacdes sugerem que
a propria proposta da ferramenta incentiva os desenvolvedores
a aprimorarem o contetido da descri¢do da mensagem, mesmo

assim, o sistema automdtico que inclui o tipo de modifica-
¢do que foi realizado e os arquivos afetados ja aumentam
significativamente o detalhamento da mensagem de commit,
removendo a necessidade do desenvolvedor de ter que analisar
cada commit separadamente em detalhes.

VI. TRABALHOS FUTUROS

Embora a quantidade de dados coletados durante os ex-
perimentos tenham sido consideravelmente altos e algumas
conclusdes importantes puderam ser retiradas, entendemos que
é necessdrio aplicar a ferramenta em um grupo maior de
individuos e por um periodo de tempo maior. A simplicidade
da ferramenta torna a aplicag¢do do conceito vidvel a diferentes
sistemas de controle de versdo, além de permitir cendrios mais
complexos e envolvendo ou ndo colaboragdo. Aplicar este
conceito em ambientes de produgdo reais seja em empresas
ou projetos de colaboracdo de cdédigo aberto serd essencial
para comprovar a eficiéncia real da proposta de padronizacio
e elaboracdo de mensagens de commit.

APENDICE A
QUESTIONARIO DA AVALIACAO EMPIRICA

1) Qual(is) sistemas de controle de versdo vocé ja utilizou?
*

2) Qual o maior periodo que vocé trabalhou em um
projeto?

3) Ha4 quanto tempo vocé utiliza sistemas de controle de
versdo? *

4) Vocé participa de projetos de software com outros
colaboradores? *

5) Vocé ja teve que procurar algum commit para encontrar
onde um bug ou feature foi adicionado? *

6) Quando vocé procura algum commit especifico, qual(is)
elementos vocé procura usar? *

7) Com que frequéncia as mensagens de commit ajudaram
a encontrar e/ou corrigir um bug? *

8) Geralmente, nos seus projetos, voc€ e/ou sua equipe
utiliza alguma padronizacdo nas mensagens de commit?
*

9) Se afirmativo, a padronizacdo facilitou encontrar algum
bug ou onde uma feature foi adicionada?

APENDICE B
QUESTIONARIO DO EXPERIMENTO PRELIMINAR

1) Vocé percebeu um aumento de tempo ao comitar em
relacdo a quando ndo usava a ferramenta?

2) O que vocé achou do resultado final do log das mensa-
gens de commit?

3) Se 2 for positivo e relatou aumento em 1, essa melhora
de logs de 2 justifica o aumento em 17?

4) Vocé acredita que as mensagens ajudaram a encontrar
o bug?

5) Vocé estaria disposto a utilizar essa ferramenta no seu
dia-a-dia? Se for administrador de repositério, adicio-
naria ao seu projeto, sendo, indicaria ao seu adminis-
trador?

6) Suguestoes, criticas, reclamacdes?

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCIAS

M. J. Rochkind, “The source code control system,”
IEEE Transactions on Software Engineering, vol. SE-
1, no. 4, pp. 364-370, Dec. 1975. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6312866

(2014, Nov.) Git website. [Online]. Available:
https://github.com/torvalds/subsurface/blob/master/README

A. Alali, H. Kagdi, and J. 1. Maletic, “What’s a typical commit? a
characterization of open source software repositories,” in Program Com-
prehension, 2008. ICPC 2008. The 16th IEEE International Conference
on. IEEE, 2008, pp. 182-191.

D. M. German, “Mining cvs repositories, the softchange experience,”
Evolution, vol. 245, no. 5,402, pp. 92-688, 2004.

S. Rastkar and G. C. Murphy, “Why did this code change?” in Proce-
edings of the 2013 International Conference on Software Engineering.
IEEE Press, 2013, pp. 1193-1196.

H. P. Luhn, “The automatic creation of literature abstracts,” IBM Journal
of research and development, vol. 2, no. 2, pp. 159-165, 1958.

R. P. Buse and W. R. Weimer, “Automatically documenting program
changes,” in Proceedings of the IEEE/ACM international conference
on Automated software engineering. ACM, 2010, pp. 33-42.

R. Purushothaman and D. E. Perry, “Towards understanding the rhetoric
of small changes-extended abstract,” in International Workshop on
Mining Software Repositories (MSR 2004), International Conference
on Software Engineering. 1ET, 2004, pp. 90-94.

, “Toward understanding the rhetoric of small source code chan-
ges,” Software Engineering, IEEE Transactions on, vol. 31, no. 6, pp.
511-526, 2005.

(2014, Nov.) Git website. [Online]. Available: http://git-scm.com/

