Chapter 6

ELECTROSTATIC BOUNDARY-
VALUE PROBLEMS

Our schools had better get on with what is their overwhelmingly most important
task: teaching their charges to express themselves clearly and with precision in
both speech and writing; in other words, leading them toward mastery of their
own language. Failing that, all their instruction in mathematics and science is a
waste of time.

—JOSEPH WEIZENBAUM, M.L.T.

h.1 INTRODUCTION

The procedure for determining the electric field E in the preceding chapters has generally
been using either Coulomb’s law or Gauss’s law when the charge distribution is known, or
using E = — VV when the potential V is known throughout the region. In most practical
situations, however, neither the charge distribution nor the potential distribution is known.

In this chapter, we shall consider practical electrostatic problems where only electro-
static conditions (charge and potential) at some boundaries are known and it is desired to
find E and V throughout the region. Such problems are usually tackled using Poisson’s' or
Laplace’s” equation or the method of images, and they are usually referred to as boundary-
value problems. The concepts of resistance and capacitance will be covered. We shall use
Laplace’s equation in deriving the resistance of an object and the capacitance of a capaci-
tor. Example 6.5 should be given special attention because we will refer to it often in the
remaining part of the text.

.2 POISSON’S AND LAPLACFE’S EQUATIONS

Poisson’s and Laplace’s equations are easily derived from Gauss’s law (for a linear mater-
ial medium)

V-D=V-¢E = p, 6.1)

! After Simeon Denis Poisson (1781-1840), a French mathematical physicist.
2After Pierre Simon de Laplace (1749-1829), a French astronomer and mathematician.
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and
E=-VVv (6.2)
Substituting eq. (6.2) into eq. (6.1) gives |
V- (—eVV) =p, (6.3)

for an inhomogeneous medium. For a homogeneous medium, eq. (6.3) becomes

: Vy= -2 (6.4)

&

This is known as Poisson’s equation. A special case of this equation occurs when p, = 0
(i.e., for a charge-free region). Equation (6.4) then becomes

ViV =0 (6.5)

which is known as Laplace’s equation. Note that in taking & out of the left-hand side of
eq. (6.3) to obtain eq. (6.4), we have assumed that ¢ is constant throughout the region in
which V is defined; for an inhomogeneous region, € is not constant and eq. (6.4) does not
follow eq. (6.3). Equation (6.3) is Poisson’s equation for an inhomogeneous medium; it
becomes Laplace’s equation for an inhomogeneous medium when p, = 0.

Recall that the Laplacian operator V> was derived in Section 3.8. Thus Laplace’s equa-
tion in Cartesian, cylindrical, or spherical coordinates respectively is given by

V. 8V 8V

—_—t — 4+ — =90 6.6

ax’ 6y2 9z° ©6)

pap\"90) " pPag? | a2 '
1a<rzav)+ 1 a(_eav>+ R 0 638
— — — ——\smd— 2 .
r2ar\ or %sin 6 90 30 risin® 6 9¢* (©8)

depending on whether the potential is V(x, y, 2), V(p, ¢, 2), or V(r, 8, ¢). Poisson’s equation
in those coordinate systems may be obtained by simply replacing zero on the right-hand
side of egs. (6.6), (6.7), and (6.8) with —p,/e.

Laplace’s equation is of primary importance in solving electrostatic problems involv-
ing a set of conductors maintained at different potentials. Examples of such problems
include capacitors and vacuum tube diodes. Laplace’s and Poisson’s equations are not only
useful in solving electrostatic field problem; they are used in various other field problems.
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For example, V would be interpreted as magnetic potential in magnetostatics, as tempera-
ture in heat conduction, as stress function in fluid flow, and as pressure head in seepage.

6.3 UNIQUENESS THEOREM

Since there are several methods (analytical, graphical, numerical, experimental, etc.) of
solving a given problem, we may wonder whether solving Laplace’s equation in different
ways gives different solutions. Therefore, before we begin to solve Laplace’s equation, we
should answer this question: If a solution of Laplace’s equation satisfies a given set of
boundary conditions, is this the only possible solution? The answer is yes: there is only one
solution. We say that the solution is unique. Thus any solution of Laplace’s equation which
satisfies the same boundary conditions must be the only solution regardless of the method
used. This is known as the uniqueness theorem. The theorem applies to any solution of
Poisson’s or Laplace’s equation in a given region or closed surface.

The theorem is proved by contradiction. We assume that there are two solutions V; and
V, of Laplace’s equation both of which satisfy the prescribed boundary conditions. Thus

Vv, =0, VV,=0 (6.9a)
Vi=V, on the boundary (6.9b)
We consider their difference
Veo=V, =V, (6.10)
which obeys
ViV, = VV, — V?V, =0 (6.11a)
vV, =90 on the boundary (6.11b)

according to eq. (6.9). From the divergence theorem.

fV-Adv=§>A-ds (6.12)
v s
We let A = V,; VV, and use a vector identity
V-A=V-(V,VV)=VVV,+ VV,- VV,
But V?V, = 0 according to eq. (6.11), so
V-A=Vy,-Vy, (6.13)
Substituting eq. (6.13) into eq. (6.12) gives
J’ VWV, VW,dv = 3( V,VV,-dS (6.14)

v N

From egs. (6.9) and (6.11), it is evident that the right-hand side of eq. (6.14) vanishes.
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Hence:

j |[VV 2 dv =0

v

Since the integration is always positive.
VW,=0 (6.15a)
or
V4 = V, — V| = constant everywhere in v (6.15b)

But eq. (6.15) must be consistent with eq. (6.9b). Hence, V,; = Q or V; = V, everywhere,
showing that V, and V, cannot be different solutions of the same problem.

Tlns is the umquen%s theorem. Ifa solunon te Laplace s equatmn ean be found
that satisfies the boundary conditions, then the sokutmn is umque . -

Similar steps can be taken to show that the theorem applies to Poisson’s equation and to
prove the theorem for the case where the electric field (potential gradient) is specified on
the boundary.

Before we begin to solve boundary-value problems, we should bear in mind the three
things that uniquely describe a problem:

1. The appropriate differential equation (Laplace’s or Poisson’s equation in this
chapter)

2. The solution region

3. The prescribed boundary conditions

A problem does not have a unique solution and cannot be solved completely if any of the
three items is missing.

6.4 GENERAL PROCEDURE FOR SOLVING POISSON’S
OR LAPLACFE’S EQUATION

The following general procedure may be taken in solving a given boundary-\)alue problem
involving Poisson’s or Laplace’s equation:

1. Solve Laplace’s (if p, = 0) or Poisson’s (if p, # 0) equation using either (a) direct
integration when V is a function of one variable, or (b) separation of variables if V
is a function of more than one variable. The solution at this point is not unique but
expressed in terms of unknown integration constants to be determined.

2. Apply the boundary conditions to determine a unique solution for V. Imposing the
given boundary conditions makes the solution unique.

3. Having obtained V, find E using E = —VV and D from D = ¢E.
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4. Tf desired, find the charge Q induced on a conductor using Q = [ psdS where
ps = D, and D, is the component of D normal to the conductor. If necessary, the
capacitance between two conductors can be found using C = Q/V.

Solving Laplace’s (or Poisson’s) equation, as in step 1, is not always as complicated as
it may seem. In some cases, the solution may be obtained by mere inspection of the
problem. Also a solution may be checked by going backward and finding out if it satisfies
both Laplace’s (or Poisson’s) equation and the prescribed boundary conditions.

Current-carrying components in high-voltage power equipment must be cooled to carry
away the heat caused by ohmic losses. A means of pumping is based on the force transmit-
ted to the cooling fluid by charges in an electric field. The electrohydrodynamic (EHD)
pumping is modeled in Figure 6.1. The region between the electrodes contains a uniform
charge p,,, which is generated at the left electrode and collected at the right electrode. Cal-
culate the pressure of the pump if p, = 25 mC/m’ and V, = 22 kV.

Solution:
Since p, # 0, we apply Poisson’s equation

vy = -2

The boundary conditions V(z = 0) = V, and V(z = d) = 0 show that V depends only on z
(there is no p or ¢ dependence). Hence

Ei_z_v T Po
dz? e
Integrating once gives
av -
v _ ek,
dz £
Integrating again yields
oz
V=-""-+Az+B
2e

Figure 6.1 An electrohydrodynamic pump; for
Example 6.1.

Area §
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EXAMPLE 6.2

where A and B are integration constants to be determined by applying the boundary condi-
tions. Whenz = 0, V=1V,

V,=—-0+0+B—>B=1V,
Whenz=d,V =0,

o’
0=-2% 4 ad+v,
2e
or
P Vo
A =z _ =
2¢e d

The electric field is given by

The net force is

d
F=Jvadv=p0JdSJ E dz

z=0
VZ | 0o o }"
=08 T+ —-d
Po {d 28(1 2) Oaz
F = p,SV,a,

The force per unit area or pressure is

F
p=g= PV, = 25 X 1073 X 22 X 10 = 550 N/m*

PRACTICE EXERCISE 6.1

In a one-dimensional device, the charge density is given by p, = px/a. T E = 0 at
x=0andV =0atx = g find Vand E. ~

2
Answer: 22 (2 — 1%, 20 4
bea 2ae

The xerographic copying machine is an important application of electrostatics. The surface
of the photoconductor is initially charged uniformly as in Figure 6.2(a). When light from
the document to be copied is focused on the photoconductor, the charges on the lower
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Figure 6.2 For Example 6.2.

surface combine with those on the upper surface to neutralize each other. The image is de-
veloped by pouring a charged black powder over the surface of the photoconductor. The
electric field attracts the charged powder, which is later transferred to paper and melted to
form a permanent image. We want to determine the electric field below and above the
surface of the photoconductor.

Solution:

Consider the modeled version of Figure 6.2(a) as in Figure 6.2(b). Since p, = 0 in this
case, we apply Laplace’s equation. Also the potential depends only on x. Thus

d’v
VW=-—=0
dx
Integrating twice gives
V=Ax+B

Let the potentials above and below be V; and V,, respectively.

Vl = Alx + B], xX>a (6.213)

Vo=Ax+B,, x<a (6.2.1b)
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The boundary conditions at the grounded electrodes are
Vik=d) =20 (6.2.2.2)
Vox=0)=0 (6.2.2b)
At the surface of the photoconductor,
Vixk=a) = Vb(x = a) (6.2.3a)
Dy, — D, = ps (6.2.3b)

We use the four conditions in egs. (6.2.2) and (6.2.3) to determine the four unknown con-
stants A;, A,, By, and B,. From eqgs. (6.2.1) and 6.2.2),

0=Ad+ B —B =—-Ad (6.2.4a)
0=0+B,—>B, =0 (6.2.4b)
From eqgs. (6.2.1) and (6.2.3a),
A+ By = Ay (6.2.5)
To apply eq. (6.2.3b), recall that D = ¢E = —¢VV so that

D, — D E E vy + v,
g n n =g n & " = —g, — £, ——
Ps 1 2 1£1 b15%) 1 ! 2 dx

or
Ps = _81A1 + 82A2 (626)
Solving for A, and A, in egs. (6.2.4) to (6.2.6), we obtain

a,
E] = _A]aX: Ps
8]{1 +‘8‘2‘({ 82:|
&1 4a &1
N
e B Ps a a;
2 T TA@A =
d
81!:1"'2_ 2}
g a &1

PRACTICE EXERCISE 6.2

For the model of Figure 6.2(b), if ps = 0 and the upper electrode is maintained at V,,
while the lower electrode is grounded, show that

-V,a -V,a,
E, = 0);: ’ E, = € oxél
d-—a+—a a+2d-=2

& € €1
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Semiinfinite conducting planes ¢ = 0 and ¢ = «/6 are separated by an infinitesimal insu-
lating gap as in Figure 6.3. If V(¢ = 0) = 0 and V(¢ = #/6) = 100 V, calculate V and E
in the region between the planes.

Solution:
As V depends only on ¢, Laplace’s equation in cylindrical coordinates becomes

14V _

VV=—5—=
p2d¢2

0

Since p = 0 is excluded due to the insulating gap, we can multiply by p* to obtain

d’v
— = 0
d¢
which is integrated twice to give
V=A¢ + B

We apply the boundary conditions to determine constants A and B. When ¢ = 0, V = (0,
0=0+B—->B=0

When ¢ = ¢, V=V,

Hence:

z Figure 6.3 Potential V(¢) due to semi-
_-gap infinite conducting planes.

b0

—V

O




208 ® Electrostatic Boundary-Value Problems

EXAMPLE 6.4

and
14dv 1%
E=-VW=-——~—a,=~-—"a
pds™"  poy
Substituting V, = 100 and ¢, = /6 gives
600 600
V=—"¢ and E=—a,
s )

Check: V2V = 0, V(¢ = 0) = 0, V(¢ = /6) = 100.

PRACTICE EXERCISE 6.3

Two conducting plates of size 1 X 5 m are inclined at 45° to each other with a gap of
width 4 mm separating them as shown in Figure 6.4. Determine an approximate
value of the charge per plate if the plates are maintained at a potential difference of
50 V. Assume that the medium between them bas g, = 1.5.

Answer: 22.2nC.

Two conducting cones (§ = /10 and & = #/6) of infinite extent are separated by an infin-
itesimal gap at r = 0. If V(@ = #/10) = 0 and V(0 = #/6) = 50V, find V and E between
the cones.

Solution:

Consider the coaxial cone of Figure 6.5, where the gap serves as an insulator between the
two conducting cones. V depends only on 8, so Laplace’s equation in spherical coordinates

becomes
1 d av
ViV = — [ i 0—] =0
Psingdd | db

Figure 6.4 For Practice Exercise 6.3.

gap of width 4 mm

*:
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Figure 6.5 Potential V(¢) due to conducting cones.

Since r = 0 and § = 0, 7 are excluded, we can multiply by r*sin 6 to get

i[inl?ﬂ}—O
a8 ™" a8~

Integrating once gives

dv
inf—=A
sin 20
or
f_iX_ A
df  sinf

Integrating this results in

do do
V=4 J sng A J 2 cos 6/2 sin 6/2
J 1/2 sec® 6/2 df
tan 6/2
4 J d(tan 6/2)
tan 6/2
= Aln (tan 6/2) + B

=A

B 209

We now apply the boundary conditions to determine the integration constants A and B.

Vie=0)=0->0=Aln(tan6,/2) + B

or

B = —Aln (tan 6,/2)
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Hence
[ tan 6/2 }
V=AIln
tan 6,/2
Also
tan 02/2}
Vi =60,)=V,=>V,=Al
6=0)=V, =V, =Aln [tan 8,12
or
— VO
[tan 02/2}
In| ———
tan 6,/2
Thus

2
V.In { tan 6/ J

_ tan 6,/2
{tan 02/2}
In
tan 6,/2
1dv A
E=-VW=—-——gay=——
r db A rsin @ 0
Vo
= — ae
i tan 6,/2
rsinfln | ——
tan 6,/2
Taking 6, = #/10, 0, = #/6, and V, = 50 gives
t 2
SOI“LaHO//zo} tan 6/2
an
V= ST 95.1In {L}
| {tan 7r/12} 0.1584
n
tan /20
and
95.1
E=—- T 2y V/m
rsin 8

Check: V’V =0, V(0 = 7/10) = 0, V(6 = =/6) = V.
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S50V

0=45%

For Practice Exercise 6.4.

PRACTICE EXERCISE 6.4

A large conducting cone (§ = 45°) is placed on a conducting plane with a tiny gap
separating it from the plane as shown in Figure 6.6. If the cone is connected to a
50-V source, find V and E at (-3, 4, 2).

Answer: 22.13V,11.36 a5 V/m.

(a) Determine the potential function for the region inside the rectangular trough of infinite
length whose cross section is shown in Figure 6.7.

(b) For V, = 100 V and b = 2a, find the potential at x = a/2, y = 3a/4.

Solution:

(a) The potential V in this case depends on x and y. Laplace’s equation becomes

v 9tV
VW=—+—75=0 (6.5.1)

y Potential V(x, v) due to a con-
ducting rectangular trough.
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We have to solve this equation subject to the following boundary conditions:

Vx=0,0=y=a)=0 (6.5.2a)
Vx=b0=y=a)=0 (6.5.2b)
VO<x<by=0)=0 (6.5.2¢)
VO=x=<by=a)=V, (6.5.2d)

We solve eq. (6.5.1) by the method of separation of variables; that is, we seek a product
solution of V. Let

Vix, y) = X(x) Y(y) (6.5.3)
when X is a function of x only and Y is a function of y only. Substituting eq. (6.5.3) into
eq. (6.5.1) yields

XY+YX=0
Dividing through by XY and separating X from Y gives
X_r

T (6.5.4a)

Since the left-hand side of this equation is a function of x only and the right-hand side is a
function of y only, for the equality to hold, both sides must be equal to a constant \; that is
XY

X Y

A (6.5.4b)

The constant A is known as the separation constant. From eq. (6.5.4b), we obtain

X' +AX =0 (6.5.52)

and
Y'=ANY =0 (6.5.5b)

Thus the variables have been separated at this point and we refer to eq. (6.5.5) as separated
equations. We can solve for X(x) and Y(y) separately and then substitute our solutions into
eq. (6.5.3). To do this requires that the boundary conditions in eq. (6.5.2) be separated, if
possible. We separate them as follows:

V(0, y) = X(O)Y(y) = 0 = X(0) = 0 (6.5.6a)
Vib,y) = X(b)Y(y) = 0> X(b) = 0 (6.5.6b)
V(x, 0) = X(x)Y(0) = 0> ¥(0) = 0 (6.5.6¢)
V(x, a) = X(0)Y(a) = V, (inseparable) (6.5.6d)

To solve for X(x) and Y(y) in eq. (6.5.5), we impose the boundary conditions in eq. (6.5.6).
We consider possible values of A that will satisfy both the separated equations in eq. (6.5.5)
and the conditions in eq. (6.5.6).
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CASE A.
If A = 0, then eq. (6.5.5a) becomes
X'=0 or ‘Z; =0
which, upon integrating twice, yields
X=Ax+B (6.5.7)

The boundary conditions in egs. (6.5.6a) and (6.5.6b) imply that
Xx=0=0-0=0+8B or B=0
and
Xx=b5)=0-0=A-b+0 or A=0
because b # 0. Hence our solution for X in eq. (6.5.7) becomes
Xx)y=0

which makes V = 0 in eq. (6.5.3). Thus we regard X(x) = O as a trivial solution and we
conclude that A # 0.

CASE B.
If A < 0, say N = —a”, then eq. (6.5.5a) becomes
X' —a’X=0 o (DP—aDHX=0
d
here D =—
whnere dx
that is,

DX = zaX (6.5.8)

showing that we have two possible solutions corresponding to the plus and minus signs.
For the plus sign, eq. (6.5.8) becomes

dax dX
— =X or — = adx
dx X

Hence

ax
J7= [adx or InX =oax +1InA,

where In A, is a constant of integration. Thus

X = Ae™ (6.5.92)
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Similarly, for the minus sign, solving eq. (6.5.8) gives
X =Ae ™ (6.5.9b)
The total solution consists of what we have in egs. (6.5.9a) and (6.5.9b); that is,
X(x) = Ae™ + Ae ™ (6.5.10)

Since coshoax = (¢ + ¢ “)/2 and sinhax = (¢ — ¢ “)/2 or e* = cosh ax +
sinh ax and e™** = cosh ax — sinh aw, eq. (6.5.10) can be written as

X(x) = B; cosh ax + B, sinh aux (6.5.11)

where B = A} + A, and B, = A; — A,. In view of the given boundary conditions. we
prefer eq. (6.5.11) to eq. (6.5.10) as the solution. Again, egs. (6.5.6a) and (6.5.6b) require
that

Xx=0=0—>0=B,-(1) + B,- () or B, =0
and
Xx=b)=0—>0=0+ B,sinh b

Since o # 0 and b # 0, sinh ab cannot be zero. This is due to the fact that sinh x = 0 if
and only if x = 0 as shown in Figure 6.8. Hence B> = 0 and

X(x)y =10

This is also a trivial solution and we conclude that A cannot be less than zero.

CASE C.
IfA>0,say A = 3°, then eq. (6.5.5a) becomes
X +B58X=0
¥ »- o = Sketch of coshx and sinh x
T showing that sinhx = 0 if and only if
x = 0.
coshx—"
T~ sinh x

w“—
|

o

o 4
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that is,
(D + BE)X =0 or DX = +jB8X (6.5.12)

where j = \/jl From egs. (6.5.8) and (6.5.12), we notice that the difference between
Cases 2 and 3 is replacing « by jf3. By taking the same procedure as in Case 2, we obtain
the solution as

X)) = Ce'™ + Cre™™ (6.5.13a)

Since '™ = cos Bx + jsin Brand ¢ ™ = cos Bx — j sin By, eq. (6.5.13a) can be written
as

X(x) = g,cos Bx + g sin Bx (6.5.13b)

where ¢, = C, + Ciand g, = C, — jC,.
[n view of the given boundary conditions. we prefer to use eq. (6.5.13b}. Imposing the
conditions in eqgs. (6.5.6a) and (6.5.6b) yields

Xx=0)=0—>0=g,-(1)+0 or g, =0
and
Xx=b=0->0=0+ g sinBh
Suppose g, # 0 (otherwise we get a trivial solution). then
sinf3b = 0 = sinnw

nw
627. n=12234 ... (6.5.14)

Note that, unlike sinh x, which is zero only when x = (). sin x is zero at an infinite number
of points as shown in Figure 6.9. It should also be noted that n # 0 because 8 # 0; we
have already considered the possibility 3 = 0 in Case | where we ended up with a trivial
solution. Also we do not need to consider n = —1, =2, —3. —4, . . . because A\ = BZ

£ tzerre £ Sketeh of sinx showing that sin x = 0 at infinite number
of points.
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would remain the same for positive and negative values of n. Thus for a given n,
eq. (6.5.13b) becomes

X,(x) = g, sin "bﬂ (6.5.15)
Having found X(x) and
A=g= %rz (6.5.16)
we solve eq. (6.5.5b) which is now
Y'Y =0

The solution to this is similar to eq. (6.5.11) obtained in Case 2 that is,
Y(y) = h,cosh By + hy sinh By
The boundary condition in eq. (6.5.6¢) implies that
Yy=0)=0-0=h,-(1)+0 or hy =0
Hence our solution for Y(y) becomes

Y,(y) = h, sinh =~

(6.5.17)
Substituting egs. (6.5.15) and (6.5.17), which are the solutions to the separated equations
in eq. (6.5.5), into the product solution in eq. (6.5.3) gives
nTX |, | AT
V.(x, y) = g,h, sin — sinh ory
b b

This shows that there are many possible solutions V;, V,, V5, V,, and so on, for n =
1,2, 3, 4, and so on.

By the superposition theorem, if V|, V,, V5, . . . , V, are solutions of Laplace’s equa-
tion, the linear combination

V=C1V1 +C2V2+C3V3 + - +CnVn

(where ¢y, ¢, ¢5 . . ., ¢, are constants) is also a solution of Laplace’s equation. Thus the
solution to eq. (6.5.1) is
nwy

il . onmwx .
Vix,y) = D c, s1n751nh7 (6.5.18)
n=1

where ¢, = g,h, are the coefficients to be determined from the boundary condition in
eq. (6.5.6d). Imposing this condition gives

nmwa

b

(6.5.19)

Vix,y=a)=V, = 2 Ch sinn—;:x—sinh
n=1
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which is a Fourier series expansion of V,. Multiplying both sides of eq. (6.5.19) by
sin mwx/b and integrating over 0 < x < b gives

b ) b
j V,sin mrx dx = E ¢, sinh nra J sin max sin o dx (6.5.20)
b b Pl b ) b b

By the orthogonality property of the sine or cosine function (see Appendix A.9).

0, m¥* n

T
sin mx sin nx dx =
A /2, m=n

Incorporating this property in eq. (6.5.20) means that all terms on the right-hand side of
eq. (6.5.20) will vanish except one term in which m = n. Thus eq. (6.5.20) reduces to

b b
. nmwx ., nwa . o NTX

Vosin—dx = ¢, sinh—— [ sin"—4d

f oS, b J p

0 0
b b 1(” 2
Vo—cosnbix . = cnsinh%gjo (1 — cos n;”)dx
Vb nta b
o 1 - — inh— - =
o ( cos nT) = ¢, sin PR
or
. nma 2V,
¢, sinh — = — (1 — cos nm)
b nw
e s
=4 nr
0, n=24,6, ...
that is,
Ve n = odd
c, = § nw sinh 274
" b (6.5.21)
0, n = even

Substituting this into eq. (6.5.18) gives the complete solution as

. hmX | nwy
4y, 2 sstth
Vi y) = — ,,:1235_—*“—“. p— (6.5.22)
= nsth

Check: V’V =0, Vx=0,y) =0 = V(x =b,y) = V(x,y, = 0), V(x,y = a) = V,. The
solution in eq. (6.5.22) should not be a surprise; it can be guessed by mere observation of
the potential system in Figure 6.7. From this figure, we notice that along x, V varies from
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0 (at x = 0)to O (at x = b) and only a sine function can satisfy this requirement. Similarly,
along y, V varies from 0 (aty = 0) to V, (at y = a) and only a hyperbolic sine function can
satisfy this. Thus we should expect the solution as in eq. (6.5.22).

To determine the potential for each point (x, ¥) in the trough, we take the first few
terms of the convergent infinite series in eq. (6.5.22). Taking four or five terms may be suf-
ficient.

(b) For x = a/2 and y = 3a/4, where b = 2a, we have

(g 3_@) _ 4V, & sinnw/4 sinh 3nw/8
2 4)

T s n sinh nw/2
4y, [sin /4 sinh 37/8  sin 3%/4 sinh 97/8

_+_
sinh 7/2 3 sinh 37/2
sin 57/4 sinh 15/4 L J

™

5 sinh 57/4

4V,
= 1r0 (04517 + 0.0725 — 0.01985 — 0.00645 + 0.00229 + - - )

= 0.6374V,

It is instructive to consider a special case when A = 6 = I mand V, = 100 V. The poten-
tials at some specific points are calculated using eq. (6.5.22) and the result is displayed in
Figure 6.10(a). The corresponding flux lines and equipotential lines are shown in Figure
6.10(b). A simple Matlab program based on eq. (6.5.22) is displayed in Figure 6.11. This
self-explanatory program can be used to calculate V(x, y) at any point within the trough. In
Figure 6.11, V(x = b/4, y = 3a/4) is typically calculated and found to be 43.2 volts.

y ¥
Equipotential line
r 100V
1.0
43.2 54.0 43.2
. ° .
0~
18.2 25.0 18.2
. . .
6.80 9.54 6.80
. . .
0 ! 0 0 7= T X

(a) (b)

Figure 6.10 For Example 6.5: (a) V(x, y) calculated at some points, (b) sketch of flux lines
and equipotential lines.
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oe

SOLUTION OF LAPLACE’'S EQUATION

THIS PROGRAM SOLVES THE TWO-DIMENSTIONAL
BOUNDARY-VALUE PROBLEM DESCRIBED IN FIG. 6.7
a AND b ARE THE DIMENSIONS OF THE TROUGH

x AND y ARE THE COORDINATES OF THE POINT

OF INTEREST

0 9° O0 ¢ o

oe

P=11;
Vo = 100.0;
a = 1.0;

b = a;

x = b/4;

yv= 3.%a/4.;

c = 4.*Vo/pi
gum = 0.0;

for k=1:10
n = 2*k - 1
al = sin(n*pi*x/b);

a2 = sinh(n*pi*y/b);
a3 n*sinh(n*pi*a/b);
sum = sum + c*al*a2/a3;

i

P = [n, sum]
end
diary test.out
P
diary off

Figure 6.11 Matlab program for Example 6.5.

PRACTICE EXERCISE 6.5

For the problem in Example 6.5, take V, = 100 V,b = 2g = 2 m, find Vand E at

@) x,y) = (a,al2)
b) (x,y) = (3al2, a/4)

Answer: (a)44.51V, —99.25a, V/m, (b) 16.5V,20.6a, — 70.34 a, V/m.

In the last example, find the potential distribution if V,, is not constant but

EXAMPLE 6.6

(@) V, =10sin3mx/b,y = a,0=x=<b

1 5
(b) V0=2sin%x+ﬁsin~—;z,y=a,05xsb
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Solution:

(a) In the last example, every step before eq. (6.5.19) remains the same; that is, the solu-
tion is of the form

Vn,y) = S, c,sin %rz sinh ? (6.6.1)
n=1

as per eq. (6.5.18). But instead of eq. (6.5.19), we now have

By equating the coefficients of the sine terms on both sides, we obtain

¢, =0, n*3

Forn = 3,
37a
10 = inh —
c3 sin b
or
10
c -
LT
b
Thus the solution in eq. (6.6.1) becomes
3
sinh %y
V(x, y) = 10 sin 27X
b . 3ma
sinh T

(b) Similarly, instead of eq. (6.5.19), we have
Vo= V(y = a)

or

1 5 <
25in£b)£ +Tasinh%x = nzl cnsinhﬂbgsinh%

Equating the coefficient of the sine terms:

¢, =0, n#1,5
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Forn =1,
2
2= sinhw—a or =
b sinh 4
b
Forn =5,
1 oh Swa ) 1
— = ¢s sinh —— o s =
w0 _° b 5 5w
10 sinh ——
b
Hence,
5 5
2 sin ™ sinh % sin % sinh —ZX
Vix,y) = +
sinh — 10 sinh 2
b b

PRACTICE EXERCISE 6.6

In Example 6.5, suppose everything remains the same except that V,, is replaced by

7
V, sin —?, 0=<x=b,y=a. Find V(x, y).

V, sin —71{ sinh -7—72
b b
Answer:
sinh 7%
b

Obtain the separated differential equations for potential distribution V{p, ¢, z) in a charge-
free region.

Solution:

This example, like Example 6.5, further illustrates the method of separation of variables.
Since the region is free of charge, we need to solve Laplace’s equation in cylindrical coor-
dinates; that is,

19 £Y% 1 9°v 3%V
VZV:__<p__>+_2__2_+__2=0 6.7.1)
padp\ dp p- 99" 0z

Vip, ¢, 2) = R(p) P(¢) Z(z) (6.7.2)
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where R, ®, and Z are, respectively, functions of p, ¢, and z. Substituting eq. (6.7.2) into
eq. (6.7.1) gives

&Z d R RZ d*® d’z
__<ﬂ_>+_2d_7+,3¢_2:0 6.7.3)
p dp \ dp p- do dz

We divide through by RPZ to obtain

1 d (pdR 1 & 1dZ
-2 <__p ) e 6.7.4)
oR dp \ dp p°® do Z dz
The right-hand side of this equation is solely a function of z whereas the left-hand side
does not depend on z. For the two sides to be equal, they must be constant; that is,

1 d {pdR 1 d’® 1d*Z
1 d <P_> g Lde_ 147 (6.7.5)
pR dp \ dp P do Z dz

where —A? is a separation constant. Equation (6.7.5) can be separated into two parts:

1d°Z
E.dz_z =\ (6.7.6)
or
Z'—-NZ=0 (6.7.7)
and
p d (pdR ., 1dP
Equation (6.7.8) can be written as
2 52 2
p°d’R p dR 1 d°®
R a *Ra " Np® = " W (6.7.9)

where pi” is another separation constant. Equation (6.7.9) is separated as
"= py*d =0 (6.7.10)
and
PR + pR' + (0NF — PR =0 (6.7.11)

Equations (6.7.7), (6.7.10), and (6.7.11) are the required separated differential equations.
Equation (6.7.7) has a solution similar to the solution obtained in Case 2 of Example 6.5;
that is,

Z(z) = ¢, cosh Az + ¢, sinh Az (6.7.12)
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The solution to eq. (6.7.10) is similar to the solution obtained in Case 3 of Example 6.5;
that is,

P(p) = c3cos up + ¢, sin po (6.7.13)

Equation (6.7.11) is known as the Besse!l differential equation and its solution is beyond
the scope of this text.?

PRACTICE EXERCISE 6.7

Repeat Example 6.7 for V(r, 6, ¢).

2 2
Answer: If V(r,0,¢) = RO)FO) $(¢), 8"+ N& =0, R + "R~ Er = 0,
r

F' + cot@ F' + (u* — N cosec’ §) F = 0.

6.5 RESISTANCE AND CAPACITANCE

In Section 5.4 the concept of resistance was covered and we derived eq. (5.16) for finding
the resistance of a conductor of uniform cross section. If the cross section of the conductor
is not uniform, eq. (5.16) becomes invalid and the resistance is obtained from eq. (5.17):

174 .
RV _ JE-al

I $oE-dS ©.16)

The problem of finding the resistance of a conductor of nonuniform cross section can be
treated as a boundary-value problem. Using eq. (6.16), the resistance R (or conductance
G = 1/R) of a given conducting material can be found by following these steps:

1. Choose a suitable coordinate system.

2. Assume V, as the potential difference between conductor terminals.

3. Solve Laplace’s equation VV to obtain V. Then determine E from E = — VV and
IfromI = [ oE - dS.

4. Finally, obtain R as V,/I.

In essence, we assume V,, find /, and determine R = V/I. Alternatively, it is possible
to assume current /,,, find the corresponding potential difference V, and determine R from
R = VI/i,. As will be discussed shortly, the capacitance of a capacitor is obtained using a
similar technique.

’For a complete solution of Laplace’s equation in cylindrical or spherical coordinates, see, for
example, D. T. Paris and F. K. Hurd, Basic Electromagnetic Theory. New York: McGraw-Hill, 1969,
pp. 150-159.
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Generally speaking, to have a capacitor we must have two (or more) conductors car-
rying equal but opposite charges. This implies that all the flux lines leaving one conductor
must necessarily terminate at the surface of the other conductor. The conductors are some-
times referred to as the plates of the capacitor. The plates may be separated by free space
or a dielectric.

Consider the two-conductor capacitor of Figure 6.12. The conductors are maintained
at a potential difference V given by

1
v=v1—v2=—f E-dl (6.17)
2

where E is the electric field existing between the conductors and conductor 1 is assumed to
carry a positive charge. (Note that the E field is always normal to the conducting surfaces.)

We define the capacitance C of the capacitor as the ratio of the magnitude of the
charge on one of the plates to the potential difference between them; that is,

Q e¢E-dS
C = - = —Y——
v [E-dl (6.18)
The negative sign before V = — [ E - dl has been dropped because we are interested in the

absolute value of V. The capacitance C is a physical property of the capacitor and in mea-
sured in farads (F). Using eq. (6.18), C can be obtained for any given two-conductor ca-
pacitance by following either of these methods:

1. Assuming Q and determining V in terms of O (involving Gauss’s law)
2. Assuming V and determining @ in terms of V (involving solving Laplace’s equation)

We shall use the former method here, and the latter method will be illustrated in Examples
6.10 and 6.11. The former method involves taking the following steps:

1. Choose a suitable coordinate system.

2. Let the two conducting plates carry charges +Q and —Q.

Figure 6.12 A two-conductor ca-
pacitor.
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3. Determine E using Coulomb’s or Gauss’s law and find Vfrom V = — JE-dl. The
negative sign may be ignored in this case because we are interested in the absolute

value of V.
4. Finally, obtain C from C = Q/V.

We will now apply this mathematically attractive procedure to determine the capaci-
tance of some important two-conductor configurations.

A. Parallel-Plate Capacitor

Consider the parallel-plate capacitor of Figure 6.13(a). Suppose that each of the plates has
an area S and they are separated by a distance d. We assume that plates 1 and 2, respec-
tively, carry charges +Q and —Q uniformly distributed on them so that

Y
Ps = E (6.19)
x - Figure 6.13 (a) Parallel-plate capacitor,
(b) fringing effect due to a parallel-plate
capacitor.

dielectric & plate area S

1 \ .

(a)

+Q
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An ideal parallel-plate capacitor is one in which the plate separation d is very small com-
pared with the dimensions of the plate. Assuming such an ideal case, the fringing field at
the edge of the plates, as illustrated in Figure 6.13(b), can be ignored so that the field
between them is considered uniform. If the space between the plates is filled with a homo-

geneous dielectric with permittivity € and we ignore flux fringing at the edges of the plates,
from eq. (4.27),D = —pga, or
E="(-a)
0 (6.20)
= —E—S a,
Hence
1 d
d
V=—J E-dlz—j [———Q*ax]-dxang (6.21)
A o &S &S
and thus for a parallel-plate capacitor
Q0 &S
C=—=— 22
V.o 4 (6.22)

This formula offers a means of measuring the dielectric constant &, of a given dielectric.
By measuring the capacitance C of a parallel-plate capacitor with the space between the
plates filled with the dielectric and the capacitance C, with air between the plates, we find

g, from
¢ (6.23)
g =— .
Co
Using eq. (4.96), it can be shown that the energy stored in a capacitor is given by
1 1 0’
We=-CVi=-QV=_" :
E2 PRAETe 6:24)

To verify this for a parallel-plate capacitor, we substitute eq. (6.20) into eq. (4.96) and
obtain

1 o’ eQ*Sd
Wg =~ dv = —=—
E7 f st T es?

_Z<£)_Q_2_1
B _2C*2QV

as expected.
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'B. Coaxial Capacitor

. This is essentially a coax1a1 cable or coaxial cylindrical capacitor. Consider length L of two
coaxial conductors of inner radius @ and outer radius b (b > a) as shown in Figure 6.14.
Let the space between thé conductors be filled with a homogeneous dielectric with permit-
tivity &. We assume that conductors 1 and 2, respectively, carry +Q and —Q uniformly dis-
tributed on them. By applying Gauss’s law to an arbitrary Gaussian cylindrical surface of
radius p (a < p < b), we obtain

; g L o= § E-dS = eE2mpl | (6.25)
Henée: o
Q .
2wepL Ao o - (620

Neglectir{g flux fringing at the cylinder ends,

1 a
V=—f E-dl=—j [ Q apJ-dpap (6.272a)
; A 27epl
(0] b
— 1 —_— - .
el n p (6.27b)

Thus the capacitance of a coaxial cylinder is given by

_Q _ 2melL ' ’
C= v b (6.28)
In—
a
C. Sph\erical Capacitor o . _ -

This is the case of two concentric spherical conductors. Consider the inner sphere of radius
a and outer sphere of radius b (b > a) separated by a dielectric medium with permittivity
¢ as shown in Figure 6.15. We assume charges +Q and —Q on the inner and outer spheres

Figure 6.14 Coaxial capacitor.
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Figure 6.15 Spherical capacitor.

N  dielectric &

respectively. By applying Gauss’s law to an arbitrary Gaussian spherical surface of radius

* 4 ra<r<b),
\‘ 0=¢ ng -dS = eEdmr® . (6.29)
thatis,“ TR 4 o
) o E . E= 4£r2 a oy | (6.30)

The potential difference between the conductors is

. 1 4 :
V=—J E°dl=—J [ Qza,}-drar g
2 : , Ldmer

N 0 [ 1 1 } c : ‘
gl == |Z_= . ' 6.31
S dre {a b ST S ( )
Thus the capacitance of the spherical capacitor is
v 0 4me R
‘ _— C=%== . .
\ V11 o (632)
, a b

By letting b — o, C = 4wea, which is the capacitance of a spherical capacitor whose
outer plate is infinitely large. Such is the case of a spherical conductor at a large distance
from other conducting bodies—the isolated sphere. Even an irregularly shaped object of
about the same size as the sphere will have nearly the same capacitance. This fact is useful
in estimating the stray capacitance of an isolated body or piece of equipment.

Recall fromnetwork theory that if two capacitors with capacitance C; and C, are in series
(i.e., they have the same charge on them) as shown in Figure 6.16(a), the total capacitance is

N B

[ 1
= =—+ —
CC G
or <
C
c= 496 (6.33)

T+ G
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© . = s . Figure 6.16 Capacitors in (a) series, and
T (b) parallel.

O
A1
t
It
H
Y

@ )

If the capacitors are in parallel (i.e., they have the same voltage across their plates) as
shown in Figure 6.16(b), the total capacitance is ’
C=C +C, (6.34)

Let us reconsider the expressions for finding the resistance R and the capacitance C of
an electrical system. The expressions were given in egs. (6.16) and (6.18):

1% E -dl
R=—= JE-dl (6.16)

= I ¢§oE-daS

- Q e$E-dS . o
L C=T = 6.18
v JE-al ; . (6.18)
The product of these expressions yields

u”; o L RC = P el i, ; .(6.35)

which is the relaxation time 7, of the medium separating the conductors. It should be re-

marked that eq. (6.35) is valid only when the medium is homogeneous; this is easily in-

ferred from eqs. (6.16) and (6.18). Assuming homogeneous media, the resistance of

various capacitors mentioned earlier can be readily obtained using eq. (6.35). The follow-

" ing examples are provided to illustrate this idea. : ' ‘
For a parallel-plate capacitor,

c=%2 r=£ LI (6.36)

. Fora cylindrical capacitor, ,)

(6.37)
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For a spherical capacitor,

1_1 =
4dre a b '
C= , R= Y ‘ 6.38
11 o ©
a b
And finally for an isolated spherical conductor,
1
C = 4rea, R= (6.39)
4woa

It should be noted that the resistance R in each of egs. (6.35) to (6.39) is not the resistance
of the capacitor plate but the leakage resistance between the plates; therefore, o in those
equations is the conductivity of the dielectric medium separating the plates.

A metal bar of conductivity o is bent to form a flat 90° sector of inner radius a, outer radius
b, and thickness ¢ as shown in Figure 6.17. Show that (a) the resistance of the bar between
the vertical curved surfaces atp = aand p = bis

b
2In—
a

R= SN L
ort ' . .

and (b) the resistance between the two horizontal surfaces at z = O and z = ris

4¢

ox(b* — d®)

!

Solution:

(a) Between the vertical curved ends located at p = a and p = b, the bar has a nonuni-
form cross section and hence eq. (5.16) does not apply. We have to use eq. (6.16). Let a po-
tential difference V,, be maintained between the curved surfaces at p = a and p = b so that

: Figure 6.17 Metal bar of Exam-
' ' ple 6.8.
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V(p = a) = 0and V(p = b) = V,. We solve for V in Laplace’s equation V2V = 0in cylin-
drical coordinates. Since V = V(p),

1d( dv
Wv=-—(——>=o
o dp pdp

As p = 0 is excluded, upon multiplying by p and integrating once, this becomes

o Z—Z =A
or
@ _A
do p
Integrating once again yields
V=Alnp + B

where A and B are constants of integration to be determined from the boundary conditions.

Vio=a)=0—>0=Alna + B or B=-Alna

b v,
V(p=b)=V0%V0:A1nb+B=Alnb—Alna=AlnE or A= 5
: In—
7
Hence,
V=Alnp—Alna=AlZ=-"21n2
a a
In—
av A \%
- E=-VW=—-—a =—a =—"—a
do °° 3 o
o P pln?
J = oE, dS = —pdodza,
w2 rt
V. V.
I:JJLB: J. °2dmd¢=§ f
=0 2=0 4 I = In=2
a a
Thus
‘ 2In— §
R=-2=
p I omt

as required.
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(b) Let V, be the potential difference between the two horizontal surfaces so that
V(z=0) = 0and V(z = 1) = V.. V = V(z), so Laplace’s equation V2V = 0 becomes

d’v
— = 0
dz
Integrating twice gives
V=Az+ B

We apply the boundary conditions to determine A and B:

Vz=0=0—>0=0+18B or B=0

Vo
Ve=n=Vo>Vo=Ar or A=-¢
Hence, , : ' B P
Vo
V=—z
. t
av v,
EZ—VY=*d—ZaZ Taz
Vo
' J=0E=—at a, dS=—pdpdpa,
- b 7r/2V \ ' 1
= [ras= [ [ i0i
p=a “¢=0 4
Vo wp’|" Vom0 —d)
t 221, 4¢
Thus
v, 4t

I on(V® — dd)

Alternatively, for this case, the cross section of the bar is uniform between the hori-
zontal surfaces at z.= 0 and z = ¢ and eq. (5.16) holds. Hence,

, £ t
S ST P
\‘ ! 7 (fz(b2 - a)
4t

> “ . ' - =

Rl on(b” — a°)

as required.
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g

PRACTICE EXERCISE . 6.8

A disc of thickness 7 has radius / and a central hole of radius a. Taking the conduc-
tivity of the disc as o, find the resistance between

(a)y The hole and the rim of the disc
_ (b) The two flat sides of the disc

Inbla t

2710 on(b® — @)

Answer: - (a)

A coaxial cable contains an insulating material of conductivity o. If the radius of the central
wire is a and that of the sheath is b, show that the conductance of the cable per unit length

is (see eq. (6.37))

270
In b/a
Solution:
Consider length L of the coaxial cable as shown in Figure 6.14. Let V, be the potential dif-
ference between the inner and outer conductors so that V(o = @) = Oand V(p = b) = V,

V and E can be found just as in part (a) of the last example. Hence:

—aV,

=gE = , dS = —pdd dza
Tk e ™ pi dz
27 L
Voo
I=JJ~dS=J J pzd¢
=0 Jo0 P In bla
_ 2xLaV, S )
In bla
c
The resistance per unit length is
S roYe 1 _Inbla
I L 27ra
and the conductance per unit length is
1 27}0

G=—=
o " R Inbla

as required.
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=

 PRACTICE EXERCISE - 6.9

A coaxial cable contains an insulating material of conductivity o; in its upper half
and another material of conductivity o, in its lower half (similar to the situation in
Figure 6.19b). If the radius of the central wire is ¢ and that of the sheath is b, show
that the leakage resistance of length € of the cable is

1

— ]
776((7] + 02) " a

Answer:  Proof,

Conducting spherical shells with radii ¢ = 10 cm and 5 = 30 cm are maintained at a po-
tential difference of 100 V such that V(r = b) = 0 and V(r = @) = 100 V. Determine V
and E in the region between the shells. If &, = 2.5 in the region, determine the total charge
induced on the shells and the capacitance of the capacitor.

Solution:

Consider the spherical shells shown in Figure 6.18. V depends only on » and hence
Laplace’s equation becomes

1 d av
2 2 G| 28V
Vv rzdr[r dr} 0

Since r # 0 in the region of interest, we multiply through by #* to obtain ]
d [ ) dV}
Badl S
dr dr

v _
dr
c

Integrating once gives

>

A

Figure 6.18 Potential V(r) due to conducting spherical shells.
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or
av_ A
dr r?
Integrating again gives .
A
V= + B

7

As usual, constants A and B are determined from the boundary conditions.

A A
Whenr=b,V=O%0:—-b~+B or B=—

b
Hence
y=all-1
b r
11
Alsowhenr=a,V=Vo%VOZA{——~}
b a
or
\%
A= =
. 11
b a
Thus
1 1
ST
a b
av A
/ E:—VVZ—Ea,’— ;Z—a, |
Vo

T 27 - )
v,
Q:JSE-dS=J f — B %o 12Gin 6 de db
iy 8=0 “¢=0 .2 l — 1 )
L a b '
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The capacitance is easily determined as

which is the same as we obtained in eq. (6.32); there in Section 6.5, we assumed Q and
found the corresponding V., but here we assumed V,, and found the corresponding Q to de-
termine C. Substitutinga = 0.1m, » = 0.3 m, V, = 100 V yields

;-]
ro3 1 10
s = 15|~ — |V
| 10 — 10/3 S[r 3}
Check: V'V =0, V(r = 0.3 m) = 0, V(r = 0.1 m) = 100.

100 15
——————a,=—4a,V/m
210 — 10/3] '

107° 25 -
0= +dn- 0% (2.5)-(100)
367 10 — 10/3
= +4.167 nC

V = 100

The positive charge is induced on the inner shell; the negative charge is induced on the
outer shell. Also ~ ~ .

0| _ 4.167 x 107°

C =
v, 100

/

= 41.67 pF

' " PRACTICE EXERCISE 6.10

If Figure 6.19 represents the cross sections of two spherical capacitors, determine
their capacitances. Leta = 1 mm, » = 3 mm, ¢ = 2 mm, &,; = 2.5, and g,, = 3.5.

- Answer: . (a)0.53 pF, (b) 05 pF

Figure 6.19 For Practice Exer-
cises 6.9, 6.10, and 6.12.
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In Section 6.5, it was mentioned that the capacitance C = Q/V of a capacitor can be found
by either assuming Q and finding V or by assuming V and finding Q. The former approach
was used in Section 6.5 while we have used the latter method in the last example. Using
the latter method, derive eq. (6.22). ‘

Solution:

Assume that the parallel plates in Figure 6.13 are maintained at a potential difference V, so
that V(x = 0) and V(x = d) = V,. This necessitates solving a one-dimensional boundary-
value problem; that is, we solve Laplace’s equation

v
VY = 20
Integrating twice gives
V=Ax+B

where A and B are integration constants to be determihed from the boundary conditions. At
x=0, V=0-20=0+B, or B=0, and at x=d, V=V, >V, =Ad+ 0 or
A=VJ/d. . o ‘ T

Hence
\%
V=—"2y
d

Notice that this solution satisfies Laplace’s equation and the boundary conditions.

We have assumed the potential difference between the plates to be V,. Our goal is to
find the charge Q on either plate so that we can eventually find the capacitance C = Q/V,,
The charge on either plate is

o= J ps dS
Butps = D - a, = ¢E - a;, where
’ dv oy,
E=-VV= gl N —Aa, = —jax
" On the lower plates, a, = a,, so
eV, eV,S
— d - %
On the upper plates, a, = —a,, 50
eV, A7)
=2 d =2
Ps d an o d
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XAMPLE 6.12

As expected, Q is equal but opposite on each plate. Thus

_ ol _es

c
vV, d

which is in agreement with eq. (6.22).

. PRACTICE EXERCISE  6.11

Derive the formula for the capacitance C = Q/V,, of a cylindrical capacitor in eq.
(6.28) by assuming V, and finding Q.

Determine the capacitance of each of the capacitors in Figure 6.20, Take &, = 4, ¢,, = 6,
d=5mm,S = 30 cm?.

Solution:

(a) Since D and E are normal to the dielectric interface, the capacitor in Figure 6.20(a) can

be treated as consisting of two capacitors C; and C, in series as in Figure 6.16(a).

g,£18 28,848 2€,€,08

C = = — = —
Yodn a > @ d

The total capacitor C is given by

_ C1C2 _ 280S (8r18r2)
Cl + CZ d o] + R
107 30X 107" 4Xx6

:2.

(6.12.1)

360 5x 107 10
C = 25.46 pF

Figure 6.20 For Example 6.12.




6.5 RESISTANCE AND CAPACITANCE 8 239

(b) In this case, D and E are parallel to the dielectric interface. We may treat the capacitor
as consisting of two capacitors C| and C, in parallel (the same voltage across C; and C,) as
in Figure 6.16(b).

_ 88nSI2 - £,848 C. = €085
! d 2d 2T 24

The total capacitance is

o5
C=C +C = _2;(6}1 + &)
107 30x10*

— . . 1
36 2-(5 X 1077
C = 26.53 pF

(6.12.2)

Notice that when ¢,, = g,, = &,, eqs. (6.12.1) and (6.12.2) agree with eq. (6.22) as ex-
pected.

PRACTICE EXERCISE  6.12

Determine the capacitance of 10 m length of the cylindrical capacitors shown in
Figure 6.19. Take a = 1 mm, b = 3 mm, ¢ = 2 mm, g,; = 2.5, and g,, = 3.5.

Answer: (a) 1.41 nF, (b) 1.52 riK.

A cylindrical capacitor hasradiia = 1 cmand b = 2.5 cm. If the space between the plates
is filled with an inhomogeneous dielectric with &, = (10 + p)/p, where p is in centimeters,
find the capacitance per meter of the capacitor.

Solution:”

The procedure is the same as that taken in Section 6.5 except that eq. (6.27a) now becomes

¢
) a a d
S oy— J Q dp = — Q J p
A 2mee,pL 27e,L A p(lO + p)

0
-0 J dp -0
& 2rel ), 10+ p  2mwelL n( 2

0 . 10+5b

a

b

= n
2we, . 10 + a
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.

Thus the capacitance per meter is (L = 1 m)

_Q 27, 1077 1
€= V_ln10+b =2 en 125
0+a 11.0
C = 434.6 pF/m

A spherical capacitor with @ = 1.5 cm, b =4 c¢m-has an inhomogeneous dielectric
. of £ = 10e /1. Calculate the capacitance of the capacitor.

Ansvwrer:m 14.13” nF,

6.6 METHOD OF IMAGES

The method of images, introduced by Lord Kelvin in 1848, is commonly used to determine
V, E, D, and ps due to charges in the presence of conductors. By this method, we avoid
solving Poisson’s or Laplace’s equation but rather utilize the fact that a conducting surface
is an equipotential. Although the method does not apply to all electrostatic problems, it can
reduce a formidable problem to a simple one.

Typical examples of point, line, and volume charge configurations are portrayed in Figure
6.21(a), and their corresponding image configurations are in Figure 6.21(b).

N . 0
A SE

Equipotential surface V' =0

(@) ‘ ‘ ‘ W

Figure 6.21 Image system: (a) charge configurations above a perfectly conducting plane;
(b) image configuration with the conducting plane replaced by equipotential surface.

: ———
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In applying the image method, two conditions must always be satisfied:

1. The image charge(s) must be located in the conducting region.
2. The image charge(s) must be located such that on the conducting surface(s) the po-
tential is zero or constant.

The first condition is necessary to satisfy Poisson’s equation, and the second condition
ensures that the boundary conditions are satisfied. Let us now apply the image theory to
. s two specific problems.

A. A Point Charge Above a Grounded Conducting Plane

; { Consider a point charge Q placed at a distance 4 from a perfect conducting plane of infinite
extent as in Figure 6.22(a). The image conﬁguratlon is in Figure 6.22(b). The electric field
at point P(x, y, z) is given by

Lo E=E,+E O 40

or, + —On o 4 (6.41)

B 471'807‘? Aners
The distance ?ectors r;and r, aré given by
=052 —0,0hnhn=uyz—h (6.42)
r,=xy2—0,0~-h)=xyz+h (6.43)
s0 eq. (6.41) becomes

E = Q | xa,+ya, + (z— ha, _ xax+y:b+(z+h)az
- 47T80 [x2 + y2 + (Z _ h)2]3/2 [xz + yz + (Z + h)2]3/2

(6.44)

(a) : (b)

Figure 6.22 (a) Point charge and grounded conductmg plane, (b) image configuration and
field lines. .
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It should be noted that when z = 0, E has only the z-component, confirming that E is
" normal to the conducting surface.
' The potential at P is easily obtained from eq. (6.41) or (6.44) using V= — [ E - dl.

Thus
V=v,+V. : i

l e __ Q2 ., 20 . S (6.45)

dre,r;  Adweyr,

_ 0 { 1 _ 1 }
(g R A ) K Pl S R GO ) i b

for z = 0and V = 0 for z = 0. Note that V(z = 0) = 0.
The surface charge density of the induced charge can also be obtained from eq. (6.44) as

Ps = Dn = 8oEn
z=0

_ —Qh
271'[)62 + y2 + hz]3/2

(6.46)

" The total induced charge on the conducting plane is

* (% —Qhdxdy
Qi _ [ps dS = J J 27‘-[)(2 + y2 + h2]3/2 (6.47)

—co

By changing variables, 0 =x*+y* dxdy = p dp dé.

Qh (*" [* pdpds
Qi = Tor J 2 24372 (6.48)
Ty by [+ K]
1
Integrating over ¢ gives 2, and letting p dp = Ed (p?), we obtain
h “ a1
0= -2 f 0% + B2 2 dod)
; T 0 2
Oh ” '
SN — 6.49
. o® + K12 |, (6.49)
= -0

as expected, because all flux lines terminating on the conductor would have terminated on
the image charge if the conductor were absent.

B. A Line Charge abov&@ Grounded Conducting Plane

Consider an infinite charge with density p; C/m located at a distance /4 from the grounded
conducting plane z = 0. The same image system of Figure 6.22(b) applies to the line
charge except that Q is replaced by p;. The infinite line charge p; may be assumed to be at
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x = 0,z = hand theimage —p; at x = 0,z = —h so that the two are parallel to the y-axis.
The electric field at point P is given (from eq. 4.21) by

E=E, +E_ (6.50)

PL —PL ‘
= a, + a 6.51
2wy P 2megps © (65D

The distance vectors p; and p, are given by ,

=@y = Oyh=x0z—h (6.52)
pr=@y2— Oy —h=x0z+h (653
50 eq. (6.51) becomes ' :

o [xa,+(z—ha, xa +(+ha,
2me, | £+ (z — h)? X+ (z + h)?

E = 6.54)
Again, notice that when z = 0, E has only the z-component, confirming that E is normal to

the conducting surface.
The potential at P is obtained from eq. (6.51) or (6.54) using V = — [ E - d1. Thus

i V = V+ + V7 £ S . T M
SR S — S | (6.55)
\ ‘, 2rme, 27e,
k L P
R : = -2 =2
o e 2we, P2 5

Substituting'pl = |py| and p, = |p,| in egs. (6.52) and (6.53) into eq. (6.55) gives

24— 22
y=—LL {xz (e )2} (6.56)
4 27e, x“+ @+ h
for z = 0and V = 0 for z =< 0. Note that V(z = 0) = 0.
. The surface charge induced on the conducting plane is given by
—ph :
L = Dn =g = — . 657
Ps oEz =0 7('()62 + hz) . . ( )
‘The induced charge per length on the conducting plane is
. i i pLh * dx
,\, P = Jpsdx - i jw 2+ B2 (6.58)
By letting x = A tan , eq. (6.58) becomes
;" /2
\\V 0; = _M d_a : '
, ™) h : ~ (6.59)

= 7P

“as expected.
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A point charge Q is located at point (a, 0, b) between two semiinfinite conducting planes
intersecting at right angles as in Figure 6.23. Determine the potential at point P(x, y, z) and
the force on Q.

Solution:

The image configuration is shown in Figure 6.24. Three image charges are necessary to
satisfy the conditions in Section 6.6. From Figure 6.24(a), the potential at point P(x, y, z) is
the superposition of the potentials at P due to the four point charges; that is,

V_&P_gi_i}

‘ _ dme, L1 . r3 o1
where
n=1[x-a’+y +@-bi"”
r=1x+ a? +y* + (z — b1"
rs =[x + a)* + y* + (z + b)}]?
i =[G —a’+y + @+ b7"
From Figlire 6.24(b), the net force on Q

F = FI + F2 + F3 o
0 Q0 0%(2aa, + 2ba,)

ame, (267 dmeg2a)? T dme2a) + 2b)P"
= H ; : } [ b : J }
= PR R K I b sy Sl - B
léwe, (L(a® + b*) a (a” + b°) b

The electric field due to this system can be determined similarly and the charge induced on

’ . o the planes can also be found.
.

Figure 6.23 Point charge between two semiinfinite
conducting planes.

™
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z z
! ?
l‘/ =0 P(x, y,2) Il F,
{ g | B
— _ } o
Q : +0 Q0 r +Q
| r3 7y | F;
b: b }
} |
L Lawx v e
a——rd - g ]
\
+Q -0 ’ +Q —Q

(a) : (b)

Figure 6.24 Determining (a) the potential at P, and (b) the force on charge Q.

In general, when the method of images is used for a system consisting of a point
charge between two semiinfinite conducting planes inclined at an angle ¢ (in degrees), the
number of images is given by

P N (360° B 1)
. . :

because the charge and its images all lie on a circle. For example, when ¢ = 180°, N = 1
“"as in the case of Figure 6.22; for ¢ = 90°, N = 3 as in the case of Figure 6.23; and for
¢ = 60°, we expect N = 5 as shown in Figure 6.25.

Figure 6.25 Point charge between two semiinfinite
conducting walls inclined at ¢ = 60° to each.
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 PRACTICE EXERCISE - 6.14

If the point charge Q = 10 nC in Figure 6.25is 10 cm away from point O and along
the line bisecting ¢ = 60°, find the magnitude of the force on Q due to the charge
induced on the conducting walls.

Answer: - 60.53 uN:

1. Boundary-value problems are those in which the potentials at the boundaries of a region
are specified and we are to determine the potential field within the region. They are

S solved using Poisson’s equation if p, # O or Laplace’s equation if p, = 0.

2. In a nonhomogeneous region, Poisson’s equation is

Ve VW=—p,

For a homogeneous region, ¢ is independent of space Vanables P01sson s equation

becomes
;

2 Py
N VV=—-—— .

In a charge-free region (p, = 0), Poisson’s equation becomes Laplace’s equation;
that is,

ViV =0

3. We solve the differential equation resulting from Poisson’s or Laplace’s equation by in-
tegrating twice if V depends on one variable or by the method of separation of variables
if Vis a function of more than one variable. We then apply the prescribed boundary con-
ditions to obtain a unique solution. s

4. The uniqueness theorem states that if V satisfies Poisson’s or Laplace’s equation and the
prescribed boundary condition, V is the only possible solution for that given problem.
This enables us:to find the solution to a given problem via any expedient means because
we are assured of one, and only one, solution.

5. The problem of finding the resistance R of an object or the capacitance C of a capacitor
may be treated as a boundary-value problem. To determine R, we assume a potential
difference V, between the ends of the object, solve Laplace’s equation, find
I = [ oF - dS, and obtain R = V./I. Similarly, to determine C, we assume a potential
difference of V- between the plates of the capacitor, solve Laplace’s equation, find
Q = [ €E - dS, and obtain C = Q/V,,

6. A boundary-value problem involving an infinite conducting plane or wedge may be
solved using the method of images. This basically entails replacing the charge configu-
ration by itself, its image, and an equipotential surface in place of the conducting plane.
Thus the original problem is replaced by “an image problem,” which is solved using
techniques covered in Chapters 4 and 5. :
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Equation V- (—gVV) = p, may be regarded as Poisson’s equation for an inhomoge-
neous medium.

(a) True

(b) False

In cylindrical coordinates, equation

92 19 92
Ry Lod
dp odp 0z

is called

(a) Maxwell’s equation
(b) Laplace’s equation
(c) Poisson’s equation
(d) Helmholtz’s equation
(e) Lorentz’s equation

Two potential functions V; and V) satisfy Laplace’s equation within a closed region and

assume the same values on its surface. V; must be equal to V,.

(a) True
(b) False
(c) Not necessarily

Which of the following potentials does not satisfy Laplace’s equation?

(@) V=2x+5
(b) V= 10xy
(c) V=rcoso
@v="

- r

(e) V=pcos¢ + 10

Which of the following is not true? ,

(2) —5 cos 3x is a solution to ¢"(x) + 9¢(x) = 0 o
(b) 10 sin 2x is a solution to ¢"(x) — 4¢(x) = 0 ‘ ‘
(c) —4 cosh 3y isasolutionto R"(y) — 9R(y) = 0

(d) sinh 2y 1s a solution to R"(y) — 4R(y) = 0

g ')

(e) = f(z) = —1 where g(x) = sin x and h(y) = sinhy

g A
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6.6

6.7

6.8

6.9

6.10

If V, = XY, is a product solution of Laplace’s equation, which of these are not solutions
of Laplace’s equation?

(&) —10X,Y,

(b) XiY; + 2xy

© XYy —x+y

@ X+

() Xy —2)(Y; + 3)

The capacitance of a capacitor filled by a linear dielectric is independent of the charge on
the plates and the potential difference between the plates.

(a) True

(b) False

A parallel-plate capacitor connected to a battery stores twice as much charge with a given
dielectric as it does with air as dielectric, the susceptibility of the dielectric is

CYRY *
)1

(©) 2

(d 3

(c) 4

)

N

!

A potential difference V,, is applied to a mercury column in a cylindrical container. The
mercury is now poured into another cylindrical container of half the radius and the same
potential difference V,, applied across the ends. As a result of this change of space, the re-
sistance will be increased

(a) 2 times
(b) 4 times
(c) 8 times
(d) 16 times

Two conducting plates are inclined at an angle 30° to each other with a point charge
between them. The number of image charges is

(a) 12
(b) 11
(©) 6
d 5

(e) 3 & .

2

" Answers: 6.1a, 6.2c, 6.3a, 6.4c, 6.5b, 6.6d,e, 6.7a, 6.8b, 6.9d, 6.10b.
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6.1 In free space, V = 6xy’z + 8. At point P(1, 2, —5), find E and p,.

6.2 Two infinitely large conducting plates are located at x = 1 and x = 4. The space between
them is free space with charge distribution 6i nC/m®. Find Vatx = 2if V(1) = =50V
™
and V(4) = 50 V. e
" 6.3 The region between x = 0 and x = d is free space and has p, = p,(x — d)/d. If
B Vix = 0)=0and V(x = d) = V,, find: (a) V and E, (b) the surface charge densities at
x=0andx = d.
6.4 Show that the exact solution of the equation
d’v
— = flx 0<x<L
dx’ 4 ) : :
subject to o ’
Vix=0)=V, Vix=L)=1V,

is

Co v<x>=[v2—vl—f ffm)dudxF

x A
+V1+J J,f(,u.)d,u.d)\
0

0

6.5 A certain matérial occupies the space between two conducting slabs located at y =
* 2 cm. When heated, the material emits electrons such that p, = 50(1 — y2) /.LC/m3. If
the slabs are both held at 30 kV, find the potential distribution within the slabs. Take

e = 3e,.

6.6 Determine which of the following potential field distributions satisfy Laplace’s equation.

‘ L @Vi=2 Ay - 22410
‘ 1 .
b) Vo = —5————75
(b) V, o2+ 32+ )72
(c) Vs = pzsing + p’
10 sin 0 sin ¢
@ V= ——5——
‘ r
6.7 Show that the following potentials satisfy Laplace’s equation. S '

(a) V= e *cos 13y sinh 12z

) V= Zcos ¢
© V= 30 cos\0’

}"2
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6.8

6.9

6.10
6.11
6.12

6.13

6.14

6.15

z : : Figure 6.26 For Problem 6.11.

/V(z=d)=V0
SRR |
o r vy r 1 _J?-_ M

Viz=0)=0

Show that E = (E,, E,, E,) satisfies Laplace’s equation.

Let V = (A cos nx + B sin nx)(Ce™ + De ™), where A, B, C, and D are constants.
Show that V satisfies Laplace’s equation. 7 S

The potential field V = 2x’yz — y%z exists in a dielectric medium having & = 2e,.
(a) Does V satisfy Laplace’s equation? (b) Calculate the total charge within the unit cube
0 <xyz<1m.

Consider the conducting plates shown in Figure 6.26. If V(z =0)=0 and
V(z = 2 mm) = 50V, determine V, E, and D in the dielectric region (¢, = 1.5) between
the plates and pg on the plates.

The cylindrical capacitor whose cross section is in Figure 6.27 has inner and outer radii of
5 mm and 15 mm, respectively. If V(p = 5 mm) = 100 V and V(o = 15 mm) = 0V,
calculate V, E, and D at p = 10 mm and pg on each plate. Take &, = 2.0.

Concentric cylinders p = 2c¢m and p = 6 cm are maintained at V = 60V and
V = —20 V, respectively. Calculate V,E,and D at p = 4 cm.

The region between concentric spherical conducting shells » = 0.5 m and r = 1 m is
charge free. If V(r = 0.5) = —50 V and V(r = 1) = 50 V, determine the potential dis- -
tribution and the electric field strength in the region between the shells. _

Find V and E at (3, 0, 4) due to the two conducting cones of infinite extent shown in“':
Figure 6.28.

Figure 6.27 Cylindrical capacitor of Problem 6.12.
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6.17

6.18

*6.19

*6.20

6.21
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Figure 6.28 Conducting cones of Problem
6.15.

e

The inner and outer electrodes of a diode are coaxial cylinders of radii ¢ = 0.6 m and
b = 30 mm, respectively. The inner electrode is maintained at 70 V while the outer elec-
trode is grounded. (a) Assuming that the length of the electrodes € > a, b and ignoring
the effects of space charge, calculate the potential at p = 15 mm. (b) If an electron is in-
jected radially through a small hole in the inner electrode with velocity 107 m/s, find its
velocity at p = 15 mm.

Another method of finding the capacitance of a capacitor is using energy considerations,
that is

2wy 1

C == J elE|* dv

v: o vi

Y

Using this approach, derive egs. (6.22), (6.28), and (6.32).

An elecffdde with a hyperbolic shape (xy = 4) is placed above an earthed right-angle
corner as in Figure 6.29. Calculate V and E at point (1, 2, 0) when the electrode is con-
nected to a 20-V source.

Solve Laplace’s equation for the two-dimensional electrostatic systems of Figure 6.30 and
find the potential V(x, y).

Find the potential V(x, y) due to the two-dimensional systems of Figure 6.31.

By letting V(p, 1‘ciz) = R(p)P(¢) be the solution of Laplace’s equation in a region where
p # 0, show that the separated differential equations for R and @ are

R’ A i
R"+~——2R=0
p Y




Figure 6.29 For Problem 6.18.




6.22

6.23

' %6.24

*6.25

6.26

6.27

6.28
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and
"+ NP =0

where A is the separation constant.

A potential in spherical coordinates is a function of r and 8 but not ¢. Assuming that
V(r, ) = R(r)F(0), obtain the separated differential equations for R and F in a region for
which p, = 0.

Show that the resistance of the bar of Figure 6.17 between the vertical ends located at
¢ =0and ¢ = w/2is

R = T
20t In bla

Show that the resistance of the sector of a spherical shell of conductivity o, with cross
section shown in Figure 6.32 (where 0 < ¢ < 27), between its base is

[ T B [
A o 2wo(l —cosa) la b

A hollow conducting hemisphere of radius « is buried with its flat face lying flush with the
earth surface thereby serving as an earthing electrode. If the conductivity of earth is o,
show that the leakage conductance between the electrode and earth is 27ao.

The cross section of an electric fuse is shown in Figure 6.33. If the fuse is made of copper
and of thickness 1.5 mm, calculate its resistance.

In an integrated circuit, a capacitor is formed by growing a silicon dioxide layer (e, = 4)
of thickness 1 um over the conducting silicon substrate and covering it with a metal elec-
trode of area S. Determine § if a capacitance of 2 nF is desired.

The parallel-plate capacitor of Figure 6.34 is quarter-filled with mica (¢, = 6). Find the

capacitance of the capacitor.

Figure 6.32 For Problem 6.24.
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30m7

4cm : : : 4cm

ol -
<& >

A
\ 4

1 cm¢

A
\J

4 cm

Figure 6.33 For Problem 6.26.

A

*6.29

6.30

6.31

6.32

2 mm

An air-filled parallel plate capacitor of length L, width a, and plate separation d has its plates
maintained at constant potential difference V. If a dielectric slab of dielectric constant , is
slid between the plates and is withdrawn until only a length x remains between the plates as
in Figure 6.35, show that the force tending to restore the slab to its original position is

e(e, — Da Vg

F:
2d

A parallel-plate capacitor has plate area 200 cm” and plate separation 3 mm. The charge
density is 1 uC/m” with air as dielectric. Find

(a) The capacitance of the capacitor -

(b) The voltage between the plates o
(c) The force with which the plates attract each other

Two conducting plates are placed at z = —2 c¢m and z = 2 cm and are, respectively,
maintained at potentials 0 and 200 V. Assuming that the plates are separated by a
polypropylene (¢ = 2.25g,). Calculate: (a) the potentlal at the middle of the plates,
(b) the surface charge densities at the plates.

Two conducting parallel plates are separated by a dielectric material with ¢ = 5.6¢, and
thickness 0.64 mm. Assume that each plate has an area of 80 cm®. If the potential field dis-
tribution between the plates is V = 3x + 4y — 127 + 6 kV, determine: (a) the capaci-
tance of the capacitor, (b) the potential difference between the plates.

[’ : Figure 6.34 For Problem 6.28.

/IOcm2
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6.37
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Figure 6.35 For Problem 6.29.

al
i
<

- X——

The space between spherical conducting shells » = 5 cm and » = 10 cm is filled with a
dielectric material for which ¢ = 2.25¢,. The two shells are maintained at a potential dif-
ference of 80 V. (a) Find the capacitance of the system. (b) Calculate the charge density on
shell r = 5 cm.

Concentric shells ¥ = 20 cmand r = 30 cm are held at V = 0 and V = 50, respectively.
If the space between them is filled with dielectric material (¢ = 3.1g,, ¢ = 10> S/m),
find: (a) V, E, and D, (b) the charge densities on the shells, (c) the leakage resistance.

A spherical capacitor has inner radius a and outer radius d. Concentric with the spherical
conductors and lying between them is a spherical shell of outer radius ¢ and inner radius
b.Iftheregionsd < r < ¢,c < r < b,and b < r < g are filled with materials with per-
mittivites €1, €,, and &3, respectively, determine the capacitance of the system.

Determine the capacitance of a conducting sphere of radius 5 cm deeply immersed in sea
water (g, = 80).

A conducting sphere of radius 2 cm is surrounded by a concentric conducting sphere of
radius 5 cm. If the space between the spheres is filled with sodium chloride (g, = 5.9),
calculate the capacitance of the system.

In an ink-jet printer the drops are charged by surrounding the jet of radius 20 pm with a
concentric cylinder of radius 600 pm as in Figure 6.36. Calculate the minimum voltage
required to generate a charge 50 £C on the drop if the length of the jet inside the cylinder
is 100 pm. Take ¢ = &,,.

A given length of a cable, the capacitance of which is 10 pF/km with a resistance of insu-
lation of 100 MQ/km, is charged to a voltage of 100 V. How long does it take the voltage
to drop to 50 V?

- V5o Figure 6.36 Simplified geometry of an ink-jet
* printer; for Problem 6.38.

liquid jet
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Figure 6.37 For Problem 6.40.

6.40 The capacitance per unit length of a two-wire transmission line shown in Figure 6.37 is
e ., given by ‘
c— e

= cosh_l{i}
2a

Determine the conductance per unit length.

*6.41 A spherical capacitor has an inner conductor of radius a carrying charge Q and maintained
at zero potential. If the outer conductor contracts from a radius b to ¢ under internal
forces, prove that the work performed by the electric field as a result of the contraction is g

_ Q-0
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*6.42 A parallel-plate capacitor has its plates at x = 0, d and the space between the plates is
filled with an inhomogeneous material with permittivity & = so<1 + 3 . If the plate at
x = d is maintained at V,, while the plate at x = 0 is grounded, find:

(a) Vand E
(b) P
©) psatx=0,d

» 6.43 A spherical capacitor has inner radius ¢ and outer radius b and filled with an inhomoge-
b neous dielectric with & = g.k/r”. Show that the capacitance of the capacitor is

- _ 4wk
c L b—a

6.44 A cylindrical capacitor with inner radius a and outer radius b is filled with an inhomoge-
neous dielectric having € = g,k/p, where k is a constant. Calculate the capacitance per
unit length of the capasitor.

6.45 If the earth is regarded a spherical capacitor, what is its capacitance? Assume the radius of
the earth to be approximately 6370 km.
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A point charge of 10 nC is located at point P(0, 0, 3) while the conducting plane z = 0 is
grounded. Calculate

(a) Vand E at R(6, 3, 5)
(b) The force on the charge due to induced charge on the plane.

Two point charges of 3 nC and —4 nC are placed, respectively, at (0,0, 1 m) and
(0, 0, 2 m) while an infinite conducting plane is at z = 0. Determine

(a) The total charge induced on the plane
(b) The magnitude of the force of attraction between the charges and the plane

Two peint charges of 50 nC and —20 nC are located at (—3, 2, 4) and (1, 0, 5) above the
conducting ground plane z = 2. Calculate (a) the surface charge density at (7, —2, 2),
(b)yDat(3,4,8),and (c)yDat (1, 1, 1). ‘

A point charge of 10 uC is located at (1, 1, 1), and the positive portions of the coordinate
planes are occupied by three mutually perpendicular plane conductors maintained at zero
potential. Find the force on the charge due to the conductors. ~ :

A point charge Q is placed between two earthed intersecting conducting planes that are in-
clined at 45° to each other. Determine the number of image charges and their locations.

Infinite line x = 3, z = 4 carries 16 nC/m and is located in free space above the conduct-
ing plane z = 0. (a) Find E at (2, —2, 3). (b) Calculate the induced surface charge density
on the conducting plane at (5, —6, 0).

In free space, infinite planes y = 4 and y = 8 carry charges 20 nC/m? and 30 nC/m?, re-
spectively. If plane y = 2 is grounded, calculate E at P(0, 0, 0) and Q(—4, 6, 2).




