
4

BOUNDARY

PROBLEMS

In this chapter we finally come to the physically realistic case of a finite
interval 0 < x < l. The methods we introduce will frequently be used in the
rest of this book.

4.1 SEPARATION OF VARIABLES, THE

DIRICHLET CONDITION

Wefirst consider the homogeneousDirichlet conditions for thewave equation:

ut t = c2uxx for 0 < x < l (1)

u(0, t) = 0 = u(l, t) (2)

with some initial conditions

u(x, 0) = φ(x) ut (x, 0) = ψ(x). (3)

Themethodwe shall use consists of building up the general solution as a linear
combination of special ones that are easy to find. (Once before, in Section
2.4, we followed this program, but with different building blocks.)

A separated solution is a solution of (1) and (2) of the form

u(x, t) = X (x)T (t). (4)

(It is important to distinguish between the independent variable written as a
lowercase letter and the function written as a capital letter.) Our first goal is
to look for as many separated solutions as possible.

84



4.1 SEPARATION OF VARIABLES, THE DIRICHLET CONDITION 85

Plugging the form (4) into the wave equation (1), we get

X (x)T ′′(t) = c2X ′′(x)T (t)

or, dividing by −c2X T ,

−
T ′′

c2T
= −

X ′′

X
= λ.

This defines a quantity λ, which must be a constant. (Proof: ∂λ/∂x = 0 and
∂λ/∂t = 0, so λ is a constant. Alternatively, we can argue that λ doesn’t
depend on x because of the first expression and doesn’t depend on t because
of the second expression, so that it doesn’t depend on any variable.) We will
show at the end of this section that λ > 0. (This is the reason for introducing
the minus signs the way we did.)

So let λ = β2, where β > 0. Then the equations above are a pair of
separate (!) ordinary differential equations for X(x) and T(t):

X ′′ + β2X = 0 and T ′′ + c2β2T = 0. (5)

These ODEs are easy to solve. The solutions have the form

X (x) = C cosβx + D sinβx (6)

T (t) = A cosβct + B sinβct, (7)

where A, B, C, and D are constants.
The second step is to impose the boundary conditions (2) on the separated

solution. They simply require that X(0) = 0 = X(l). Thus

0 = X (0) = C and 0 = X (l) = D sinβl.

Surely we are not interested in the obvious solution C = D = 0. So we must
have βl = nπ , a root of the sine function. That is,

λn =
(nπ

l

)2

, Xn(x) = sin
nπx

l
(n = 1, 2, 3, . . .) (8)

are distinct solutions. Each sine function may be multiplied by an arbitrary
constant.

Therefore, there are an infinite (!) number of separated solutions of (1)
and (2), one for each n. They are

un(x, t) =
(

An cos
nπct

l
+ Bn sin

nπct

l

)

sin
nπx

l

(n = 1, 2, 3, . . . ), whereAn andBn are arbitrary constants. The sumof solutions
is again a solution, so any finite sum

u(x, t) =
∑

n

(

An cos
nπct

l
+ Bn sin

nπct

l

)

sin
nπx

l
(9)

is also a solution of (1) and (2).
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Formula (9) solves (3) as well as (1) and (2), provided that

φ(x) =
∑

n

An sin
nπx

l
(10)

and

ψ(x) =
∑

n

nπc

l
Bn sin

nπx

l
. (11)

Thus for any initial data of this form, the problem (1), (2), and (3) has a simple
explicit solution.

But such data (10) and (11) clearly are very special. So let’s try (following
Fourier in 1827) to take infinite sums. Then we ask what kind of data pairs
φ(x),ψ(x) can be expanded as in (10), (11) for some choice of coefficients An,
Bn? This question was the source of great disputes for half a century around
1800, but the final result of the disputes was very simple: Practically any (!)
function φ(x) on the interval (0, l) can be expanded in an infinite series (10).
We will show this in Chapter 5. It will have to involve technical questions
of convergence and differentiability of infinite series like (9). The series in
(10) is called a Fourier sine series on (0, l). But for the time being let’s not
worry about these mathematical points. Let’s just forge ahead to see what
their implications are.

First of all, (11) is the same kind of series for ψ(x) as (10) is for φ(x).
What we’ve shown is simply that if (10), (11) are true, then the infinite series
(9) ought to be the solution of the whole problem (1), (2), (3).

A sketch of the first few functions sin(πx/ l), sin(2πx/ l), . . . is shown
in Figure 1. The functions cos(nπct/ l) and sin(nπct/ l) which describe the

Figure 1
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behavior in time have a similar form. The coefficients of t inside the sines
and cosines, namely nπc/ l, are called the frequencies. (In some texts, the
frequency is defined as nc/2l.)

If we return to the violin string that originally led us to the problem (1),
(2), (3), we find that the frequencies are

nπ
√

T

l
√

ρ
for n = 1, 2, 3, . . . (12)

The “fundamental” note of the string is the smallest of these,π
√

T /(l
√

ρ). The
“overtones” are exactly the double, the triple, and so on, of the fundamental!
The discovery by Euler in 1749 that the musical notes have such a simple
mathematical description created a sensation. It took over half a century to
resolve the ensuing controversy over the relationship between the infinite
series (9) and d’Alembert’s solution in Section 2.1. �

The analogous problem for diffusion is

DE: ut = kuxx (0 < x < l, 0 < t < ∞) (13)

BC: u(0, t) = u(l, t) = 0 (14)

lC: u(x, 0) = φ(x). (15)

To solve it, we separate the variables u = T(t)X(x) as before. This time we get

T ′

kT
=

X ′′

X
= −λ = constant.

Therefore, T(t) satisfies the equation T ′ = −λkT , whose solution is T (t) =
Ae−λkt . Furthermore,

−X ′′ = λX in 0 < x < l with X (0) = X (l) = 0. (16)

This is precisely the same problem for X(x) as before and so has the same
solutions. Because of the form of T(t),

u(x, t) =
∞

∑

n=1

Ane−(nπ/ l)2kt sin
nπx

l
(17)

is the solution of (13)–(15) provided that

φ(x) =
∞

∑

n=1

An sin
nπx

l
. (18)

Once again, our solution is expressible for each t as a Fourier sine series in x
provided that the initial data are.
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For example, consider the diffusion of a substance in a tube of length l.
Each end of the tube opens up into a very large empty vessel. So the concen-
tration u(x, t) at each end is essentially zero. Given an initial concentration
φ(x) in the tube, the concentration at all later times is given by formula (17).
Notice that as t → ∞, each term in (17) goes to zero. Thus the substance
gradually empties out into the two vessels and less and less remains in the
tube. �

The numbers λn = (nπ/l)
2
are called eigenvalues and the functions

Xn(x) = sin(nπx/ l) are called eigenfunctions. The reason for this termi-
nology is as follows. They satisfy the conditions

−
d2

dx2
X = λX, X (0) = X (l) = 0. (19)

This is an ODE with conditions at two points. Let A denote the operator
−d2/dx2, which acts on the functions that satisfy the Dirichlet boundary con-
ditions. The differential equation has the form AX = λX . An eigenfunction
is a solution X �≡ 0 of this equation and an eigenvalue is a number λ for which
there exists a solution X �≡ 0.

This situation is analogous to the more familiar case of an N × N matrix
A. A vector X that satisfies AX = λX with X �≡ 0 is called an eigenvector and
λ is called an eigenvalue. For anN × N matrix there are at mostN eigenvalues.
But for the differential operator that we are interested in, there are an infinite
number of eigenvalues π2/ l2, 4π2/ l2, 9π2/ l2, . . . . Thus you might say that
we are dealing with infinite-dimensional linear algebra!

In physics and engineering the eigenfunctions are called normal modes
because they are the natural shapes of solutions that persist for all time.

Why are all the eigenvalues of this problem positive? We assumed this in
the discussion above, but now let’sprove it. First, couldλ=0be an eigenvalue?
This wouldmean that X ′′ = 0, so that X (x) = C + Dx . But X (0) = X (l) = 0
implies that C = D = 0, so that X (x) ≡ 0. Therefore, zero is not an eigen-
value.

Next, could there be negative eigenvalues? If λ < 0, let’s write it as
λ = −γ 2. Then X ′′ = γ 2X , so that X (x) = C cosh γ x + D sinh γ x . Then
0 = X (0) = C and 0 = X (l) = D sinh γ l. Hence D = 0 since sinh γ l �= 0.

Finally, let λ be any complex number. Let γ be either one of the two square
roots of −λ; the other one is −γ . Then

X (x) = Ceγ x + De−γ x ,

where we are using the complex exponential function (see Section 5.2).
The boundary conditions yield 0 = X (0) = C + D and 0 = Ceγ l + De−γ l .
Therefore e2γ l = 1. By a well-known property of the complex exponential
function, this implies that Re(γ ) = 0 and 2l Im(γ ) = 2πn for some integer n.
Hence γ = nπ i/ l and λ = −γ 2 = n2π2/ l2, which is real and positive. Thus
the only eigenvalues λ of our problem (16) are positive numbers; in fact, they
are (π/ l)2, (2π/ l)2, . . . .
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EXERCISES

1. (a) Use the Fourier expansion to explain why the note produced by a
violin string rises sharply by one octave when the string is clamped
exactly at its midpoint.

(b) Explain why the note rises when the string is tightened.

2. Consider a metal rod (0 < x < l), insulated along its sides but not at its
ends,which is initially at temperature=1. Suddenly both ends are plunged
into a bath of temperature = 0. Write the differential equation, boundary
conditions, and initial condition. Write the formula for the temperature
u(x, t) at later times. In this problem, assume the infinite series expansion

1 =
4

π

(

sin
πx

l
+

1

3
sin

3πx

l
+

1

5
sin

5πx

l
+ · · ·

)

3. A quantum-mechanical particle on the line with an infinite potential out-
side the interval (0, l) (“particle in a box”) is given by Schrödinger’s
equation ut = iuxx on (0, l) with Dirichlet conditions at the ends. Separate
the variables and use (8) to find its representation as a series.

4. Consider waves in a resistant medium that satisfy the problem

ut t = c2uxx − rut for 0 < x < l

u = 0 at both ends

u(x, 0) = φ(x) ut (x, 0) = ψ(x),

where r is a constant, 0 < r < 2πc/ l. Write down the series expansion
of the solution.

5. Do the same for 2πc/ l < r < 4πc/ l.

6. Separate the variables for the equation tut = uxx + 2u with the boundary
conditions u(0, t) = u(π, t) = 0. Show that there are an infinite number
of solutions that satisfy the initial condition u(x, 0) = 0. So uniqueness
is false for this equation!

4.2 THE NEUMANN CONDITION

The samemethodworks for both theNeumann andRobin boundary conditions
(BCs). In the former case, (4.1.2) is replaced by ux (0, t) = ux (l, t) = 0. Then
the eigenfunctions are the solutions X(x) of

−X ′′ = λX, X ′(0) = X ′(l) = 0, (1)

other than the trivial solution X (x) ≡ 0.
As before, let’s first search for the positive eigenvalues λ = β2 > 0. As

in (4.1.6), X (x) = C cos βx + D sin βx , so that

X ′(x) = −Cβ sinβx + Dβ cosβx .
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The boundary conditions (1) mean first that 0 = X ′(0) = Dβ, so that D = 0,
and second that

0 = X ′(l) = −Cβ sinβl.

Since we don’t want C = 0, we must have sin βl = 0. Thus β = π/ l, 2π/ l,
3π/ l, . . . . Therefore, we have the

Eigenvalues:
(π

l

)2

,

(

2π

l

)2

, · · · (2)

Eigenfunctions: Xn(x) = cos
nπx

l
(n = 1, 2, . . .) (3)

Next let’s check whether zero is an eigenvalue. Set λ = 0 in the ODE (1).
Then X ′′ = 0, so that X (x) = C + Dx and X ′(x) ≡ D. The Neumann bound-
ary conditions are both satisfied if D = 0. C can be any number. Therefore,
λ = 0 is an eigenvalue, and any constant function is its eigenfunction.

If λ < 0 or if λ is complex (nonreal), it can be shown directly, as in the
Dirichlet case, that there is no eigenfunction. (Another proof will be given in
Section 5.3.) Therefore, the list of all the eigenvalues is

λn =
(nπ

l

)2

for n = 0, 1, 2, 3, . . . . (4)

Note that n = 0 is included among them!
So, for instance, the diffusion equation with the Neumann BCs has the

solution

u(x, t) =
1

2
A0 +

∞
∑

n=1

Ane−(nπ/ l)2kt cos
nπx

l
. (5)

This solution requires the initial data to have the “Fourier cosine expansion”

φ(x) =
1

2
A0 +

∞
∑

n=1

An cos
nπx

l
. (6)

All the coefficients A0, A1, A2, . . . are just constants. The first term in (5) and
(6), which comes from the eigenvalue λ = 0, is written separately in the form
1
2

A0 just for later convenience. (The reader is asked to bear with this ridiculous

factor 1
2
until Section 5.1 when its convenience will become apparent.)

What is the behavior of u(x, t) as t → +∞? Since all but the first term in
(5) contains an exponentially decaying factor, the solution decays quite fast to
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the first term 1
2

A0, which is just a constant. Since these boundary conditions
correspond to insulation at both ends, this agrees perfectly with our intuition
of Section 2.5 that the solution “spreads out.” This is the eventual behavior
if we wait long enough. (To actually prove that the limit as t → ∞ is given
term by term in (5) requires the use of one of the convergence theorems in
Section A.2. We omit this verification here.)

Consider now the wave equation with the Neumann BCs. The eigenvalue
λ = 0 then leads to X(x) = constant and to the differential equation T ′′(t) =
λc2T (t) = 0, which has the solution T (t) = A + Bt . Therefore, the wave
equation with Neumann BCs has the solutions

u(x, t) =
1

2
A0 +

1

2
B0t

+
∞

∑

n=1

(

An cos
nπct

l
+ Bn sin

nπct

l

)

cos
nπx

l
. (7)

(Again, the factor 1
2
will be justified later.) Then the initial data must satisfy

φ(x) =
1

2
A0 +

∞
∑

n=1

An cos
nπx

l
(8)

and

ψ(x) =
1

2
B0 +

∞
∑

n=1

nπc

l
Bn cos

nπx

l
. (9)

Equation (9) comes from first differentiating (7) with respect to t and then
setting t = 0. �

A “mixed” boundary condition would be Dirichlet at one end and Neu-
mann at the other. For instance, in case the BCs are u(0, t) = ux (l, t) = 0, the
eigenvalue problem is

−X ′′ = λX X (0) = X ′(l) = 0. (10)

The eigenvalues then turn out to be (n + 1
2
)
2
π2/ l2 and the eigenfunctions

sin[(n + 1
2
)πx/ l] for n = 0, 1, 2, . . . (see Exercises 1 and 2). For a discussion

of boundary conditions in the context of musical instruments, see [HJ].
For another example, consider the Schrödinger equation ut = iuxx in

(0, l) with the Neumann BCs ux (0, t) = ux (l, t) = 0 and initial condition
u(x, 0) = φ(x). Separation of variables leads to the equation

T ′

iT
=

X ′′

X
= −λ = constant,
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so that T (t) = e−iλt and X(x) satisfies exactly the same problem (1) as before.
Therefore, the solution is

u(x, t) =
1

2
A0 +

∞
∑

n=1

Ane−i(nπ/ l)2t cos
nπx

l
.

The initial condition requires the cosine expansion (6).

EXERCISES

1. Solve the diffusion problem ut = kuxx in 0 < x < l, with the mixed
boundary conditions u(0, t) = ux (l, t) = 0.

2. Consider the equation utt = c2uxx for 0 < x < l, with the boundary con-
ditions ux (0, t) = 0, u(l, t) = 0 (Neumann at the left, Dirichlet at the
right).

(a) Show that the eigenfunctions are cos[(n + 1
2
)πx/ l].

(b) Write the series expansion for a solution u(x, t).

3. Solve the Schrödinger equation ut = ikuxx for real k in the interval
0 < x < l with the boundary conditions ux (0, t) = 0, u(l, t) = 0.

4. Consider diffusion inside an enclosed circular tube. Let its length (circum-
ference) be 2l. Let x denote the arc length parameter where −l ≤ x ≤ l.
Then the concentration of the diffusing substance satisfies

ut = kuxx for − l ≤ x ≤ l

u(−l, t) = u(l, t) and ux (−l, t) = ux (l, t).

These are called periodic boundary conditions.
(a) Show that the eigenvalues are λ = (nπ/ l)2 for n = 0, 1, 2, 3, . . . .
(b) Show that the concentration is

u(x, t) =
1

2
A0 +

∞
∑

n=1

(

An cos
nπx

l
+ Bn sin

nπx

l

)

e−n2π2kt/ l2 .

4.3 THE ROBIN CONDITION

We continue the method of separation of variables for the case of the Robin
condition. The Robin condition means that we are solving −X ′′ = λX with
the boundary conditions

X ′ − a0X = 0 at x = 0 (1)

X ′ + al X = 0 at x = l. (2)

The two constants a0 and al should be considered as given.
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The physical reason they are written with opposite signs is that they
correspond to radiation of energy if a0 and al are positive, absorption of
energy if a0 and al are negative, and insulation if a0 = al = 0. This is the
interpretation for a heat problem: See the discussion in Section 1.4 or Exercise
2.3.8. For the case of the vibrating string, the interpretation is that the string
shares its energy with the endpoints if a0 and al are positive, whereas the
string gains some energy from the endpoints if a0 and al are negative: See
Exercise 11.

The mathematical reason for writing the constants in this way is that
the unit outward normal n for the interval 0 ≤ x ≤ l points to the left at
x = 0 (n = −1) and to the right at x = l (n = +1). Therefore, we expect that
the nature of the eigenfunctionsmight depend on the signs of the two constants
in opposite ways.

POSITIVE EIGENVALUES

Our task now is to solve the ODE −X ′′ = λX with the boundary conditions
(1), (2). First let’s look for the positive eigenvalues

λ = β2 > 0.

As usual, the solution of the ODE is

X (x) = C cosβx + D sinβx (3)

so that

X ′(x) ± a X (x) = (β D ± aC) cosβx + (−βC ± aD) sinβx .

At the left end x = 0 we require that

0 = X ′(0) − a0X (0) = β D − a0C. (4)

So we can solve for D in terms of C. At the right end x = l we require that

0 = (β D + alC) cosβl + (−βC + al D) sinβl. (5)

Messy as they may look, equations (4) and (5) are easily solved since they are
equivalent to the matrix equation

(

−a0 β

al cosβl − β sinβl β cosβl + al sinβl

)

(

C
D

)

=
(

0
0

)

. (6)

Therefore, substituting for D, we have

0 = (a0C + alC) cosβl +
(

−βC +
ala0C

β

)

sinβl. (7)

We don’t want the trivial solution C = 0. We divide by C cos βl and multiply
by β to get

(

β2 − a0al

)

tanβl = (a0 + al)β. (8)
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Any root β > 0 of this “algebraic” equation would give us an eigenvalue
λ = β2.

What would be the corresponding eigenfunction? It would be the above
X(x) with the required relation between C and D, namely,

X (x) = C

(

cosβx +
a0

β
sinβx

)

(9)

for any C �= 0. By the way, because we divided by cos βl, there is the excep-
tional case when cos βl = 0; it would mean by (7) that β = √

a0al .
Our next task is to solve (8) for β. This is not so easy, as there is no

simple formula. One way is to calculate the roots numerically, say by New-
ton’s method. Another way is by graphical analysis, which, instead of precise
numerical values, will provide a lot of qualitative information. This is what
we’ll do. It’s here where the nature of a0 and al come into play. Let us rewrite
the eigenvalue equation (8) as

tanβl =
(a0 + al)β

β2 − a0al

. (10)

Our method is to sketch the graphs of the tangent function y = tan βl and the
rational function y = (a0 + al)β/(β2 − a0al) as functions of β > 0 and to
find their points of intersection. What the rational function looks like depends
on the constants a0 and al.

Case 1 In Figure 1 is pictured the case of radiation at both ends: a0 > 0 and
al > 0. Each of the points of intersection (for β > 0) provides an eigenvalue
λn = β2

n . The results depend very much on the a0 and al. The exceptional situ-
ationmentioned above, when cos βl = 0 and β = √

a0al , will occur when the
graphs of the tangent function and the rational function “intersect at infinity.”

No matter what they are, as long as they are both positive, the graph clearly
shows that

n2π2

l2
< λn < (n + 1)2

π2

l2
(n = 0, 1, 2, 3, . . .) . (11)

Furthermore,

lim
n→∞

βn − n
π

l
= 0, (12)

which means that the larger eigenvalues get relatively closer and closer to
n2π2/l2 (see Exercise 19). You may compare this to the case a0 = al = 0, the
Neumann problem, where they are all exactly equal to n2π2/l2.

Case 2 The case of absorption at x = 0 and radiation at x = l, but more
radiation than absorption, is given by the conditions

a0 < 0, al > 0, a0 + al > 0. (13)
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Figure 1

Then the graph looks like Figure 2 or 3, depending on the relative sizes of
a0 and al. Once again we see that (11) and (12) hold, except that in Figure 2
there is no eigenvalue λ0 in the interval (0, π2/l2).

There is an eigenvalue in the interval (0, π2/l2) only if the rational curve
crosses the first branch of the tangent curve. Since the rational curve has
only a single maximum, this crossing can happen only if the slope of the
rational curve is greater than the slope of the tangent curve at the origin. Let’s

Figure 2
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Figure 3

calculate these two slopes. A direct calculation shows that the slope dy/dβ
of the rational curve at the origin is

a0 + al

−a0al

=
al − |a0|

al |a0|
> 0

because of (13). On the other hand, the slope of the tangent curve y = tan lβ
at the origin is l sec2(l0) = l. Thus we reach the following conclusion. In case

a0 + al > −a0all (14)

(which means “much more radiation than absorption”), the rational curve
will start out at the origin with a greater slope than the tangent curve and the
two graphs must intersect at a point in the interval (0, π/2l). Therefore, we
conclude that in Case 2 there is an eigenvalue 0 < λ0 < (π/2l)2 if and only
if (14) holds.

Other cases, for instance absorption at both ends, may be found in the
exercises, especially Exercise 8.

ZERO EIGENVALUE

In Exercise 2 it is shown that there is a zero eigenvalue if and only if

a0 + al = −a0all. (15)

Notice that (15) can happen only if a0 or al is negative and the interval has
exactly a certain length or else a0 = al = 0.

NEGATIVE EIGENVALUE

Now let’s investigate the possibility of a negative eigenvalue. This is a very
important question; see the discussion at the end of this section. To avoid
dealing with imaginary numbers, we set

λ = −γ 2 < 0
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and write the solution of the differential equation as

X (x) = C cosh γ x + D sinh γ x .

(An alternative form, which we used at the end of Section 4.1, is Aeγ x +
Be−γ x .) The boundary conditions, much as before, lead to the eigenvalue
equation

tanh γ l = −
(a0 + al) γ

γ 2 + a0al

. (16)

(Verify it!) So we look for intersections of these two graphs [on the two sides
of (16)] for γ > 0. Any such point of intersection would provide a negative
eigenvalue λ = −γ 2 and a corresponding eigenfunction

X (x) = cosh γ x +
a0

γ
sinh γ x . (17)

Several different cases are illustrated in Figure 4. Thus in Case 1, of radiation
at both ends, when a0 and al are both positive, there is no intersection and so
no negative eigenvalue.

Case 2, the situationwithmore radiation than absorption (a0 < 0, al > 0,
a0 + al > 0), is illustrated by the two solid (14) and dashed (18) curves.
There is either one intersection or none, depending on the slopes at the origin.
The slope of the tanh curve is l, while the slope of the rational curve is

Figure 4
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−(a0 + al)/(a0a1) > 0. If the last expression is smaller than l, there is an
intersection; otherwise, there isn’t. So our conclusion in Case 2 is as follows.

Let a0 < 0 and al > −a0. If

a0 + al < −a0all, (18)

then there exists exactly one negative eigenvalue, which we’ll call λ0 < 0. If
(14) holds, then there is no negative eigenvalue. Notice how the “missing”
positive eigenvalue λ0 in case (18) now makes its appearance as a nega-
tive eigenvalue! Furthermore, the zero eigenvalue is the borderline case (15);
therefore, we use the notation λ0 = 0 in the case of (15).

SUMMARY

We summarize the various cases as follows:

Case 1: Only positive eigenvalues.

Case 2 with (14): Only positive eigenvalues.

Case 2 with (15): Zero is an eigenvalue, all the rest are positive.

Case 2 with (18): One negative eigenvalue, all the rest are positive.

Exercise 8 provides a complete summary of all the other cases.
In any case, that is, for any values for a0 and al, there are no complex,

nonreal, eigenvalues. This fact can be shown directly as before but will also be
shown by a general, more satisfying, argument in Section 5.3. Furthermore,
there are always an infinite number of positive eigenvalues, as is clear from
(10). In fact, the tangent function has an infinite number of branches. The
rational function on the right side of (10) always goes from the origin to the β
axis as β → ∞ and so must cross each branch of the tangent except possibly
the first one.

For all these problems it is critically important to find all the eigenvalues.
If even one of them were missing, there would be initial data for which we
could not solve the diffusion or wave equations. This will become clearer in
Chapter 5. Exactly howwe enumerate the eigenvalues, that is, whether we call
the first one λ0 or λ1 or λ5 or λ−2, is not important. It is convenient, however,
to number them in a consistent way. In the examples presented above we have
numbered them in a way that neatly exhibits their dependence on a0 and al.

What Is the Grand Conclusion for the Robin BCs? As before, we
have an expansion

u(x, t) =
∑

n

Tn(t)Xn(x), (19)



4.3 THE ROBIN CONDITION 99

where Xn(x) are the eigenfunctions and where

Tn(t) =

{

Ane−λnkt for diffusions

An cos(
√

λn ct) + Bn sin(
√

λn ct) for waves.
(20)

Example 1.

Let a0 < 0 < a0 + al < −a0all, which is Case 2 with (18). Then the
grand conclusion takes the following explicit form.Aswe showed above,
in this case there is exactly one negative eigenvalue λ0 = −γ 2

0 < 0 as

well as a sequence of positive ones λn = +β2
n > 0 for n = 1, 2, 3, . . . .

The complete solution of the diffusion problem

ut = kuxx for 0 < x < l, 0 < t < ∞
ux − a0u = 0 for x = 0, ux + alu = 0 for x = l

u = φ for t = 0

therefore is

u(x, t) = A0e
+γ 2

0 kt

(

cosh γ0x +
a0

γ0
sinh γ0x

)

+
∞

∑

n=1

Ane−β2
n kt

(

cosβnx +
a0

βn

sinβnx

)

. (21)

This conclusion (21) has the following physical interpretation if,
say, u(x, t) is the temperature in a rod of length l. We have taken the
case when energy is supplied at x = 0 (absorption of energy by the rod,
heat flux goes into the rod at its left end) and when energy is radiated
from the right end (the heat flux goes out). For a given length l and a
given radiation al > 0, there is a negative eigenvalue (λ0 = −γ 2

0 ) if and
only if the absorption is great enough [|a0| > al/(1 + all)]. Such a large
absorption coefficient allows the temperature to build up to large values,
as we see from the expansion (21). In fact, all the terms get smaller as
time goes on, except the first one, which grows exponentially due to the

factor e+γ 2
0 kt . So the rod gets hotter and hotter (unless A0 = 0, which

could only happen for very special initial data).
If, on the other hand, the absorption is relatively small [that is,

|a0| < al/(1 + all)], then all the eigenvalues are positive and the tem-
perature will remain bounded and will eventually decay to zero. Other
interpretations of this sort are left for the exercises. �

For the wave equation, a negative eigenvalue λ0 = −γ 2
0 would also

lead to exponential growth because the expansion for u(x, t) would
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contain the term

(A0eγ0ct + B0e−γ0ct )X0 (x).

This term comes from the usual equation −T ′′ = λc2T = −(γ0c)2T for the
temporal part of a separated solution (see Exercise 10).

EXERCISES

1. Find the eigenvalues graphically for the boundary conditions

X (0) = 0, X ′(l) + a X (l) = 0.

Assume that a �= 0.

2. Consider the eigenvalue problem with Robin BCs at both ends:

−X ′′ = λX

X ′(0) − a0 X (0) = 0, X ′(l) + al X (l) = 0.

(a) Show that λ = 0 is an eigenvalue if and only if a0 + al = −a0all.
(b) Find the eigenfunctions corresponding to the zero eigenvalue. (Hint:

First solve the ODE for X(x). The solutions are not sines or cosines.)

3. Derive the eigenvalue equation (16) for the negative eigenvalues
λ = −γ 2 and the formula (17) for the eigenfunctions.

4. Consider the Robin eigenvalue problem. If

a0 < 0, al < 0 and − a0 − al < a0all,

show that there are two negative eigenvalues. This case may be called
“substantial absorption at both ends.” (Hint: Show that the rational curve
y = −(a0 + al)γ /(γ 2 + a0al) has a single maximum and crosses the
line y = 1 in two places. Deduce that it crosses the tanh curve in two
places.)

5. In Exercise 4 (substantial absorption at both ends) show graphically that
there are an infinite number of positive eigenvalues. Show graphically
that they satisfy (11) and (12).

6. If a0 = al = a in the Robin problem, show that:
(a) There are no negative eigenvalues if a ≥ 0, there is one if

−2/ l < a < 0, and there are two if a < −2/ l.
(b) Zero is an eigenvalue if and only if a = 0 or a = −2/ l.

7. If a0 = al = a, show that as a → +∞, the eigenvalues tend to the eigen-
values of the Dirichlet problem. That is,

lim
a→∞

{

βn(a) −
(n + 1) π

l

}

= 0,

where λn(a) = [βn(a)]2 is the (n + l)st eigenvalue.
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8. Consider again Robin BCs at both ends for arbitrary a0 and al.
(a) In the a0al plane sketch the hyperbola a0 + al = −a0all. Indicate

the asymptotes. For (a0, al) on this hyperbola, zero is an eigenvalue,
according to Exercise 2(a).

(b) Show that the hyperbola separates the whole plane into three re-
gions, depending on whether there are two, one, or no negative
eigenvalues.

(c) Label the directions of increasing absorption and radiation on each
axis. Label the point corresponding to Neumann BCs.

(d) Where in the plane do the Dirichlet BCs belong?

9. On the interval 0 ≤ x ≤ 1 of length one, consider the eigenvalue problem

−X ′′ = λX

X ′(0) + X (0) = 0 and X (1) = 0

(absorption at one end and zero at the other).
(a) Find an eigenfunction with eigenvalue zero. Call it X0(x).
(b) Find an equation for the positive eigenvalues λ = β2.
(c) Show graphically from part (b) that there are an infinite number of

positive eigenvalues.
(d) Is there a negative eigenvalue?

10. Solve the wave equation with Robin boundary conditions under the as-
sumption that (18) holds.

11. (a) Prove that the (total) energy is conserved for the wave equationwith
Dirichlet BCs, where the energy is defined to be

E = 1
2

∫ l

0

(

c−2u2
t + u2

x

)

dx .

(Compare this definition with Section 2.2.)
(b) Do the same for the Neumann BCs.
(c) For the Robin BCs, show that

ER = 1
2

∫ l

0

(

c−2u2
t + u2

x

)

dx + 1
2
al[u(l, t)]2 + 1

2
a0[u(0, t)]2

is conserved. Thus, while the total energy ER is still a constant,
some of the internal energy is “lost” to the boundary if a0 and al are
positive and “gained” from the boundary if a0 and al are negative.

12. Consider the unusual eigenvalue problem

−vxx = λv for 0 < x < l

vx (0) = vx (l) =
v(l) − v(0)

l
.

(a) Show that λ = 0 is a double eigenvalue.
(b) Get an equation for the positive eigenvalues λ > 0.
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(c) Letting γ = 1
2
l
√

λ, reduce the equation in part (b) to the equation

γ sin γ cos γ = sin2 γ.

(d) Use part (c) to find half of the eigenvalues explicitly and half of
them graphically.

(e) Assuming that all the eigenvalues are nonnegative, make a list of
all the eigenfunctions.

(f) Solve the problem ut = kuxx for 0 < x < l, with the BCs given
above, and with u(x, 0) = φ(x).

(g) Show that, as t → ∞, lim u(x, t) = A + Bx for some constants
A, B, assuming that you can take limits term by term.

13. Consider a string that is fixed at the end x = 0 and is free at the end x = l
except that a load (weight) of given mass is attached to the right end.
(a) Show that it satisfies the problem

ut t = c2uxx for 0 < x < l

u(0, t) = 0 ut t (l, t) = −kux (l, t)

for some constant k.
(b) What is the eigenvalue problem in this case?
(c) Find the equation for the positive eigenvalues and find the eigen-

functions.

14. Solve the eigenvalue problem x2u′′ + 3xu′ + λu = 0 for 1 < x < e,
with u(1) = u(e) = 0. Assume that λ > 1. (Hint: Look for solutions
of the form u = xm .)

15. Find the equation for the eigenvalues λ of the problem

(κ(x)X ′)′ + λρ(x)X = 0 for 0 < x < l with X (0) = X (l) = 0,

whereκ(x) = κ2
1 for x < a, κ(x) = κ2

2 for x > a, ρ(x) = ρ2
1 for x < a,

and ρ(x) = ρ2
2 for x > a. All these constants are positive and 0 < a < l.

16. Find the positive eigenvalues and the corresponding eigenfunctions of
the fourth-order operator +d4/dx4 with the four boundary conditions

X (0) = X (l) = X ′′(0) = X ′′(l) = 0.

17. Solve the fourth-order eigenvalue problem X ′′′′ = λX in 0 < x < l, with
the four boundary conditions

X (0) = X ′(0) = X (l) = X ′(l) = 0,

where λ > 0. (Hint: First solve the fourth-order ODE.)

18. A tuning fork may be regarded as a pair of vibrating flexible bars with
a certain degree of stiffness. Each such bar is clamped at one end and
is approximately modeled by the fourth-order PDE ut t + c2uxxxx = 0.
It has initial conditions as for the wave equation. Let’s say that
on the end x = 0 it is clamped (fixed), meaning that it satisfies
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u(0, t) = ux (0, t) = 0. On the other end x = l it is free, meaning that it
satisfies uxx(l, t) = uxxx (l, t) = 0. Thus there are a total of four boundary
conditions, two at each end.
(a) Separate the time and space variables to get the eigenvalue problem

X ′′′′ = λX .
(b) Show that zero is not an eigenvalue.
(c) Assuming that all the eigenvalues are positive, write them as λ = β4

and find the equation for β.
(d) Find the frequencies of vibration.
(e) Compare your answer in part (d) with the overtones of the vibrating

string by looking at the ratioβ2
2/β

2
1 . Explainwhy you hear an almost

pure tone when you listen to a tuning fork.

19. Show that in Case 1 (radiation at both ends)

lim
n→∞

[

λn −
n2π2

l2

]

=
2

l
(a0 + al) .


