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REFLECTIONS AND
SOURCES

In this chapter we solve the simplest reflection problems, when there is only a
single point of reflection at one end of a semi-infinite line. In Chapter 4 we shall
begin a systematic study of more complicated reflection problems. In Sections
3.3 and 3.4 we solve problems with sources: that is, the inhomogeneous wave
and diffusion equations. Finally, in Section 3.5 we analyze the solution of the
diffusion equation more carefully.

3.1 DIFFUSION ON THE HALF-LINE

Let’s take the domain to be D = the half-line (0, ∞) and take the Dirichlet
boundary condition at the single endpoint x = 0. So the problem is

vt − kvxx = 0 in {0 < x < ∞, 0 < t < ∞},
v(x, 0) = φ(x) for t = 0
v(0, t) = 0 for x = 0

(1)

The PDE is supposed to be satisfied in the open region {0 < x < ∞,
0 < t < ∞}. If it exists, we know that the solution v(x, t) of this problem
is unique because of our discussion in Section 2.3. It can be interpreted, for
instance, as the temperature in a very long rod with one end immersed in a
reservoir of temperature zero and with insulated sides.

We are looking for a solution formula analogous to (2.4.8). In fact, we
shall reduce our new problem to our old one. Our method uses the idea of an
odd function. Any function ψ(x) that satisfies ψ(−x) ≡ −ψ(+x) is called
an odd function. Its graph y = ψ(x) is symmetric with respect to the origin
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58 CHAPTER 3 REFLECTIONS AND SOURCES

Figure 1

(see Figure 1). Automatically (by putting x = 0 in the definition), ψ(0) = 0.
For a detailed discussion of odd and even functions, see Section 5.2.

Now the initial datum φ(x) of our problem is defined only for x ≥ 0. Let
φodd be the unique odd extension of φ to the whole line. That is,

φodd(x) =

⎧⎪⎨
⎪⎩

φ(x) for x > 0
−φ(−x) for x < 0

0 for x = 0.

(2)

The extension concept too is discussed in Section 5.2.
Let u(x, t) be the solution of

ut − kuxx = 0
u(x, 0) = φodd(x)

(3)

for the whole line −∞ < x < ∞, 0 < t < ∞. According to Section 2.3, it is
given by the formula

u(x, t) =
∫ ∞

−∞
S(x − y, t)φodd(y)dy. (4)

Its “restriction,”

v(x, t) = u(x, t) for x > 0, (5)

will be the unique solution of our new problem (1). There is no difference at
all between v and u except that the negative values of x are not considered
when discussing v.

Why is v(x, t) the solution of (1)? Notice first that u(x, t) must also be an
odd function of x (see Exercise 2.4.11). That is, u(−x, t) = −u(x, t). Putting
x = 0, it is clear that u(0, t) = 0. So the boundary condition v(0, t) = 0 is
automatically satisfied! Furthermore, v solves the PDE as well as the initial
condition for x > 0, simply because it is equal to u for x > 0 and u satisfies
the same PDE for all x and the same initial condition for x > 0.

The explicit formula for v(x, t) is easily deduced from (4) and (5). From
(4) and (2) we have

u(x, t) =
∫ ∞

0
S(x − y, t)φ(y)dy−

∫ 0

−∞
S(x − y, t)φ(−y)dy.
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Changing the variable −y to +y in the second integral, we get

u(x, t) =
∫ ∞

0
[S(x − y, t) − S(x + y, t)] φ(y) dy.

(Notice the change in the limits of integration.) Hence for 0 < x < ∞,
0 < t < ∞, we have

v(x, t) = 1√
4πkt

∫ ∞

0
[e−(x−y)2/4kt − e−(x+y)2/4kt ] φ(y) dy. (6)

This is the complete solution formula for (1).
We have just carried out the method of odd extensions or reflection method,

so called because the graph of φodd(x) is the reflection of the graph of φ(x)
across the origin.

Example 1.

Solve (1) with φ(x) ≡ 1. The solution is given by formula (6). This case
can be simplified as follows. Let p = (x − y)/

√
4kt in the first integral

and q = (x + y)/
√

4kt in the second integral. Then

u(x, t) =
∫ x/

√
4kt

−∞
e−p2

dp/
√

π −
∫ +∞

x/
√

4kt
e−q2

dq/
√

π

=
[

1

2
+ 1

2
erf

(
x√
4kt

)]
−

[
1

2
− 1

2
erf

(
x√
4kt

)]

= erf

(
x√
4kt

)
. �

Now let’s play the same game with the Neumann problem

wt − kwxx = 0 for 0 < x < ∞, 0 < t < ∞
w(x, 0) = φ(x)

wx (0, t) = 0.

(7)

In this case the reflection method is to use even, rather than odd, extensions.
An even function is a function ψ such that ψ(−x) = +ψ(x). If ψ is an even
function, then differentiation shows that its derivative is an odd function. So
automatically its slope at the origin is zero: ψ ′(0) = 0. If φ(x) is defined only
on the half-line, its even extension is defined to be

φeven(x) =
{

φ(x) for x ≥ 0

+φ(−x) for x ≤ 0
(8)
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By the same reasoning as we used above, we end up with an explicit formula
for w(x, t). It is

w(x, t) = 1√
4πkt

∫ ∞

0
[e−(x−y)2/4kt + e−(x+y)2/4kt ] φ(y) dy. (9)

This is carried out in Exercise 3. Notice that the only difference between (6)
and (9) is a single minus sign!

Example 2.

Solve (7) with φ(x) = 1. This is the same as Example 1 except for the
single sign. So we can copy from that example:

u(x, t) =
[

1

2
+ 1

2
erf

( x

4kt

)]
+

[
1

2
− 1

2
erf

( x

4kt

)]
= 1.

(That was stupid: We could have guessed it!) �

EXERCISES

1. Solve ut = kuxx; u(x, 0) = e−x ; u(0, t) = 0 on the half-line 0 < x < ∞.
2. Solve ut = kuxx; u(x, 0) = 0; u(0, t) = 1 on the half-line 0 < x < ∞.
3. Derive the solution formula for the half-line Neumann prob-

lem wt − kwxx = 0 for 0 < x < ∞, 0 < t < ∞; wx (0, t) = 0; w(x, 0) =
φ(x).

4. Consider the following problem with a Robin boundary condition:

DE: ut = kuxx on the half-line 0 < x < ∞
(and 0 < t < ∞)

IC: u(x, 0) = x for t = 0 and 0 < x < ∞
BC: ux (0, t) − 2u(0, t) = 0 for x = 0.

(∗)

The purpose of this exercise is to verify the solution formula for (∗). Let
f (x) = x for x > 0, let f (x) = x + 1 − e2x for x < 0, and let

v(x, t) = 1√
4πkt

∫ ∞

−∞
e−(x−y)2/4kt f (y)dy.

(a) What PDE and initial condition does v(x, t) satisfy for
−∞ < x < ∞?

(b) Let w = vx − 2v. What PDE and initial condition does w(x, t) satisfy
for −∞ < x < ∞?

(c) Show that f ′(x) − 2 f (x) is an odd function (for x �= 0).
(d) Use Exercise 2.4.11 to show that w is an odd function of x.
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(e) Deduce that v(x, t) satisfies (∗) for x > 0. Assuming uniqueness,
deduce that the solution of (∗) is given by

u(x, t) = 1√
4πkt

∫ ∞

−∞
e−(x−y)2/4kt f (y)dy.

5. (a) Use the method of Exercise 4 to solve the Robin problem:

DE: ut = kuxx on the half-line 0 < x < ∞
(and 0 < t < ∞)

IC: u(x, 0) = x for t = 0 and 0 < x < ∞
BC: ux (0, t) − hu(0, t) = 0 for x = 0,

where h is a constant.
(b) Generalize the method to the case of general initial data φ(x).

3.2 REFLECTIONS OF WAVES

Now we try the same kind of problem for the wave equation as we did in
Section 3.1 for the diffusion equation. We again begin with the Dirichlet
problem on the half-line (0, ∞). Thus the problem is

DE : vt t − c2vxx = 0 for 0 < x < ∞
and −∞ < t < ∞

IC : v(x, 0) = φ(x), vt (x, 0) = ψ(x) for t = 0
and 0 < x < ∞

BC : v(0, t) = 0 for x = 0
and −∞ < t < ∞.

(1)

The reflection method is carried out in the same way as in Section 3.1. Con-
sider the odd extensions of both of the initial functions to the whole line,
φodd(x) and ψodd(x). Let u(x, t) be the solution of the initial-value problem on
(−∞, ∞) with the initial data φodd and ψodd. Then u(x, t) is once again an odd
function of x (see Exercise 2.1.7). Therefore, u(0, t) = 0, so that the boundary
condition is satisfied automatically. Define v(x, t) = u(x, t) for 0 < x < ∞
[the restriction of u to the half-line]. Then v(x, t) is precisely the solution we
are looking for. From the formula in Section 2.1, we have for x ≥ 0,

v(x, t) = u(x, t) = 1

2
[φodd(x + ct) + φodd(x − ct)] + 1

2c

∫ x+ct

x−ct
ψodd(y)dy.

Let’s “unwind” this formula, recalling the meaning of the odd extensions.
First we notice that for x > c|t | only positive arguments occur in the formula,
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Figure 1

so that u(x, t) is given by the usual formula:

v(x, t) = 1

2
[φ(x + ct) + φ(x − ct)] + 1

2c

∫ x+ct

x−ct
ψ(y) dy

for x > c|t |.
(2)

But in the other region 0 < x < c|t |, we have φodd(x − ct) = −φ(ct − x),
and so on, so that

v(x, t) = 1

2
[φ(x +ct)−φ(ct − x)]+ 1

2c

∫ x+ct

0
ψ(y)dy + 1

2c

∫ 0

x−ct
[−ψ(−y)]dy.

Notice the switch in signs! In the last term we change variables y → −y to
get 1/2c

∫ ct+x
ct−x ψ(y)dy. Therefore,

v(x, t) = 1

2
[φ(ct + x) − φ(ct − x)] + 1

2c

∫ ct+x

ct−x
ψ(y) dy (3)

for 0 < x < c|t |. The complete solution is given by the pair of formulas (2)
and (3). The two regions are sketched in Figure 1 for t > 0.

Graphically, the result can be interpreted as follows. Draw the backward
characteristics from the point (x, t). In case (x, t) is in the region x < ct, one of
the characteristics hits the t axis (x = 0) before it hits the x axis, as indicated
in Figure 2. The formula (3) shows that the reflection induces a change of

Figure 2
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sign. The value of v(x, t) now depends on the values of φ at the pair of points
ct ± x and on the values of ψ in the short interval between these points. Note
that the other values of ψ have canceled out. The shaded area D in Figure 2
is called the domain of dependence of the point (x, t).

The case of the Neumann problem is left as an exercise.

THE FINITE INTERVAL

Now let’s consider the guitar string with fixed ends:

vt t = c2vxx v(x, 0) = φ(x) vt (x, 0) = ψ(x) for 0 < x < l,
(4)

v(0, t) = v(l, t) = 0.

This problem is much more difficult because a typical wave will bounce back
and forth an infinite number of times. Nevertheless, let’s use the method of
reflection. This is a bit tricky, so you are invited to skip the rest of this section
if you wish.

The initial data φ(x) and ψ(x) are now given only for 0 < x < l. We extend
them to the whole line to be “odd” with respect to both x = 0 and x = l:

φext(−x) = −φext(x) and φext(2l − x) = −φext(x).

The simplest way to do this is to define

φext(x) =

⎧⎪⎨
⎪⎩

φ(x) for 0 < x < l
−φ(−x) for −l < x < 0
extended to be of period 2l.

See Figure 3 for an example. And see Section 5.2 for further discussion.
“Period 2l” means that φext(x + 2l) = φext(x) for all x. We do exactly the
same for ψ(x) (defined for 0 < x < l) to get ψext(x) defined for −∞ < x <
∞.

Now let u(x, t) be the solution of the infinite line problem with the extended
initial data. Let v be the restriction of u to the interval (0, l). Thus v(x, t) is

Figure 3
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Figure 4

given by the formula

v(x, t) = 1

2
φext(x + ct) + 1

2
φext(x − ct) + 1

2c

∫ x+ct

x−ct
ψext(s)ds (5)

for 0 ≤ x ≤ l. This simple formula contains all the information we need. But
to see it explicitly we must unwind the definitions of φext and ψext. This will
give a resulting formula which appears quite complicated because it includes
a precise description of all the reflections of the wave at both of the boundary
points x = 0 and x = l.

The way to understand the explicit result we are about to get is by draw-
ing a space-time diagram (Figure 4). From the point (x, t), we draw the two
characteristic lines and reflect them each time they hit the boundary. We keep
track of the change of sign at each reflection. We illustrate the result in Figure
4 for the case of a typical point (x, t). We also illustrate in Figure 5 the def-
inition of the extended function φext(x). (The same picture is valid for ψext.)
For instance, for the point (x, t) as drawn in Figures 4 and 5, we have

φext(x + ct) = −φ(4l − x − ct) and φext(x − ct) = +φ(x − ct + 2l).

The minus coefficient on −φ(−x − ct + 4l) comes from the odd number of
reflections (= 3). The plus coefficient on φ(x − ct + 2l) comes from the even

Figure 5
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number of reflections (= 2). Therefore, the general formula (5) reduces to

v(x, t) = 1

2
φ(x − ct + 2l) − 1

2
φ(4l − x − ct)

+ 1

2c

[∫ −l

x−ct
ψ(y + 2l) dy +

∫ 0

−l
−ψ(−y) dy

+
∫ 1

0
ψ(y) dy +

∫ 2l

l
−ψ(−y + 2l) dy

+
∫ 3l

2l
ψ(y − 2l) dy +

∫ x+ct

3l
−ψ(−y + 4l) dy

]
But notice that there is an exact cancellation of the four middle integrals, as
we see by changing y → −y and y − 2l → −y + 2l. So, changing variables
in the two remaining integrals, the formula simplifies to

v(x, t) = 1

2
φ(x − ct + 2l) − 1

2
φ(4l − x − ct)

+ 1

2c

∫ l

x−ct+2l
ψ(s) ds + 1

2c

∫ 4l−x−ct

l
ψ(s) ds.

Therefore, we end up with the formula

v(x, t) = 1

2
φ(x − ct + 2l) − 1

2
φ(4l − x − ct) +

∫ 4l−x−ct

x−ct+2l
ψ(s)

ds

2c
(6)

at the point (x, t) illustrated, which has three reflections on one end and two
on the other. Formula (6) is valid only for such points.

Figure 6
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The solution formula at any other point (x, t) is characterized by the num-
ber of reflections at each end (x = 0, l). This divides the space-time picture
into diamond-shaped regions as illustrated in Figure 6. Within each diamond
the solution v(x, t) is given by a different formula. Further examples may be
found in the exercises.

The formulas explain in detail how the solution looks. However, the
method is impossible to generalize to two- or three-dimensional problems,
nor does it work for the diffusion equation at all. Also, it is very complicated!
Therefore, in Chapter 4 we shall introduce a completely different method
(Fourier’s) for solving problems on a finite interval.

EXERCISES

1. Solve the Neumann problem for the wave equation on the half-line 0 <
x < ∞.

2. The longitudinal vibrations of a semi-infinite flexible rod satisfy the
wave equation utt = c2uxx for x > 0. Assume that the end x = 0 is free
(ux = 0); it is initially at rest but has a constant initial velocity V for
a < x < 2a and has zero initial velocity elsewhere. Plot u versus x at the
times t = 0, a/c, 3a/2c, 2a/c, and 3a/c.

3. A wave f (x + ct) travels along a semi-infinite string (0 < x < ∞) for
t < 0. Find the vibrations u(x, t) of the string for t > 0 if the end x = 0
is fixed.

4. Repeat Exercise 3 if the end is free.
5. Solve utt = 4uxx for 0 < x < ∞, u(0, t) = 0, u(x, 0) ≡ 1, ut (x, 0) ≡ 0

using the reflection method. This solution has a singularity; find its lo-
cation.

6. Solve utt = c2uxx in 0 < x < ∞, 0 ≤ t < ∞, u(x, 0) = 0, ut (x, 0) =V ,

ut (0, t) + aux (0, t) = 0,

where V , a, and c are positive constants and a > c.
7. (a) Show that φodd(x) = (sign x)φ(|x|).

(b) Show thatφext(x)=φodd(x−2l[x/2l]), where [·] denotes the greatest
integer function.

(c) Show that

φext(x) =

⎧⎪⎨
⎪⎩

φ
(

x −
[ x

l

]
l
)

if
[ x

l

]
even

−φ
(
−x −

[ x

l

]
l − l

)
if
[ x

l

]
odd.

8. For the wave equation in a finite interval (0, l) with Dirichlet conditions,
explain the solution formula within each diamond-shaped region.
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9. (a) Find u( 2
3 , 2) if utt = uxx in 0 < x < 1, u(x, 0) = x2(1 − x),

ut (x, 0) = (1 − x)2, u(0, t) = u(1, t) = 0.
(b) Find u( 1

4 ,
7
2 ).

10. Solve utt = 9uxx in 0 < x < π/2, u(x, 0) = cos x, ut (x, 0) = 0,
ux (0, t) = 0, u(π/2, t) = 0.

11. Solve utt = c2uxx in 0 < x < l, u(x, 0) = 0, ut (x, 0) = x, u(0, t) =
u(l, t) = 0.

3.3 DIFFUSION WITH A SOURCE

In this section we solve the inhomogeneous diffusion equation on the whole
line,

ut − kuxx = f (x, t) (−∞ < x < ∞, 0 < t < ∞)
u(x, 0) = φ(x)

(1)

with f (x, t) and φ(x) arbitrary given functions. For instance, if u(x, t) represents
the temperature of a rod, then φ(x) is the initial temperature distribution and
f (x, t) is a source (or sink) of heat provided to the rod at later times.

We will show that the solution of (1) is

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy

+
∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds. (2)

Notice that there is the usual term involving the initial data φ and another term
involving the source f . Both terms involve the source function S.

Let’s begin by explaining where (2) comes from. Later we will actually
prove the validity of the formula. (If a strictly mathematical proof is satisfac-
tory to you, this paragraph and the next two can be skipped.) Our explanation
is an analogy. The simplest analogy is the ODE

du

dt
+ Au(t) = f (t), u(0) = φ, (3)

where A is a constant. Using the integrating factor etA, the solution is

u(t) = e−tAφ +
∫ t

0
e(s−t)A f (s) ds. (4)

A more elaborate analogy is the following. Let’s suppose that φ is an
n-vector, u(t) is an n-vector function of time, and A is a fixed n × n matrix.
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Then (3) is a coupled system of n linear ODEs. In case f (t) ≡ 0, the solution
of (3) is given as u(t) = S(t)φ, where S(t) is the matrix S(t) = e−tA. So in case
f (t) �= 0, an integrating factor for (3) is S(−t) = etA. Now we multiply (3) on
the left by this integrating factor to get

d

dt
[S(−t)u(t)] = S(−t)

du

dt
+ S(−t)Au(t) = S(−t) f (t).

Integrating from 0 to t, we get

S(−t)u(t) − φ =
∫ t

0
S(−s) f (s) ds.

Multiplying this by S(t), we end up with the solution formula

u(t) = S(t)φ +
∫ t

0
S(t − s) f (s) ds. (5)

The first term in (5) represents the solution of the homogeneous equation,
the second the effect of the source f(t). For a single equation, of course, (5)
reduces to (4). �

Now let’s return to the original diffusion problem (1). There is an analogy
between (2) and (5) which we now explain. The solution of (1) will have two
terms. The first one will be the solution of the homogeneous problem, already
solved in Section 2.4, namely∫ ∞

−∞
S(x − y, t)φ(y) dy = (s(t)φ)(x). (6)

S(x − y, t) is the source function given by the formula (2.4.7). Here we are
usings(t) to denote the source operator, which transforms any function φ to
the new function given by the integral in (6). (Remember: Operators transform
functions into functions.) We can now guess what the whole solution to (1)
must be. In analogy to formula (5), we guess that the solution of (1) is

u(t) = s(t)φ +
∫ t

0
s(t − s) f (s) ds. (7)

Formula (7) is exactly the same as (2):

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy

+
∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds. (2)

The method we have just used to find formula (2) is the operator method.

Proof of (2). All we have to do is verify that the function u(x, t), which
is defined by (2), in fact satisfies the PDE and IC (1). Since the solution of
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(1) is unique, we would then know that u(x, t) is that unique solution. For
simplicity, we may as well let φ ≡ 0, since we understand the φ term already.

We first verify the PDE. Differentiating (2), assuming φ ≡ 0 and using
the rule for differentiating integrals in Section A.3, we have

∂u

∂t
= ∂

∂t

∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds

=
∫ t

0

∫ ∞

−∞

∂S

∂t
(x − y, t − s) f (y, s) dy ds

+ lim
s→t

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy,

taking special care due to the singularity of S(x − y, t − s) at t − s = 0. Using
the fact that S(x − y, t − s) satisfies the diffusion equation, we get

∂u

∂t
=

∫ t

0

∫ ∞

−∞
k
∂2S

∂x2
(x − y, t − s) f (y, s) dy ds

+ lim
ε→0

∫ ∞

−∞
S(x − y, ε) f (y, t) dy.

Pulling the spatial derivative outside the integral and using the initial condition
satisfied by S, we get

∂u

∂t
= k

∂2

∂x2

∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds + f (x, t)

= k
∂2u

∂x2 + f (x, t).

This identity is exactly the PDE (1). Second, we verify the initial condition.
Letting t → 0, the first term in (2) tends to φ(x) because of the initial condition
of S. The second term is an integral from 0 to 0. Therefore,

lim
t→0

u(x, t) = φ(x) +
∫ 0

0
· · · = φ(x).

This proves that (2) is the unique solution. �

Remembering that S(x, t) is the gaussian distribution (2.4.7), the formula
(2) takes the explicit form

u(x, t) =
∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds

=
∫ t

0

∫ ∞

−∞

1√
4πk(t − s)

e−(x−y)2/4k(t−s) f (y, s) dy ds. (8)

in the case that φ ≡ 0.
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SOURCE ON A HALF-LINE

For inhomogeneous diffusion on the half-line we can use the method of re-
flection just as in Section 3.1 (see Exercise 1).

Now consider the more complicated problem of a boundary source h(t)
on the half-line; that is,

vt − kvxx = f (x, t) for 0 < x < ∞, 0 < t < ∞
v(0, t) = h(t) (9)
v(x, 0) = φ(x).

We may use the following subtraction device to reduce (9) to a simpler prob-
lem. Let V (x, t) = v(x, t) − h(t). Then V(x, t) will satisfy

Vt − kVxx = f (x, t) − h′(t) for 0 < x < ∞, 0 < t < ∞
V (0, t) = 0 (10)
V (x, 0) = φ(x) − h(0).

To verify (10), just subtract! This new problem has a homogeneous boundary
condition to which we can apply the method of reflection. Once we find V ,
we recover v by v(x, t) = V (x, t) + h(t). This simple subtraction device is
often used to reduce one linear problem to another.

The domain of independent variables (x, t) in this case is a quarter-plane
with specified conditions on both of its half-lines. If they do not agree at
the corner [i.e., if φ(0) �= h(0)], then the solution is discontinuous there (but
continuous everywhere else). This is physically sensible. Think for instance,
of suddenly at t = 0 sticking a hot iron bar into a cold bath.

For the inhomogeneous Neumann problem on the half-line,

wt − kwxx = f (x, t) for 0 < x < ∞, 0 < t < ∞
wx(0, t) = h(t) (11)
w(x, 0) = φ(x),

we would subtract off the function xh(t). That is, W(x, t) = w(x, t) − xh(t).
Differentiation implies that Wx(0, t) = 0. Some of these problems are worked
out in the exercises.

EXERCISES

1. Solve the inhomogeneous diffusion equation on the half-line with Dirich-
let boundary condition:

ut − kuxx = f (x, t) (0 < x < ∞, 0 < t < ∞)
u(0, t) = 0 u(x, 0) = φ(x)

using the method of reflection.
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2. Solve the completely inhomogeneous diffusion problem on the half-line

vt − kvxx = f (x, t) for 0 < x < ∞, 0 < t < ∞
v(0, t) = h(t) v(x, 0) = φ(x),

by carrying out the subtraction method begun in the text.
3. Solve the inhomogeneous Neumann diffusion problem on the half-line

wt − kwxx = 0 for 0 < x < ∞, 0 < t < ∞
wx (0, t) = h(t) w(x, 0) = φ(x),

by the subtraction method indicated in the text.

3.4 WAVES WITH A SOURCE

The purpose of this section is to solve

utt − c2uxx = f (x, t) (1)

on the whole line, together with the usual initial conditions

u(x, 0) = φ(x)
ut (x, 0) = ψ(x)

(2)

where f (x, t) is a given function. For instance, f (x, t) could be interpreted as
an external force acting on an infinitely long vibrating string.

Because L = ∂2
t − c2∂2

x is a linear operator, the solution will be the sum
of three terms, one for φ, one for ψ , and one for f . The first two terms are
given already in Section 2.1 and we must find the third term. We’ll derive the
following formula.

Theorem 1. The unique solution of (1),(2) is

u(x, t) = 1

2
[φ(x + ct) + φ(x − ct)] + 1

2c

∫ x+ct

x−ct
ψ + 1

2c

∫∫
�

f (3)

where � is the characteristic triangle (see Figure 1).
The double integral in (3) is equal to the iterated integral∫ t

0

∫ x+c(t−s)

x−c(t−s)
f (y, s) dy ds.

We will give three different derivations of this formula! But first, let’s note
what the formula says. It says that the effect of a force f on u(x, t) is obtained
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Figure 1

by simply integrating f over the past history of the point (x, t) back to the
initial time t = 0. This is yet another example of the causality principle.

WELL-POSEDNESS

We first show that the problem (1),(2) is well-posed in the sense of Sec-
tion 1.5. The well-posedness has three ingredients, as follows. Existence
is clear, given that the formula (3) itself is an explicit solution. If φ has a
continuous second derivative, ψ has a continuous first derivative, and f is
continuous, then the formula (3) yields a function u with continuous second
partials that satisfies the equation. Uniqueness means that there are no other
solutions of (1),(2). This will follow from any one of the derivations given
below.

Third, we claim that the problem (1),(2) is stable in the sense of Section
1.5. This means that if the data (φ, ψ , f ) change a little, then u also changes
only a little. To make this precise, we need a way to measure the “nearness”
of functions, that is, a metric or norm on function spaces. We will illustrate
this concept using the uniform norms:

‖w‖ = max−∞<x<∞ |w(x)|

and

‖w‖T = max
−∞<x<∞, 0≤t≤T

|w(x, t)|.

Here T is fixed. Suppose that u1(x, t) is the solution with data
(φ1(x), ψ1(x), f1(x, t)) and u2(x, t) is the solution with data
(φ2(x), ψ2(x), f2(x, t)) (six given functions). We have the same formula (3)
satisfied by u1 and by u2 except for the different data. We subtract the two
formulas. We let u = u1 − u2. Since the area of � equals ct2, we have from
(3) the inequality

|u(x, t)| ≤ max|φ| + 1

2c
· max|ψ | · 2ct + 1

2c
· max| f | · ct2

= max|φ| + t · max|ψ | + t2

2
· max| f |.
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Therefore,

‖u1 − u2‖T ≤ ‖φ1 − φ2‖ + T ‖ψ1 − ψ2‖ + T 2

2
‖ f1 − f2‖T . (4)

So if ||φ1 − φ2|| < δ, ||ψ1 − ψ2|| < δ, and || f1 − f2||T < δ, where δ is small,
then

‖u1 − u2‖T < δ(1 + T + T 2) ≤ ε

provided that δ ≤ ε/(1 + T + T 2). Since ε is arbitrarily small, this argument
proves the well-posedness of the problem (1),(2) with respect to the uniform
norm.

PROOF OF THEOREM 1

Method of Characteristic Coordinates We introduce the usual character-
istic coordinates ξ = x + ct, η = x − ct , (see Figure 2). As in Section 2.1,
we have

Lu ≡ utt − c2uxx = −4c2uξη = f

(
ξ + η

2
,
ξ − η

2c

)
.

We integrate this equation with respect to η, leaving ξ as a constant. Thus
uξ = −(1/4c2)

∫ η f dη. Then we integrate with respect to ξ to get

u = − 1

4c2

∫ ξ ∫ η

f dη dξ (5)

The lower limits of integration here are arbitrary: They correspond to constants
of integration. The calculation is much easier to understand if we fix a point
P0 with coordinates x0, t0 and

ξ0 = x0 + ct0 η0 = x0 − ct0.

Figure 2
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Figure 3

We evaluate (5) at P0 and make a particular choice of the lower limits. Thus

u(P0) = − 1

4c2

∫ ξ0

η0

∫ η0

ξ

f

(
ξ + η

2
,
ξ − η

2c

)
dη dξ

= + 1

4c2

∫ ξ0

η0

∫ ξ

η0

f

(
ξ + η

2
,
ξ − η

2c

)
dη dξ

(6)

is a particular solution. As Figure 3 indicates, η now represents a variable
going along a line segment to the base η = ξ of the triangle � from the left-
hand edge η = η0, while ξ runs from the left-hand corner to the right-hand
edge. Thus we have integrated over the whole triangle �.

The iterated integral, however, is not exactly the double integral over �
because the coordinate axes are not orthogonal. The original axes (x and t) are
orthogonal, so we make a change of variables back to x and t. This amounts
to substituting back

x = ξ + η

2
t = ξ − η

2c
. (7)

A little square in Figure 4 goes into a parallelogram in Figure 5. The change
in its area is measured by the jacobian determinant J (see Section A.1). Since

Figure 4
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Figure 5

our change of variable is a linear transformation, the jacobian is just the
determinant of its coefficient matrix:

J =

∣∣∣∣∣∣∣det

⎛
⎜⎝

∂ξ

∂x

∂ξ

∂t
∂η

∂x

∂η

∂t

⎞
⎟⎠
∣∣∣∣∣∣∣ =

∣∣∣∣∣det

(
1 c
1 −c

)∣∣∣∣∣ = 2c.

Thus dη dξ = J dx dt = 2c dx dt. Therefore, the rule for changing vari-
ables in a multiple integral (the jacobian theorem) then gives

u(P0) = 1

4c2

∫∫
�

f (x, t)J dx dt. (8)

This is precisely Theorem 1. The formula can also be written as the iterated
integral in x and t:

u(x0, t0) = 1

2c

∫ t0

0

∫ x0+c(t0−t)

x0−c(t0−t)
f (x, t) dx dt, (9)

integrating first over the horizontal line segments in Figure 5 and then verti-
cally.

A variant of the method of characteristic coordinates is to write (1) as the
system of two equations

ut + cux = v vt − cvx = f,

the first equation being the definition of v, as in Section 2.1. If we first solve
the second equation, then v is a line integral of f over a characteristic line
segment x + ct = constant. The first equation then gives u(x, t) by sweeping
out these line segments over the characteristic triangle �. To carry out this
variant is a little tricky, however, and we leave it as an exercise.
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Figure 6

Method Using Green’s Theorem In this method we integrate f over the
past history triangle �. Thus∫∫

�

f dx dt =
∫∫

�

(utt − c2uxx) dx dt . (10)

But Green’s theorem says that∫∫
�

(Px − Qt ) dx dt =
∫

bdy
P dt + Q dx

for any functions P and Q, where the line integral on the boundary is taken
counterclockwise (see Section A.3). Thus we get∫∫

�

f dx dt =
∫

L0+L1+L2

(−c2ux dt − ut dx). (11)

This is the sum of three line integrals over straight line segments (see Figure
6). We evaluate each piece separately. On L0, dt = 0 and ut (x, 0) = ψ(x),
so that ∫

L0

= −
∫ x0+ct0

x0−ct0

ψ(x) dx .

On L1, x + ct = x0 + ct0, so that dx + c dt = 0, whence −c2ux dt−
ut dx = cux dx + cut dt = c du. (We’re in luck!) Thus∫

L1

= c
∫

L1

du = cu(x0, t0) − cφ(x0 + ct0).

In the same way,∫
L2

= −c
∫

L2

du = −cφ(x0 − ct0) + cu(x0, t0).

Adding these three results, we get∫∫
�

f dx dt = 2cu(x0, t0)− c[φ(x0 + ct0) + φ(x0 −ct0)]−
∫ x0+ct0

x0−ct0

ψ(x) dx .
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Thus

u(x0, t0) = 1

2c

∫∫
�

f dx dt + 1

2
[φ(x0 + ct0) + φ(x0 − ct0)]

+ 1

2c

∫ x0+ct0

x0−ct0

ψ(x) dx,

(12)

which is the same as before.

Operator Method This is how we solved the diffusion equation with a
source. Let’s try it out on the wave equation. The ODE analog is the equation,

d2u

dt2
+ A2u(t) = f (t), u(0) = φ,

du

dt
(0) = ψ. (13)

We could think of A2 as a positive constant (or even a positive square matrix.)
The solution of (13) is

u(t) = S′(t)φ + S(t)ψ +
∫ t

0
S(t − s) f (s) ds, (14)

where

S(t) = A−1 sin tA and S′(t) = cos tA. (15)

The key to understanding formula (14) is that S(t)ψ is the solution of problem
(13) in the case that φ = 0 and f = 0.

Let’s return to the PDE

utt − c2uxx = f (x, t) u(x, 0) = φ(x) ut (x, 0) = ψ(x). (16)

The basic operator ought to be given by the ψ term. That is,

s(t)ψ = 1

2c

∫ x+ct

x−ct
ψ(y) dy = v(x, t), (17)

where v(x, t) solves vt t − c2vxx = 0, v(x, 0) = 0, vt (x, 0) = ψ(x). s(t) is
the source operator. By (14) we would expect the φ term to be (∂/∂t)s(t)φ.
In fact,

∂

∂t
s(t)φ = ∂

∂t

1

2c

∫ x+ct

x−ct
φ(y) dy

= 1

2c
[cφ(x + ct) − (−c)φ(x − ct)] ,

in agreement with our old formula (2.1.8)! So we must be on the right track.
Let’s now take the f term; that is, φ = ψ = 0. By analogy with the last

term in (14), the solution ought to be

u(t) =
∫ t

0
s(t − s) f (s) ds.
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That is, using (17),

u(x, t) =
∫ t

0

[
1

2c

∫ x+c(t−s)

x−c(t−s)
f (y, s) dy

]
ds = 1

2c

∫∫
�

f dx dt.

This is once again the same result!
The moral of the operator method is that if you can solve the homogeneous

equation, you can also solve the inhomogeneous equation. This is sometimes
known as Duhamel’s principle.

SOURCE ON A HALF-LINE

The solution of the general inhomogeneous problem on a half-line

DE: vt t − c2vxx = f (x, t) in 0 < x < ∞
IC: v(x, 0) = φ(x) vt (x, 0) = ψ(x)

BC: v(0, t) = h(t)

(18)

is the sum of four terms, one for each data function φ, ψ , f , and h. For x >
ct > 0, the solution has precisely the same form as in (3), with the backward
triangle � as the domain of dependence. For 0 < x < ct, however, it is given
by

v(x, t) = φ term + ψ term + h
(

t − x
c

)
+ 1

2c

∫∫
D

f (19)

where t − x/c is the reflection point and D is the shaded region in Figure
3.2.2. The only caveat is that the given conditions had better coincide at the
origin. That is, we require that φ(0) = h(0) and ψ(0) = h′(0). If this were
not assumed, there would be a singularity on the characteristic line emanating
from the corner.

Let’s derive the boundary term h(t − x/c) for x < ct. To accomplish
this, it is convenient to assume that φ = ψ = f = 0. We shall derive
the solution from scratch using the fact that v(x, t) must take the form
v(x, t) = j(x + ct) + g(x − ct). From the initial conditions (φ = ψ = 0),
we find that j(s) = g(s) = 0 for s > 0. From the boundary condition we have
h(t) = v(0, t) = g(−ct) for t > 0. Thus g(s) = h(−s/c) for s<0. Therefore, if
x< ct, t >0, we have v(x, t) = 0 + h(−[x − ct]/c) = h(t − x/c).

FINITE INTERVAL

For a finite interval (0, l) with inhomogeneous boundary conditions v(0, t) =
h(t), v(l, t) = k(t), we get the whole series of terms

v(x, t) = h
(

t − x

c

)
− h

(
t + x − 2l

c

)
+ h

(
t − x + 2l

c

)
+ · · ·

+ k

(
t + x − l

c

)
− k

(
t − x + l

c

)
+ k

(
t + x − 3l

c

)
+ · · ·

(see Exercise 15 and Figure 3.2.4).
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EXERCISES

1. Solve utt = c2uxx + xt, u(x, 0) = 0, ut (x, 0) = 0.

2. Solve utt = c2uxx + eax , u(x, 0) = 0, ut (x, 0) = 0.

3. Solve utt = c2uxx + cos x, u(x, 0) = sin x, ut (x, 0) = 1 + x .

4. Show that the solution of the inhomogeneous wave equation

utt = c2uxx + f, u(x, 0) = φ(x), ut (x, 0) = ψ(x),

is the sum of three terms, one each for f , φ, and ψ .
5. Let f (x, t) be any function and let u(x, t) = (1/2c)

∫∫
�

f , where � is the
triangle of dependence. Verify directly by differentiation that

utt = c2uxx + f and u(x, 0) ≡ ut (x, 0) ≡ 0.

(Hint: Begin by writing the formula as the iterated integral

u(x, t) = 1

2c

∫ t

0

∫ x+ct−cs

x−ct+cs
f (y, s) dy ds

and differentiate with care using the rule in the Appendix. This exercise
is not easy.)

6. Derive the formula for the inhomogeneous wave equation in yet another
way.
(a) Write it as the system

ut + cux = v, vt − cvx = f.

(b) Solve the first equation for u in terms of v as

u(x, t) =
∫ t

0
v(x − ct + cs, s) ds.

(c) Similarly, solve the second equation for v in terms of f .
(d) Substitute part (c) into part (b) and write as an iterated integral.

7. Let A be a positive-definite n × n matrix. Let

S(t) =
∞∑

m=0

(−1)m A2mt2m+1

(2m + 1)!
.

(a) Show that this series of matrices converges uniformly for bounded
t and its sum S(t) solves the problem S′′(t) + A2S(t) = 0, S(0) =
0, S′(0) = I, where I is the identity matrix. Therefore, it makes
sense to denote S(t) as A−1 sin tA and to denote its derivative S′(t)
as cos(tA).

(b) Show that the solution of (13) is (14).
8. Show that the source operator for the wave equation solves the problem

st t − c2sxx = 0, s(0) = 0, st (0) = I,

where I is the identity operator.
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9. Let u(t) = ∫ t
0 s(t − s) f (s) ds. Using only Exercise 8, show that u solves

the inhomogeneous wave equation with zero initial data.
10. Use any method to show that u = 1/(2c)

∫∫
D f solves the inhomoge-

neous wave equation on the half-line with zero initial and boundary
data, where D is the domain of dependence for the half-line.

11. Show by direct substitution that u(x, t) = h(t − x/c) for x < ct and
u(x, t) = 0 for x ≥ ct solves the wave equation on the half-line (0, ∞)
with zero initial data and boundary condition u(0, t) = h(t).

12. Derive the solution of the fully inhomogeneous wave equation on the
half-line

vt t − c2vxx = f (x, t) in 0 < x < ∞
v(x, 0) = φ(x), vt (x, 0) = ψ(x)

v(0, t) = h(t),

by means of the method using Green’s theorem. (Hint: Integrate over
the domain of dependence.)

13. Solve utt = c2uxx for 0 < x < ∞,
u(0, t) = t2, u(x, 0) = x, ut (x, 0) = 0.

14. Solve the homogeneous wave equation on the half-line (0, ∞) with zero
initial data and with the Neumann boundary condition ux (0, t) = k(t).
Use any method you wish.

15. Derive the solution of the wave equation in a finite interval with inho-
mogeneous boundary conditions v(0, t) = h(t), v(l, t) = k(t), and with
φ = ψ = f = 0.

3.5 DIFFUSION REVISITED

In this section we make a careful mathematical analysis of the solution of
the diffusion equation that we found in Section 2.4. (On the other hand, the
formula for the solution of the wave equation is so much simpler that it doesn’t
require a special justification.)

The solution formula for the diffusion equation is an example of a con-
volution, the convolution of φ with S (at a fixed t). It is

u(x, t) =
∫ ∞

−∞
S(x − y, t) φ(y) dy =

∫ ∞

−∞
S(z, t) φ(x − z) dz, (1)

where S(z, t) = 1/
√

4πkt e−z2/4kt . If we introduce the variable p = z/
√

kt,
it takes the equivalent form

u(x, t) = 1√
4π

∫ ∞

−∞
e−p2

/
4φ(x − p

√
kt) dp. (2)

Now we are prepared to state a precise theorem.



3.5 DIFFUSION REVISITED 81

Theorem 1. Let φ(x) be a bounded continuous function for −∞ < x <
∞. Then the formula (2) defines an infinitely differentiable function u(x, t)
for −∞ < x < ∞, 0 < t < ∞, which satisfies the equation ut = kuxx and
limt↘0 u(x, t) = φ(x) for each x.

Proof. The integral converges easily because

|u(x, t)| ≤ 1√
4π

(max|φ|)
∫ ∞

−∞
e−p2

/
4 dp = max|φ|.

(This inequality is related to the maximum principle.) Thus the integral con-
verges uniformly and absolutely. Let us show that ∂u/∂x exists. It equals∫

(∂S/∂x)(x − y, t)φ(y) dy provided that this new integral also converges
absolutely. Now∫ ∞

−∞

∂S

∂x
(x − y, t)φ(y) dy = − 1√

4πkt

∫ ∞

−∞

x − y

2kt
e−(x−y)2

/
4ktφ(y) dy

= c√
t

∫ ∞

−∞
pe−p2

/
4φ(x − p

√
kt) dp

≤ c√
t

(max |φ|)
∫ ∞

−∞
|p| e−p2

/
4 dp,

where c is a constant. The last integral is finite. So this integral also converges
uniformly and absolutely. Therefore, ux = ∂u/∂x exists and is given by this
formula. All derivatives of all orders (ut , uxt , uxx, utt , . . .) work the same way
because each differentiation brings down a power of p so that we end up
with convergent integrals like

∫
pne−p2/4 dp. So u(x, t) is differentiable to all

orders. Since S(x, t) satisfies the diffusion equation for t > 0, so does u(x, t).
It remains to prove the initial condition. It has to be understood in a

limiting sense because the formula itself has meaning only for t > 0. Because
the integral of S is 1, we have

u(x, t) − φ(x) =
∫ ∞

−∞
S(x − y, t) [φ(y) − φ(x)] dy

= 1√
4π

∫ ∞

−∞
e−p2

/
4[φ(x − p

√
kt) − φ(x)] dp.

For fixed x we must show that this tends to zero as t → 0. The idea is that for
p
√

t small, the continuity of φ makes the integral small; while for p
√

t not
small, p is large and the exponential factor is small.

To carry out this idea, let ε > 0. Let δ > 0 be so small that

max
|y−x |≤δ

|φ(y) − φ(x)| <
ε

2
.
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This can be done because φ is continuous at x. We break up the integral into
the part where |p| < δ/

√
kt and the part where |p| ≥ δ/

√
kt . The first part is∣∣∣∣

∫
|p|<δ/

√
kt

∣∣∣∣ ≤
(

1√
4π

∫
e−p2

/
4dp

)
· max

|y−x |≤δ
|φ(y) − φ(x)|

< 1 · ε

2
= ε

2
.

The second part is∣∣∣∣
∫

|p|≥δ/
√

kt

∣∣∣∣ ≤ 1√
4π

· 2(max |φ|) ·
∫

|p|≥δ/
√

kt
e−p2/4dp <

ε

2

by choosing t sufficiently small, since the integral
∫ ∞
−∞ e−p2/4 dp converges

and δ is fixed. (That is, the “tails”
∫
|p|≥N e−p2/4 dp are as small as we wish if

N = δ/
√

kt is large enough.) Therefore,

|u(x, t) − φ(x)| < 1
2ε + 1

2ε = ε

provided that t is small enough. This means exactly that u(x, t) → φ(x) as
t → 0. �

Corollary. The solution has all derivatives of all orders for t > 0, even if φ
is not differentiable. We can say therefore that all solutions become smooth
as soon as diffusion takes effect. There are no singularities, in sharp contrast
to the wave equation.

Proof. We use formula (1)

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy

together with the rule for differentiation under an integral sign, Theorem 2 in
Section A.3.

Piecewise Continuous Initial Data. Notice that the continuity of φ(x) was
used in only one part of the proof. With an appropriate change we can allow
φ(x) to have a jump discontinuity. [Consider, for instance, the initial data for
Q(x, t).]

A function φ(x) is said to have a jump at x0 if both the limit of φ(x)
as x → x0 from the right exists [denoted φ(x0+)] and the limit from the left
[denoted φ(x0 −)] exists but these two limits are not equal. A function is called
piecewise continuous if in each finite interval it has only a finite number of
jumps and it is continuous at all other points. This concept is discussed in
more detail in Section 5.2.
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Theorem 2. Let φ(x) be a bounded function that is piecewise continuous.
Then (1) is an infinitely differentiable solution for t > 0 and

lim
t↘0

u(x, t) = 1
2 [φ(x+) + φ(x−)]

for all x. At every point of continuity this limit equals φ(x).

Proof. The idea is the same as before. The only difference is to split the
integrals into p > 0 and p < 0. We need to show that

1√
4π

∫ ±∞

0
e−p2/4φ(x +

√
kt p) dp → ±1

2
φ (x±).

The details are left as an exercise. �

EXERCISES

1. Prove that if φ is any piecewise continuous function, then

1√
4π

∫ ±∞

0
e−p2/4φ(x +

√
kt p) dp → ±1

2
φ (x±) as t ↘0.

2. Use Exercise 1 to prove Theorem 2.


