
8

COMPUTATION OF

SOLUTIONS

We have found formulas for many solutions to PDEs, but other problems
encountered in practice are not as simple and cannot be solved by formula.
Even when there is a formula, it might be so complicated that we would
prefer to visualize a typical solution by looking at its graph. The opportunity
presented in this chapter is to reduce the process of solving a PDE with its
auxiliary conditions to a finite number of arithmetical calculations that can be
carried out by computer. All the problems we have studied can be so reduced.
However, there are dangers in doing so. If the method is not carefully chosen,
the numerically computed solution may not be anywhere close to the true
solution. The other danger is that the computation (for a difficult problem)
could easily take so long that it would take more computer time than is practical
to carry out (years, millenia, . . .). The purpose of this chapter is to illustrate
the most important techniques of computation using quite simple equations
as examples.

8.1 OPPORTUNITIES AND DANGERS

The best known method, finite differences, consists of replacing each deriva-
tive by a difference quotient. Consider, for instance, a function u(x) of one
variable. Choose a mesh size �x . Let’s approximate the value u(j�x) for
x = j�x by a number u j indexed by an integer j:

u j ∼ u(j�x).

Then the three standard approximations for the first derivative
∂u

∂x
(j�x) are:

199

200 CHAPTER 8 COMPUTATION OF SOLUTIONS

The backward difference:
u j − u j−1

�x
(1)

The forward difference:
u j+1 − u j

�x
(2)

The centered difference:
u j+1 − u j−1

2�x
. (3)

Each of them is a correct approximation because of the Taylor expansion:

u(x + �x) = u(x) + u′(x)�x + 1
2
u′′(x)(�x)2 + 1

6
u′′′(x)(�x)3 + O(�x)4.

[It is valid if u(x) is a C4 function.] Replacing �x by −�x , we get

u(x − �x) = u(x) − u′(x)�x + 1
2
u′′(x)(�x)2 − 1

6
u′′′(x)(�x)3 + O(�x)4.

From these two expansions we deduce that

u′(x) =
u(x) − u(x − �x)

�x
+ O(�x)

=
u(x + �x) − u(x)

�x
+ O(�x)

=
u(x + �x) − u(x − �x)

2�x
+ O(�x)2.

We have written O(�x) to mean any expression that is bounded by a constant
times �x , and so on. Replacing x by j �x , we see that (1) and (2) are correct
approximations to the order O(�x) and (3) is correct to the order O(�x)2.

For the second derivative, the simplest approximation is the

centered second difference: u′′(j�x) ∼
u j+1 − 2u j + u j−1

(�x)2
. (4)

This is justified by the same two Taylor expansions given above which, when
added, give

u′′(x) =
u(x + �x) − 2u(x) + u(x − �x)

(�x)2
+ O(�x)2.

That is, (4) is valid with an error of O(�x)2.
For functions of two variables u(x, t), we choose a mesh size for both

variables. We write

u(j�x, n �t) ∼ un
j ,

8.1 OPPORTUNITIES AND DANGERS 201

where the n is a superscript, not a power. Then we can approximate, for
instance,

∂u

∂t
(j�x, n �t) ∼

un+1
j − un

j

�t
, (5)

the forward difference for ∂u/∂t . Similarly, the forward difference for ∂u/∂x
is

∂u

∂x
(j�x, n �t) ∼

un
j+1 − un

j

�x
, (6)

and we can write similar expressions for the differences (1)–(4) in either the
t or x variables. �

Two kinds of errors can be introduced in a computation using such ap-
proximations. Truncation error refers to the error introduced in the solutions
by the approximations themselves, that is, the O(�x) terms. Although the
error in the equation may be O(�x), the error in the solutions (the truncation
error) may or may not be small. This error is a complicated combination of
many small errors. We want the truncation error to tend to zero as the mesh
size tends to zero. Thinking of �x as a very small number, it is clear that
O(�x)2 is a much smaller error than O(�x). The errors written in (1)–(4)
are, strictly speaking, called local truncation errors. They occur in the approx-
imation of the individual terms in a differential equation. Global truncation
error is the error introduced in the actual solutions of the equation by the
cumulative effects of the local truncation errors. The passage from local to
global errors is usually too complicated to follow in any detail.

Roundoff error occurs in a real computation because only a certain number
of digits, typically 8 or 16, are retained by the computer at each step of the
computation. For instance, if all numbers are rounded to eight digits, the
dropping of the ninth digit could introduce big cumulative errors in a large
computation. We have to prevent these little errors from accumulating.

Example 1.

Let’s solve the very simple problem

ut = uxx , u(x, 0) = φ(x)

using finite differences. We use a forward difference for ut and a centered
difference for uxx . Then the difference equation is

un+1
j − un

j

�t
=

un
j+1 − 2un

j + un
j−1

(�x)2
. (7)

It has a local truncation error of O(�t) (from the left side) and O(�x)2

(from the right side).

202 CHAPTER 8 COMPUTATION OF SOLUTIONS

Figure 1

Suppose that we choose a very small value for �x and choose �t =
(�x)2. Then (7) simplifies to

un+1
j = un

j+1 − un
j + un

j−1. (8)

Let’s take φ(x) to be the very simple step function (see Figure 1), which
is to be approximated by the values φ j :

0 0 0 0 1 0 0 0 0 0 → x .

A sample calculation with these simple initial data can be done by
hand by simply “marching in time.” That is, φ(x) provides u0

j , then the
“scheme” (8) gives u1

j , then (8) gives u2
j , and so on. We can summarize

(8) schematically using the diagram

∗

• +1 • −1 • +1

(called a template), which means that in order to get un+1
j you just add or

subtract its three lower neighbors as indicated. Thus simple arithmetic
gives us the result shown in Figure 2. (Verify it!) The values of un

j are

written in the (j, n) location. This is supposed to be an approximate
solution.

The result is horrendous! It is nowhere near the true solution of
the PDE. We know that by the maximum principle, the true solution
of the diffusion equation will always be between zero and one, but the
difference equation has given us an “approximation” with the value 19
and growing! �

In the next section we analyze what went wrong.

Figure 2

8.2 APPROXIMATIONS OF DIFFUSIONS 203

EXERCISES

1. The Taylor expansion written in Section 8.1 is valid if u is a C4 function.
If u(x) is merely a C3 function, the best we can say is that the Taylor
expansion is valid only with a o(�x)3 error. [This notation means that the
error is (�x)3 times a factor that tends to zero as �x → 0.] If merely a
C2 function, it is only valid with a o(�x)2 error, and so on.
(a) If u(x) is merely a C3 function, what is the error in the first derivative

due to its approximation by the centered difference?
(b) What if u(x) is merely a C2 function?

2. (a) If u(x) is merely a C3 function, what is the error in the second
derivative due to its approximation by a centered second difference?

(b) What if u(x) is merely a C2 function?

3. Suppose that we wish to approximate the first derivative u′(x) of a very
smooth function with an error of only O(�x)4. Which difference approx-
imation could we use?

8.2 APPROXIMATIONS OF DIFFUSIONS

We take up our discussion of the diffusion equation ut = uxx again. There
is nothing obviously wrong with the scheme we used, as each derivative is
appropriately approximated with a small local truncation error. Somehow the
little errors have accumulated! What turns out to be wrong, but this is not
obvious at this point, is the choice of the mesh �t relative to the mesh �x .
Let’s make no assumption now about these meshes; in fact, let

s =
�t

(�x)2
. (1)

As before, we can solve the scheme (8.1.7) for un+1
j :

un+1
j = s

(

un
j+1 + un

j−1

)

+ (1 − 2s)un
j . (2)

The scheme is said to be explicit because the values at the (n + 1)st time step
are given explicitly in terms of the values at the earlier times.

Example 1.

To be specific, let’s consider the standard problem:

ut = uxx for 0 < x < π, t > 0

u = 0 at x = 0, π

u(x, 0) = φ(x) =

{

x in
(

0, π
2

)

π − x in
(

π
2
, π

)

.

204 CHAPTER 8 COMPUTATION OF SOLUTIONS

Figure 1

Its exact solution from Section 5.1 is

u(x, t) =

∞
∑

k=1

bk sin kx e−k2t , (3)

where bk = 4(−1)(k+1)/2/πk2 for odd k, and bk = 0 for even k. It looks
like Figure 1 for some t > 0 (t = 3π2/80).

We approximate this problem by the scheme (2) for j = 0, 1,. . . ,
J − 1 and n = 0, 1, 2, . . . together with the discrete boundary and initial
conditions

un
0 = un

J = 0 and u0
j = φ(j�x).

For J = 20, �x = π/20, and s = 5
11

, the result of the calculation (from
page 6 of [RM]) is shown in Figure 2 (exactly on target!). However, if

we repeat the calculation for J = 20, �x = π/20, and s = 5
9
, the result

is as shown in Figure 3 (wild oscillations as in Section 8.1!). Thus the

choice s = 5
11

is stable, whereas s = 5
9

is clearly unstable. �

Figure 2

8.2 APPROXIMATIONS OF DIFFUSIONS 205

Figure 3

STABILITY CRITERION

The primary distinction between these two calculations turns out to be whether
s is bigger or smaller than 1

2
. We might have gotten a suspicion of this from

the scheme (2) itself, because when s < 1
2
, the coefficients in (2) are positive.

But to actually demonstrate that this is the stability condition, we separate the
variables in the difference equation. Thus we look for solutions of equation
(2) of the form

un
j = X j Tn. (4)

Thus

Tn+1

Tn

= 1 − 2s + s
X j+1 + X j−1

X j

. (5)

Both sides of (4) must be a constant ξ independent of j and n. Therefore,

Tn = ξ nT0 (6)

and

s
Xj+1 + Xj−1

Xj

+ 1 − 2s = ξ. (7)

To solve the spatial equation (7), we argue that it is a discrete version of a
second-order ODE which has sine and cosine solutions. Therefore, we guess
solutions of (7) of the form

Xj = Acos jθ + Bsin jθ

206 CHAPTER 8 COMPUTATION OF SOLUTIONS

for some θ , where A and B are arbitrary. The boundary condition X0 = 0 at
j = 0 implies that A = 0. So we can freely set B = 1. Then X j = sin jθ .

Furthermore, the boundary condition XJ = 0 at j = J implies that
sin Jθ = 0. Thus Jθ = kπ for some integer k. But the discretization into
J equal intervals of length �x means that J = π/�x . Therefore, θ = k �x
and

X j = sin(jk�x). (8)

Now (7) takes the form

s
sin((j + 1)k�x) + sin((j − 1)k�x)

sin(jk�x)
+ 1 − 2s = ξ

or

ξ = ξ (k) = 1 − 2s[1 − cos(k�x)]. (9)

According to (6), the growth in time t = n �t at the wave number k is
governed by the powers ξ (k)n . So

unless |ξ (k)| ≤ 1 for all k, the scheme is unstable

and could not possibly approximate the true (exact) solution. (Recall that the
true solution tends to zero as t → ∞.) Now we analyze (9) to determine
whether |ξ (k)| ≤ 1 or not. Since the factor 1 − cos(k�x) ranges between 0
and 2, we have 1 − 4s ≤ ξ (k) ≤ 1. So stability requires that 1 − 4s ≥ −1,
which means that

�t

(�x)2
= s ≤

1

2
. (10)

Thus (10) is the condition required for stability.
This condition explains the instability that we observed in Section 8.1. It

means that in practice the time steps must be taken quite short. For instance, if
�x = 0.01, an apparently reasonable choice, then �t can be at most 0.00005.
Then solving up to time t = 1 would require 20,000 time steps!

The analysis above shows that it is precisely the wave number k for which
ξ (k) = −1, which is the most dangerous for stability. That critical situation
happens when cos(k�x) = −1, that is, when k = π/�x . In practice, this is a
fairly high wave number.

By the way, the complete solution of the difference scheme (2), together
with the discrete boundary conditions, is the “Fourier series”

un
j =

∞
∑

k=−∞

bksin(jk�x) [ξ (k)]n. (11)

8.2 APPROXIMATIONS OF DIFFUSIONS 207

Let’s see how it could be that this “discrete” series converges to the “true”
series (3). In fact, the Taylor series of (9) is

ξ (k) = 1 − 2sk2(�x)2/2! + · · · ≃ 1 − k2�t

if k�x is small. Taking the nth power and letting j�x = x and n�t = t , we
have

ξ (k)n ≃ (1 − k2�t)
t/�t

≃ e−k2t

in the limit as �t → 0, using the well-known limit for the exponential. So
the series (11) looks like it tends to the series (3), as it should. Of course, this
could not possibly be a proof of convergence (since we know it does not even

converge at all if s > 1
2
). An actual proof for s ≤ 1

2
, which we omit, would

require a careful analysis of the approximations.

The example discussed above indicates that the general procedure to de-
termine stability in a diffusion or wave problem is to separate the variables in
the difference equation. For the time factor we obtain a simple equation like
(6) which has an amplification factor ξ (k). In the analysis above we used the
stability condition |ξ (k)| ≤ 1. More precisely, it can be shown that the correct
condition necessary for stability is

|ξ (k)| ≤ 1 + O(�t) for all k (12)

and for small �t . (We omit the proof.) This is the von Neumann stability
condition [RM]. The extra term in (12) is irrelevant for the example above
but important for problems where the exact solution may grow in time (as in
Exercise 11).

In practice we could go more quickly from (7) to (9) simply by assuming
that

X j = (eik�x)
j

(13)

is an exponential. (This is the procedure to be followed in doing the exercises.)
Plugging (13) into (7), we immediately have

ξ = 1 − 2s + s(eik�x + e−ik�x).

Thus we again recover equation (9) for the amplification factor ξ.

NEUMANN BOUNDARY CONDITIONS

Suppose that the interval is 0 ≤ x ≤ l and the boundary conditions are

ux (0, t) = g(t) and ux (l, t) = h(t).

208 CHAPTER 8 COMPUTATION OF SOLUTIONS

Although the simplest approximations would be

un
1 − un

0

�x
= gn and

un
J − un

J−1

�x
= hn,

they would introduce local truncation errors of order O(�x), bigger than the
O(�x)2 errors in the equation. To introduce O(�x)2 errors only, we prefer
to use centered differences for the derivatives on the boundary.

To accomplish this, we introduce “ghost points” un
−1 and un

J+1 in addition
to un

0, . . . , un
J . The discrete boundary conditions then are

un
1 − un

−1

2 �x
= gn and

un
J+1 − un

J−1

2 �x
= hn. (14)

At the nth time step, we can calculate un
0, . . . , un

J using the scheme for the
PDE, and then calculate the values at the ghost points using (14).

CRANK-NICOLSON SCHEME

We could try to avoid the restrictive stability condition (10) by using another
scheme. There is a class of schemes that is stable no matter what the value of
s. In fact, let’s denote the centered second difference by

un
j+1 − 2un

j + un
j−1

(�x)2
= (δ2u)

n

j .

Pick a number θ between 0 and 1. Consider the scheme

un+1
j − un

j

�t
= (1 − θ)(δ2u)

n

j + θ(δ2u)
n+1

j . (15)

We’ll call it the θ scheme. If θ = 0, it reduces to the previous scheme. If
θ > 0, the scheme is implicit, since un+1 appears on both sides of the equation.
Therefore, (15) means that we solve a set (n = 1) of algebraic linear equations
to get u1

j , another set (n = 2) to get u2
j , and so on.

Let us analyze the stability of this scheme by plugging in a separated
solution

un
j = (eik�x)

j
(ξ (k))n

as before. Then

ξ (k) =
1 − 2(1 − θ)s(1 − cos k�x)

1 + 2θs(1 − cos k�x)
,

where s = �t/(�x)2 (see Exercise 9).
Again we look for the stability condition: |ξ (k)| ≤ 1 for all k. It is always

true that ξ (k) ≤ 1, but the condition ξ (k) ≥ −1 requires that

s(1 − 2θ)(1 − cos k�x) ≤ 1.

8.2 APPROXIMATIONS OF DIFFUSIONS 209

(Why?) If 1 − 2θ ≤ 0, it is always true! This means that

if 1
2

≤ θ ≤ 1, there is no restriction on the size of s (16)

for stability to hold. Such a scheme is called unconditionally stable.

The special case θ = 1
2
is called the Crank–Nicolson scheme. It has the

template

1

2

s

1 + s
• ∗ •

1

2

s

1 + s

1

2

s

1 + s
•

1 − s

1 + s
• •

1

2

s

1 + s

On the other hand, in case θ < 1
2
, a necessary condition for stability is

s ≤ (2 − 4θ)−1. Thus (15) is expected to be a stable scheme if

�t

(�x)2
= s <

1

2 − 4θ
. (17)

EXERCISES

1. (a) Solve the problem ut = uxx in the interval [0, 4] with u = 0 at both
ends and u(x, 0) = x(4 − x), using the forward difference scheme
with�x = 1 and�t = 0.25. Calculate four time steps (up to t = 1).

(b) Do the same with �x = 0.50 and �t = 0.0625 = 1
16
. Calculate

four time steps (up to t = 0.25).
(c) Compare your answers with each other. How close are they at x =

2.0, t = 0.25?

2. Do the samewith�x = 1 and�t = 1. Calculate by hand or by computer
up to t = 7.

3. Solve ut = uxx in the interval [0, 5] with u(0, t) = 0 and u(5, t) = 1 for
t ≥ 0, and with u(x, 0) = 0 for 0 < x < 5.
(a) Compute u(3, 3) using the mesh sizes �x = 1 and �t = 0.5.
(b) Write the exact solution as an infinite series. Calculate u(3, 3) to

three decimal places exactly. Compare with your answer in (a).

4. Solve by hand the problem ut = uxx in the interval [0, 1] with ux = 0
at both ends. Use the forward scheme (2) for the PDE, and the scheme
(14) for the boundary conditions. Assume �x = 1

5
, �t = 1

100
, and start

with the initial data: 0 0 64 0 0 0. Compute for four time steps.

5. Using the forward scheme (2), solve ut = uxx in [0, 5] with the mixed
boundary conditions u(0, t) = 0 and ux (5, t) = 0 for t ≥ 0, and the ini-
tial condition u(x, 0) = 25 − x2 for 0 < x < 5. Use �x = 1 and �t =
1
2
. Compute u(3, 3) approximately.

210 CHAPTER 8 COMPUTATION OF SOLUTIONS

6. Do the same with the conditions ux (0, t) = u(5, t) = 0 and u(x, 0) = x .

7. Show that the local truncation error in the Crank-Nicolson scheme is
O((�x)2 + (�t)2).

8. (a) Write down the Crank–Nicolson scheme (θ = 1
2
) for ut = uxx .

(b) Consider the solution in the interval 0 ≤ x ≤ 1 with u = 0 at both
ends. Assume u(x, 0) = φ(x) and φ(1 − x) = φ(x). Show, using
uniqueness, that the exact solution must be even around the midpoint

x = 1
2
. [That is, u(x, t) = u(1 − x, t).]

(c) Let �x = �t = 1
6
. Let the initial data be 0 0 0 1 0 0 0.

Compute the solution by the Crank–Nicolson scheme for one time

step (t = 1
6
). (Hint: Use part (b) to halve the computation.)

9. For the θ scheme (15) for the diffusion equation, provide the details of
the derivation of the stability conditions (16) and (17).

10. For the diffusion equation ut = uxx , use centered differences for both ut

and uxx .
(a) Write down the scheme. Is it explicit or implicit?
(b) Show that it is unstable, no matter what �x and �t are.

11. Consider the equation ut = auxx + bu, where a and b are constants and
a > 0. Use forward differences for ut , use centered differences for uxx ,
and use buj

n for the last term.

(a) Write the scheme. Let s = �t/(�x)2.
(b) Find the condition on s for numerical stability. (Hint: check condi-

tion (12).)

12. (a) Solve by hand the nonlinear PDE ut = uxx + (u)3 for all x using
the standard forward difference scheme with (u)3 treated as (un

j)
3.

Use s = 1
4
, �t = 1, and initial data u0

j = 1 for j = 0 and u0
j = 0

for j �= 0. Solve for u3
0.

(b) Compare your answer to the same problem without the nonlinear
term.

(c) Exactly solve the ODE dv/dt = (v)3 with the condition v(0) = 1.
Use it to explain why u3

0 is so large in part (a).
(d) Repeat part (a) with the same initial data but for the PDE ut =

uxx − (u)3. Compare with the answer in part (a) and explain.

13. Consider the following scheme for the diffusion equation:

un+1
j − un−1

j

2 �t
=

un
j+1 + un

j−1 − un+1
j − un−1

j

(�x)2
.

It uses a centered difference for ut and a modified form of the centered
difference for uxx .
(a) Solve it for un+1

j in terms of s and the previous time steps.

(b) Show that it is stable for all s.

14. (a) Formulate an explicit scheme for ut = uxx + u yy .

8.3 APPROXIMATIONS OF WAVES 211

(b) What is the stability condition for your scheme in terms of s1 =
�t/(�x)2 and s2 = �t/(�y)2?

15. Formulate the Crank-Nicolson scheme for ut = uxx + u yy .

8.3 APPROXIMATIONS OF WAVES

In this section we continue our discussion of finite difference approximations
for some very simple PDEs. Although the PDEs are simple, the methods we
develop can be used for more difficult, even nonlinear, equations. For the
one-dimensional wave equation ut t = c2uxx the simplest scheme is the one
using centered differences for both terms:

un+1
j − 2un

j + un−1
j

(�t)2
= c2

un
j+1 − 2un

j + un
j−1

(�x)2
. (1)

It is explicit since the (n + 1)st time step appears only on the left side. Thus

un+1
j = s

(

un
j+1 + un

j−1

)

+ 2(1 − s)un
j − un−1

j , (2)

where we now denote s = c2(�t)2/(�x)2. Its template diagram is

n + 1 ∗

n • • •

s 2 − 2s s

n − 1 •

−1

Notice that the value at the (n + 1)st time step depends on the two previ-
ous steps, because the wave equation has time derivatives of second order.
Therefore, the first two rows u0

j and u1
j must be given as initial conditions.

Example 1.

If we pick s = 2, the scheme simplifies to

un+1
j = 2

(

un
j+1 + un

j−1 − un
j

)

− un−1
j (3)

and it is easy to compute by hand the solution shown in Figure 1, given
its first two rows. This horrendous solution bears no relationship to the
true solution of the wave equation, which is a pair of waves traveling to

the left and right, u(x, t) = 1
2
[φ(x + ct) + φ(x − ct)]. The scheme for

s = 2 is highly unstable. �

212 CHAPTER 8 COMPUTATION OF SOLUTIONS

Figure 1

Example 2.

For s = 1 we have �x = c �t and the scheme

un+1
j = un

j+1 + un
j−1 − un−1

j . (4)

The same initial data as above lead to the solution shown in Figure 2.
This is an excellent approximation to the true solution! �

INITIAL CONDITIONS

How do we handle the initial conditions? We approximate the conditions
u(x, 0) = φ(x) and ∂u/∂t(x, 0) = ψ(x) by

u0
j = φ(j�x),

u1
j − u−1

j

2 �t
= ψ(j�x). (5)

This approximation is chosen to have a O(�x)2 local truncation error in order
to match the O(�x)2 + O(�t)2 truncation error of the scheme (2). (If we
only used a simpler approximation with a O(�x) error, the initial conditions
would contaminate the solution with too big an error.) Let’s abbreviate φ j =
φ(j�x) and ψ j = ψ(j�x). Now (2) in the case n = 0 is

u1
j + u−1

j = s
(

u0
j+1 + u0

j−1

)

+ 2(1 − s)u0
j .

Together with (5), this gives us the starting values

u0
j = φ j ,

u1
j =

s

2
(φ j+1 + φ j−1) + (1 − s)φ j + ψj�t,

(6)

the first two rows of the computation. Then we march ahead in time to get u2
j ,

u3
j , and so on, using (2).

Figure 2

8.3 APPROXIMATIONS OF WAVES 213

Figure 3

Example 3.

For instance, let the initial data be

φ(x) = 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0

and ψ(x) ≡ 0. Let s = 1. Then from (6) we get the starting values (the
first two rows)

0 0 0 0 0 1
2

1 1 1 1
2

0 0 0 0 0

0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 .

If we use (4), we get the solution shown in Figure 3. This is an
even better approximation to the true solution than that shown in Fig-
ure 2. �

STABILITY CRITERION

Now let’s analyze the stability by the method of Section 8.2. Again, a clue may
be found in the values of the coefficients. None are negative if s ≤ 1. Once
again this simple observation turns out to be the correct stability condition.
However, proceeding more logically, we separate the variables

un
j = (η) j (ξ)n where η = eik�x .

From (1) we get

ξ +
1

ξ
− 2 = s

(

η +
1

η
− 2

)

= 2s [cos(k �x) − 1]. (7)

Letting p = s[cos(k�x) − 1] for the sake of brevity, (7) can be written as

ξ 2 − 2(1 + p)ξ + 1 = 0, which has the roots ξ = 1 + p ±
√

p2 + 2p. (8)

Note that p ≤ 0. If p < −2, then p2 + 2p > 0 and there are two real roots,
one of which is less than −1. Thus for one of the roots we have |ξ | > 1, so that
the scheme is unstable. On the other hand, if p > −2, then p2 + 2p < 0 and

there are two complex conjugate roots 1 + p ± i
√

−p2 − 2p. These complex
roots satisfy

|ξ |2 = (1 + p)2 − p2 − 2p = 1.

214 CHAPTER 8 COMPUTATION OF SOLUTIONS

Figure 4

So ξ = cos θ + i sin θ for some real number θ . In this case the solutions
oscillate in time (just as they ought to for the wave equation). Finally, if
p = −2, then ξ = −1.

Thus a necessary condition for stability is that p ≥ −2 for all k. This
means that

s ≤
2

1 − cos(k �x)

for all k. Thus stability requires that

s = c2
(�t)2

(�x)2
≤ 1. (9)

There is a nice way to understand this condition (9). At each time step �t
the values of the numerical solution spread out by one unit �x . So the ratio
�x/�t is the propagation speed of the numerical scheme. The propagation
speed for the exact wave equation is c. So the stability condition requires
the numerical propagation speed to be at least as large as the continuous
propagation speed. In Figure 4 we have sketched the domains of dependence
of the true and the computed solutions for the case c = 1 and �t/�x = 2 (so
that s = 4). The computed solution at the point P does not make use of the
initial data in the regions B and C as it ought to. Therefore, the scheme leads
to entirely erroneous values of the solution.

On the other hand, even the stable schemes do not do a very good job
at resolving singularities in the true solution. For instance, one solution of
the nice scheme (4) with s = 1 is shown in Figure 5. This initial condition is

Figure 5

8.3 APPROXIMATIONS OF WAVES 215

“singular” because it has a sudden up and down jump. The solution in Figure 5
isn’t as unstable as the one in Figure 1, but it surely is a poor approximation
to the true solution. (It’s a good approximation only for someone who wears
fuzzy glasses.) The difficulty here is that the initial function φ(x) has a signif-
icant “jump” at one point; the earlier cases illustrated in Figures 2 and 3 were
at least slightly gradual. More sophisticated schemes must be used to solve
problems with singularities, as in shock wave problems.

There are also implicit schemes for the wave equation (like the Crank–
Nicolson scheme) but they are less urgently needed here since the stability
condition (9) for the explicit scheme does not require �t to be so much smaller
than �x .

Example 4.

For a more interesting PDE, let’s consider the nonlinear wave equation

ut t − �u + u + [u]7 = 0 (10)

in three dimensions (x, y, z), where [u]7 denotes the seventh power. Let
(r, θ, φ) be the usual spherical coordinates. We shall make the calculation
manageable by computing only those solutions that are independent of
θ and φ. Then the equation takes the form

ut t − urr −
2

r
ur + u + [u]7 = 0

by (6.1.7), which is a modification of the one-dimensional wave equa-
tion. To get rid of the middle term, it is convenient to change variables
v(r, t) = ru(r, t) to get

{

vt t − vrr + v + r−6[v]7 = 0 (0 < r < ∞)

v(0, t) = 0.
(11)

The last condition comes from the definition of v.
Now we use the scheme (1) with s = 1 and with suitable additional

terms to get

vn+1
j − 2vn

j + vn−1
j

(�t)2
=

vn
j+1 − 2vn

j + vn
j−1

(�r)2

−
1

2

(

vn+1
j + vn−1

j

)

−
1

8
(j�r)−6

(

vn+1
j

)8
−

(

vn−1
j

)8

vn+1
j − vn−1

j

(12)

One reason for this treatment of the additional terms is that this scheme
has a constant energy (independent of n), an analog of the continuous
energy of Section 2.2 (see Exercise 9).

Using the mesh sizes �r = �t = 0.002 and certain initial data, the
computed solution is graphically presented in Figure 6 (see [SV]). The

216 CHAPTER 8 COMPUTATION OF SOLUTIONS

Figure 6

8.3 APPROXIMATIONS OF WAVES 217

effect of the nonlinear term is visible in the oscillations of fairly large
amplitude which reflect at the origin. �

EXERCISES

1. (a) Write the scheme (2) for the wave equation in the case s = 1
4

and
draw the template.

(b) Compute the solution by hand for five time levels with the same
starting values as in Figure 2.

(c) Convince yourself that the computed solution is not too accurate but
is “in the right ballpark.” When interpreting the solution remember
that �x/�t = 2.

2. Solve by hand for a few time steps the numerical scheme (2) for ut t =
uxx , with u(x, 0) ≡ 0, with

ψ j = 0 0 0 0 1 2 1 0 0 0 0

and with the starting scheme (6).
(a) First use �t = 1 and �x = 0.5.
(b) Then use �t = 1 and �x = 1.
(c) Compare your answers to parts (a) and (b).

3. (a) Use the scheme (2) with �x = �t = 0.2 to approximately solve
ut t = uxx with u(x, 0) = x2 and ut (x, 0) = 1. Solve it in the region
{0 ≤ t ≤ 1, |x | ≤ 2 − t}.

(b) Solve the problem exactly and compare the exact and approximate
solutions.

4. (a) Use the scheme (2) with �x = �t = 0.25 to solve ut t = uxx ap-
proximately in the interval 0 ≤ x ≤ 1 with u = 0 at both ends and
u(x, 0) = sin πx and ut (x, 0) = 0. Show that the solution is peri-
odic.

(b) Compare your answer to the exact solution. What is its period?

5. Solve by hand for a few time steps the equation ut t = uxx in the finite

interval 0 ≤ x ≤ 1, with ux = 0 at both ends, using �t = �x = 1
6

and
the initial conditions

u(x, 0) = 0 0 0 1 2 1 0 0 0 and ut (x, 0) ≡ 0.

Use central differences for the boundary derivatives as in (8.2.14) and
use second-order-accurate initial conditions as in (6). Do you see the
reflections at the boundary?

6. Consider the wave equation on the half-line 0 < x < ∞, with the bound-
ary condition u = 0 at x = 0. With the starting values u0

4 = u0
5 = u1

4 =

u1
5 = 1 and u0

j = u1
j = 0 for all other j (j = 1, 2, . . .), compute the so-

lution by hand up to 10 time steps. Observe the reflection at the boundary
and compare with Section 3.2.

218 CHAPTER 8 COMPUTATION OF SOLUTIONS

7. Solve by hand the nonlinear equation ut t = uxx + u3 up to t = 4, using
the same initial conditions as in Figure 3, replacing the cubic term by

(un
j)

3, and using �x = �t = 1. What is the effect of the nonlinear term?

Compare with the linear problem in Figure 3.

8. Repeat Exercise 7 by computer for the equation ut t = uxx − u3 using an
implicit scheme like (12) with �t = �x = 1.

9. Consider the scheme (12) for the nonlinear wave equation (10). Let the
discrete energy be defined as

En

�r
=

1

2

∑

j

(

vn+1
j − vn

j

�t

)2

+
1

2

∑

j

(

vn+1
j+1 − vn+1

j

�r

)

(

vn
j+1 − vn

j

�r

)

+
1

4

∑

j

[

(

vn+1
j

)2

+
(

vn
j

)2

]

+
1

16

∑

j

(

vn+1
j

)8

+
(

vn
j

)8

(j�r)6
.

By multiplying (12) by 1
2
(vn+1

j − vn−1
j), show that En = En−1. Conclude

that En does not depend on n.

10. Consider the equation ut = ux . Use forward differences for both partial
derivatives.
(a) Write down the scheme.
(b) Draw the template.
(c) Find the separated solutions.
(d) Show that the scheme is stable if 0 < �t/�x ≤ 1.

11. Consider the first-order equation ut + aux = 0.
(a) Solve it exactly with the initial condition u(x, 0) = φ(x).
(b) Write down the finite difference scheme which uses the forward

difference for ut and the centered difference for ux .
(c) For which values of �x and �t is the scheme stable?

8.4 APPROXIMATIONS OF LAPLACE’S EQUATION

For Dirichlet’s problem in a domain of irregular shape, it may be more con-
venient to compute numerically than to try to find the Green’s function. As
with the other equations, the same ideas of numerical computation can easily
be carried over to more complicated equations. For Laplace’s equation

uxx + u yy = 0

the natural approximation is that of centered differences,

u j+1,k − 2u j,k + u j−1,k

(�x)2
+

u j,k+1 − 2u j,k + u j,k−1

(�y)2
= 0. (1)

8.4 APPROXIMATIONS OF LAPLACE’S EQUATION 219

Here u j,k is an approximation to u(j�x, k�y). The relative choice of mesh
sizes turns out not to be critical so we just choose �x = �y. Then (1) can be
written as

u j,k = 1
4
(u j+1,k + u j−1,k + u j,k+1 + u j,k−1). (2)

Thus u j,k is the average of the values at the four neighboring sites. The tem-
plate is

•
1
4

• ∗ •
1
4

1
4

•
1
4

The scheme (2) has some nice properties. The most obvious one is the
mean value property, the exact analog of the same property for the Laplace
equation. In its discrete version (2), the difference equation and the mean
value property become identical! It follows that a solution u jgk cannot take
its maximum or minimum value at an interior point, unless it is a constant;
for otherwise it couldn’t be the average of its neighbors. Thus, if (2) is valid
in a region, the maximum and minimum values can be taken only at the
boundary.

To solve the Dirichlet problem for uxx + u yy = 0 in D with given bound-
ary values, we draw a grid covering D and approximate D by a union of
squares (see Figure 1). Then the discrete solution is specified on the bound-
ary of the “discrete region.” Our task is to fill in the interior values so as to
satisfy (2). In contrast to time-dependent problems, no marching method is
available. If N is the number of interior grid points, the equations (2) form a
system of N linear equations in N unknowns. For instance, if we divide x and
y each into 100 parts, we get about 10,000 little squares. Thus N can be very
large.

Figure 1

220 CHAPTER 8 COMPUTATION OF SOLUTIONS

Figure 2

The system we get in this way has exactly one solution. To prove this,
suppose that there were two solutions, {u j,k} and {vj,k}, of (2) in D with
identical boundary values. Their difference {u j,k − vj,k} also satisfies (2) in
D but with zero boundary values. By the maximum principle stated above,
u j,k − vj,k ≤ 0, and by the minimum principle, uj,k − vj,k ≥ 0. Hence u j,k =
vj,k . So there is at most one solution. But this means that the determinant of
the linear system of N equations is not zero, which means that there exists
exactly one solution.

Example 1.

As a baby example, consider solving (2) in the square with the boundary
values indicated in Figure 2(a). This is a set of four linear equations, one
for each interior point. The solution is given in Figure 2(b). Notice that
each interior entry is indeed the average of its four neighbors. �

JACOBI ITERATION

In the absence of a marching method to solve (2), several techniques are
available. One is called Jacobi iteration. We start from any reasonable first

approximation u
(1)
j,k . Then we successively solve

u
(n+1)
j,k = 1

4

[

u
(n)
j+1,k + u

(n)
j−1,k + u

(n)
j,k+1 + u

(n)
j,k−1

]

. (3)

It can be shown that u j,k = lim u
(n)
j,k converges as n → ∞ to a limit which is

a solution of (2). It converges, however, very slowly and so Jacobi iteration is
never used in practice. Since N is usually quite large, a more efficient method
is needed.

It might be noticed that (3) is exactly the same calculation as if one were
solving the two-dimensional heat equation vt = vxx + vyy using centered dif-
ferences for vxx and vyy and using the forward difference for vt , with �x = �y
and �t = (�x)2/4 (see Exercise 11). In effect, we are solving the Dirichlet
problem by taking the limit of the discretized v(x, t) as t → ∞.

GAUSS–SEIDEL METHOD

This method improves the rate of convergence. Here it is important to specify
the order of operations. Let’s compute u

(n+1)
j,k one row at a time starting at

8.4 APPROXIMATIONS OF LAPLACE’S EQUATION 221

the bottom row and let’s go from left to right. But every time a calculation is
completed, we’ll throw out the old value and update it by its newly calculated
one. This procedure means that

u
(n+1)
j,k = 1

4

[

u
(n)
j+1,k + u

(n+1)

j−1,k + u
(n)
j,k+1 + u

(n+1)

j,k−1

]

. (4)

The new values (with superscript n + 1) are used to the left and below the (j, k)
location. It turns out that Gauss–Seidel works about twice as fast as Jacobi.

SUCCESSIVE OVERRELAXATION

This method is still faster. It is the scheme

u
(n+1)
j,k = u

(n)
j,k + ω

[

u
(n)
j+1,k + u

(n+1)
j−1,k + u

(n)
j,k+1 + u

(n+1)
j,k−1 − 4u

(n)
j,k

]

. (5)

If ω = 1
4
, it is the same as Gauss–Seidel. It is quite surprising that a different

choice of ω could make a significant improvement, but it does. But how to
choose the relaxation factor ω in practice is an art whose discussion we leave
to more specialized texts. Note again that once we know that u j,k = lim u

(n)
j,k

exists, the limit must satisfy

u j,k = u j,k + ω(u j+1,k + u j−1,k + u j,k+1 + u j,k−1 − 4u j,k)

and hence it satisfies (2).

EXERCISES

1. Set up the linear equations to find the four unknown values in Figure 2(a),
write them in vector-matrix form, and solve them. You should deduce
the answer in Figure 2(b).

2. Apply Jacobi iteration to the example of Figure 2(a) with zero initial
values in the interior. Compute six iterations.

3. Apply four Gauss–Seidel iterations to the example of Figure 2(a).

4. Solve the example of Figure 2(a) but with the boundary conditions (by
rows, top to bottom) 0, 48, 0, 0; 0, ∗, ∗, 24; 0, ∗, ∗, 0; 0, 0, 0, 0.

5. Consider the PDE uxx + u yy = 0 in the unit square {0 ≤ x ≤ 1,
0 ≤ y ≤ 1} with the boundary conditions:

u = 0 on x = 0, on x = 1, and on y = 1

u = 324 x2(1 − x) on y = 0.

Calculate the approximation to the solution using finite differences (2)

with the very coarse grid �x = �y = 1
3
.

(Hint: You may use Figure 2 if you wish.)

6. (a) Write down the scheme using centered differences for the equation
uxx + u yy = f (x, y).

222 CHAPTER 8 COMPUTATION OF SOLUTIONS

(b) Use it with �x = �y = 0.5 to solve the problem uxx + uyy = 1 in
the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 with u = 0 on the boundary.

(c) Repeat with �x = �y = 1
3
.

(d) Compute the exact value at the center of the square and compare
with your answer to part (b).

7. Solve uxx + uyy = 0 in the unit square {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} with the
boundary conditions: u(x, 0) = u(0, y) = 0, u(x, 1) = x, u(1, y) = y.

Use �x = �y = 1
4
, so that there are nine interior points for the

scheme (2).
(a) Use two steps of Jacobi iteration, with the initial guess that the value

at each of the nine points equals 1.
(b) Use two steps of Gauss–Seidel iteration, with the same initial guess.
(c) Compare parts (a) and (b) and the exact solution.

8. Formulate a finite difference scheme for uxx + u yy = f (x, y) in the
unit square {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} with Neumann conditions ∂u/∂n =
g(x, y) on the boundary. Use uj,k for −1 ≤ j ≤ N + 1 and −1 ≤ k ≤
N + 1 and use centered differences for the normal derivative, such as
(u j,N+1 − u j,N−1)/2 �y. [That is, use ghost points as in (8.2.14).]

9. Apply Exercise 8 to approximately find the harmonic function in the
unit square with the boundary conditions ux (0, y) = 0, ux (1, y) = −1,
u y(x, 0) = 0, u y(x, 1) = 1. Formulate a Gauss–Seidel method of solving
the difference scheme and compute two iterations with �x = �y =
1
3
. Compare with the exact solution u = 1

2
y2 − 1

2
x2. You may use a

computer program.

10. Try to do the same with the boundary conditions ux (0, y) = 0,
ux (1, y) = 1, u y(x, 0) = 0, u y(x, 1) = 1. What’s wrong?

11. Show that performing Jacobi iteration (3) is the same as solving
the two-dimensional diffusion equation vt = vxx + vyy using centered
differences for vxx and vyy and using the forward difference for vt , with

�x = �y and �t = (�x)2/4.

12. Do the same (solving the diffusion equation) with �t = ω(�x)2 and
compare with successive overrelaxation.

8.5 FINITE ELEMENT METHOD

All computational methods reduce PDEs to discrete form. But there are other
methods besides finite differences. Here we briefly discuss the finite element
method. The idea is to divide the domain into simple pieces (polygons) and
to approximate the solution by extremely simple functions on these pieces.
In one of its incarnations, the one we shall discuss, the simple pieces are
triangles and the simple functions are linear. The finite element method was
developed by engineers to handle curved or irregularly shaped domains. If D
is a circle, say, they were having trouble using finite differences, which are not

8.5 FINITE ELEMENT METHOD 223

Figure 1

particularly efficient simply because a circle is not very accurately partitioned
into rectangles.

Let’s consider the Dirichlet problem for Poisson’s equation in the plane

−�u = f in D, u = 0 on bdyD. (1)

First, D is triangulated; that is, D is approximated by a region DN which is the
union of a finite number of triangles (see Figure 1). Let the interior vertices
be denoted by V1, . . . , VN .

Next, we pick N trial functions, v1(x, y), . . . , vN (x, y), one for each in-
terior vertex. Each trial function vi(x, y) is chosen to equal 1 at “its” vertex Vi

and to equal 0 at all the other vertices (see Figure 2). Inside each triangle, each
trial function is a linear function: vi (x, y) = a + bx + cy. (The coefficients
a, b, c are different for each trial function and for each triangle.) This pre-
scription determines vi(x, y) uniquely. In fact, its graph is simply a pyramid of
unit height with its summit at Vi and it is identically zero on all the triangles
that do not touch Vi.

We shall approximate the solution u(x, y) by a linear combination of the
vi(x, y):

uN (x, y) = U1v1(x, y) + · · · + UNvN (x, y). (2)

How do we choose the coefficients U1, . . . , UN ?
To motivate our choice we need a digression. Let’s rewrite the problem

(1) using Green’s first identity [formula (G1) from Section 7.1]. We multiply

Figure 2

224 CHAPTER 8 COMPUTATION OF SOLUTIONS

Poisson’s equation by any function v(x, y) that vanishes on the boundary. Then
∫∫

D

∇u · ∇v dx dy =

∫∫

D

f v dx dy. (3)

Rather than requiring (3) to be valid for uN(x, y) for all functions v(x, y), we ask
only that it be valid for the first N special trial functions v = vj (j = 1, . . . , N).
Thus, with u(x, y) = uN(x, y) and v(x, y) = vj(x, y), (3) becomes

N
∑

i=1

Ui





∫∫

D

∇vi · ∇vj dx dy



 =

∫∫

D

f vj dx dy.

This is a system of N linear equations (j = 1, . . . , N) in the N unknowns
U1, . . . , UN . If we denote

mi j =

∫∫

D

∇vi · ∇v j dx dy and f j =

∫∫

D

f vj dx dy, (4)

then the system takes the form

N
∑

i=1

mi jUi = f j (j = 1, . . . , N). (5)

The finite element method consists of calculating mij and fj from (4) and
solving (5). The approximate value of the solution u(x, y) then is given by (2).

The trial functions vj are completely explicit and depend only on the ge-
ometry. The approximate solution uN automatically vanishes on the boundary
of DN . Notice also that, at a vertex Vk = (xk, yk),

uN (xk, yk) = U1v1(xk, yk) + · · · + UNvN (xk, yk) = Uk,

since vi (xk,yk) equals 0 for i �= k and equals 1 for i = k. Thus the coefficients
are precisely the values of the approximate solution at the vertices.

Another way to understand uN (x, y) is that it is a continuous and
piecewise-linear function (linear on each triangle), simply because it is a
sum of such functions. In fact, it is the unique piecewise-linear continuous
function on the triangulation such that uN (xk, yk) = Uk (k = 1, . . . , N).

Notice also that the matrix mi j is “sparse”: mi j = 0 whenever Vi and Vj

are not neighboring vertices. Furthermore, for a pair of neighboring vertices,
mij is easy to compute since each vi (x, y) is linear on each triangle.

Triangulations with linear functions are not the only versions of the finite
element method used in practice. Two other versions in two variables are as
follows.

(i) Bilinear elements on rectangles: D is divided into rectangles on
each of which the solution is approximated using trial functions

8.5 FINITE ELEMENT METHOD 225

vi (x, y) = a + bx + cy + dxy. Each trial function is associated with
a corner of a rectangle.

(ii) Quadratic elements on triangles: D is triangulated and the trial func-
tions have the form vi (x, y) = a + bx + cy + dx2 + exy + f y2.
Each trial function is associated with one of the six “nodes” of a
triangle, namely, the three vertices and the midpoints of the three
sides.

For a reference, see [TR].
As a further example, consider solving the diffusion equation

ut = κuxx + f (x, t); u = 0 at x = 0, l; u = φ(x) at t = 0.

Suppose, for simplicity, that l is an integer. Partition the interval [0, l] into l
equal subintervals. We assign the trial function v j (x) to each of the N = l − 1
interior vertices, where v j (x) is the linear element of Exercise 3. Now we
multiply the diffusion equation by any function v(x) that vanishes on the
boundary. Integrating by parts, we get

d

dt

∫ l

0

uv dx = −κ

∫ l

0

∂u

∂x

dv

dx
dx +

∫ l

0

f (x, t) v(x) dx . (6)

In order to use the finite-element method, we look for a solution of the form

u(x, t) =

N
∑

i=1

Ui (t) vi (x)

and we merely require (6) to hold for v = v1, . . . , vN . Then

N
∑

i=1

(∫ l

0

viv j dx

)

dUi

dt
= −κ

N
∑

i=1

(∫ l

0

dvi

dx

dv j

dx
dx

)

Ui (t) +

∫ l

0

f (x, t)v j (x) dx .

This is a system of ODEs for U1, . . . , UN that can be written as a vector
equation as follows.

Let U be the column vector [U1, . . . , UN] and let F be the column vector

[F1(t), . . . , FN (t)] with F j (t) =
∫ l

0
f (x, t)vj (x)dx . Let M be the matrix with

entries mij and K be the matrix with entries kij where

kij =

∫ l

0

viv j dx, mi j =

∫ l

0

dvi

dx

dv j

dx
dx .

Then the system of N ODEs in N unknowns takes the simple vector form

K
dU

dt
= −κMU (t) + F(t). (7)

226 CHAPTER 8 COMPUTATION OF SOLUTIONS

M is called the stiffness matrix, K the mass matrix, and F the forcing vector.
In Exercise 3(a), the stiffness and mass matrices are computed to be

M =











2 −1 0 · · · 0

−1 2 −1 · · · 0

· · ·

0 · · · 0 −1 2











, K =











2
3

1
6

0 · · · 0
1
6

2
3

1
6

· · · 0

· · ·

0 · · · 0 1
6

2
3











The matrices M and K have two important features. They are sparse and they
depend only on the trial functions. So they remain the same as we change the
data. We also have the initial condition

Ui (0) = �i ≡

∫ l

0

φ(x)vi (x) dx . (8)

This ODE system (7)-(8) can be solved numerically by any of a number
of methods. One simple method is Euler’s. One chooses tp = p�t for p =
0, 1, 2, . . . and then solves

U (p+1) = U (p) + �tW (p),

K W (p) = −κ MU (p) + F(tp).

Another method is the backwards Euler method, in which we solve

K

[

U (p+1) − U (p)

�t

]

= −κ MU (p+1) + F(tp+1).

This is the same as

[K + κ�t M] U (p+1) = KU (p) + �t F(tp+1),

which is solved recursively for U (1), U (2),

EXERCISES

1. Consider the problem uxx + u yy = −4 in the unit square with u(0, y) = 0,
u(1, y) = 0, u(x, 0) = 0, u(x, 1) = 0. Partition the square into four trian-
gles by drawing its diagonals. Use the finite element method to find the

approximate value u(1
2
, 1

2
) at the center.

2. (a) Find the area A of the triangle with three given vertices (x1, y1),
(x2, y2), and (x3, y3).

(b) Let (x1, y1) be a vertex in the finite element method and let v(x, y)
be its trial function. Let T be one of the triangles with that vertex and
let (x2, y2) and (x3, y3) be its other two vertices. Find the formula for
v(x, y) on T .

3. (Linear elements on intervals) In one dimension the geometric building
blocks of the finite element method are the intervals. Let the trial function
v j (x) be the “tent” function defined by v j (x) = 1 − j + x for j − 1 ≤
x ≤ j, v j (x) = 1 + j − x for j ≤ x ≤ j + 1, and v j (x) = 0 elsewhere.

8.5 FINITE ELEMENT METHOD 227

That is, v j (x) is continuous and piecewise-linear with v j (j) = 1
and v j (k) = 0 for all integers k �= j .

(a) Show that
∫

[v j (x)]2dx = 2 and
∫

v j (x)v j+1(x) dx = −1.
(b) Deduce that the one-dimensional analog of the matrix mij is the

tridiagonal matrix with 2 along the diagonal and −1 next to the
diagonal.

4. (Finite elements for the wave equation) Consider the problem ut t = uxx

in [0, l], with u = 0 at both ends, and some initial conditions. For sim-
plicity, suppose that l is an integer and partition the interval into l equal
sub-intervals. Each of the l − 1 = N interior vertices has the trial func-
tion defined in Exercise 3. The approximate solution is defined by the
formula uN (x) = U1(t)v1(x) + · · · + UN (t)vN (x), where the coefficients
are unknown functions of t.
(a) Show that a reasonable requirement is that

N
∑

i=1

U ′′
i (t)

∫ l

0

vi (x)v j (x) dx +

N
∑

i=1

Ui (t)

∫ l

0

∂vi

∂x

∂v j

∂x
dx = 0

for j = 1, . . . , N .
(b) Show that the finite element method reduces in this case to a system of

ODEs: K d2U/dt2 + MU = 0 with an initial condition U (0) = �.
Here K and M are N × N matrices, U(t) is an N-vector function, and
� is an N-vector.

5. (Bilinear elements on rectangles) On the rectangle with vertices
(0, 0), (A, 0), (0, B), and (A, B), find the bilinear function v(x, y) =
a + bx + cy + dxy with the values U1, U2, U3, and U4, respectively.

