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WAVES AND

DIFFUSIONS

In this chapterwe study thewave and diffusion equations on thewhole real line
−∞ < x < +∞. Real physical situations are usually on finite intervals. We
are justified in taking x on the whole real line for two reasons. Physically
speaking, if you are sitting far away from the boundary, it will take a certain
time for the boundary to have a substantial effect on you, and until that time
the solutions we obtain in this chapter are valid. Mathematically speaking,
the absence of a boundary is a big simplification. The most fundamental
properties of the PDEs can be found most easily without the complications of
boundary conditions. That is the purpose of this chapter. We begin with the
wave equation.

2.1 THE WAVE EQUATION

We write the wave equation as

ut t = c2uxx for −∞ < x < +∞. (1)

(Physically, you can imagine a very long string.) This is the simplest second-
order equation. The reason is that the operator factors nicely:

ut t − c2uxx =
(

∂

∂t
− c

∂

∂x

)(

∂

∂t
+ c

∂

∂x

)

u = 0. (2)

This means that, starting from a function u(x, t), you compute ut + cux , call
the result v, then you compute vt − cvx , and you ought to get the zero function.
The general solution is

u(x, t) = f (x + ct) + g(x − ct) (3)
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34 CHAPTER 2 WAVES AND DIFFUSIONS

where f and g are two arbitrary (twice differentiable) functions of a single
variable.

Proof. Because of (2), if we let v = ut + cux , wemust have vt − cvx = 0.
Thus we have two first-order equations

vt − cvx = 0 (4a)

and

ut + cux = v. (4b)

These two first-order equations are equivalent to (1) itself. Let’s solve them
one at a time. As we know from Section 1.2, equation (4a) has the solution
v(x, t) = h(x + ct) , where h is any function.

So we must solve the other equation, which now takes the form

ut + cux = h(x + ct) (4c)

for the unknown function u(x, t). It is easy to check directly by differentiation
that one solution is u(x, t) = f (x + ct), where f ′(s) = h(s)/2c. [A prime (′)
denotes the derivative of a function of one variable.] To the solution f (x + ct)
we can add g(x − ct) to get another solution (since the equation is linear).
The most general solution of (4b) in fact turns out to be a particular solution
plus any solution of the homogeneous equation; that is,

u(x, t) = f (x + ct) + g(x − ct),

as asserted by the theorem. The complete justification is left to be worked out
in Exercise 4.

A different method to derive the solution formula (3) is to introduce the
characteristic coordinates

ξ = x + ct η = x − ct .

By the chain rule, we have ∂x = ∂ξ + ∂η and ∂t = c∂ξ + c∂η. Therefore,
∂t − c∂x = −2c∂η and ∂t + c∂x = 2c∂ξ . So equation (1) takes the form

(∂t − c∂x )(∂t + c∂x )u = (−2c∂ξ )(2c∂η)u = 0,

which means that uξη = 0 since c �= 0. The solution of this transformed equa-
tion is

u = f (ξ ) + g(η)

(see Section 1.1), which agrees exactly with the previous answer (3). �

The wave equation has a nice simple geometry. There are two families
of characteristic lines, x ± ct = constant, as indicated in Figure 1. The most
general solution is the sum of two functions. One, g(x − ct), is a wave of
arbitrary shape traveling to the right at speed c. The other, f (x + ct), is another
shape traveling to the left at speed c. A “movie” of g(x − ct) is sketched in
Figure 1 of Section 1.3.
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Figure 1

INITIAL VALUE PROBLEM

The initial-value problem is to solve the wave equation

ut t = c2uxx for −∞ < x < +∞ (1)

with the initial conditions

u(x, 0) = φ(x) ut (x, 0) = ψ(x), (5)

whereφ andψ are arbitrary functions of x.There is one, and only one, solution
of this problem. For instance, if φ(x)= sin x andψ(x)= 0, then u(x, t)= sin x
cos ct.

The solution of (1),(5) is easily found from the general formula (3). First,
setting t = 0 in (3), we get

φ(x) = f (x) + g(x). (6)

Then, using the chain rule, we differentiate (3) with respect to t and put t = 0
to get

ψ(x) = c f ′(x) − cg′(x). (7)

Let’s regard (6) and (7) as two equations for the two unknown functions
f and g. To solve them, it is convenient temporarily to change the name of
the variable to some neutral name; we change the name of x to s. Now we
differentiate (6) and divide (7) by c to get

φ′ = f ′ + g′ and
1

c
ψ = f ′ − g′.

Adding and subtracting the last pair of equations gives us

f ′ =
1

2

(

φ′ +
ψ

c

)

and g′ =
1

2

(

φ′ −
ψ

c

)

.

Integrating, we get

f (s) =
1

2
φ(s) +

1

2c

∫ s

0

ψ + A
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and

g(s) =
1

2
φ(s) −

1

2c

∫ s

0

ψ + B,

where A and B are constants. Because of (6), we have A + B = 0. This tells
us what f and g are in the general formula (3). Substituting s = x + ct into
the formula for f and s = x − ct into that of g, we get

u(x, t) =
1

2
φ(x + ct) +

1

2c

∫ x+ct

0

ψ +
1

2
φ(x − ct) −

1

2c

∫ x−ct

0

ψ.

This simplifies to

u(x, t) =
1

2
[φ(x + ct) + φ(x − ct)] +

1

2c

∫ x+ct

x−ct

ψ(s) ds. (8)

This is the solution formula for the initial-value problem, due to
d’Alembert in 1746. Assuming φ to have a continuous second derivative
(written φ ∈ C2) and ψ to have a continuous first derivative (ψ ∈ C1), we
see from (8) that u itself has continuous second partial derivatives in x and t
(u ∈ C2). Then (8) is a bona fide solution of (1) and (5). You may check this
directly by differentiation and by setting t = 0.

Example 1.

For φ(x) ≡ 0 and ψ(x) = cosx , the solution is u(x, t) = (1/2c)
[sin(x + ct) − sin(x − ct)] = (1/c) cos x sin ct . Checking this result
directly, we have utt = −c cos x sin ct, uxx = −(1/c) cos x sin ct, so that
utt = c2uxx. The initial condition is easily checked. �

Example 2. The Plucked String

For a vibrating string the speed is c =
√

T/ρ. Consider an infinitely
long string with initial position

φ(x) =







b −
b|x |

a
for |x | < a

0 for |x | > a

(9)

and initial velocityψ(x)≡ 0 for all x.This is a “three-finger” pluck, with
all three fingers removed at once. A “movie” of this solution u(x, t) =
1
2
[φ(x + ct) + φ(x − ct)] is shown in Figure 2. (Even though this solu-

tion is not twice differentiable, it can be shown to be a “weak” solution,
as discussed later in Section 12.1.)

Each of these pictures is the sum of two triangle functions, one
moving to the right and one to the left, as is clear graphically. To write
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down the formulas that correspond to the pictures requires a lot more
work. The formulas depend on the relationships among the five numbers
0,±a, x ± ct. For instance, let t = a/2c.Then x ± ct = x ± a/2. First, if
x < −3a/2, then x ± a/2 < −a and u(x, t) ≡ 0. Second, if −3a/2 <
x < −a/2, then

u(x, t) =
1

2
φ

(

x +
1

2
a

)

=
1

2

(

b −
b|x + 1

2
a|

a

)

=
3b

4
+

bx

2a
.

Third, if |x| < a/2, then

u(x, t) =
1

2

[

φ

(

x +
1

2
a

)

+ φ

(

x −
1

2
a

)]

=
1

2

[

b −
b

(

x + 1
2
a
)

a
+ b −

b
(

1
2
a − x

)

a

]

=
1

2
b

and so on [see Figure 2]. �

Figure 2
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EXERCISES

1. Solve ut t = c2uxx , u(x, 0) = ex , ut (x, 0) = sin x .

2. Solve ut t = c2uxx , u(x, 0) = log(1 + x2), ut (x, 0) = 4 + x .

3. The midpoint of a piano string of tension T , density ρ, and length l is hit
by a hammer whose head diameter is 2a. A flea is sitting at a distance
l/4 from one end. (Assume that a < l/4; otherwise, poor flea!) How long
does it take for the disturbance to reach the flea?

4. Justify the conclusion at the beginning of Section 2.1 that every solution
of the wave equation has the form f (x + ct) + g(x − ct).

5. (The hammer blow) Let φ(x) ≡ 0 and ψ(x) = 1 for |x | < a and
ψ(x) = 0 for |x | ≥ a. Sketch the string profile (u versus x) at each of
the successive instants t = a/2c, a/c, 3a/2c, 2a/c, and 5a/c. [Hint:
Calculate

u(x, t) =
1

2c

∫ x+ct

x−ct

ψ(s) ds =
1

2c
{length of (x− ct, x + ct) ∩ (−a, a)}.

Then u(x, a/2c) = (1/2c) {length of (x − a/2, x + a/2) ∩ (−a, a)}.
This takes on different values for |x | < a/2, for a/2 < x < 3a/2, and
for x > 3a/2. Continue in this manner for each case.]

6. In Exercise 5, find the greatest displacement, maxx u(x, t), as a function
of t.

7. If both φ and ψ are odd functions of x, show that the solution u(x, t) of
the wave equation is also odd in x for all t.

8. A spherical wave is a solution of the three-dimensional wave equation
of the form u(r, t), where r is the distance to the origin (the spherical
coordinate). The wave equation takes the form

ut t = c2
(

urr +
2

r
ur

)

(“spherical wave equation”).

(a) Change variables v = ru to get the equation for v: vt t = c2vrr .
(b) Solve for v using (3) and thereby solve the spherical wave equat-

ion.
(c) Use (8) to solve it with initial conditions u(r, 0) = φ(r ),

ut (r, 0) = ψ(r ), taking both φ(r) and ψ(r) to be even functions
of r.

9. Solve uxx − 3uxt − 4ut t = 0, u(x, 0) = x2, ut (x, 0) = ex . (Hint: Fac-
tor the operator as we did for the wave equation.)

10. Solve uxx + uxt − 20ut t = 0, u(x, 0) = φ(x), ut (x, 0) = ψ(x).

11. Find the general solution of 3ut t + 10uxt + 3uxx = sin(x + t).
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Figure 1

2.2 CAUSALITY AND ENERGY

CAUSALITY

We have just learned that the effect of an initial position φ(x) is a pair of waves
traveling in either direction at speed c and at half the original amplitude. The
effect of an initial velocity ψ is a wave spreading out at speed ≤c in both
directions (see Exercise 2.1.5 for an example). So part of the wave may lag
behind (if there is an initial velocity), but no part goes faster than speed c.
The last assertion is called the principle of causality. It can be visualized in
the xt plane in Figure 1.

An initial condition (position or velocity or both) at the point (x0, 0)
can affect the solution for t > 0 only in the shaded sector, which is called
the domain of influence of the point (x0, 0). As a consequence, if φ and ψ
vanish for |x | > R, then u(x, t) = 0 for |x | > R + ct . In words, the domain
of influence of an interval (|x | ≤ R) is a sector (|x | ≤ R + ct).

An “inverse” way to express causality is the following. Fix a point (x, t)
for t > 0 (see Figure 2). How is the number u(x, t) synthesized from the initial
data φ, ψ? It depends only on the values of φ at the two points x ± ct , and
it depends only on the values of ψ within the interval [x − ct, x + ct]. We
therefore say that the interval (x − ct, x + ct) is the interval of dependence
of the point (x, t) on t = 0. Sometimes we call the entire shaded triangle �
the domain of dependence or the past history of the point (x, t). The domain
of dependence is bounded by the pair of characteristic lines that pass through
(x, t).

Figure 2
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ENERGY

Imagine an infinite string with constants ρ and T . Then ρut t = T uxx for

−∞ < x < +∞. From physics we know that the kinetic energy is 1
2
mv2,

which in our case takes the form KE = 1
2
ρ

∫

u2
t dx . This integral, and the

following ones, are evaluated from −∞ to +∞. To be sure that the integral
converges, we assume that φ(x) andψ(x) vanish outside an interval {|x | ≤ R}.
As mentioned above, u(x, t) [and therefore ut(x, t)] vanish for |x | > R + ct .
Differentiating the kinetic energy, we can pass the derivative under the integral
sign (see Section A.3) to get

dKE

dt
= ρ

∫

ut ut t dx .

Then we substitute the PDE ρut t = T uxx and integrate by parts to get

dKE

dt
= T

∫

ut uxx dx = Tut ux − T

∫

ut x ux dx .

The term Tutux is evaluated at x = ±∞ and so it vanishes. But the final term
is a pure derivative since ut x ux = ( 1

2
u2

x )t . Therefore,

dKE

dt
= −

d

dt

∫

1

2
Tu2x dx .

Let PE = 1
2
T

∫

u2
x dx and let E = KE + PE. Then dKE/dt = −dPE/dt , or

dE/dt = 0. Thus

E = 1
2

∫ +∞

−∞

(

ρu2
t + Tu2x

)

dx (1)

is a constant independent of t. This is the law of conservation of energy.
In physics courses we learn that PE has the interpretation of the potential

energy. The only thing we need mathematically is the total energy E. The
conservation of energy is one of the most basic facts about the wave equation.
Sometimes the definition of E is modified by a constant factor, but that does
not affect its conservation. Notice that the energy is necessarily positive. The
energy can also be used to derive causality (as will be done in Section 9.1).

Example 1.

The plucked string, Example 2 of Section 2.1, has the energy

E =
1

2
T

∫

φ2
x dx =

1

2
T

(

b

a

)2

2a =
Tb2

a
. �

In electromagnetic theory the equations are Maxwell’s. Each component
of the electric andmagnetic fields satisfies the (three-dimensional) wave equa-
tion, where c is the speed of light. The principle of causality, discussed above,



2.2 CAUSALITY AND ENERGY 41

is the cornerstone of the theory of relativity. It means that a signal located at
the position x0 at the instant t0 cannot move faster than the speed of light. The
domain of influence of (x0, t0) consists of all the points that can be reached by
a signal of speed c starting from the point x0 at the time t0. It turns out that the
solutions of the three-dimensional wave equation always travel at speeds ex-
actly equal to c and never slower. Therefore, the causality principle is sharper
in three dimensions than in one. This sharp form is called Huygens’s principle
(see Chapter 9).

Flatland is an imaginary two-dimensionalworld.You can think of yourself
as awaterbug confined to the surface of a pond.Youwouldn’twant to live there
because Huygens’s principle is not valid in two dimensions (see Section 9.2).
Each sound you make would automatically mix with the “echoes” of your
previous sounds. And each view would be mixed fuzzily with the previous
views. Three is the best of all possible dimensions.

EXERCISES

1. Use the energy conservation of the wave equation to prove that the only
solution with φ ≡ 0 and ψ ≡ 0 is u ≡ 0. (Hint: Use the first vanishing
theorem in Section A.1.)

2. For a solution u(x, t) of the wave equation with ρ = T = c = 1, the energy

density is defined as e = 1
2
(u2

t + u2
x ) and the momentum density as p =

utux.
(a) Show that ∂e/∂t = ∂p/∂x and ∂p/∂t = ∂e/∂x .
(b) Show that both e(x, t) and p(x, t) also satisfy the wave equation.

3. Show that the wave equation has the following invariance properties.
(a) Any translate u(x − y, t), where y is fixed, is also a solution.
(b) Any derivative, say ux, of a solution is also a solution.
(c) The dilated function u(ax, at) is also a solution, for any constant a.

4. If u(x, t) satisfies the wave equation utt = uxx, prove the identity

u(x + h, t + k) + u(x − h, t − k) = u(x + k, t + h) + u(x − k, t − h)

for all x, t, h, and k. Sketch the quadrilateral Q whose vertices are the
arguments in the identity.

5. For the damped string, equation (1.3.3), show that the energy decreases.

6. Prove that, among all possible dimensions, only in three dimensions can
one have distortionless spherical wave propagation with attenuation. This
means the following. A spherical wave in n-dimensional space satisfies
the PDE

ut t = c2
(

urr +
n − 1

r
ur

)

,

where r is the spherical coordinate. Consider such a wave that has
the special form u(r, t) = α(r ) f (t − β(r )), where α(r) is called the
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attenuation and β(r) the delay. The question is whether such solutions
exist for “arbitrary” functions f.
(a) Plug the special form into the PDE to get an ODE for f .
(b) Set the coefficients of f ′′, f ′, and f equal to zero.
(c) Solve the ODEs to see that n = 1 or n = 3 (unless u ≡ 0).
(d) If n = 1, show thatα(r) is a constant (so that “there is no attenuation”).

(T. Morley, American Mathematical Monthly, Vol. 27, pp. 69–71, 1985)

2.3 THE DIFFUSION EQUATION

In this section we begin a study of the one-dimensional diffusion equation

ut = kuxx . (1)

Diffusions are very different from waves, and this is reflected in the mathe-
matical properties of the equations. Because (1) is harder to solve than the
wave equation, we begin this section with a general discussion of some of the
properties of diffusions. We begin with the maximum principle, from which
we’ll deduce the uniqueness of an initial-boundary problem.We postpone un-
til the next section the derivation of the solution formula for (1) on the whole
real line.

Maximum Principle. If u(x, t) satisfies the diffusion equation in a rectangle
(say, 0 ≤ x ≤ l, 0 ≤ t ≤ T ) in space-time, then the maximum value of u(x, t)
is assumed either initially (t = 0) or on the lateral sides (x = 0 or x = l) (see
Figure 1).

In fact, there is a stronger version of the maximum principle which asserts
that the maximum cannot be assumed anywhere inside the rectangle but only
on the bottom or the lateral sides (unless u is a constant). The corners are
allowed.

The minimum value has the same property; it too can be attained only on
the bottom or the lateral sides. To prove the minimum principle, just apply
the maximum principle to [−u(x, t)].

These principles have a natural interpretation in terms of diffusion or heat
flow. If you have a rod with no internal heat source, the hottest spot and the

Figure 1
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coldest spot can occur only initially or at one of the two ends of the rod. Thus
a hot spot at time zero will cool off (unless heat is fed into the rod at an end).
You can burn one of its ends but the maximum temperature will always be
at the hot end, so that it will be cooler away from that end. Similarly, if you
have a substance diffusing along a tube, its highest concentration can occur
only initially or at one of the ends of the tube.

If we draw a “movie” of the solution, the maximum drops down while the
minimum comes up. So the differential equation tends to smooth the solution
out. (This is very different from the behavior of the wave equation!)

Proof of the Maximum Principle. We’ll prove only the weaker version.
(Surprisingly, its strong form is much more difficult to prove.) For the strong
version, see [PW]. The idea of the proof is to use the fact, from calculus, that
at an interior maximum the first derivatives vanish and the second derivatives
satisfy inequalities such as uxx ≤ 0. If we knew that uxx �= 0 at the maximum
(which we do not), then we’d have uxx < 0 as well as ut = 0, so that ut �= kuxx .
This contradiction would show that the maximum could only be somewhere
on the boundary of the rectangle. However, because uxx could in fact be
equal to zero, we need to play a mathematical game to make the argument
work.

So let M denote the maximum value of u(x, t) on the three sides t = 0,
x = 0, and x = l. (Recall that any continuous function on any bounded closed
set is bounded and assumes its maximum on that set.) We must show that
u(x, t) ≤ M throughout the rectangle R.

Let ǫ be a positive constant and let v(x, t) = u(x, t) + ǫx2. Our goal
is to show that v(x, t) ≤ M + ǫl2 throughout R. Once this is accomplished,
we’ll have u(x, t) ≤ M + ǫ(l2 − x2). This conclusion is true for any ǫ > 0.
Therefore, u(x, t) ≤ M throughout R, which is what we are trying to prove.

Now from the definition of v, it is clear that v(x, t) ≤ M + ǫl2 on t = 0,
on x = 0, and on x = l. This function v satisfies

vt − kvxx = ut − k(u + ǫx2)xx = ut − kuxx − 2ǫk = −2ǫk < 0, (2)

which is the “diffusion inequality.” Now suppose that v(x, t) attains its maxi-
mum at an interior point (x0, t0). That is, 0 < x0 < l, 0 < t0 < T . By ordinary
calculus, we know that vt = 0 and vxx ≤ 0 at (x0, t0). This contradicts the
diffusion inequality (2). So there can’t be an interior maximum. Suppose now
that v(x, t) has a maximum (in the closed rectangle) at a point on the top edge
{t0 = T and 0 < x < l}. Then vx (x0, t0) = 0 and vxx(x0, t0) ≤ 0, as before.
Furthermore, because v(x0, t0) is bigger than v(x0, t0 − δ), we have

vt (x0, t0) = lim
v(x0, t0) − v(x0, t0 − δ)

δ
≥ 0

as δ → 0 through positive values. (This is not an equality because the maxi-
mum is only “one-sided” in the variable t.) We again reach a contradiction to
the diffusion inequality.
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But v(x, t) does have a maximum somewhere in the closed rectangle
0 ≤ x ≤ l, 0 ≤ t ≤ T . This maximummust be on the bottom or sides. There-
fore v(x, t) ≤ M + ǫl2 throughout R. This proves the maximum principle (in
its weaker version).

UNIQUENESS

The maximum principle can be used to give a proof of uniqueness for the
Dirichlet problem for the diffusion equation. That is, there is at most one
solution of

ut − kuxx = f (x, t) for 0 < x < l and t > 0

u(x, 0) = φ(x)

u(0, t) = g(t) u(l, t) = h(t)

(3)

for four given functions f , φ, g, and h. Uniqueness means that any solution
is determined completely by its initial and boundary conditions. Indeed, let
u1(x, t) and u2(x, t) be two solutions of (3). Let w = u1 − u2 be their differ-
ence. Then w t − kwxx = 0, w(x, 0) = 0, w(0, t) = 0, w(l, t) = 0. Let T >
0. By the maximum principle, w(x, t) has its maximum for the rectangle on its
bottom or sides—exactly where it vanishes. So w(x, t) ≤ 0. The same type
of argument for the minimum shows that w(x, t) ≥ 0. Therefore, w(x, t) ≡ 0,
so that u1(x, t) ≡ u2(x, t) for all t ≥ 0.

Here is a second proof of uniqueness for problem (3), by a very different
technique, the energy method. Multiplying the equation for w = u1 − u2 by
w itself, we can write

0 = 0 · w = (w t − kwxx)(w) =
(

1
2
w2

)

t
+ (−kwx w)x + kw2

x .

(Verify this by carrying out the derivatives on the right side.) Upon integrating
over the interval 0 < x < l, we get

0 =
∫ l

0

(

1
2
w2

)

t
dx − kwx w

∣

∣

∣

∣

x=l

x=0

+ k

∫ l

0

w2
x dx .

Because of the boundary conditions (w = 0 at x = 0, l),

d

dt

∫ l

0

1

2
[w(x, t)]2 dx = −k

∫ l

0

[wx (x, t)]2 dx ≤ 0,

where the time derivative has been pulled out of the x integral (see Section
A.3). Therefore,

∫

w2dx is decreasing, so

∫ l

0

[w(x, t)]2 dx ≤
∫ l

0

[w(x, 0)]2 dx (4)

for t ≥ 0. The right side of (4) vanishes because the initial conditions of u
and v are the same, so that

∫

[w(x, t)]2 dx = 0 for all t > 0. So w ≡ 0 and
u1 ≡ u2 for all t ≥ 0.
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STABILITY

This is the third ingredient of well-posedness (see Section 1.5). It means
that the initial and boundary conditions are correctly formulated. The energy
method leads to the following form of stability of problem (3), in case h = g
= f = 0. Let u1(x, 0) = φ1(x) and u2(x, 0) = φ2(x). Then w = u1 − u2 is the
solution with the initial datum φ1 − φ2. So from (4) we have

∫ l

0

[u1(x, t) − u2(x, t)]2 dx ≤
∫ l

0

[φ1(x) − φ2(x)]
2 dx . (5)

On the right side is a quantity that measures the nearness of the initial data for
two solutions, and on the left we measure the nearness of the solutions at any
later time. Thus, if we start nearby (at t = 0), we stay nearby. This is exactly
the meaning of stability in the “square integral” sense (see Sections 1.5 and
5.4).

The maximum principle also proves the stability, but with a different way
to measure nearness. Consider two solutions of (3) in a rectangle. We then
have w ≡ u1 − u2 = 0 on the lateral sides of the rectangle and w = φ1 − φ2

on the bottom. The maximum principle asserts that throughout the rectangle

u1(x, t) − u2(x, t) ≤ max|φ1 − φ2|.
The “minimum” principle says that

u1(x, t) − u2(x, t) ≥ −max|φ1 − φ2|.
Therefore,

max
0≤x≤l

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤l

|φ1(x) − φ2(x)|, (6)

valid for all t > 0. Equation (6) is in the same spirit as (5), but with a quite
different method of measuring the nearness of functions. It is called stability
in the “uniform” sense.

EXERCISES

1. Consider the solution 1 − x2 − 2kt of the diffusion equation. Find
the locations of its maximum and its minimum in the closed rectangle
{0 ≤ x ≤ 1, 0 ≤ t ≤ T }.

2. Consider a solution of the diffusion equation ut = uxx in {0 ≤ x ≤ l,
0 ≤ t < ∞}.
(a) Let M(T) = the maximum of u(x, t) in the closed rectangle {0 ≤ x

≤ l, 0 ≤ t ≤ T }. Does M(T) increase or decrease as a function of T?
(b) Letm(T)= theminimumof u(x, t) in the closed rectangle {0 ≤ x ≤ l,

0 ≤ t ≤ T }. Does m(T) increase or decrease as a function of T?

3. Consider the diffusion equation ut = uxx in the interval (0, 1) with u(0, t)=
u(1, t) = 0 and u(x, 0) = 1 − x2. Note that this initial function does not
satisfy the boundary condition at the left end, but that the solution will
satisfy it for all t > 0.
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(a) Show that u(x, t) > 0 at all interior points 0 < x < 1, 0 < t < ∞.
(b) For each t > 0, let µ(t) = the maximum of u(x, t) over 0 ≤ x ≤ 1.

Show that µ(t) is a decreasing (i.e., nonincreasing) function of t.
(Hint: Let the maximum occur at the point X(t), so that µ(t) =
u(X(t), t). Differentiate µ(t), assuming that X(t) is differentiable.)

(c) Draw a rough sketch of what you think the solution looks like (u
versus x) at a few times. (If you have appropriate software available,
compute it.)

4. Consider the diffusion equation ut = uxx in {0 < x < 1, 0 < t < ∞}with
u(0, t) = u(1, t) = 0 and u(x, 0) = 4x(1 − x).
(a) Show that 0 < u(x, t) < 1 for all t > 0 and 0 < x < 1.
(b) Show that u(x, t) = u(1 − x, t) for all t ≥ 0 and 0 ≤ x ≤ 1.

(c) Use the energy method to show that
∫ 1

0
u2 dx is a strictly decreasing

function of t.

5. The purpose of this exercise is to show that the maximum principle is not
true for the equation ut = xuxx, which has a variable coefficient.
(a) Verify that u = −2xt − x2 is a solution. Find the location of its

maximum in the closed rectangle {−2 ≤ x ≤ 2, 0 ≤ t ≤ 1}.
(b) Where precisely does our proof of the maximum principle break

down for this equation?

6. Prove the comparison principle for the diffusion equation: If u and v are
two solutions, and if u ≤ v for t = 0, for x = 0, and for x = l, then u ≤ v
for 0 ≤ t < ∞, 0 ≤ x ≤ l.

7. (a) More generally, if ut − kuxx = f, vt − kvxx = g, f ≤ g, and u ≤ v
at x = 0, x = l and t = 0, prove that u ≤ v for 0 ≤ x ≤ l, 0 ≤ t < ∞.

(b) If vt − vxx ≥ sin x for 0 ≤ x ≤ π, 0 < t < ∞, and if v(0, t) ≥ 0,
v(π, t) ≥ 0 and v(x, 0) ≥ sin x , use part (a) to show that v(x, t) ≥
(1 − e−t ) sin x .

8. Consider the diffusion equation on (0, l) with the Robin boundary condi-
tions ux (0, t) − a0u(0, t) = 0 and ux (l, t) + alu(l, t) = 0. If a0 > 0 and
al > 0, use the energy method to show that the endpoints contribute to

the decrease of
∫ l

0
u2(x, t) dx . (This is interpreted to mean that part of

the “energy” is lost at the boundary, so we call the boundary conditions
“radiating” or “dissipative.”)

2.4 DIFFUSION ON THE WHOLE LINE

Our purpose in this section is to solve the problem

ut = kuxx (−∞ < x < ∞, 0 < t < ∞) (1)

u(x, 0) = φ(x). (2)
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As with the wave equation, the problem on the infinite line has a certain
“purity”, which makes it easier to solve than the finite-interval problem. (The
effects of boundaries will be discussed in the next several chapters.) Also as
with the wave equation, we will end up with an explicit formula. But it will
be derived by a method very different from the methods used before. (The
characteristics for the diffusion equation are just the lines t = constant and
play no major role in the analysis.) Because the solution of (1) is not easy to
derive, we first set the stage by making some general comments.

Our method is to solve it for a particular φ(x) and then build the general
solution from this particular one. We’ll use five basic invariance properties
of the diffusion equation (1).

(a) The translate u(x − y, t) of any solution u(x, t) is another solution,
for any fixed y.

(b) Any derivative (ux or ut or uxx, etc.) of a solution is again a solution.

(c) A linear combination of solutions of (1) is again a solution of (1).
(This is just linearity.)

(d) An integral of solutions is again a solution. Thus if S(x, t) is a solution
of (1), then so is S(x − y, t) and so is

v(x, t) =
∫ ∞

−∞
S(x − y, t)g(y) dy

for any function g(y), as long as this improper integral converges
appropriately. (We’ll worry about convergence later.) In fact, (d) is
just a limiting form of (c).

(e) If u(x, t) is a solution of (1), so is the dilated function
u(

√
a x, at), for any a > 0. Prove this by the chain rule:

Let v(x, t) = u(
√

a x, at). Then vt = [∂(at)/∂t]ut = aut and vx =
[∂(

√
a x)/∂x]ux =

√
a ux and vxx =

√
a ·

√
a uxx = a uxx.

Our goal is to find a particular solution of (1) and then to construct all the
other solutions using property (d). The particular solution we will look for is
the one, denoted Q(x, t), which satisfies the special initial condition

Q(x, 0) = 1 for x > 0 Q(x, 0) = 0 for x < 0. (3)

The reason for this choice is that this initial condition does not change under
dilation. We’ll find Q in three steps.

Step 1 We’ll look for Q(x, t) of the special form

Q(x, t) = g(p) where p =
x

√
4kt

(4)
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and g is a function of only one variable (to be determined). (The
√
4k factor

is included only to simplify a later formula.)
Why do we expect Q to have this special form? Because property (e) says

that equation (1) doesn’t “see” the dilation x →
√

a x, t → at . Clearly, (3)
doesn’t change at all under the dilation. So Q(x, t), which is defined by condi-
tions (1) and (3), ought not see the dilation either. How could that happen? In
only one way: if Q depends on x and t solely through the combination x/

√
t .

For the dilation takes x/
√

t into
√

ax/
√

at = x/
√

t . Thus let p = x/
√
4kt

and look for Q which satisfies (1) and (3) and has the form (4).

Step 2 Using (4), we convert (1) into an ODE for g by use of the chain rule:

Qt =
dg

dp

∂p

∂t
= −

1

2t

x
√
4kt

g′(p)

Qx =
dg

dp

∂p

∂x
=

1
√
4kt

g′(p)

Qxx =
d Qx

dp

∂p

∂x
=

1

4kt
g′′(p)

0 = Qt − k Qxx =
1

t

[

−
1

2
pg′(p) −

1

4
g′′(p)

]

.

Thus

g′′ + 2pg′ = 0.

This ODE is easily solved using the integrating factor exp
∫

2p dp = exp(p2).

We get g′(p) = c1 exp(−p2) and

Q(x, t) = g(p) = c1

∫

e−p2

dp + c2.

Step 3 We find a completely explicit formula for Q. We’ve just shown that

Q(x, t) = c1

∫ x/
√
4kt

0

e−p2

dp + c2.

This formula is valid only for t > 0. Now use (3), expressed as a limit as
follows.

If x > 0, 1 = lim
tց0

Q = c1

∫ +∞

0

e−p2

dp + c2 = c1

√
π

2
+ c2.

If x < 0, 0 = lim
tց0

Q = c1

∫ −∞

0

e−p2

dp + c2 = −c1

√
π

2
+ c2.
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See Exercise 6. Here lim
tց0

means limit from the right. This determines the

coefficients c1 = 1/
√

π and c2 = 1
2
. Therefore, Q is the function

Q(x, t) =
1

2
+

1
√

π

∫ x/
√
4kt

0

e−p2

dp (5)

for t > 0. Notice that it does indeed satisfy (1), (3), and (4).

Step 4 Having found Q, we now define S = ∂Q/∂x. (The explicit formula
for S will be written below.) By property (b), S is also a solution of (1). Given
any function φ, we also define

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy for t > 0. (6)

By property (d), u is another solution of (1). We claim that u is the unique
solution of (1), (2). To verify the validity of (2), we write

u(x, t) =
∫ ∞

−∞

∂ Q

∂x
(x − y, t)φ(y) dy

= −
∫ ∞

−∞

∂

∂y
[Q(x − y, t)]φ(y) dy

= +
∫ ∞

−∞
Q(x − y, t)φ′(y) dy − Q(x − y, t)φ(y)

∣

∣

∣

∣

y=+∞

y=−∞

upon integrating by parts. We assume these limits vanish. In particular, let’s
temporarily assume that φ(y) itself equals zero for |y| large. Therefore,

u(x, 0) =
∫ ∞

−∞
Q(x − y, 0)φ′(y) dy

=
∫ x

−∞
φ′(y) dy = φ

∣

∣

∣

∣

x

−∞
= φ(x)

because of the initial condition for Q and the assumption that φ(−∞) = 0.
This is the initial condition (2). We conclude that (6) is our solution formula,
where

S =
∂ Q

∂x
=

1

2
√

πkt
e−x2/4kt for t > 0. (7)

That is,

u(x, t) =
1

√
4πkt

∫ ∞

−∞
e−(x−y)2/4ktφ(y) dy. (8)
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Figure 1

S(x, t) is known as the source function, Green’s function, fundamental solution,
gaussian, or propagator of the diffusion equation, or simply the diffusion
kernel. It gives the solution of (1),(2) with any initial datum φ. The formula
only gives the solution for t > 0. When t = 0 it makes no sense. �

The source function S(x, t) is defined for all real x and for all t > 0. S(x, t)
is positive and is even in x [S(−x, t) = S(x, t)]. It looks like Figure 1 for
various values of t. For large t, it is very spread out. For small t, it is a very
tall thin spike (a “delta function”) of height (4πkt)−1/2. The area under its
graph is

∫ ∞

−∞
S(x, t) dx =

1
√

π

∫ ∞

−∞
e−q2

dq = 1

by substituting q = x/
√
4kt , dq = (dx)/

√
4kt (see Exercise 7). Now look

more carefully at the sketch of S(x, t) for a very small t. If we cut out the tall
spike, the rest of S(x, t) is very small. Thus

max
|x |>δ

S(x, t) → 0 as t → 0 (9)

Notice that the value of the solution u(x, t) given by (6) is a kind of
weighted average of the initial values around the point x. Indeed, we can
write

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy ≃

∑

t

S(x − yi , t)φ(yi )�yi
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approximately. This is the average of the solutions S(x − yi, t) with the weights
φ(yi). For very small t, the source function is a spike so that the formula
exaggerates the values of φ near x. For any t > 0 the solution is a spread-out
version of the initial values at t = 0.

Here’s the physical interpretation. Consider diffusion. S(x − y, t) repre-
sents the result of a unit mass (say, 1 gram) of substance located at time zero
exactly at the position y which is diffusing (spreading out) as time advances.
For any initial distribution of concentration, the amount of substance initially
in the interval �y spreads out in time and contributes approximately the term
S(x − yi , t)φ(yi )�yi . All these contributions are added up to get the whole
distribution of matter. Now consider heat flow. S(x − y, t) represents the result
of a “hot spot” at y at time 0. The hot spot is cooling off and spreading its heat
along the rod.

Another physical interpretation is brownian motion, where particles
move randomly in space. For simplicity, we assume that the motion is one-
dimensional; that is, the particles move along a tube. Then the probability that
a particle which begins at position x ends up in the interval (a, b) at time t is
precisely

∫ b

a
S(x − y, t) dy for some constant k, where S is defined in (7). In

other words, if we let u(x, t) be the probability density (probability per unit
length) and if the initial probability density is φ(x), then the probability at
all later times is given by formula (6). That is, u(x, t) satisfies the diffusion
equation.

It is usually impossible to evaluate integral (8) completely in terms of
elementary functions. Answers to particular problems, that is, to particular
initial data φ(x), are sometimes expressible in terms of the error function of
statistics,

erf(x) =
2

√
π

∫ x

0

e−p2

dp. (10)

Notice that erf(0) = 0. By Exercise 6, lim
x→+∞

erf(x) = 1.

Example 1.

From (5) we can write Q(x, t) in terms of erf as

Q(x, t) =
1

2
+

1

2
erf

(

x
√
4kt

)

. �

Example 2.

Solve the diffusion equation with the initial condition u(x, 0) = e−x . To
do so, we simply plug this into the general formula (8):

u(x, t) =
1

√
4πkt

∫ ∞

−∞
e−(x−y)2/4kt e−ydy.
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This is one of the few fortunate examples that can be integrated. The
exponent is

−
x2 − 2xy + y2 + 4kty

4kt
.

Completing the square in the y variable, it is

−
(y + 2kt − x)2

4kt
+ kt − x .

We let p = (y + 2kt − x)/
√
4kt so that dp = dy/

√
4kt . Then

u(x, t) = ekt−x

∫ ∞

−∞
e−p2 dp

√
π

= ekt−x .

By the maximum principle, a solution in a bounded interval can-
not grow in time. However, this particular solution grows, rather than
decays, in time. The reason is that the left side of the rod is initially
very hot [u(x, 0) → +∞ as x → −∞] and the heat gradually diffuses
throughout the rod. �

EXERCISES

1. Solve the diffusion equation with the initial condition

φ(x) = 1 for |x | < l and φ(x) = 0 for |x | > l.

Write your answer in terms of erf(x).

2. Do the same for φ(x) = 1 for x > 0 and φ(x) = 3 for x < 0.

3. Use (8) to solve the diffusion equation if φ(x) = e3x . (You may also use
Exercises 6 and 7 below.)

4. Solve the diffusion equation if φ(x) = e−x for x > 0 and φ(x) = 0 for
x < 0.

5. Prove properties (a) to (e) of the diffusion equation (1).

6. Compute
∫ ∞
0

e−x2

dx . (Hint: This is a function that cannot be integrated
by formula. So use the following trick. Transform the double integral
∫ ∞
0

e−x2

dx ·
∫ ∞
0

e−y2dy into polar coordinates and you’ll end up with a
function that can be integrated easily.)

7. Use Exercise 6 to show that
∫ ∞
−∞ e−p2

dp =
√

π . Then substitute

p = x/
√
4kt to show that

∫ ∞

−∞
S(x, t) dx = 1.

8. Show that for any fixed δ > 0 (no matter how small),

max
δ≤|x |<∞

S(x, t) → 0 as t → 0.
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[This means that the tail of S(x, t) is “uniformly small”.]

9. Solve the diffusion equation ut = kuxx with the initial condition
u(x, 0) = x2 by the following special method. First show that uxxx

satisfies the diffusion equation with zero initial condition. There-
fore, by uniqueness, uxxx ≡ 0. Integrating this result thrice, obtain
u(x, t) = A(t)x2 + B(t)x + C(t). Finally, it’s easy to solve for A, B,
and C by plugging into the original problem.

10. (a) Solve Exercise 9 using the general formula discussed in the
text. This expresses u(x, t) as a certain integral. Substitute p =
(x − y)/

√
4kt in this integral.

(b) Since the solution is unique, the resulting formula must agree with
the answer to Exercise 9. Deduce the value of

∫ ∞

−∞
p2e−p2

dp.

11. (a) Consider the diffusion equation on the whole line with the usual
initial condition u(x, 0) = φ(x). If φ(x) is an odd function, show
that the solution u(x, t) is also an odd function of x. (Hint: Consider
u(−x, t) + u(x, t) and use the uniqueness.)

(b) Show that the same is true if “odd” is replaced by “even.”
(c) Show that the analogous statements are true for the wave equation.

12. The purpose of this exercise is to calculate Q(x, t) approximately for
large t. Recall that Q(x, t) is the temperature of an infinite rod that is
initially at temperature 1 for x > 0, and 0 for x < 0.
(a) Express Q(x, t) in terms of erf.
(b) Find the Taylor series of erf(x) around x = 0. (Hint: Expand ez,

substitute z = −y2, and integrate term by term.)
(c) Use the first two nonzero terms in this Taylor expansion to find an

approximate formula for Q(x, t).
(d) Why is this formula a good approximation for x fixed and t large?

13. Prove fromfirst principles thatQ(x, t)must have the form (4), as follows.
(a) Assuming uniqueness show that Q(x, t) = Q(

√
a x, at). This

identity is valid for all a > 0, all t > 0, and all x.
(b) Choose a = 1/(4kt).

14. Let φ(x) be a continuous function such that |φ(x)| ≤ Ceax2

. Show that
formula (8) for the solution of the diffusion equation makes sense for 0
< t < 1/(4ak), but not necessarily for larger t.

15. Prove the uniqueness of the diffusion problem with Neumann boundary
conditions:

ut − kuxx = f (x, t) for 0 < x < l, t > 0 u(x, 0) = φ(x)

ux (0, t) = g(t) ux (l, t) = h(t)

by the energy method.
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16. Solve the diffusion equation with constant dissipation:

ut − kuxx + bu = 0 for −∞ < x < ∞ with u(x, 0) = φ(x),

where b > 0 is a constant. (Hint: Make the change of variables u(x, t) =
e−btv(x, t).)

17. Solve the diffusion equation with variable dissipation:

ut − kuxx + bt2u = 0 for−∞ < x < ∞ with u(x, 0) = φ(x),

where b > 0 is a constant. (Hint: The solutions of the ODE

w t + bt2w = 0 are Ce−bt3/3. So make the change of variables

u(x, t) = e−bt3/3v(x, t) and derive an equation for v.)

18. Solve the heat equation with convection:

ut − kuxx + V ux = 0 for−∞ < x < ∞ with u(x, 0) = φ(x),

where V is a constant. (Hint: Go to a moving frame of reference by
substituting y = x − Vt.)

19. (a) Show that S2(x, y, t) = S(x, t)S(y, t) satisfies the diffusion equa-
tion St = k(Sxx + Syy).

(b) Deduce that S2(x, y, t) is the source function for two-dimensional
diffusions.

2.5 COMPARISON OF WAVES AND DIFFUSIONS

We have seen that the basic property of waves is that information gets trans-
ported in both directions at a finite speed. The basic property of diffusions
is that the initial disturbance gets spread out in a smooth fashion and grad-
ually disappears. The fundamental properties of these two equations can be
summarized in the following table.

Property Waves Diffusions

(i) Speed of propagation? Finite (≤c) Infinite

(ii) Singularities for t > 0? Transported
along
characteristics
(speed = c)

Lost immediately

(iii) Well-posed for t > 0? Yes Yes (at least for bounded solutions)

(iv) Well-posed for t < 0? Yes No

(v) Maximum principle No Yes

(vi) Behavior as t → +∞? Energy is
constant so does
not decay

Decays to zero (if φ integrable)

(vii) Information Transported Lost gradually
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For the wave equation we have seenmost of these properties already. That
there is no maximum principle is easy to see. Generally speaking, the wave
equation just moves information along the characteristic lines. In more than
one dimension we’ll see that it spreads information in expanding circles or
spheres.

For the diffusion equation we discuss property (ii), that singularities are
immediately lost, in Section 3.5. The solution is differentiable to all orders
even if the initial data are not. Properties (iii), (v), and (vi) have been shown
already. The fact that information is gradually lost [property (vii)] is clear
from the graph of a typical solution, for instance, from S(x, t).

As for property (i) for the diffusion equation, notice from formula (2.4.8)
that the value of u(x, t) depends on the values of the initial datum φ(y) for
all y, where −∞ < y < ∞. Conversely, the value of φ at a point x0 has an
immediate effect everywhere (for t > 0), even though most of its effect is
only for a short time near x0. Therefore, the speed of propagation is infinite.
Exercise 2(b) shows that solutions of the diffusion equation can travel at
any speed. This is in stark contrast to the wave equation (and all hyperbolic
equations).

As for (iv), there are several ways to see that the diffusion equation is not
well-posed for t < 0 (“backward in time”). One way is the following. Let

un(x, t) =
1

n
sin nx e−n2kt . (1)

You can check that this satisfies the diffusion equation for all x, t. Also,
un(x, 0) = n−1 sin nx → 0 uniformly as n → ∞. But consider any t < 0, say

t = −1. Then un(x, −1) = n−1 sin nx e+kn2 → ±∞ uniformly as n → ∞
except for a few x. Thus un is close to the zero solution at time t = 0 but not
at time t = −1. This violates the stability, in the uniform sense at least.

Another way is to let u(x, t) = S(x, t + 1). This is a solu-
tion of the diffusion equation ut = kuxx for t > −1, −∞ < x < ∞. But
u(0, t) → ∞ as t ց −1, as we saw above. So we cannot solve backwards

in time with the perfectly nice-looking initial data (4πk)−1e−x2/4.
Besides, any physicist knows that heat flow, brownian motion, and so on,

are irreversible processes. Going backward leads to chaos.

EXERCISES

1. Show that there is no maximum principle for the wave equation.

2. Consider a traveling wave u(x, t) = f (x − at) where f is a given function
of one variable.
(a) If it is a solution of the wave equation, show that the speed must be

a = ±c (unless f is a linear function).
(b) If it is a solution of the diffusion equation, find f and show that the

speed a is arbitrary.
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3. Let u satisfy the diffusion equation ut = 1
2
uxx. Let

v(x, t) =
1

√
t
ex2/2tv

(

x

t
,
1

t

)

.

Show that v satisfies the “backward” diffusion equation vt = − 1
2
vxx

for t > 0.

4. Here is a direct relationship between the wave and diffusion equations.
Let u(x, t) solve the wave equation on the whole line with bounded second
derivatives. Let

v(x, t) =
c

√
4πkt

∫ ∞

−∞
e−s2c2/4kt u (x, s) ds.

(a) Show that v(x, t) solves the diffusion equation!
(b) Show that limt→0 v(x, t) = u(x, 0).

(Hint: (a) Write the formula as v(x, t) =
∫ ∞
−∞ H (s, t)u(x, s) ds, where

H(x, t) solves the diffusion equation with constant k/c2 for t > 0. Then
differentiate v(x, t) using Section A.3. (b) Use the fact that H(s, t) is
essentially the source function of the diffusion equation with the spatial
variable s.)


