
5

FOURIER SERIES

Our first goal in this key chapter is to find the coefficients in a Fourier series. In
Section 5.3 we introduce the idea of orthogonality of functions and we show
how the different varieties of Fourier series can be treated in a unified fashion.
In Section 5.4 we state the basic completeness (convergence) theorems. Proofs
are given in Section 5.5. The final section is devoted to the treatment of
inhomogeneous boundary conditions. Joseph Fourier developed his ideas on
the convergence of trigonometric series while studying heat flow. His 1807
paper was rejected by other scientists as too imprecise and was not published
until 1822.

5.1 THE COEFFICIENTS

In Chapter 4 we have found Fourier series of several types. How do we find the
coefficients? Luckily, there is a very beautiful, conceptual formula for them.

Let us begin with the Fourier sine series

φ(x) =
∞

∑

n=1

An sin
nπx

l
(1)

in the interval (0, l). [It turns out that this infinite series converges to φ(x)
for 0 < x < l, but let’s postpone further discussion of the delicate question of
convergence for the time being.] The first problem we tackle is to try to find
the coefficients An if φ(x) is a given function. The key observation is that the
sine functions have the wonderful property that

∫ l

0

sin
nπx

l
sin

mπx

l
dx = 0 if m �= n, (2)
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m and n being positive integers. This can be verified directly by integration.
[Historically, (1) was first discovered by a horrible expansion in Taylor series!]

Proof of (2). We use the trig identity

sin a sin b = 1
2

cos(a − b) − 1
2

cos(a + b).

Therefore, the integral equals

l

2(m − n)π
sin

(m − n)πx

l

∣

∣

∣

∣

l

0

− [same with (m + n)]

if m �= n. This is a linear combination of sin(m ± n)π and sin 0, and so it
vanishes. �

The far-reaching implications of this observation are astounding. Let’s fix
m, multiply (1) by sin(mπx/ l), and integrate the series (1) term by term to
get

∫ l

0

φ(x) sin
mπx

l
dx =

∫ l

0

∞
∑

n=1

An sin
nπx

l
sin

mπx

l
dx

=
∞

∑

n=1

An

∫ l

0

sin
nπx

l
sin

mπx

l
dx .

All but one term in this sum vanishes, namely the one with n = m (n just being
a “dummy” index that takes on all integer values ≥1). Therefore, we are left
with the single term

Am

∫ l

0

sin2 mπx

l
dx, (3)

which equals 1
2
lAm by explicit integration. Therefore,

Am =
2

l

∫ l

0

φ(x) sin
mπx

l
dx . (4)

This is the famous formula for the Fourier coefficients in the series (1). That
is, if φ(x) has an expansion (1), then the coefficients must be given by (4).

These are the only possible coefficients in (1). However, the basic question
still remains whether (1) is in fact valid with these values of the coefficients.
This is a question of convergence, and we postpone it until Section 5.4.

APPLICATION TO DIFFUSIONS AND WAVES

Going back to the diffusion equation with Dirichlet boundary conditions, the
formula (4) provides the final ingredient in the solution formula for arbitrary
initial data φ(x).
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As for the wave equation with Dirichlet conditions, the initial data consist
of a pair of functions φ(x) and ψ(x) with expansions (4.1.10) and (4.1.11).
The coefficients Am in (4.1.9) are given by (4), while for the same reason the
coefficients Bm are given by the similar formula

mπc

l
Bm =

2

l

∫ l

0

ψ(x) sin
mπx

l
dx . (5)

FOURIER COSINE SERIES

Next let’s take the case of the cosine series, which corresponds to the Neumann
boundary conditions on (0, l). We write it as

φ(x) =
1

2
A0 +

∞
∑

n=1

An cos
nπx

l
. (6)

Again we can verify the magical fact that

∫ l

0

cos
nπx

l
cos

mπx

l
dx = 0 if m �= n

where m and n are nonnegative integers. (Verify it!) By exactly the same
method as above, but with sines replaced by cosines, we get

∫ l

0

φ(x) cos
mπx

l
dx = Am

∫ l

0

cos2 mπx

l
dx =

1

2
lAm

if m �= 0. For the case m = 0, we have

∫ l

0

φ(x) · 1 dx =
1

2
A0

∫ l

0

12 dx =
1

2
lA0.

Therefore, for all nonnegative integers m, we have the formula for the coeffi-
cients of the cosine series

Am =
2

l

∫ l

0

φ(x) cos
mπx

l
dx . (7)

[This is the reason for putting the 1
2

in front of the constant term in (6).]
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FULL FOURIER SERIES

The full Fourier series, or simply the Fourier series, of φ(x) on the interval
−l < x < l, is defined as

φ(x) =
1

2
A0 +

∞
∑

n=1

(

An cos
nπx

l
+ Bn sin

nπx

l

)

. (8)

Watch out: The interval is twice as long! The eigenfunctions now are all the
functions {1, cos(nπx/ l), sin(nπx/ l)}, where n = 1, 2, 3, . . . . Again we have
the same wonderful coincidence: Multiply any two different eigenfunctions
and integrate over the interval and you get zero! That is,

∫ l

−l

cos
nπx

l
sin

mπx

l
dx = 0 for all n, m

∫ l

−l

cos
nπx

l
cos

mπx

l
dx = 0 for n �= m

∫ l

−l

sin
nπx

l
sin

mπx

l
dx = 0 for n �= m

∫ l

−l

1 · cos
nπx

l
dx = 0 =

∫ l

−l

1 · sin
mπx

l
dx.

Therefore, the same procedure will work to find the coefficients. We also
calculate the integrals of the squares

∫ l

−l

cos2 nπx

l
dx = l =

∫ l

−l

sin2 nπx

l
dx and

∫ l

−l

12 dx = 2l.

(Verify these integrals too!) Then we end up with the formulas

An =
1

l

∫ l

−l

φ(x) cos
nπx

l
dx (n = 0, 1, 2, . . .) (9)

Bn =
1

l

∫ l

−l

φ(x) sin
nπx

l
dx (n = 1, 2, 3, . . .) (10)

for the coefficients of the full Fourier series. Note that these formulas are not
exactly the same as (4) and (7).
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Figure 1

Example 1.

Let φ(x) ≡ 1 in the interval [0, l]. It has a Fourier sine series with
coefficients

Am =
2

l

∫ l

0

sin
mπx

l
dx = −

2

mπ
cos

mπx

l

∣

∣

∣

∣

l

0

=
2

mπ
(1 − cos mπ ) =

2

mπ
[1 − (−1)m].

Thus Am = 4/mπ if m is odd, and Am = 0 if m is even. Thus

1 =
4

π

(

sin
πx

l
+

1

3
sin

3πx

l
+

1

5
sin

5πx

l
+ · · ·

)

(11)

in (0, l). (The factor 4/π is pulled out just for notational convenience.)
See Figure 1 for a sketch of the first few partial sums. �

Example 2.

The same function φ(x) ≡ 1 has a Fourier cosine series with coefficients

Am =
2

l

∫ l

0

cos
mπx

l
dx =

2

mπ
sin

mπx

l

∣

∣

∣

∣

l

0

=
2

mπ
(sin mπ − sin 0) = 0 for m �= 0.

So there is only one nonzero coefficient, namely, the one for m = 0. The
Fourier cosine series is therefore trivial:

1 = 1 + 0 cos
πx

l
+ 0 cos

2πx

l
+ · · · .
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This is perfectly natural since the sum 1 = 1 + 0 + 0 + 0 + · · · is ob-
vious and the Fourier cosine expansion is unique. �

Example 3.

Letφ(x)≡ x in the interval (0, l). Its Fourier sine series has the coefficients

Am =
2

l

∫ l

0

x sin
mπx

l
dx

= −
2x

mπ
cos

mπx

l
+

2l

m2π2
sin

mπx

l

∣

∣

∣

∣

l

0

= −
2l

mπ
cos mπ +

2l

m2π2
sin mπ = (−1)m+1 2l

mπ
.

Thus in (0, l) we have

x =
2l

π

(

sin
πx

l
−

1

2
sin

2πx

l
+

1

3
sin

3πx

l
− · · ·

)

. (12)

�

Example 4.

Let φ(x) ≡ x in the interval [0, l]. Its Fourier cosine series has the
coefficients

A0 =
2

l

∫ l

0

x dx = l

Am =
2

l

∫ l

0

x cos
mπx

l
dx

=
2x

mπ
sin

mπx

l
+

2l

m2π2
cos

mπx

l

∣

∣

∣

∣

l

0

=
2l

mπ
sin mπ +

2l

m2π2
(cos mπ − 1) =

2l

m2π2
[(−1)m − 1]

=
−4l

m2π2
for m odd, and 0 for m even.

Thus in (0, l) we have

x =
l

2
−

4l

π2

(

cos
πx

l
+

1

9
cos

3πx

l
+

1

25
cos

5πx

l
+ · · ·

)

. (13)

�
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Example 5.

Let φ(x) ≡ x in the interval [−l, l]. Its full Fourier series has the coeffi-
cients

A0 =
1

l

∫ l

−l

x dx = 0

Am =
1

l

∫ l

−l

x cos
mπx

l
dx

=
x

mπ
sin

mπx

l
+

l

m2π2
cos

mπx

l

∣

∣

∣

∣

l

−l

=
l

m2π2
(cos mπ − cos(−mπ )) = 0

Bm =
1

l

∫ l

−l

x sin
mπx

l
dx

=
−x

mπ
cos

mπx

l
+

l

m2π2
sin

mπx

l

∣

∣

∣

∣

l

−l

=
−l

mπ
cos mπ +

−l

mπ
cos(−mπ ) = (−1)m+1 2l

mπ
.

This gives us exactly the same series as (12), except that it is supposed
to be valid in (−l, l), which is not a surprising result because both sides
of (12) are odd. �

Example 6.

Solve the problem

ut t = c2uxx

u(0, t) = u(l, t) = 0

u(x, 0) = x, ut (x, 0) = 0.

From Section 4.1 we know that u(x, t) has an expansion

u(x, t) =
∞

∑

n=1

(

An cos
nπct

l
+ Bn sin

nπct

l

)

sin
nπx

l
.

Differentiating with respect to time yields

ut (x, t) =
∞

∑

n=1

nπc

l

(

−An sin
nπct

l
+ Bn cos

nπct

l

)

sin
nπx

l
.
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Setting t = 0, we have

0 =
∞

∑

n=1

nπc

l
Bn sin

nπx

l

so that all the Bn = 0. Setting t = 0 in the expansion of u(x, t), we have

x =
∞

∑

n=1

An sin
nπx

l
.

This is exactly the series of Example 3. Therefore, the complete solution
is

u(x, t) =
2l

π

∞
∑

n=1

(−1)n+1

n
sin

nπx

l
cos

nπct

l
. �

EXERCISES

1. In the expansion 1 =
∑

n odd (4/nπ ) sin nπ, valid for 0 < x < π, put
x = π/4 to calculate the sum

(

1 − 1
5

+ 1
9

− 1
13

+ · · ·
)

+
(

1
3

− 1
7

+ 1
11

− 1
15

+ · · ·
)

= 1 + 1
3

− 1
5

− 1
7

+ 1
9

+ · · ·

(Hint: Since each of the series converges, they can be combined as
indicated. However, they cannot be arbitrarily rearranged because they
are only conditionally, not absolutely, convergent.)

2. Let φ(x) ≡ x2 for 0 ≤ x ≤ 1 = l.
(a) Calculate its Fourier sine series.
(b) Calculate its Fourier cosine series.

3. Consider the function φ(x) ≡ x on (0, l). On the same graph, sketch the
following functions.
(a) The sum of the first three (nonzero) terms of its Fourier sine series.
(b) The sum of the first three (nonzero) terms of its Fourier cosine

series.

4. Find the Fourier cosine series of the function |sin x | in the interval
(−π, π ). Use it to find the sums

∞
∑

n=1

1

4n2 − 1
and

∞
∑

n=1

(−1)n

4n2 − 1
.

5. Given the Fourier sine series of φ(x) ≡ x on (0, l). Assume that the series
can be integrated term by term, a fact that will be shown later.
(a) Find the Fourier cosine series of the function x2/2. Find the constant

of integration that will be the first term in the cosine series.
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(b) Then by setting x = 0 in your result, find the sum of the series

∞
∑

n=1

(−1)n+1

n2
.

6. (a) By the same method, find the sine series of x3.
(b) Find the cosine series of x4.

7. Put x = 0 in Exercise 6(b) to deduce the sum of the series

∞
∑

1

(−1)n

n4
.

8. A rod has length l = 1 and constant k = 1. Its temperature satisfies
the heat equation. Its left end is held at temperature 0, its right end at
temperature 1. Initially (at t = 0) the temperature is given by

φ(x) =







5x

2
for 0 < x < 2

3

3 − 2x for 2
3

< x < 1.

Find the solution, including the coefficients. (Hint: First find the equilib-
rium solution U(x), and then solve the heat equation with initial condition
u(x, 0) = φ(x) − U (x).)

9. Solve ut t = c2uxx for 0 < x < π , with the boundary conditions ux (0, t) =
ux (π, t) = 0 and the initial conditions u(x, 0) = 0, ut (x, 0) = cos2x .
(Hint: See (4.2.7).)

10. A string (of tension T and density ρ) with fixed ends at x = 0 and
x = l is hit by a hammer so that u(x, 0) = 0, and ∂u/∂t(x, 0) = V

in [−δ + 1
2
l, δ + 1

2
l] and ∂u/∂t(x, 0) = 0 elsewhere. Find the solution

explicitly in series form. Find the energy

En(h) =
1

2

∫ l

0

[

ρ

(

∂h

∂t

)2

+ T

(

∂h

∂x

)2
]

dx

of the nth harmonic h = hn. Conclude that if δ is small (a concentrated
blow), each of the first few overtones has almost as much energy as the
fundamental. We could say that the tone is saturated with overtones.

11. On a string with fixed ends, show that if the center of a hammer blow is
exactly at a node of the nth harmonic (a place where the nth eigenfunction
vanishes), the nth overtone is absent from the solution.
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5.2 EVEN, ODD, PERIODIC, AND COMPLEX
FUNCTIONS

Each of the three kinds of Fourier series (sine, cosine, and full) of any given
function φ(x) is now determined by the formula for its coefficients given in
Section 5.1. We shall see shortly that almost any function φ(x) defined on the
interval (0, l) is the sum of its Fourier sine series and is also the sum of its
Fourier cosine series. Almost any function defined on the interval (−l, l) is
the sum of its full Fourier series. Each of these series converges inside the
interval, but not necessarily at the endpoints.

The concepts of oddness, evenness, and periodicity are closely related to
the three kinds of Fourier series.

A function φ(x) that is defined for −∞ < x < ∞ is called periodic if
there is a number p > 0 such that

φ(x + p) = φ(x) for all x . (1)

A number p for which this is true is called a period of φ(x). The graph of
the function repeats forever horizontally. For instance, cos x has period 2π ,
cos λx has period 2π/λ, and tan x has period π. Note that if φ(x) has period
p, then φ(x + np) = φ(x) for all x and for all integers n. (Why?) The sum of
two functions of period p has period p. Notice that if φ(x) has period p, then
∫ a+p

a
φ(x) dx does not depend on a. (Why?)

For instance, the function cos(mx) + sin 2mx is the sum of functions of
periods 2π/m and π/m and therefore itself has period 2π/m, the larger of
the two.

If a function is defined only on an interval of length p, it can be extended
in only one way to a function of period p. The situation we care about for
Fourier series is that of a function defined on the interval −l < x < l. Its
periodic extension is

φper(x) = φ(x − 2lm) for − l + 2lm < x < +l + 2lm (2)

for all integers m. This definition does not specify what the periodic extension
is at the endpoints x = l + 2lm. In fact, the extension has jumps at these points
unless the one-sided limits are equal: φ(l−) = φ(−l+) (see Figure 1). (See
Section A.1 for the definition of one-sided limits.)

Since each term in the full Fourier series (5.1.8) has period 2l, its sum
(if it converges) also has to have period 2l. Therefore, the full Fourier series
can be regarded either as an expansion of an arbitrary function on the interval

Figure 1
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(−l, l) or as an expansion of a periodic function of period 2l defined on the
whole line −∞ < x < +∞. �

An even function is a function that satisfies the equation

φ(−x) = φ(x). (3)

That just means that its graph y = φ(x) is symmetric with respect to the y axis.
Thus the left and right halves of the graph are mirror images of each other.
To make sense out of (3), we require that φ(x) be defined on some interval
(−l, +l) which is symmetric around x = 0.

An odd function is a function that satisfies the equation

φ(−x) = −φ(x). (4)

That just means that its graph y = φ(x) is symmetric with respect to the
origin. To make sense out of (4), we again require that φ(x) be defined on
some interval (−l, +l) which is symmetric around x = 0.

A monomial xn is an even function if n is even and is an odd function if n
is odd. The functions cos x, cosh x, and any function of x2 are even functions.
The functions sin x, tan x, and sinh x are odd functions. In fact, the products
of functions follow the usual rules: even × even = even, odd × odd = even,
odd × even = odd. The sum of two odd functions is again odd, and the sum
of two evens is even.

But the sum of an even and an odd function can be anything. Proof: Let

f (x) be any function at all defined on (−l, l). Letφ(x) = 1
2
[ f (x) + f (−x)] and

ψ(x) = 1
2
[ f (x) − f (−x)]. Then we easily check that f (x) = φ(x) + ψ(x),

that φ(x) is even and that ψ(x) is odd. The functions φ and ψ are called the
even and odd parts of f , respectively. For instance, cosh and sinh are the even
and odd parts of exp since: ex = cosh x + sinh x. If p(x) is any polynomial,
its even part is the sum of its even terms, and its odd part is the sum of its odd
terms.

Integration and differentiation change the parity (evenness or oddness) of
a function. That is, if φ(x) is even, then both dφ/dx and

∫ x

0
φ(s) ds are odd.

If φ(x) is odd, then the derivative and integral are even. (Note that the lower
limit of integration is at the origin.)

The graph of an odd function φ(x) must pass through the origin since φ(0)
= 0 follows directly from (4) by putting x = 0. The graph of an even function
φ(x) must cross the y axis horizontally, φ′(x) = 0, since the derivative is odd
(provided the derivative exists).

Example 1.

tan x is the product of an odd function (sin x) and an even function (1/cos
x), both of period 2π . Therefore tan x is an odd and periodic function.
But notice that its smallest period is π , not 2π . Its derivative sec2x is
necessarily even and periodic; it has period π . The dilated function tan
ax is also odd and periodic and has period π/a for any a > 0. �
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Definite integrals around symmetric intervals have the useful properties:

∫ l

−l

(odd) dx = 0 and

∫ l

−l

(even) dx = 2

∫ l

0

(even) dx . (5)

Given any function defined on the interval (0, l), it can be extended in
only one way to be even or odd. The even extension of φ(x) is defined as

φeven(x) =

{

φ(x) for 0 < x < l

φ(−x) for −l < x < 0.
(6)

This is just the mirror image. The even extension is not necessarily defined at
the origin.

Its odd extension is

φodd(x) =











φ(x) for 0 < x < l

−φ(−x) for −l < x < 0

0 for x = 0.

(7)

This is its image through the origin.

FOURIER SERIES AND BOUNDARY CONDITIONS

Now let’s return to the Fourier sine series. Each of its terms, sin(nπx/ l),
is an odd function. Therefore, its sum (if it converges) also has to be odd.
Furthermore, each of its terms has period 2l, so that the same has to be true of
its sum. Therefore, the Fourier sine series can be regarded as an expansion
of an arbitrary function that is odd and has period 2l defined on the whole
line −∞ < x < +∞.

Similarly, since all the cosine functions are even, the Fourier cosine series
can be regarded as an expansion of an arbitrary function which is even and
has period 2l defined on the whole line −∞ < x < ∞.

From what we saw in Section 5.1, these concepts therefore have the
following relationship to boundary conditions:

u(0, t) = u(l, t) = 0: Dirichlet BCs correspond to the odd extension. (8)

ux (0, t) = ux (l, t) = 0: Neumann BCs correspond to the even extension. (9)

u(l, t) = u(−l, t), ux (l, t) = ux (−l, t): Periodic BCs correspond

to the periodic extension. (10)

THE COMPLEX FORM OF THE FULL FOURIER SERIES

The eigenfunctions of −d2/dx2 on (−l, l) with the periodic boundary con-
ditions are sin(nπx/ l) and cos(nπx/ l). But recall the DeMoivre formulas,
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which express the sine and cosine in terms of the complex exponentials:

sin θ =
eiθ − e−iθ

2i
and cos θ =

eiθ + e−iθ

2
. (11)

Therefore, instead of sine and cosine, we could use e+inπx/ l and e−inπx/ l as an
alternative pair. But watch out: They’re complex! If we do that, the collection
of trigonometric functions {sin nθ , cos nθ} is replaced by the collection of
complex exponentials

{1, e+iπx/ l, e+i2πx/ l, . . . , e−iπx/ l, e−i2πx/ l, . . .}.

In other words, we get {einπx/ l}, where n is any positive or negative integer.
We should therefore be able to write the full Fourier series in the complex

form

φ(x) =
∞

∑

n=−∞
cneinπx/ l . (12)

This is the sum of two infinite series, one going from n = 0 to +∞ and one
going from n = −1 to −∞. The magical fact in this case is

∫ l

−l

einπx/ le−imπx/ ldx =
∫ l

−l

ei(n−m)πx/ ldx

=
l

iπ (n − m)
[ei(n−m)π − ei(m−n)π ]

=
l

iπ (n − m)
[(−1)n−m − (−1)m−n] = 0

provided that n �= m. Notice the extra minus sign in the second exponent of
the first integral. When n = m, we have

∫ l

−l

ei(n−n)πx/ ldx =
∫ l

−l

1 dx = 2l.

It follows by the method of Section 5.1 that the coefficients are given by the
formula

cn =
1

2l

∫ l

−l

φ(x) e−inπx/ ldx . (13)

The complex form is sometimes more convenient in calculations than the real
form with sines and cosines. But it really is just the same series written in a
different form.
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EXERCISES

1. For each of the following functions, state whether it is even or odd or
periodic. If periodic, what is its smallest period?
(a) sin ax (a > 0)
(b) eax (a > 0)
(c) xm (m = integer)
(d) tan x2

(e) |sin(x/b)| (b > 0)
(f) x cos ax (a > 0)

2. Show that cos x + cos αx is periodic if α is a rational number. What is
its period?

3. Prove property (5) concerning the integrals of even and odd functions.

4. (a) Use (5) to prove that if φ(x) is an odd function, its full Fourier series
on (−l, l) has only sine terms.

(b) Also, if φ(x) is an even function, its full Fourier series on (−l, l)
has only cosine terms. (Hint: Don’t use the series directly. Use the
formulas for the coefficients to show that every second coefficient
vanishes.)

5. Show that the Fourier sine series on (0, l) can be derived from the full
Fourier series on (−l, l) as follows. Let φ(x) be any (continuous) function
on (0, l). Let φ̃(x) be its odd extension. Write the full series for φ̃(x) on
(−l, l). [Assume that its sum is φ̃(x).] By Exercise 4, this series has only
sine terms. Simply restrict your attention to 0 < x < l to get the sine
series for φ(x).

6. Show that the cosine series on (0, l) can be derived from the full series
on (−l, l) by using the even extension of a function.

7. Show how the full Fourier series on (−l, l) can be derived from the full
series on (−π, π ) by changing variables w = (π/ l)x . (This is called a
change of scale; it means that one unit along the x axis becomes π/ l
units along the w axis.)

8. (a) Prove that differentiation switches even functions to odd ones, and
odd functions to even ones.

(b) Prove the same for integration provided that we ignore the constant
of integration.

9. Let φ(x) be a function of period π . If φ(x) = �∞
n=1an sin nx for all x,

find the odd coefficients.

10. (a) Let φ(x) be a continuous function on (0, l). Under what conditions
is its odd extension also a continuous function?

(b) Let φ(x) be a differentiable function on (0, l). Under what conditions
is its odd extension also a differentiable function?

(c) Same as part (a) for the even extension.
(d) Same as part (b) for the even extension.
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11. Find the full Fourier series of ex on (−l, l) in its real and complex forms.
(Hint: It is convenient to find the complex form first.)

12. Repeat Exercise 11 for cosh x. (Hint: Use the preceding result.)

13. Repeat Exercise 11 for sin x. Assume that l is not an integer multiple of
π. (Hint: First find the series for eix).

14. Repeat Exercise 11 for |x |.
15. Without any computation, predict which of the Fourier coefficients of

|sin x | on the interval (−π, π ) must vanish.

16. Use the De Moivre formulas (11) to derive the standard formulas for
cos(θ + φ) and sin(θ + φ).

17. Show that a complex-valued function f (x) is real-valued if and only if
its complex Fourier coefficients satisfy cn = c−n , where denotes the
complex conjugate.

5.3 ORTHOGONALITY AND GENERAL FOURIER SERIES

Let us try to understand what makes the beautiful method of Fourier series
work. For the present let’s stick with real functions. If f (x) and g(x) are two
real-valued continuous functions defined on an interval a ≤ x ≤ b, we define
their inner product to be the integral of their product:

( f, g) ≡
∫ b

a

f (x)g(x) dx . (1)

It is a real number. We’ll call f (x) and g(x) orthogonal if (f , g) = 0. (This
terminology is supposed to be analogous to the case of ordinary vectors and
their inner or dot product.) Notice that no function is orthogonal to itself
except f (x) ≡ 0. The key observation in each case discussed in Section 5.1 is
that every eigenfunction is orthogonal to every other eigenfunction. Now
we will explain why this fortuitous coincidence is in fact no accident.

We are studying the operator A = −d2/dx2 with some boundary con-
ditions (either Dirichlet or Neumann or . . . ). Let X1(x) and X2(x) be two
different eigenfunctions. Thus

−X ′′
1 =

−d2 X1

dx2
= λ1 X1

(2)

−X ′′
2 =

−d2 X2

dx2
= λ2 X2,

where both functions satisfy the boundary conditions. Let’s assume that
λ1 �= λ2. We now verify the identity

−X ′′
1 X2 + X1 X ′′

2 = (−X ′
1 X2 + X1 X ′

2)′.
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(Work out the right side using the product rule and two of the terms will
cancel.) We integrate to get

∫ b

a

(

−X ′′
1 X2 + X1 X ′′

2

)

dx =
(

−X ′
1 X2 + X1 X ′

2

)

∣

∣

∣

∣

b

a

. (3)

This is sometimes called Green’s second identity. If you wished, you could
also think of it as the result of two integrations by parts.

On the left side of (3) we now use the differential equations (2). On the
right side we use the boundary conditions to reach the following conclusions:

Case 1: Dirichlet. This means that both functions vanish at both ends:
X1(a) = X1(b) = X2(a) = X2(b) = 0. So the right side of (3) is zero.

Case 2: Neumann. The first derivatives vanish at both ends. It is once again
zero.

Case 3: Periodic. X j (a) = X j (b), X ′
j (a) = X ′

j (b) for both j = 1, 2. Again

you get zero!

Case 4: Robin. Again you get zero! See Exercise 8.

Thus in all four cases, (3) reduces to

(λ1 − λ2)

∫ b

a

X1 X2 dx = 0. (3a)

Therefore, X1 and X2 are orthogonal! This completely explains why Fourier’s
method works (at least if λ1 �= λ2)!

The right side of (3) isn’t always zero. For example, consider the different
boundary conditions: X (a) = X (b), X ′(a) = 2X ′(b). Then the right side of
(3) is X ′

1(b)X2(b) − X1(b)X ′
2(b), which is not zero. So the method doesn’t

always work; the boundary conditions have to be right.

SYMMETRIC BOUNDARY CONDITIONS

So now let us envision any pair of boundary conditions

α1 X (a) + β1 X (b) + γ1 X ′(a) + δ1 X ′(b) = 0

α2 X (a) + β2 X (b) + γ2 X ′(a) + δ2 X ′(b) = 0
(4)

involving eight real constants. (Each of the examples above corresponds to
a choice of these constants.) Such a set of boundary conditions is called
symmetric if

f ′(x)g(x) − f (x)g′(x)

∣

∣

∣

x=b

x=a
= 0 (5)

for any pair of functions f (x) and g(x) both of which satisfy the pair of boundary
conditions (4). As we indicated above, each of the four standard boundary
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conditions (Dirichlet, etc.) is symmetric, but our fifth example is not. The most
important thing to keep in mind is that all the standard boundary conditions
are symmetric.

Green’s second identity (3) then implies the following theorem. By an
eigenfunction we now mean a solution of −X ′′ = λX that satisfies (4).

Theorem 1. If you have symmetric boundary conditions, then any two
eigenfunctions that correspond to distinct eigenvalues are orthogonal. There-
fore, if any function is expanded in a series of these eigenfunctions, the coef-
ficients are determined.

Proof. Take two different eigenfunctions X1(x) and X2(x) with λ1 �= λ2.
We write Green’s second identity (3). Because the boundary conditions are
symmetric, the right side of (3) vanishes. Because of the different equations,
the identity takes the form (3a), and the orthogonality is proven.

If Xn(x) now denotes the eigenfunction with eigenvalue λn and if

φ(x) =
∑

n

An Xn(x) (6)

is a convergent series, where the An are constants, then

(φ, Xm) =

(

∑

n

An Xn, Xm

)

=
∑

n

An(Xn, Xm) = Am(Xm, Xm)

by the orthogonality. So if we denote cm = (Xm, Xm), we have

Am =
(φ, Xm)

cm

(7)

as the formula for the coefficients. �

Two words of caution. First, we have so far avoided all questions of con-
vergence. Second, if there are two eigenfunctions, say X1(x) and X2(x), but
their eigenvalues are the same, λ1 = λ2, then they don’t have to be orthogo-
nal. But if they aren’t orthogonal, they can be made so by the Gram–Schmidt
orthogonalization procedure (see Exercise 10). For instance, in the case of pe-
riodic boundary conditions the two eigenfunctions sin(nπx/l) and cos(nπx/l)
are orthogonal on (−l, l), even though they have the same eigenvalue (nπ/l)2.
But the two eigenfunctions sin(nπx/l) and [cos(nπx/l) + sin(nπx/l)] are not
orthogonal.
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COMPLEX EIGENVALUES

What about complex eigenvalues λ and complex-valued eigenfunctions X(x)?
If f (x) and g(x) are two complex-valued functions, we define the inner product
on (a, b) as

( f, g) =
∫ b

a

f (x)g(x) dx . (8)

The bar denotes the complex conjugate. The two functions are called orthog-
onal if (f , g) = 0. (This is exactly what is customary for ordinary complex
vectors.)

Now suppose that you have the boundary conditions (4) with eight real
constants. They are called symmetric (or hermitian) if

f ′(x) g(x) − f (x)g′(x)

∣

∣

∣

b

a
= 0 (9)

for all f , g satisfying the BCs. Then Theorem 1 is true for complex functions
without any change at all. But we also have the following important fact.

Theorem 2. Under the same conditions as Theorem 1, all the eigenvalues
are real numbers. Furthermore, all the eigenfunctions can be chosen to be real
valued.

(This could be compared with the discussion at the end of Section 4.1,
where complex eigenvalues were discussed explicitly.)

Proof. Let λ be an eigenvalue, possibly complex. Let X(x) be its eigen-
function, also possibly complex. Then −X ′′ = λX plus BCs. Take the com-

plex conjugate of this equation; thus −X ′′ = λ X plus BCs. So λ is also an

eigenvalue. Now use Green’s second identity with the functions X and X .
Thus

∫ b

a

(−X ′′ X + X X ′′) dx = (−X ′ X + X X ′)

∣

∣

∣

∣

b

a

= 0

since the BCs are symmetric. So

(

λ − λ
)

∫ b

a

X X dx = 0

But X X = |X |2 ≥ 0 and X(x) is not allowed to be the zero function. So the
integral cannot vanish. Therefore, λ − λ = 0, which means exactly that λ is
real.

Next, let’s reconsider the same problem −X ′′ = λX together with (4),
knowing that λ is real. If X(x) is complex, we write it as X (x) = Y (x) + i Z (x),
where Y(x) and Z(x) are real. Then −Y ′′ − iZ′′ = λY + iλZ . Equating the real
and imaginary parts, we see that −Y ′′ = λY and − Z ′′ = λZ . The boundary



122 CHAPTER 5 FOURIER SERIES

conditions still hold for both Y and Z because the eight constants in (4) are real
numbers. So the real eigenvalue λ has the real eigenfunctions Y and Z. We

could therefore say that X and X are replaceable by the Y and Z. The linear

combinations a X + bX are the same as the linear combinations cY + d Z ,
where a and b are somehow related to c and d. This completes the proof of
Theorem 2. �

NEGATIVE EIGENVALUES

We have seen that most of the eigenvalues turn out to be positive. An important
question is whether all of them are positive. Here is a sufficient condition.

Theorem 3. Assume the same conditions as in Theorem 1. If

f (x) f ′(x)

∣

∣

∣

∣

x=b

x=a

≤ 0 (10)

for all (real-valued) functions f (x) satisfying the BCs, then there is no negative
eigenvalue.

This theorem is proved in Exercise 13. It is easy to verify that (10) is
valid for Dirichlet, Neumann, and periodic boundary conditions, so that in
these cases there are no negative eigenvalues (see Exercise 11). However, as
we have already seen in Section 4.3, it could not be valid for certain Robin
boundary conditions.

We have already noticed the close analogy of our analysis with linear
algebra. Not only are functions acting as if they were vectors, but the operator
−d2/dx2 is acting like a matrix; in fact, it is a linear transformation. Theorems
1 and 2 are like the corresponding theorems about real symmetric matrices.
For instance, if A is a real symmetric matrix and f and g are vectors, then
(Af , g)= (f , Ag). In our present case, A is a differential operator with symmetric
BCs and f and g are functions. The same identity (Af , g) = (f , Ag) holds in our
case [see (3)]. The two main differences from matrix theory are, first, that our
vector space is infinite dimensional, and second, that the boundary conditions
must comprise part of the definition of our linear transformation.

EXERCISES

1. (a) Find the real vectors that are orthogonal to the given vectors [1, 1, 1]
and [1, −1, 0].

(b) Choosing an answer to (a), expand the vector [2, −3, 5] as a linear
combination of these three mutually orthogonal vectors.

2. (a) On the interval [−1, 1], show that the function x is orthogonal to
the constant functions.

(b) Find a quadratic polynomial that is orthogonal to both 1 and x.
(c) Find a cubic polynomial that is orthogonal to all quadratics. (These

are the first few Legendre polynomials.)
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3. Consider ut t = c2uxx for 0 < x < l, with the boundary conditions u(0, t)
= 0, ux(l, t) = 0 and the initial conditions u(x, 0) = x, ut (x, 0) = 0.
Find the solution explicitly in series form.

4. Consider the problem ut = kuxx for 0 < x < l, with the boundary con-
ditions u(0, t) = U, ux (l, t) = 0, and the initial condition u(x, 0) = 0,
where U is a constant.
(a) Find the solution in series form. (Hint: Consider u(x, t) − U .)
(b) Using a direct argument, show that the series converges for t > 0.
(c) If ǫ is a given margin of error, estimate how long a time is required

for the value u(l, t) at the endpoint to be approximated by the con-
stant U within the error ǫ. (Hint: It is an alternating series with first
term U, so that the error is less than the next term.)

5. (a) Show that the boundary conditions u(0, t) = 0, ux (l, t) = 0 lead to
the eigenfunctions (sin(πx/2l), sin(3πx/2l), sin(5πx/2l), . . .).

(b) If φ(x) is any function on (0, l), derive the expansion

φ(x) =
∞

∑

n=0

Cnsin

{(

n +
1

2

)

πx

l

}

(0 < x < l)

by the following method. Extend φ(x) to the function φ̃ defined by
φ̃(x) = φ(x) for 0 ≤ x ≤ l and φ̃(x) = φ(2l − x) for l ≤ x ≤ 2l.
(This means that you are extending it evenly across x = l.) Write
the Fourier sine series for φ̃(x) on the interval (0, 2l) and write the
formula for the coefficients.

(c) Show that every second coefficient vanishes.
(d) Rewrite the formula for Cn as an integral of the original function

φ(x) on the interval (0, l).

6. Find the complex eigenvalues of the first-derivative operator d/dx subject
to the single boundary condition X(0) = X(1). Are the eigenfunctions
orthogonal on the interval (0, 1)?

7. Show by direct integration that the eigenfunctions associated with the
Robin BCs, namely,

φn(x) = cos βnx +
a0

βn

sin βnx where λn = β2
n ,

are mutually orthogonal on 0 ≤ x ≤ l, where βn are the positive roots of
(4.3.8).

8. Show directly that (−X ′
1 X2 + X1 X ′

2)|ba = 0 if both X1 and X2 satisfy the
same Robin boundary condition at x = a and the same Robin boundary
condition at x = b.

9. Show that the boundary conditions

X (b) = αX (a) + β X ′(a) and X ′(b) = γ X (a) + δX ′(a)

on an interval a ≤ x ≤ b are symmetric if and only if αδ − βγ = 1.

10. (The Gram–Schmidt orthogonalization procedure) If X1, X2, . . . is any
sequence (finite or infinite) of linearly independent vectors in any vector
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space with an inner product, it can be replaced by a sequence of linear
combinations that are mutually orthogonal. The idea is that at each step
one subtracts off the components parallel to the previous vectors. The
procedure is as follows. First, we let Z1 = X1/‖X1‖. Second, we define

Y2 = X2 − (X2, Z1)Z1 and Z2 =
Y2

‖Y2‖
.

Third, we define

Y3 = X3 − (X3, Z2)Z2 − (X3, Z1)Z1 and Z3 =
Y3

‖Y3‖
,

and so on.
(a) Show that all the vectors Z1, Z2, Z3, . . . are orthogonal to each other.
(b) Apply the procedure to the pair of functions cos x + cos 2x and

3 cos x − 4 cos 2x in the interval (0, π ) to get an orthogonal pair.

11. (a) Show that the condition f (x) f ′(x)|b

a ≤ 0 is valid for any function
f (x) that satisfies Dirichlet, Neumann, or periodic boundary condi-
tions.

(b) Show that it is also valid for Robin BCs provided that the constants
a0 and al are positive.

12. Prove Green’s first identity: For every pair of functions f (x), g(x) on
(a, b),

∫ b

a

f ′′(x)g(x) dx = −
∫ b

a

f ′(x)g′(x) dx + f ′g

∣

∣

∣

∣

b

a

.

13. Use Green’s first identity to prove Theorem 3. (Hint: Substitute f (x) =
X(x) = g(x), a real eigenfunction.)

14. What do the terms in the series

π

4
= sin 1 +

1

3
sin 3 +

1

5
sin 5 + · · ·

look like? Make a graph of sin n for n = 1, 2, 3, 4, . . . , 20 without drawing
the intervening curve; that is, just plot the 20 points. Use a calculator;
remember that we are using radians. In some sense the numbers sin n
are randomly located in the interval (−1, 1). There is a great deal of
“random cancellation” in the series.

15. Use the same idea as in Exercises 12 and 13 to show that none of the
eigenvalues of the fourth-order operator +d4/dx4 with the boundary
conditions X (0) = X (l) = X ′′(0) = X ′′(l) = 0 are negative. �

5.4 COMPLETENESS

In this section we state the basic theorems about the convergence of Fourier se-
ries. We discuss three senses of convergence of functions. The basic theorems
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(Theorems 2, 3, and 4) state sufficient conditions on a function f (x) that its
Fourier series converge to it in these three senses. Most of the proofs are diffi-
cult, however, and we omit them for now. At the end of the section we discuss
the mean-square convergence in greater detail and use it to define the notion
of completeness.

Consider the eigenvalue problem

X ′′ + λX = 0 in (a, b) with any symmetric BC. (1)

By Theorem 5.3.2, we know that all the eigenvalues λ are real.

Theorem 1. There are an infinite number of eigenvalues. They form a
sequence λn → +∞.

For a proof of Theorem 1, see Chapter 11 or [CL]. We may assume that
the eigenfunctions Xn(x) are pairwise orthogonal and real valued (see Section
5.3). For instance, if k linearly independent eigenfunctions correspond to the
same eigenvalue λn, then they can be rechosen to be orthogonal and real, and
the sequence may be numbered so that λn is repeated k times. Thus we may
list the eigenvalues as

λ1 ≤ λ2 ≤ λ3 ≤ · · · → +∞ (2)

with the corresponding eigenfunctions

X1, X2, X3, . . . , (3)

which are pairwise orthogonal. Some interesting examples were found in
Section 4.3.

For any function f (x) on (a, b), its Fourier coefficients are defined as

An =
( f, Xn)

(Xn, Xn)
=

∫ b

a
f (x)Xn(x) dx

∫ b

a
|Xn(x)|2 dx

. (4)

Its Fourier series is the series �n An Xn(x).
In this section we present three convergence theorems. Just to convince

the skeptic that convergence theorems are more than a pedantic exercise, we
mention the curious fact that there exists an integrable function f (x) whose
Fourier series diverges at every point x! There even exists a continuous func-
tion whose Fourier series diverges at many points! See [Zy] for proofs.

To set the stage we need to introduce various notions of convergence. This
is a good point for the reader to review the basic facts about infinite series
(outlined in Section A.2).

THREE NOTIONS OF CONVERGENCE

Definition. We say that an infinite series �∞
n=1 fn(x) converges to f (x)

pointwise in (a, b) if it converges to f (x) for each a < x < b. That is, for each
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a < x < b we have
∣

∣

∣

∣

∣

f (x) −
N

∑

n=1

fn(x)

∣

∣

∣

∣

∣

→ 0 as N → ∞. (5)

Definition. We say that the series converges uniformly to f (x) in [a, b] if

max
a≤x≤b

∣

∣

∣

∣

∣

f (x) −
N

∑

n=1

fn(x)

∣

∣

∣

∣

∣

→ 0 as N → ∞. (6)

(Note that the endpoints are included in this definition.) That is, you take the
biggest difference over all the x’s and then take the limit.

The two preceding concepts of convergence are also discussed in Section
A.2. A third important concept is the following one.

Definition. We say the series converges in the mean-square (or L2) sense
to f (x) in (a, b) if

∫ b

a

∣

∣

∣

∣

∣

f (x) −
N

∑

n=1

fn(x)

∣

∣

∣

∣

∣

2

dx → 0 as N → ∞. (7)

Thus we take the integral instead of the maximum. (The terminology L2 refers
to the square inside the integral.)

Notice that uniform convergence is stronger than both pointwise and L2

convergence (see Exercise 2.) Figure 1 illustrates a typical uniformly conver-
gent series by graphing both f (x) and a partial sum for large N.

Example 1.

Let fn(x) = (1 − x)xn−1 on the interval 0 < x < 1. Then the series is
“telescoping.” The partial sums are

N
∑

n=1

fn(x) =
N

∑

1

(xn−1 − xn) =1 − x N → 1 as N → ∞

Figure 1
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Figure 2

because x < 1. This convergence is valid for each x. Thus
∑∞

n=1 fn(x) = 1 pointwise. In words, the series converges pointwise
to the function f (x) ≡ 1.

But the convergence is not uniform because max [1 − (1 − x N )] =
max x N = 1 for every N. However, it does converge in mean-square
since

∫ 1

0

∣

∣x N
∣

∣

2
dx =

1

2N + 1
→ 0.

Figure 2 is a sketch of a few partial sums of Example 1. �

Example 2.

Let

fn(x) =
n

1 + n2x2
−

n − 1

1 + (n − 1)2x2

in the interval 0 < x < l. This series also telescopes so that

N
∑

n=1

fn(x) =
N

1 + N 2x2
=

1

N [(1/N 2) + x2]
→ 0 as N → ∞ if x > 0.

So the series converges pointwise to the sum f (x) ≡ 0.
On the other hand,

∫ l

0

[

N
∑

n=1

fn(x)

]2

dx =
∫ l

0

N 2

(1 + N 2x2)2
dx

= N

∫ Nl

0

1

(1 + y2)2
dy → +∞ (where y = Nx)
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because
∫ Nl

0

1

(1 + y2)2
dy →

∫ ∞

0

1

(1 + y2)2
dy.

So the series does not converge in the mean-square sense. Also, it does
not converge uniformly because

max
(0, l)

1

1 + N 2x2
= N ,

which obviously does not tend to zero as N → ∞. �

CONVERGENCE THEOREMS

Now let f (x) be any function defined on a ≤ x ≤ b. Consider the Fourier series
for the problem (1) with any given boundary conditions that are symmetric. We
now state a convergence theorem for each of the three modes of convergence.
They are partly proved in the next section.

Theorem 2. Uniform Convergence The Fourier series � An Xn(x) con-
verges to f (x) uniformly on [a, b] provided that

(i) f (x), f ′(x), and f ′′(x) exist and are continuous for a ≤ x ≤ b and

(ii) f (x) satisfies the given boundary conditions.
Theorem 2 assures us of a very good kind of convergence provided that

the conditions on f (x) and its derivatives are met. For the classical Fourier
series (full, sine, and cosine), it is not required that f ′′(x) exist.

Theorem 3. L2 Convergence The Fourier series converges to f (x) in
the mean-square sense in (a, b) provided only that f (x) is any function for
which

∫ b

a

| f (x)|2 dx is finite. (8)

Theorem 3 assures us of a certain kind of convergence under a very weak
assumption on f (x). [We could even use the very general Lebesgue inte-
gral here instead of the standard (Riemann) integral encountered in calculus
courses. In fact, the Lebesgue integral was invented in order that Theorem 3
be true for the most general possible functions.]

Third, we present a theorem that is intermediate as regards the hypotheses
on f (x). It requires two more definitions. A function f (x) has a jump discon-
tinuity at a point x = c if the one-sided limits f (c+) and f (c−) exist but are not
equal. [It doesn’t matter what f (c) happens to be or even whether f (c) is defined
or not.] The value of the jump discontinuity is the number f (c+) − f (c−).
See Figure 3 for a function with two jumps.

A function f (x) is called piecewise continuous on an interval [a, b] if it
is continuous at all but a finite number of points and has jump discontinuities
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Figure 3

at those points. Another way to say this is that at every point in the inter-
val (including the endpoints) the one-sided limits f (c+) and f (c−) exist;
and except at a finite number of points they are equal. For these definitions,
see also Section A.1. A typical piecewise continuous function is sketched in
Figure 3. The function Q(x, 0) in Section 2.4 is an example of a piecewise
continuous function.

Theorem 4. Pointwise Convergence of Classical Fourier Series
(i) The classical Fourier series (full or sine or cosine) converges to f (x)

pointwise on (a, b) provided that f (x) is a continuous function on
a ≤ x ≤ b and f ′(x) is piecewise continuous on a ≤ x ≤ b.

(ii) More generally, if f (x) itself is only piecewise continuous on a ≤
x ≤ b and f ′(x) is also piecewise continuous on a ≤ x ≤ b, then the
classical Fourier series converges at every point x(−∞ < x < ∞).
The sum is

∑

n

An Xn(x) = 1
2

[ f (x+) + f (x−)] for all a < x < b. (9)

The sum is 1
2
[ fext(x+) + fext(x−)] for all −∞ < x < ∞, where

fext(x) is the extended function (periodic, odd periodic, or even pe-
riodic).

Thus at a jump discontinuity the series converges to the average of the
limits from the right and from the left. In the case of the Fourier sine (or
cosine) series on (0, l), the extended function fext(x) is the odd (or even)
function of period 2l. For the full series on (−l, l), it is the periodic extension.
The extension is piecewise continuous with a piecewise continuous derivative
on (−∞, ∞).

It is convenient to restate Theorem 4 directly for functions that are al-
ready defined on the whole line. By considering the periodic, even, and odd
extensions of functions, Theorem 4 is equivalent to the following statement.

Theorem 4∞. If f (x) is a function of period 2l on the line for which
f (x) and f ′(x) are piecewise continuous, then the classical full Fourier series

converges to 1
2
[ f (x+) + f (x−)] for −∞ < x < ∞.
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The Fourier series of a continuous but nondifferentiable function f (x) is
not guaranteed to converge pointwise. By Theorem 3 it must converge to f (x)
in the L2 sense. If we wanted to be sure of its pointwise convergence, we
would have to know something about its derivative f ′(x).

Example 3.

The Fourier sine series of the function f (x) ≡ 1 on the interval (0, π ) is
∑

n odd

4

nπ
sin nx . (10)

Although it converges at each point, this series does not converge uni-
formly on [0, π ]. One reason is that the series equals zero at both end-
points (0 and π ) but the function is 1 there. Condition (ii) of Theorem 2 is
not satisfied: the boundary conditions are Dirichlet and the function f (x)
does not vanish at the endpoints. However, Theorem 4(i) is applicable,
so that the series does converge pointwise to f (x). Thus (10) must sum
to 1 for every 0 < x < π . For instance, we get a true equation if we put
x = π/2:

1 = f
(π

2

)

=
∑

n odd

4

nπ
(−1)(n−1)/2 =

4

π

∞
∑

m=0

(−1)m

2m + 1
.

Therefore, we get the convergent series

π

4
= 1 −

1

3
+

1

5
−

1

7
+

1

9
−

1

11
+ · · · .

Noting that 0 < 1 < π , we may put x = 1 to get the convergent series

π

4
= sin 1 +

1

3
sin 3 +

1

5
sin 5 + · · · .

Other amusing series are obtainable in this way. �

Another important question, especially for our purposes, is whether a
Fourier series can be differentiated term by term. Take the case of (10). On
the left side the derivative is zero. On the right side we ought to get the series.

4

π

∑

n odd

cos nx . (11)

But this is clearly divergent because the terms don’t even tend to zero as
n → ∞ (the nth term test for divergence)! So in this example you cannot dif-
ferentiate term by term. For a more general viewpoint, however, see Example
8 in Section 12.1.

Differentiation of a Fourier series is a delicate matter. But integration term
by term is not delicate and is usually valid (see Exercise 11).

The proofs of Theorems 1 to 4 are lengthy and will be postponed to the
next section and to Chapter 11. For complete proofs of Theorems 2 and 3, see
Section 7.4 of [CL]. For complete proofs of the classical cases of Theorems 2,
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3, and 4, see [DM] or [CH]. Of the three convergence theorems, Theorem 3
is the easiest one to apply because f ′(x) does not have to exist and f (x) itself
does not even have to be continuous. We now pursue a set of ideas that is
related to Theorem 3 and is important in quantum mechanics.

THE L2 THEORY

The main idea is to regard orthogonality as if it were a geometric property.
We have already defined the inner product on (a, b) as

( f, g) =
∫ b

a

f (x)g(x) dx .

[In case the functions are real valued, we just ignore the complex conjugate
( ).] We now define the L2 norm of f as

‖ f ‖ = ( f, f )1/2 =
[∫ b

a

| f (x)|2 dx

]1/2

.

The quantity

‖ f − g‖ =
[∫ b

a

| f (x) − g(x)|2 dx

]1/2

(12)

is a measurement of the “distance” between two functions f and g. It is some-
times called the L2 metric. The concept of a metric was first mentioned in
Section 1.5; the L2 metric is the nicest one.

Theorem 3 can be restated as follows. If {Xn} are the eigenfunctions
associated with a set of symmetric BCs and if ‖ f ‖ < ∞, then

∥

∥

∥

∥

∥

f −
∑

n≤N

An Xn

∥

∥

∥

∥

∥

→ 0 as N → ∞. (13)

That is, the partial sums get nearer and nearer to f .

Theorem 5. Least-Square Approximation Let {Xn} be any orthogo-
nal set of functions. Let ‖ f ‖ < ∞. Let N be a fixed positive integer. Among
all possible choices of N constants c1, c2, . . . , cN , the choice that minimizes

∥

∥

∥

∥

∥

f −
N

∑

n=1

cn Xn

∥

∥

∥

∥

∥

is c1 = A1, . . . , cn = An.
(These are the Fourier coefficients! It means that the linear combination of

X1, . . . , Xn which approximates f most closely is the Fourier combination!)
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Proof. For the sake of simplicity we assume in this proof that f (x) and all
the Xn(x) are real valued. Denote the error (remainder) by

EN =

∥

∥

∥

∥

∥

f −
∑

n≤N

cn Xn

∥

∥

∥

∥

∥

2

=
∫ b

a

∣

∣

∣

∣

∣

f (x) −
∑

n≤N

cn Xn(x)

∣

∣

∣

∣

∣

2

dx . (14)

Expanding the square, we have (assuming the functions are real valued)

EN =
∫ b

a

| f (x)|2 dx − 2
∑

n≤N

cn

∫ b

a

f (x)Xn(x) dx

+
∑

n

∑

m

cncm

∫ b

a

Xn(x)Xm(x) dx .

Because of orthogonality, the last integral vanishes except for n = m. So the
double sum reduces to �c2

n

∫

|Xn|2 dx . Let us write this in the norm notation:

EN = ‖ f ‖2 − 2
∑

n≤N

cn ( f, Xn) +
∑

n≤N

c2
n ‖Xn‖2 .

We may “complete the square”:

EN =
∑

n≤N

‖Xn‖2

[

cn −
( f, Xn)

‖Xn‖2

]2

+ ‖ f ‖2 −
∑

n≤N

( f, Xn)2

‖Xn‖2
. (15)

Now the coefficients cn appear in only one place, inside the squared term. The
expression is clearly smallest if the squared term vanishes. That is,

cn =
( f, Xn)

‖Xn‖2
≡ An,

which proves Theorem 5. �

The completion of the square has further consequences. Let’s choose the
cn to be the Fourier coefficients: cn = An . The last expression (15) for the
error EN becomes

0 ≤ EN = ‖ f ‖2 −
∑

n≤N

( f, Xn)2

‖Xn‖2
= ‖ f ‖2 −

∑

n≤N

A2
n ‖Xn‖2. (16)

Because this is positive, we have

∑

n≤N

A2
n

∫ b

a

|Xn(x)|2 dx ≤
∫ b

a

| f (x)|2 dx . (17)

On the left side we have the partial sums of a series of positive terms with
bounded partial sums. Therefore, the corresponding infinite series converges
and its sum satisfies

∞
∑

n=1

A2
n

∫ b

a

|Xn(x)|2 dx ≤
∫ b

a

| f (x)|2 dx . (18)
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This is known as Bessel’s inequality. It is valid as long as the integral of | f |2
is finite.

Theorem 6. The Fourier series of f (x) converges to f (x) in the mean-square
sense if and only if

∞
∑

n=1

|An|2
∫ b

a

|Xn(x)|2 dx =
∫ b

a

| f (x)|2 dx (19)

(i.e., if and only if you have equality).

Proof. Mean-square convergence means that the remainder EN → 0. But
from (16) this means that �n≤N |An|2‖Xn‖2 → ‖ f ‖2, which in turn means
(19), known as Parseval’s equality.

Definition. The infinite orthogonal set of functions {X1(x), X2(x), . . .} is

called complete if Parseval’s equality (19) is true for all f with
∫ b

a
| f |2 dx < ∞.

Theorem 3 asserts that the set of eigenfunctions coming from (1) is always
complete. Thus we have the following conclusion.

Corollary 7. If
∫ b

a
| f (x)|2dx is finite, then the Parseval equality (19) is true.

Example 4.

Consider once again the Fourier series (10). Parseval’s equality asserts
that

∑

n odd

(

4

nπ

)2 ∫ π

0

sin2nx dx =
∫ π

0

12 dx .

This means that

∑

n odd

(

4

nπ

)2
π

2
= π.

In other words,

∑

n odd

1

n2
= 1 +

1

9
+

1

25
+

1

49
+ · · · =

π2

8
,

another interesting numerical series. �

For a full discussion of completeness using the concept of the Lebesgue
integral, see [LL] for instance.
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EXERCISES

1. �∞
n=0(−1)nx2n is a geometric series.

(a) Does it converge pointwise in the interval −1 < x < 1?
(b) Does it converge uniformly in the interval −1 < x < 1?
(c) Does it converge in the L2 sense in the interval −1 < x < 1?

(Hint: You can compute its partial sums explicitly.)

2. Consider any series of functions on any finite interval. Show that if it
converges uniformly, then it also converges in the L2 sense and in the
pointwise sense.

3. Let γn be a sequence of constants tending to ∞. Let fn(x) be the sequence

of functions defined as follows: fn

(

1
2

)

= 0, fn(x) = γn in the interval

[ 1
2

− 1
n
, 1

2
), let fn(x) = −γn in the interval ( 1

2
, 1

2
+ 1

n
] and let fn(x) = 0

elsewhere. Show that:
(a) fn(x) → 0 pointwise.
(b) The convergence is not uniform.
(c) fn(x) → 0 in the L2 sense if γn = n1/3.
(d) fn(x) does not converge in the L2 sense if γn = n.

4. Let

gn(x) =



























1 in the interval

[

1

4
−

1

n2
,

1

4
+

1

n2

)

for odd n

1 in the interval

[

3

4
−

1

n2
,

3

4
+

1

n2

)

for even n

0 for all other x .

Show that gn(x) → 0 in the L2 sense but that gn(x) does not tend to zero
in the pointwise sense.

5. Let φ(x) = 0 for 0 < x < 1 and φ(x) = 1 for 1 < x < 3.
(a) Find the first four nonzero terms of its Fourier cosine series explic-

itly.
(b) For each x (0 ≤ x ≤ 3), what is the sum of this series?
(c) Does it converge to φ(x) in the L2 sense? Why?
(d) Put x = 0 to find the sum

1 +
1

2
−

1

4
−

1

5
+

1

7
+

1

8
−

1

10
−

1

11
+ · · · .

6. Find the sine series of the function cos x on the interval (0, π ). For each
x satisfying −π ≤ x ≤ π , what is the sum of the series?

7. Let

φ(x) =

{

−1 − x for − 1 < x < 0

+1 − x for 0 < x < 1.
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(a) Find the full Fourier series of φ(x) in the interval (−1, 1).
(b) Find the first three nonzero terms explicitly.
(c) Does it converge in the mean square sense?
(d) Does it converge pointwise?
(e) Does it converge uniformly to φ(x) in the interval (−1, 1)?

8. Consider the Fourier sine series of each of the following functions. In this
exercise do not compute the coefficients but use the general convergence
theorems (Theorems 2, 3, and 4) to discuss the convergence of each of
the series in the pointwise, uniform, and L2 senses.
(a) f (x) = x3 on (0, l).
(b) f (x) = lx − x2 on (0, l).
(c) f (x) = x−2 on (0, l).

9. Let f (x) be a function on (−l, l) that has a continuous derivative and
satisfies the periodic BCs. Let an and bn be the Fourier coefficients of
f (x), and let a′

n and b′
n be the Fourier coefficients of its derivative f ′(x).

Show that

a′
n =

nπbn

l
and b′

n =
−nπan

l
for n �= 0.

(Hint: Write the formulas for a′
n and b′

n and integrate by parts.) This
means that the Fourier series of f ′(x) is what you’d obtain as if you
differentiated term by term. It does not mean that the differentiated series
converges.

10. Deduce from Exercise 9 that there is a constant k so that

|an| + |bn| ≤
k

n
for all n.

11. (Term by term integration)
(a) If f (x) is a piecewise continuous function in [−l, l], show that its

indefinite integral F(x) =
∫ x

−l
f (s) ds has a full Fourier series that

converges pointwise.
(b) Write this convergent series for f (x) explicitly in terms of the Fourier

coefficients a0, an, bn of f (x).
(Hint: Apply a convergence theorem. Write the formulas for the
coefficients and integrate by parts.)

12. Start with the Fourier sine series of f (x) = x on the interval (0, l). Apply
Parseval’s equality. Find the sum �∞

n=11/n2.

13. Start with the Fourier cosine series of f (x) = x2 on the interval (0, l).
Apply Parseval’s equality. Find the sum �∞

n=11/n4.

14. Find the sum �∞
n=11/n6.

15. Let φ(x) ≡ 1 for 0 < x < π . Expand

1 =
∞

∑

n=0

Bn cos
[(

n + 1
2

)

x
]

.
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(a) Find Bn.
(b) Let −2π < x < 2π . For which such x does this series converge?

For each such x, what is the sum of the series? [Hint: Think of
extending φ(x) beyond the interval (0, π ).]

(c) Apply Parseval’s equality to this series. Use it to calculate the sum

1 +
1

32
+

1

52
+ · · · .

16. Let φ(x) = |x | in (−π, π ). If we approximate it by the function

f (x) = 1
2
a0 + a1 cos x + b1 sin x + a2 cos 2x + b2 sin 2x,

what choice of coefficients will minimize the L2 error?

17. Modify the proofs of Theorems 5 and 6 for the case of complex-valued
functions.

18. Consider a solution of the wave equation with c = 1 on [0, l] with
homogeneous Dirichlet or Neumann boundary conditions.

(a) Show that its energy E = 1
2

∫ l

0
(u2

t + u2
x ) dx is a constant.

(b) Let En(t) be the energy of its nth harmonic (the nth term in the
expansion). Show that E = �En . (Hint: Use the orthogonality. As-
sume that you can integrate term by term.)

19. Here is a general method to calculate the normalizing constants. Let
X (x, λ) be a family of real solutions of the ODE −X ′′ = λX which
depends in a smooth manner on λ as well as on x.
(a) Find the ODE satisfied by ∂ X/∂λ.
(b) Apply Green’s second identity to the pair of functions X and ∂ X/∂λ

in order to obtain a formula for
∫ b

a
X2dx in terms of the boundary

values.
(c) As an example, use the result of part (b) and the Dirichlet boundary

conditions to compute
∫ l

0
sin2(mπx/ l) dx .

20. Use the method of Exercise 19 to compute the normalizing constants
∫ l

0
X2 dx in the case of the Robin boundary conditions.

5.5 COMPLETENESS AND THE GIBBS PHENOMENON

Our purpose here is to prove the pointwise convergence of the classical full
Fourier series. This will lead to the celebrated Gibbs phenomenon for jump
discontinuities.

We may as well take the whole-line case, Theorem 4∞ of Section 5.4.
To avoid technicalities, let us begin with a C1 function f (x) on the whole line
of period 2l. (A C1 function is a function that has a continuous derivative in
(−∞, ∞); see Section A.1.) We also assume that l = π, which can easily be
arranged through a change of scale (see Exercise 5.2.7).
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Thus the Fourier series is

f (x) = 1
2

A0 +
∞

∑

n=1

(An cos nx + Bn sin nx) (1)

with the coefficients

An =
∫ π

−π

f (y) cos ny
dy

π
(n = 0, 1, 2, . . .)

Bn =
∫ π

−π

f (y) sin ny
dy

π
(n = 1, 2, . . .).

The Nth partial sum of the series is

SN (x) = 1
2

A0 +
N
∑

n=1

(An cos nx + Bn sin nx). (2)

We want to prove that SN (x) converges to f (x) as N → ∞. Pointwise con-
vergence means that x is kept fixed as we take the limit.

The first step of the proof is to stick the formulas for the coefficients into
the partial sum and rearrange the terms. Doing this, we get

SN (x) =
∫ π

−π

[

1 + 2

N
∑

n=1

(cos ny cos nx + sin ny sin nx)

]

f (y)
dy

2π
.

Inside the parentheses is the cosine of a difference of angles, so we can
summarize the formula as

SN (x) =
∫ π

−π

KN (x − y) f (y)
dy

2π
, (3)

where

KN (θ ) = 1 + 2

N
∑

n=1

cos nθ. (4)

The second step is to study the properties of this function, called the
Dirichlet kernel. Notice that KN (θ ) has period 2π and that

∫ π

−π

KN (θ )
dθ

2π
= 1 + 0 + 0 + · · · + 0 = 1.

It is a remarkable fact that the series for KN can be summed! In fact,

KN (θ ) =
sin

(

N + 1
2

)

θ

sin 1
2
θ

. (5)
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Figure 1

Proof of (5). The easiest proof is by complexification. By De Moivre’s
formula for complex exponentials,

KN (θ ) = 1 +
N
∑

n=1

(einθ + e−inθ ) =
N
∑

n=−N

einθ

= e−iNθ + · · · + 1 + · · · + eiNθ .

This is a finite geometric series with the first term e−iNθ , the ratio eiθ , and the
last term eiNθ . So it adds up to

KN (θ ) =
e−iNθ − ei(N+1)θ

1 − eiθ

=
e−i(N+ 1

2 )θ − e+i(N+ 1
2 )θ

−e
1
2

iθ + e− 1
2

iθ

=
sin

[(

N + 1
2

)

θ
]

sin 1
2
θ

. �

Figure 1 is a sketch of KN (θ ). (It looks somewhat like the diffusion kernel,
the source function of Section 2.4, except for its oscillatory tail.)

The third step is to combine (3) with (5). Letting θ = y − x and using the
evenness of KN , formula (3) takes the form

SN (x) =
∫ π

−π

KN (θ ) f (x + θ )
dθ

2π
.

The interval of integration really ought to be [x − π, x + π ], but since both
KN and f have period 2π , any interval of length 2π will do. Next we subtract
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the constant f (x) = f (x) · 1 and use formula (5) to get

SN (x) − f (x) =
∫ π

−π

KN (θ ) [ f (x + θ ) − f (x)]
dθ

2π

or

SN (x) − f (x) =
∫ π

−π

g(θ ) sin
[(

N + 1
2

)

θ
] dθ

2π
, (6)

where

g(θ ) =
f (x + θ ) − f (x)

sin 1
2
θ

(7)

Remember that x remains fixed. All we have to show is that the integral (6)
tends to zero as N → ∞.

That is the fourth step. We notice that the functions

φN (θ ) = sin
[(

N + 1
2

)

θ
]

(N = 1, 2, 3, . . .) (8)

form an orthogonal set on the interval (0, π ) because they correspond to mixed
boundary conditions (see Exercise 5.3.5). Hence they are also orthogonal on
the interval (−π, π ). Therefore, Bessel’s inequality (5.4.18) is valid:

∞
∑

N=1

|(g, φN )|2

‖φN‖2
≤ ‖g‖2. (9)

By direct calculation, ||φN ||2 = π . If ||g|| < ∞, the series (9) is convergent
and its terms tend to zero. So (g, φN ) → 0, which says exactly that the integral
in (6) tends to zero.

The final step is to check that ||g|| < ∞. We have

‖g‖2 =
∫ π

−π

[ f (x + θ ) − f (x)]2

sin2 1
2
θ

dθ.

Since the numerator is continuous, the only possible difficulty could occur
where the sine vanishes, namely at θ = 0. At that point,

lim
θ→0

g(θ ) = lim
θ→0

f (x + θ) − f (x)

θ
·

θ

sin 1
2
θ

= 2 f ′(x) (11)

by L’Hôpital’s rule [since f (x) is differentiable]. Therefore, g(θ ) is everywhere
continuous, so that the integral ||g|| is finite. This completes the proof of
pointwise convergence of the Fourier series of any C1 function. �

PROOF FOR DISCONTINUOUS FUNCTIONS

If the periodic function f (x) itself is only piecewise continuous and f ′(x)
is also piecewise continuous on −∞ < x < ∞, we want to prove that

the Fourier series converges and that its sum is 1
2
[ f (x+) + f (x−)] (see
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Theorem 5.4.4∞). This means that we assume that f (x) and f ′(x) are contin-
uous except at a finite number of points, and at those points they have jump
discontinuities.

The proof begins as before. However, we modify the third step, replacing
(6) by

SN (x) −
1

2
[ f (x+) + f (x−)] =

∫ π

0

KN (θ )[ f (x + θ ) − f (x+)]
dθ

2π

+
∫ 0

−π

KN (θ )[ f (x + θ ) − f (x−)]
dθ

2π

=
∫ π

0

g+(θ ) sin
[(

N + 1
2

)

θ
]

dθ

+
∫ 0

−π

g−(θ ) sin
[(

N + 1
2

)

θ
]

dθ (12)

by (5), where

g±(θ ) =
f (x + θ ) − f (x±)

sin 1
2
θ

. (13)

The fourth step is to observe that the functions

sin[(N + 1
2
)θ ] (N = 1, 2, 3, . . .) form an orthogonal set on the interval

(−π, 0), as well as on the interval (−0, π ). Using Bessel’s inequality as
before, we deduce (see Exercise 8) that both of the integrals in (12) tend to

zero as N → ∞ provided that
∫ π

0
|g+(θ )|2 dθ and

∫ 0

−π
|g−(θ )|2 dθ are finite.

That is the fifth step. The only possible reason for the divergence of these

integrals would come from the vanishing of sin 1
2
θ at θ = 0. Now the one-

sided limit of g+(θ ) is

lim
θց0

g+(θ ) = lim
θց0

f (x + θ ) − f (x+)

θ
·

θ

sin
(

1
2
θ
) = 2 f ′(x+) (14)

if x is a point where the one-sided derivative f ′(x+) exists. If f ′(x+)
does not exist (e.g., f itself might have a jump at the point x), then
f still is differentiable at nearby points. By the mean value theorem,
[ f (x + θ ) − f (x+)]/θ = f ′(θ∗) for some point θ∗ between x and x + θ .
Since the derivative is bounded, it follows that [ f (x + θ ) − f (x)]/θ is
bounded as well for θ small and positive. So g+(θ ) is bounded and the integral
∫ π

0
|g+(θ )|2 dθ is finite. It works the same way for g−(θ ). �

PROOF OF UNIFORM CONVERGENCE

This is Theorem 5.4.2, for the case of classical Fourier series. We assume
again that f (x) and f ′(x) are continuous functions of period 2π . The idea
of this proof is quite different from the preceding one. The main point is to
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show that the coefficients go to zero pretty fast. Let An and Bn be the Fourier
coefficients of f (x) and let A′

n and B ′
n denote the Fourier coefficients of f ′(x).

We integrate by parts to get

An =
∫ π

−π

f (x) cos nx
dx

π

=
1

nπ
f (x) sin nx

∣

∣

∣

∣

π

−π

−
∫ π

−π

f ′(x) sin nx
dx

nπ
,

so that

An = −
1

n
B ′

n for �= 0. (15)

We have just used the periodicity of f (x). Similarly,

Bn =
1

n
A′

n. (16)

On the other hand, we know from Bessel’s inequality [for the derivative f ′(x)]
that the infinite series

∞
∑

n=1

(

|A′
n|

2 + |B ′
n|

2
)

< ∞.

Therefore,

∞
∑

n=1

(|An cos nx | + |Bn sin nx |) ≤
∞

∑

n=1

(|An| + |Bn|)

=
∞

∑

n=1

1

n

(

|B ′
n| + |A′

n|
)

≤

(

∞
∑

n=1

1

n2

)1/2 [

∞
∑

n=1

2
(

|A′
n|

2+|B ′
n|

2
)

]1/2

<∞.

Here we have used Schwarz’s inequality (see Exercise 5). The result means
that the Fourier series converges absolutely.

We already know (from Theorem 5.4.4∞) that the sum of the Fourier
series is indeed f (x). So, again denoting by SN(x) the partial sum (2), we can
write

max| f (x) − SN (x)| ≤ max

∞
∑

n=N+1

|An cos nx + Bn sin nx |

≤
∞

∑

n=N+1

(|An| + |Bn|) < ∞. (17)
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The last sum is the tail of a convergent series of numbers so that it tends to zero
as N → ∞. Therefore, the Fourier series converges to f (x) both absolutely
and uniformly. �

This proof is also valid if f (x) is continuous but f ′(x) is merely piecewise
continuous. An example is f (x) = |x |.

THE GIBBS PHENOMENON

The Gibbs phenomenon is what happens to Fourier series at jump discontinu-
ities. For a function with a jump, the partial sum SN(x) approximates the jump
as in Figure 2 for a large value of N. Gibbs showed that SN(x) always differs
from f (x) near the jump by an “overshoot” of about 9 percent. The width of
the overshoot goes to zero as N → ∞ while the extra height remains at 9
percent (top and bottom). Thus

lim
N→∞

max|SN (x) − f (x)| �= 0, (18)

although SN(x) − f (x) does tend to zero for each x where f (x) does not jump.
We now verify the Gibbs phenomenon for an example. Let’s take the

simplest odd function with a jump of unity; that is,

f (x) =

{

1
2

for 0 < x < π

− 1
2

for −π < x < 0,

Figure 2
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which has the Fourier series

∞
∑

n odd=1

2

nπ
sin nπ.

Figure 2 is a sketch of the partial sum S16(x). By (3) and (5), the partial sums
are

SN (x) =
(∫ π

0

−
∫ 0

−π

)

KN (x − y)
dy

4π

=
(∫ π

0

−
∫ 0

−π

)

sin
[(

N + 1
2

)

(x − y)
]

sin
[

1
2

(x − y)
]

dy

4π
.

Let M = N + 1
2
. In the first integral let θ = M(x − y). In the second integral

let θ = M(y − x). These changes of variables yield

SN (x) =
(∫ Mx

M(x−π )

−
∫ −Mx

−M(x+π )

)

sin θ

2M sin (θ/2M)

dθ

2π

=
(∫ Mx

−Mx

−
∫ −Mπ+Mx

−Mπ−Mx

)

sin θ

2M sin (θ/2M)

dθ

2π

=
(∫ Mx

−Mx

−
∫ Mπ+Mx

Mπ−Mx

)

sin θ

2M sin (θ/2M)

dθ

2π
, (19)

where we changed θ to −θ in the last step, the integrand being an even
function.

We are interested in what happens near the jump, that is, where x is small.
Remember that M is large. We will see that in (19) the first integral is the larger
one because of the small denominator sin(θ/2M). Where is the first integral
in (19) maximized? Setting its derivative equal to zero, it is maximized where
sin Mx = 0. So we set x = π/M . Then (19) becomes

SN

( π

M

)

=
(∫ π

−π

−
∫ Mπ+π

Mπ−π

)

sin θ

2M sin (θ/2M)

dθ

2π
. (20)

Inside the second integral in (20) the argument θ/2M is bounded both
above and below, as follows:

π

4
<

[

1 −
1

M

]

π

2
≤

θ

2M
≤

[

1 +
1

M

]

π

2
<

3π

4
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for M > 2. Hence sin(θ/2M) > 1/
√

2, so that the second integral in (20) is
less than

∫ Mπ+π

Mπ−π

1 ·
[

2M
√

2

]−1
dθ

2π
=

1
√

2M
,

which tends to zero as M → ∞.
On the other hand, inside the first integral in (20) we have |θ | ≤ π and

2M sin
θ

2M
→ θ uniformly in −π ≤ θ ≤ π as M → ∞.

Hence, taking the limit in (20) as M → ∞, we get

SN

( π

M

)

→
∫ π

−π

sin θ

θ

dθ

2π
≃ 0.59. (21)

This is Gibbs’s 9 percent overshoot (of the unit jump value).

FOURIER SERIES SOLUTIONS

You could object, and you would be right, that we never showed that the
Fourier series solutions actually solve the PDEs. Let’s take a basic example
to justify this final step. Consider the wave equation with Dirichlet boundary
conditions and with initial conditions u(x, 0) = φ(x), ut (x, 0) = ψ(x) as in
Section 4.1. The solution is supposed to be given by (4.1.9):

u(x, t) =
∑

n

(

An cos
nπct

l
+ Bn sin

nπct

l

)

sin
nπx

l
. (22)

However, we know that term-by-term differentiation of a Fourier series is not
always valid (see Example 3, Section 5.4), so we cannot simply verify by
direct differentiation that (22) is a solution.

Instead, let φext and ψext denote the odd 2l-periodic extensions of φ and
ψ . Let us assume that φ and ψ are continuous with piecewise continuous
derivatives. We know that the function

u(x, t) =
1

2
[φext (x + ct) + φext (x − ct)] +

1

2c

∫ x+ct

x−ct

ψext (s) ds (23)

solves the wave equation with u(x, 0) = φext(x), ut (x, 0) = ψext(x) for all
−∞ < x < ∞. (Actually, it is a weak solution—see Section 12.1—but if
we assume that φext and ψext are twice differentiable, it is an ordinary twice-
differentiable solution.) Since φext and ψext agree with φ and ψ on the interval
(0, l), u satisfies the correct initial conditions on (0, l). Since φext and ψext are
odd, it follows that u(x, t) is also odd, so that u(0, t) = u(l, t) = 0, which is
the correct boundary condition.

By Theorem 5.4.4(i), the Fourier sine series of φext and ψext, given by
(4.1.10) and (4.1.11), converge pointwise. Substituting these series into (23),
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we get

u(x, t) =
1

2

∞
∑

n=1

An

(

sin
nπ (x + ct)

l
+ sin

nπ (x − ct)

l

)

+
1

2c

∞
∑

n=1

∫ x+ct

x−ct

Bn

nπc

l
sin

nπs

l
ds. (24)

This series converges pointwise because term-by-term integration of a Fourier
series is always valid, by Exercise 5.4.11. Now we use standard trigonometric
identities and carry out the integrals explicitly. We get

u(x, t) =
∑

n

(

An sin
nπx

l
cos

nπct

l
+ Bn sin

nπx

l
sin

nπct

l

)

. (25)

This is precisely (22).

EXERCISES

1. Sketch the graph of the Dirichlet kernel

KN (θ ) =
sin

(

N + 1
2

)

θ

sin 1
2
θ

in case N = 10. Use a computer graphics program if you wish.

2. Prove the Schwarz inequality (for any pair of functions):

|( f, g)| ≤ ‖ f ‖ · ‖g‖.
(Hint: Consider the expression || f + tg||2, where t is a scalar. This ex-
pression is a quadratic polynomial of t. Find the value of t where it is a
minimum. Play around and the Schwarz inequality will pop out.)

3. Prove the inequality l
∫ l

0
( f ′(x))

2
dx ≥ [ f (l) − f (0)]2 for any real func-

tion f (x) whose derivative f ′(x) is continuous. [Hint: Use Schwarz’s
inequality with the pair f ′(x) and 1.]

4. (a) Solve the problem ut = kuxx for 0 < x < l, u(x, 0) = φ(x), with
the unusual boundary conditions

ux (0, t) = ux (l, t) =
u(l, t) − u(0, t)

l
.

Assume that there are no negative eigenvalues. (Hint: See Exercise
4.3.12.)

(b) Show that as t → ∞,

lim u(x, t) = A + Bx,

assuming that you can take limits term by term.
(c) Use Green’s first identity and Exercise 3 to show that there are no

negative eigenvalues.
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(d) Find A and B. (Hint: A + Bx is the beginning of the series. Take
the inner product of the series for φ(x) with each of the functions 1
and x. Make use of the orthogonality.)

5. Prove the Schwarz inequality for infinite series:
∑

anbn ≤
(

∑

a2
n

)1/2 (

∑

b2
n

)1/2

.

(Hint: See the hint in Exercise 2. Prove it first for finite series (ordinary
sums) and then pass to the limit.)

6. Consider the diffusion equation on [0, l] with Dirichlet boundary con-
ditions and any continuous function as initial condition. Show from the
series expansion that the solution is infinitely differentiable for t > 0.
(Hint: Use the general theorem at the end of Section A.2 on the differ-
entiability of series, together with the fact that the exponentials are very
small for large n. See Section 3.5 for an analogous situation.)

7. Let
∫ π

−π
[| f (x)|2 + |g(x)|2] dx be finite, where g(x) = f (x)/(ei x − 1).

Let cn be the coefficients of the full complex Fourier series of f (x). Show
that �N

n=−N cn → 0 as N → ∞.

8. Prove that both integrals in (12) tend to zero.

9. Fill in the missing steps in the proof of uniform convergence.

10. Prove the theorem on uniform convergence for the case of the Fourier
sine series and for the Fourier cosine series.

11. Prove that the classical full Fourier series of f (x) converges uniformly
to f (x) if merely f (x) is continuous of period 2π and its derivative
f ′(x) is piecewise continuous. (Hint: Modify the discussion of uniform
convergence in this section.)

12. Show that if f (x) is a C1 function in [−π, π ] that satisfies the periodic
BC and if

∫ π

−π
f (x)dx = 0, then

∫ π

−π
| f |2 dx ≤

∫ π

−π
| f ′|2 dx . (Hint: Use

Parseval’s equality.)

13. A very slick proof of the pointwise convergence of Fourier series, due
to P. Chernoff (American Mathematical Monthly, May 1980), goes as
follows.
(a) Let f (x) be a C1 function of period 2π . First show that we may as

well assume that f (0) = 0 and we need only show that the Fourier
series converges to zero at x = 0.

(b) Let g(x) = f (x)/(ei x − 1). Show that g(x) is a continuous function.
(c) Let Cn be the (complex) Fourier coefficients of f (x) and Dn the

coefficients of g(x). Show that Dn → 0.
(d) Show that Cn = Dn−1 − Dn so that the series �Cn is telescoping.
(e) Deduce that the Fourier series of f (x) at x = 0 converges to zero.

14. Prove the validity of the Fourier series solution of the diffusion equation
on (0, l) with ux (x, 0) = ux (x, l) = 0, u(x, 0) = φ(x), where φ(x) is
continuous with a piecewise continuous derivative. That is, prove that
the series truly converges to the solution.

15. Carry out the step going from (24) to (25).
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5.6 INHOMOGENEOUS BOUNDARY CONDITIONS

In this section we consider problems with sources given at the boundary. We
shall see that naive use of the separation of variables technique will not work.

Let’s begin with the diffusion equation with sources at both endpoints.

ut = kuxx 0 < x < l, t > 0

u(0, t) = h(t) u(l, t) = j(t) (1)

u (x, 0) ≡ 0.

A separated solution u = X (x)T (t) just will not fit the boundary conditions.
So we try a slightly different approach.

EXPANSION METHOD

We already know that for the corresponding homogeneous problem the correct
expansion is the Fourier sine series. For each t, we certainly can expand

u(x, t) =
∞

∑

n=1

un(t) sin
nπx

l
(2)

for some coefficients un(t), because the completeness theorems guarantee
that any function in (0, l) can be so expanded. The coefficients are necessarily
given by

un(t) =
2

l

∫ l

0

u(x, t) sin
nπx

l
dx . (3)

You may object that each term in the series vanishes at both endpoints and
thereby violates the boundary conditions. The answer is that we simply do not
insist that the series converge at the endpoints but only inside the interval. In
fact, we are exactly in the situation of Theorems 3 and 4 but not of Theorem
2 of Section 5.4.

Now differentiating the series (2) term by term, we get

0 = ut − kuxx =
∑

[

dun

dt
+ kun(t)

(nπ

l

)2
]

sin
nπx

l
.

So the PDE seems to require that dun/dt + kλnun = 0, so that un(t) =
Anekλn t . There is no way for this to fit the boundary conditions. Our method
fails! What’s the moral? It is that you can’t differentiate term by term. See
Example 3 in Section 5.4 for the dangers of differentiation.

Let’s start over again but avoid direct differentiation of the Fourier series.
The expansion (2) with the coefficients (3) must be valid, by the completeness
theorem 5.4.3, say, provided that u(x, t) is a continuous function. Clearly, the
initial condition requires that un(0) = 0. If the derivatives of u(x, t) are also
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continuous, let’s expand them, too. Thus

∂u

∂t
=

∞
∑

n=1

vn(t) sin
nπx

l
(4)

with

vn(t) =
2

l

∫ l

0

∂u

∂t
sin

nπx

l
dx =

dun

dt
. (5)

The last equality is valid since we can differentiate under an integral sign if
the new integrand is continuous (see Section A.3). We also expand

∂2u

∂x2
=

∞
∑

n=1

wn(t) sin
nπx

l
(6)

with the coefficients

wn(t) =
2

l

∫ l

0

∂2u

∂x2
sin

nπx

l
dx . (7)

By Green’s second identity (5.3.3) the last expression equals

−2

l

∫ l

0

(nπ

l

)2

u(x, t) sin
nπx

l
dx +

2

l

(

ux sin
nπx

l
−

nπ

l
u cos

nπx

l

)

∣

∣

∣

∣

l

0

.

Here come the boundary conditions. The sine factor vanishes at both ends.
The last term will involve the boundary conditions. Thus

wn(t) = −λnun(t) − 2nπl−2(−1)n j(t) + 2nπl−2h(t), (8)

where λn = (nπ/ l)2. Now by (5) and (7) the PDE requires

vn(t) − kwn(t) =
2

l

∫ l

0

(ut − kuxx) sin
nπx

l
dx =

∫ l

0

0 = 0.

So from (5) and (8) we deduce that un(t) satisfies

dun

dt
= k{−λnun(t) − 2nπl−2[(−1)n j(t) − h(t)]}. (9)

This is just an ordinary differential equation, to be solved together with the
initial condition un(0) = 0 from (1). The solution of (9) is

un(t) = Ce−λnkt − 2nπl−2k

∫ t

0

e−λnk(t−s)[(−1)n j(s) − h(s)] ds. (10)
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As a second case, let’s solve the inhomogeneous wave problem

ut t − c2uxx = f (x, t)

u(0, t) = h(t) u(l, t) = k(t)

u(x, 0) = φ(x) ut (x, 0) = ψ(x).

(11)

Again we expand everything in the eigenfunctions of the corresponding ho-
mogeneous problem:

u(x, t) =
∞

∑

n=1

un(t) sin
nπx

l
,

ut t (x, t) with coefficients vn(t), uxx(x, t) with coefficients wn(t), f (x, t) with
coefficients fn(t), φ(x) with coefficients φn , and ψ(x) with coefficients ψn .
Then

vn(t) =
2

l

∫ l

0

∂2u

∂t2
sin

nπx

l
dx =

d2un

dt2

and, just as before,

wn(t) =
2

l

∫ l

0

∂2u

∂x2
sin

nπx

l
dx

= −λnun(t) + 2nπl−2[h(t) − (−1)nk(t)].

From the PDE we also have

vn(t) − c2wn(t) =
2

l

∫ l

0

(ut t − c2uxx) sin
nπx

l
dx = fn(t).

Therefore,

d2un

dt2
+ c2λnun(t) = −2nπl−2

[

(−1)nk(t) − h(t)
]

+ fn(t) (12)

with the initial conditions

un(0) = φn u′
n(0) = ψn.

The solution can be written explicitly (see Exercise 11).

METHOD OF SHIFTING THE DATA

By subtraction, the data can be shifted from the boundary to another spot in the
problem. The boundary conditions can be made homogeneous by subtracting
any known function that satisfies them. Thus for the problem (11) treated
above, the function

u(x, t) =
(

1 −
x

l

)

h(t) +
x

l
k(t)
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obviously satisfies the BCs. If we let

v(x, t) = u(x, t) −u(x, t),

then v(x, t) satisfies the same problem but with zero boundary data, with
initial data φ(x) −u(x, 0) and ψ(x) −ut (x, 0), and with right-hand side f
replaced by f −ut t .

The boundary condition and the differential equation can simultaneously
be made homogeneous by subtracting any known function that satisfies them.
One case when this can surely be accomplished is the case of “stationary
data” when h, k, and f (x) all are independent of time. Then it is easy to find
a solution of

−c2
uxx = f (x) u(0) = h u (l) = k.

Then v(x, t) = u(x, t) −u(x) solves the problem with zero boundary data,
zero right-hand side, and initial data φ(x) −u(x) and ψ(x).

For another example, take problem (11) for a simple periodic case:

f (x, t) = F(x) cos ωt h(t) = H cos ωt k(t) = K cos ωt,

that is, with the same time behavior in all the data. We wish to subtract a
solution of

ut t − c2
uxx = F(x) cos ωt

u(0, t) = H cos ωt u(l, t) = K cos ωt.

A good guess is that u should have the form u(x, t) = u0(x) cos ωt . This
will happen if u0(x) satisfies

−ω2
u0 − c2

u
′′
0 = F(x) u0(0) = H u0(l) = K . �

There is also the method of Laplace transforms, which can be found in
Section 12.5.

EXERCISES

1. (a) Solve as a series the equation ut = uxx in (0, 1) with ux (0, t) = 0,
u(1, t) = 1, and u(x, 0) = x2. Compute the first two coefficients
explicitly.

(b) What is the equilibrium state (the term that does not tend to zero)?

2. For problem (1), complete the calculation of the series in case j(t) = 0
and h(t) = et .

3. Repeat problem (1) for the case of Neumann BCs.

4. Solve ut t = c2uxx + k for 0 < x < l, with the boundary conditions
u(0, t) = 0, ux (l, t) = 0 and the initial conditions u(x, 0) = 0,
ut(x, 0) = V . Here k and V are constants.

5. Solve ut t = c2uxx + et sin5x for 0 < x < π, with u(0, t) = u(π, t) = 0
and the initial conditions u(x, 0) = 0, ut (x, 0) = sin3x .
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6. Solve ut t = c2uxx + g(x)sinωt for 0 < x < l, with u = 0 at both ends
and u = ut = 0 when t = 0. For which values of ω can resonance occur?
(Resonance means growth in time.)

7. Repeat Exercise 6 for the damped wave equation ut t = c2uxx − rut+
g(x)sinωt , where r is a positive constant.

8. Solve ut = kuxx in (0, l), with u(0, t) = 0, u(l, t) = At, u(x, 0) = 0,
where A is a constant.

9. Use the method of subtraction to solve ut t = 9uxx for 0 ≤ x ≤ 1 = l,
with u(0, t) = h, u(1, t) = k, where h and k are given constants, and
u(x, 0) = 0, ut (x, 0) = 0.

10. Find the temperature of a metal rod that is in the shape of a solid circular
cone with cross-sectional area A(x) = b(1 − x/ l)2 for 0 ≤ x ≤ l, where
b is a constant. Assume that the rod is made of a uniform material, is
insulated on its sides, is maintained at zero temperature on its flat end (x =
0), and has an unspecified initial temperature distribution φ(x). Assume
that the temperature is independent of y and z. [Hint: Derive the PDE
(1 − x/ l)2ut = k{(1 − x/ l)2ux}x . Separate variables u = T (t)X (x) and
then substitute v(x) = (1 − x/ l)X (x).]

11. Write out the solution of problem (11) explicitly, starting from the dis-
cussion in Section 5.6.

12. Carry out the solution of (11) in the case that

f (x, t) = F(x)cosωt h(t) = H cosωt k(t) = K cosωt.

13. If friction is present, the wave equation takes the form

ut t − c2uxx = −rut ,

where the resistance r > 0 is a constant. Consider a periodic source at
one end: u(0, t) = 0, u(l, t) = Aeiωt .
(a) Show that the PDE and the BC are satisfied by

u(x, t) = Aeiωt
sin βx

sin βl
, where β2c2 = ω2 − irω.

(b) No matter what the IC, u(x, 0) and ut (x, 0), are, show that u(x, t)
is the asymptotic form of the solution u(x, t) as t → ∞.

(c) Show that you can get resonance as r → 0 if ω = mπc/ l for some
integer m.

(d) Show that friction can prevent resonance from occurring.


