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WHERE PDEs

COME FROM

After thinking about the meaning of a partial differential equation, we will
flex our mathematical muscles by solving a few of them. Then we will see
how naturally they arise in the physical sciences. The physics will motivate
the formulation of boundary conditions and initial conditions.

1.1 WHAT IS A PARTIAL DIFFERENTIAL EQUATION?

The key defining property of a partial differential equation (PDE) is that there
is more than one independent variable x, y, . . . . There is a dependent variable
that is an unknown function of these variables u(x, y, . . . ). We will often
denote its derivatives by subscripts; thus ∂u/∂x = ux , and so on. A PDE is an
identity that relates the independent variables, the dependent variable u, and
the partial derivatives of u. It can be written as

F(x, y, u(x, y), ux (x, y), u y(x, y)) = F(x, y, u, ux , u y) = 0. (1)

This is the most general PDE in two independent variables of first order. The
order of an equation is the highest derivative that appears. The most general
second-order PDE in two independent variables is

F(x, y, u, ux , u y, uxx , uxy, u yy) = 0. (2)

A solution of a PDE is a function u(x, y, . . . ) that satisfies the equation
identically, at least in some region of the x, y, . . . variables.

When solving an ordinary differential equation (ODE), one sometimes
reverses the roles of the independent and the dependent variables—for in-

stance, for the separable ODE
du

dx
= u3. For PDEs, the distinction between

the independent variables and the dependent variable (the unknown) is always
maintained.
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2 CHAPTER 1 WHERE PDEs COME FROM

Some examples of PDEs (all of which occur in physical theory) are:

1. ux + u y = 0 (transport)

2. ux + yu y = 0 (transport)

3. ux + uu y = 0 (shock wave)

4. uxx + u yy = 0 (Laplace’s equation)

5. ut t − uxx + u3 = 0 (wave with interaction)

6. ut + uux + uxxx = 0 (dispersive wave)

7. ut t + uxxxx = 0 (vibrating bar)

8. ut − iuxx = 0 (i =
√

−1) (quantum mechanics)

Each of these has two independent variables, written either as x and y or
as x and t. Examples 1 to 3 have order one; 4, 5, and 8 have order two; 6 has
order three; and 7 has order four. Examples 3, 5, and 6 are distinguished from
the others in that they are not “linear.” We shall now explain this concept.

Linearity means the following. Write the equation in the form lu = 0,
wherel is an operator. That is, if v is any function,lv is a new function. For
instance, l = ∂/∂x is the operator that takes v into its partial derivative vx .
In Example 2, the operator l is l = ∂/∂x + y∂/∂y. (lu = ux + yu y.) The
definition we want for linearity is

l(u + v) = lu + lv l(cu) = clu (3)

for any functions u, v and any constant c. Whenever (3) holds (for all choices
of u, v, and c), l is called linear operator. The equation

lu = 0 (4)

is called linear if l is a linear operator. Equation (4) is called a homogeneous
linear equation. The equation

lu = g, (5)

where g �= 0 is a given function of the independent variables, is called an
inhomogeneous linear equation. For instance, the equation

(cos xy2)ux − y2u y = tan(x2 + y2) (6)

is an inhomogeneous linear equation.
As you can easily verify, five of the eight equations above are linear

as well as homogeneous. Example 5, on the other hand, is not linear because
although (u + v)xx = uxx + vxx and (u + v)t t = ut t + vt t satisfy property (3),
the cubic term does not:

(u + v)3 = u3 + 3u2v + 3uv2 + v3 �= u3 + v3.
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The advantage of linearity for the equation lu = 0 is that if u and v are
both solutions, so is (u + v). If u1, . . . , un are all solutions, so is any linear
combination

c1u1(x) + · · · + cnun(x) =
n

∑

j=1

c j u j (x) (cj = constants).

(This is sometimes called the superposition principle.) Another consequence
of linearity is that if you add a homogeneous solution [a solution of (4)] to an
inhomogeneous solution [a solution of (5)], you get an inhomogeneous solu-
tion. (Why?) The mathematical structure that deals with linear combinations
and linear operators is the vector space. Exercises 5–10 are review problems
on vector spaces.

We’ll study, almost exclusively, linear systems with constant coefficients.
Recall that for ODEs you get linear combinations. The coefficients are the
arbitrary constants. For an ODE of order m, you get m arbitrary constants.

Let’s look at some PDEs.

Example 1.

Find all u(x, y) satisfying the equation uxx = 0. Well, we can integrate
once to get ux = constant. But that’s not really right since there’s another
variable y. What we really get is ux(x, y) = f (y), where f (y) is arbitrary.
Do it again to get u(x, y) = f (y)x + g(y). This is the solution formula.
Note that there are two arbitrary functions in the solution. We see this
as well in the next two examples. �

Example 2.

Solve the PDE uxx + u = 0. Again, it’s really an ODE with an extra
variable y. We know how to solve the ODE, so the solution is

u = f (y) cos x + g(y) sin x,

where again f (y) and g(y) are two arbitrary functions of y. You can easily
check this formula by differentiating twice to verify that uxx = −u. �

Example 3.

Solve the PDE uxy = 0. This isn’t too hard either. First let’s integrate in
x, regarding y as fixed. So we get

u y(x, y) = f (y).

Next let’s integrate in y regarding x as fixed. We get the solution

u(x, y) = F(y) + G(x),

where F ′ = f. �
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Moral A PDE has arbitrary functions in its solution. In these examples the
arbitrary functions are functions of one variable that combine to produce a
function u(x, y) of two variables which is only partly arbitrary.

A function of two variables contains immensely more information than
a function of only one variable. Geometrically, it is obvious that a surface
{u = f (x, y)}, the graph of a function of two variables, is a much more com-
plicated object than a curve {u = f (x)}, the graph of a function of one variable.

To illustrate this, we can ask how a computer would record a function
u = f (x). Suppose thatwe choose 100 points to describe it using equally spaced
values of x : x1, x2, x3, . . . , x100. We could write them down in a column, and
next to each xj we could write the corresponding value u j = f (xj ). Now how
about a function u = f (x, y)? Suppose that we choose 100 equally spaced
values of x and also of y: x1, x2, x3, . . . ,x100 and y1, y2, y3, . . . , y100. Each
pair xi , y j provides a value uij = f (xi , y j ), so there will be 1002 = 10,000
lines of the form

xi y j uij

required to describe the function! (If we had a prearranged system, we would
need to record only the values uij.) A function of three variables described
discretely by 100 values in each variable would require a million numbers!

To understand this book what do you have to know from calculus? Cer-
tainly all the basic facts about partial derivatives and multiple integrals. For
a brief discussion of such topics, see the Appendix. Here are a few things to
keep in mind, some of which may be new to you.

1. Derivatives are local. For instance, to calculate the derivative
(∂u/∂x)(x0, t0) at a particular point, you need to know just the values
of u(x, t0) for x near x0, since the derivative is the limit as x → x0.

2. Mixed derivatives are equal: uxy = u yx . (We assume throughout this book,
unless stated otherwise, that all derivatives exist and are continuous.)

3. The chain rule is used frequently in PDEs; for instance,

∂

∂x
[ f (g(x, t))] = f ′(g(x, t)) ·

∂g

∂x
(x, t).

4. For the integrals of derivatives, the reader should learn or review Green’s
theorem and the divergence theorem. (See the end of Section A.3 in the
Appendix.)

5. Derivatives of integrals like I (t) =
∫ b(t)

a(t)
f (x, t) dx (see Section A.3).

6. Jacobians (change of variable in a double integral) (see Section A.1).

7. Infinite series of functions and their differentiation (see Section A.2).

8. Directional derivatives (see Section A.1).

9. We’ll often reduce PDEs to ODEs, so we must know how to solve simple
ODEs. But we won’t need to know anything about tricky ODEs.
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EXERCISES

1. Verify the linearity and nonlinearity of the eight examples of PDEs given
in the text, by checking whether or not equations (3) are valid.

2. Which of the following operators are linear?
(a) lu = ux + xu y

(b) lu = ux + uu y

(c) lu = ux + u2
y

(d) lu = ux + u y + 1

(e) lu =
√
1 + x2 (cos y)ux + u yxy − [arctan(x/y)]u

3. For each of the following equations, state the order and whether it
is nonlinear, linear inhomogeneous, or linear homogeneous; provide
reasons.
(a) ut − uxx + 1 = 0
(b) ut − uxx + xu = 0
(c) ut − uxxt + uux = 0
(d) ut t − uxx + x2 = 0
(e) iut − uxx + u/x = 0

(f) ux (1 + u2
x )

−1/2 + u y(1 + u2
y)

−1/2 = 0

(g) ux + eyu y = 0

(h) ut + uxxxx +
√
1 + u = 0

4. Show that the difference of two solutions of an inhomogeneous linear
equation lu = g with the same g is a solution of the homogeneous
equation lu = 0.

5. Which of the following collections of 3-vectors [a, b, c] are vector
spaces? Provide reasons.
(a) The vectors with b = 0.
(b) The vectors with b = 1.
(c) The vectors with ab = 0.
(d) All the linear combinations of the two vectors [1, 1, 0] and [2, 0, 1].
(e) All the vectors such that c − a = 2b.

6. Are the three vectors [1, 2, 3], [−2, 0, 1], and [1, 10, 17] linearly depen-
dent or independent? Do they span all vectors or not?

7. Are the functions 1 + x, 1 − x, and 1 + x + x2 linearly dependent or
independent? Why?

8. Find a vector that, together with the vectors [1, 1, 1] and [1, 2, 1], forms
a basis of R

3.

9. Show that the functions (c1 + c2 sin
2x + c3 cos

2x) form a vector space.
Find a basis of it. What is its dimension?

10. Show that the solutions of the differential equation u′′′ − 3u′′ + 4u = 0
form a vector space. Find a basis of it.

11. Verify that u(x, y) = f (x)g(y) is a solution of the PDE uuxy = ux u y for
all pairs of (differentiable) functions f and g of one variable.
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12. Verify by direct substitution that

un(x, y) = sin nx sinh ny

is a solution of uxx + u yy = 0 for every n > 0.

1.2 FIRST-ORDER LINEAR EQUATIONS

We begin our study of PDEs by solving some simple ones. The solution is
quite geometric in spirit.

The simplest possible PDE is ∂u/∂x = 0 [where u = u(x, y)]. Its general
solution is u = f (y), where f is any function of one variable. For instance,
u = y2 − y and u = ey cos y are two solutions. Because the solutions don’t
depend on x, they are constant on the lines y = constant in the xy plane.

THE CONSTANT COEFFICIENT EQUATION

Let us solve

aux + bu y = 0, (1)

where a and b are constants not both zero.

Geometric Method The quantity aux + buy is the directional derivative of
u in the direction of the vector V = (a, b) = ai + bj. It must always be zero.
This means that u(x, y) must be constant in the direction of V. The vector
(b, −a) is orthogonal to V. The lines parallel to V (see Figure 1) have the
equations bx – ay = constant. (They are called the characteristic lines.) The
solution is constant on each such line. Therefore, u(x, y) depends on bx – ay
only. Thus the solution is

u(x, y) = f (bx − ay), (2)

where f is any function of one variable. Let’s explain this conclusion more
explicitly. On the line bx – ay = c, the solution u has a constant value. Call

Figure 1
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Figure 2

this value f (c). Then u(x, y) = f (c) = f (bx − ay). Since c is arbitrary, we
have formula (2) for all values of x and y. In xyu space the solution defines
a surface that is made up of parallel horizontal straight lines like a sheet of
corrugated iron.

Coordinate Method Change variables (or “make a change of coordinates”;
Figure 2) to

x ′ = ax + by y′ = bx − ay. (3)

Replace all x and y derivatives by x′ and y′ derivatives. By the chain rule,

ux =
∂u

∂x
=

∂u

∂x ′
∂x ′

∂x
+

∂u

∂y′
∂y′

∂x
= aux ′ + bu y′

and

u y =
∂u

∂y
=

∂u

∂y′
∂y′

∂y
+

∂u

∂x ′
∂x ′

∂y
= bux ′ − au y′ .

Hence aux + bu y = a(aux ′ + bu y′) + b(bux ′ − au y′) = (a2 + b2)ux ′ . So,

since a2 + b2 �= 0, the equation takes the form ux ′ = 0 in the new (primed)
variables. Thus the solution is u = f (y′) = f (bx − ay), with f an arbitrary
function of one variable. This is exactly the same answer as before!

Example 1.

Solve the PDE 4ux − 3u y = 0, together with the auxiliary condition

that u(0, y) = y3. By (2) we have u(x, y) = f (−3x − 4y). This is
the general solution of the PDE. Setting x = 0 yields the equation
y3 = f (−4y). Letting w = −4y yields f (w) = −w3/64. Therefore,
u(x, y) = (3x + 4y)3/64.

Solutions can usually be checked much easier than they
can be derived. We check this solution by simple differen-
tiation: ux = 9(3x + 4y)2/64 and u y = 12(3x + 4y)2/64 so that

4ux − 3u y = 0. Furthermore, u(0, y) = (3 · 0 + 4y)3/64 = y3. �
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THE VARIABLE COEFFICIENT EQUATION

The equation

ux + yu y = 0 (4)

is linear and homogeneous but has a variable coefficient (y).We shall illustrate
for equation (4) how to use the geometric method somewhat like Example 1.

The PDE (4) itself asserts that the directional derivative in the direction
of the vector (1, y) is zero. The curves in the xy plane with (1, y) as tangent
vectors have slopes y (see Figure 3). Their equations are

dy

dx
=

y

1
(5)

This ODE has the solutions

y = Cex . (6)

These curves are called the characteristic curves of the PDE (4). As C is
changed, the curves fill out the xy plane perfectly without intersecting. On
each of the curves u(x, y) is a constant because

d

dx
u(x, Cex ) =

∂u

∂x
+ Cex ∂u

∂y
= ux + yu y = 0.

Thus u(x,Cex ) = u(0, Ce0) = u(0, C) is independent of x. Putting y = Cex

and C = e−x y, we have

u(x, y) = u(0, e−xy).

It follows that

u(x, y) = f (e−xy) (7)

is the general solution of this PDE, where again f is an arbitrary function
of only a single variable. This is easily checked by differentiation using
the chain rule (see Exercise 4). Geometrically, the “picture” of the solution
u(x, y) is that it is constant on each characteristic curve in Figure 3.

Figure 3
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Example 2.

Find the solution of (4) that satisfies the auxiliary condition u(0, y) = y3.
Indeed, putting x = 0 in (7), we get y3 = f (e−0y), so that f (y) = y3.

Therefore, u(x, y) = (e−x y)
3 = e−3x y3. �

Example 3.

Solve the PDE

ux + 2xy2u y = 0. (8)

The characteristic curves satisfy the ODE dy/dx = 2xy2/1 = 2xy2.
To solve the ODE, we separate variables: dy/y2 = 2x dx ; hence
−1/y = x2 − C , so that

y = (C − x2)
−1

. (9)

These curves are the characteristics. Again, u(x, y) is a constant on each
such curve. (Check it by writing it out.) So u(x, y) = f (C), where f is an
arbitrary function. Therefore, the general solution of (8) is obtained by
solving (9) for C. That is,

u(x, y) = f

(

x2 +
1

y

)

. (10)

Again this is easily checked by differentiation, using the chain
rule: ux = 2x · f ′(x2 + 1/y) and u y = −(1/y2) · f ′(x2 + 1/y), whence

ux + 2xy2u y = 0. �

In summary, the geometric method works nicely for any PDE of the form
a(x, y)ux + b(x, y)u y = 0. It reduces the solution of the PDE to the solution
of the ODE dy/dx = b(x, y)/a(x, y). If the ODE can be solved, so can the
PDE. Every solution of the PDE is constant on the solution curves of the ODE.

Moral Solutions of PDEs generally depend on arbitrary functions (instead
of arbitrary constants). You need an auxiliary condition if you want to deter-
mine a unique solution. Such conditions are usually called initial or boundary
conditions. We shall encounter these conditions throughout the book.

EXERCISES

1. Solve the first-order equation 2ut + 3ux = 0with the auxiliary condition
u = sin x when t = 0.

2. Solve the equation 3u y + uxy = 0. (Hint : Let v = u y.)
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3. Solve the equation (1 + x2)ux + u y = 0. Sketch some of the character-
istic curves.

4. Check that (7) indeed solves (4).

5. Solve the equation xux + yu y = 0.

6. Solve the equation
√
1 − x2ux + u y = 0with the condition u(0, y) = y.

7. (a) Solve the equation yux + xu y = 0 with u(0, y) = e−y2 .
(b) In which region of the xy plane is the solution uniquely determined?

8. Solve aux + bu y + cu = 0.

9. Solve the equation ux + u y = 1.

10. Solve ux + u y + u = ex+2y with u(x, 0) = 0.

11. Solve aux + bu y = f (x, y), where f (x, y) is a given function. If a �= 0,
write the solution in the form

u(x, y) = (a2 + b2)
−1/2

∫

L

f ds + g(bx − ay),

where g is an arbitrary function of one variable, L is the characteristic
line segment from the y axis to the point (x, y), and the integral is a line
integral. (Hint: Use the coordinate method.)

12. Show that the new coordinate axes defined by (3) are orthogonal.

13. Use the coordinate method to solve the equation

ux + 2u y + (2x − y)u = 2x2 + 3xy − 2y2.

1.3 FLOWS, VIBRATIONS, AND DIFFUSIONS

The subject of PDEs was practically a branch of physics until the twentieth
century. In this section we present a series of examples of PDEs as they occur
in physics. They provide the basic motivation for all the PDE problems we
study in the rest of the book.We shall see that most often in physical problems
the independent variables are those of space x, y, z, and time t.

Example 1. Simple Transport

Consider a fluid, water, say, flowing at a constant rate c along a horizontal
pipe of fixed cross section in the positive x direction. A substance, say
a pollutant, is suspended in the water. Let u(x, t) be its concentration in
grams/centimeter at time t. Then

ut + cux = 0. (1)

(That is, the rate of change ut of concentration is proportional to the
gradient ux. Diffusion is assumed to be negligible.) Solving this equation
as in Section 1.2, we find that the concentration is a function of (x – ct)
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Figure 1

only. This means that the substance is transported to the right at a fixed
speed c. Each individual particle moves to the right at speed c; that
is, in the xt plane, it moves precisely along a characteristic line (see
Figure 1). �

Derivation of Equation (1). The amount of pollutant in the interval

[0, b] at the time t is M =
∫ b

0
u(x, t) dx , in grams, say. At the later time t + h,

the same molecules of pollutant have moved to the right by c · h centimeters.
Hence

M =
∫ b

0

u(x, t)dx =
∫ b+ch

ch

u(x, t + h) dx .

Differentiating with respect to b, we get

u(b, t) = u(b + ch, t + h).

Differentiating with respect to h and putting h = 0, we get

0 = cux (b, t) + ut (b, t),

which is equation (1). �

Example 2. Vibrating String

Consider a flexible, elastic homogenous string or thread of length l,
which undergoes relatively small transverse vibrations. For instance, it
could be a guitar string or a plucked violin string. At a given instant
t, the string might look as shown in Figure 2. Assume that it remains
in a plane. Let u(x, t) be its displacement from equilibrium position at
time t and position x. Because the string is perfectly flexible, the tension
(force) is directed tangentially along the string (Figure 3). Let T(x, t) be
the magnitude of this tension vector. Let ρ be the density (mass per unit
length) of the string. It is a constant because the string is homogeneous.
We shall write down Newton’s law for the part of the string between
any two points at x = x0 and x = x1. The slope of the string at x1 is

Figure 2
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Figure 3

ux(x1, t). Newton’s law F = ma in its longitudinal (x) and transverse (u)
components is

T
√

1 + u2
x

∣

∣

∣

∣

x1

x0

= 0 (longitudinal)

T ux
√

1 + u2
x

∣

∣

∣

∣

x1

x0

=
∫ x1

x0

ρut t dx (transverse)

The right sides are the components of the mass times the acceleration
integrated over the piece of string. Since we have assumed that the
motion is purely transverse, there is no longitudinal motion.

Now we also assume that the motion is small—more specifically,

that |ux | is quite small. Then
√

1 + u2
x may be replaced by 1. This is

justified by the Taylor expansion, actually the binomial expansion,

√

1 + u2
x = 1 + 1

2
u2

x + · · ·

where the dots represent higher powers of ux. If ux is small, it makes
sense to drop the even smaller quantity u2

x and its higher powers. With
the square roots replaced by 1, the first equation then says that T is
constant along the string. Let us assume that T is independent of t as
well as x. The second equation, differentiated, says that

(Tux )x = ρut t .

That is,

ut t = c2uxx where c =
√

T

ρ
. (2)

This is the wave equation. At this point it is not clear why c is defined
in this manner, but shortly we’ll see that c is the wave speed. �
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There are many variations of this equation:

(i) If significant air resistance r is present, we have an extra term pro-
portional to the speed ut, thus:

ut t − c2uxx + rut = 0 where r > 0. (3)

(ii) If there is a transverse elastic force, we have an extra term propor-
tional to the displacement u, as in a coiled spring, thus:

ut t − c2uxx + ku = 0 where k > 0. (4)

(iii) If there is an externally applied force, it appears as an extra term,
thus:

ut t − c2uxx = f (x, t), (5)

which makes the equation inhomogeneous.

Our derivation of the wave equation has been quick but not too precise. A
much more careful derivation can be made, which makes precise the physical
and mathematical assumptions [We, Chap. 1].

The samewave equation or a variation of it describesmany other wavelike
phenomena, such as the vibrations of an elastic bar, the sound waves in a pipe,
and the long water waves in a straight canal. Another example is the equation
for the electrical current in a transmission line,

uxx = CLut t + (CR + GL)ut + GRu,

where C is the capacitance per unit length, G the leakage resistance per unit
length, R the resistance per unit length, and L the self-inductance per unit
length.

Example 3. Vibrating Drumhead

The two-dimensional version of a string is an elastic, flexible, homo-
geneous drumhead, that is, a membrane stretched over a frame. Say
the frame lies in the xy plane (see Figure 4), u(x, y, t) is the vertical

Figure 4
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displacement, and there is no horizontal motion. The horizontal com-
ponents of Newton’s law again give constant tension T . Let D be any
domain in the xy plane, say a circle or a rectangle. Let bdy D be its
boundary curve. We use reasoning similar to the one-dimensional case.
The vertical component gives (approximately)

F =
∫

bdy D

T
∂u

∂n
ds =

∫∫

D

ρut t dx dy = ma,

where the left side is the total force acting on the piece D of the mem-
brane, and where ∂u/∂n = n · ∇u is the directional derivative in the
outward normal direction, n being the unit outward normal vector on
bdy D. By Green’s theorem (see Section A.3 in the Appendix), this can
be rewritten as

∫∫

D

∇ · (T ∇u) dx dy =
∫∫

D

ρut t dx dy.

Since D is arbitrary, we deduce from the second vanishing theorem in
Section A.1 that ρut t = ∇ · (T ∇u). Since T is constant, we get

ut t = c2∇ · (∇u) ≡ c2(uxx + u yy), (6)

where c =
√

T/ρ as before and ∇ · (∇u) = div grad u = uxx + u yy is
known as the two-dimensional laplacian. Equation (6) is the two-
dimensional wave equation. �

The pattern is now clear. Simple three-dimensional vibrations obey the
equation

ut t = c2(uxx + u yy + uzz). (7)

The operator l = ∂2/∂x2 + ∂2/∂y2 + ∂/∂z2 is called the three-dimensional
laplacian operator, usually denoted by � or ∇2. Physical examples described
by the three-dimensional wave equation or a variation of it include the vi-
brations of an elastic solid, sound waves in air, electromagnetic waves (light,
radar, etc.), linearized supersonic airflow, free mesons in nuclear physics, and
seismic waves propagating through the earth.

Example 4. Diffusion

Let us imagine a motionless liquid filling a straight tube or pipe and
a chemical substance, say a dye, which is diffusing through the liquid.
Simple diffusion is characterized by the following law. [It is not to
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Figure 5

be confused with convection (transport), which refers to currents in
the liquid.] The dye moves from regions of higher concentration to
regions of lower concentration. The rate of motion is proportional to the
concentration gradient. (This is known as Fick’s law of diffusion.) Let
u(x, t) be the concentration (mass per unit length) of the dye at position
x of the pipe at time t.

In the section of pipe from x0 to x1 (see Figure 5), the mass of dye is

M(t) =
∫ x1

x0

u(x, t) dx, so
dM

dt
=

∫ x1

x0

ut (x, t) dx .

The mass in this section of pipe cannot change except by flowing in or
out of its ends. By Fick’s law,

dM

dt
= flow in − flow out = kux (x1, t) − kux (x0, t),

where k is a proportionality constant. Therefore, those two expressions
are equal:

∫ x1

x0

ut (x, t) dx = kux (x1, t) − kux (x0, t).

Differentiating with respect to x1, we get

ut = kuxx . (8)

This is the diffusion equation.
In three dimensions we have

∫∫∫

D

ut dx dy dz =
∫∫

bdy D

k(n · ∇u) d S,

where D is any solid domain and bdy D is its bounding surface. By the
divergence theorem (using the arbitrariness of D as in Example 3), we
get the three-dimensional diffusion equation

ut = k(uxx + u yy + uzz) = k �u. (9)

If there is an external source (or a “sink”) of the dye, and if the rate
k of diffusion is a variable, we get the more general inhomogeneous
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equation

ut = ∇ · (k ∇u) + f (x, t).

The same equation describes the conduction of heat, brownian motion,
diffusion models of population dynamics, and many other phenomena.

�

Example 5. Heat Flow

We let u(x, y, z, t) be the temperature and let H(t) be the amount of heat
(in calories, say) contained in a region D. Then

H (t) =
∫∫∫

D

cρu dx dy dz,

where c is the “specific heat” of the material and ρ is its density (mass
per unit volume). The change in heat is

dH

dt
=

∫∫∫

D

cρut dx dy dz.

Fourier’s law says that heat flows from hot to cold regions proportion-
ately to the temperature gradient. But heat cannot be lost from D except
by leaving it through the boundary. This is the law of conservation of
energy. Therefore, the change of heat energy in D also equals the heat
flux across the boundary,

dH

dt
=

∫∫

bdy D

κ(n · ∇u) dS,

where κ is a proportionality factor (the “heat conductivity”). By the
divergence theorem,

∫∫∫

D

cρ
∂u

∂t
dx dy dz =

∫∫∫

D

∇ · (κ ∇u) dx dy dz

and we get the heat equation

cρ
∂u

∂t
= ∇ · (κ ∇u). (10)

If c,ρ, andκ are constants, it is exactly the same as the diffusion equation!
�

Example 6. Stationary Waves and Diffusions

Consider any of the four preceding examples in a situation where the
physical state does not change with time. Then ut = ut t = 0. So both
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the wave and the diffusion equations reduce to

�u = uxx + u yy + uzz = 0. (11)

This is called the Laplace equation. Its solutions are called harmonic
functions. For example, consider a hot object that is constantly heated
in an oven. The heat is not expected to be evenly distributed throughout
the oven. The temperature of the object eventually reaches a steady (or
equilibrium) state. This is a harmonic function u(x, y, z). (Of course, if
the heat were being supplied evenly in all directions, the steady state
would be u ≡ constant.) In the one-dimensional case (e.g., a laterally
insulated thin rod that exchanges heat with its environment only through
its ends), we would have u a function of x only. So the Laplace equation
would reduce simply to uxx = 0. Hence u = c1x + c2. The two- and
three-dimensional cases are much more interesting (see Chapter 6 for
the solutions). �

Example 7. The Hydrogen Atom

This is an electron moving around a proton. Let m be the mass of the
electron, e its charge, and h Planck’s constant divided by 2π . Let the
origin of coordinates (x, y, z) be at the proton and let r = (x2 + y2 + z2)1/2

be the spherical coordinate. Then the motion of the electron is given by
a “wave function” u(x, y, z, t) which satisfies Schrödinger’s equation

−ihut =
h2

2m
�u +

e2

r
u (12)

in all of space −∞ < x,y,z < +∞. Furthermore, we are supposed to

have
∫∫∫

|u|2dx dy dz = 1 (integral over all space). Note that i =
√

−1

and u is complex-valued. The coefficient function e2/r is called the po-
tential. For any other atom with a single electron, such as a helium ion,
e2 is replaced by Ze2, where Z is the atomic number. �

What does this mean physically? In quantum mechanics quantities cannot
be measured exactly but only with a certain probability. The wave function
u(x, y, z, t) represents a possible state of the electron. If D is any region in xyz
space, then

∫∫∫

D

|u|2 dx dy dz

is the probability of finding the electron in the region D at the time t. The
expected z coordinate of the position of the electron at the time t is the value



18 CHAPTER 1 WHERE PDEs COME FROM

of the integral

∫∫∫

z|u(x, y, z, t)|2 dx dy dz;

similarly for the x and y coordinates. The expected z coordinate of the mo-
mentum is

∫∫∫

−ih
∂u

∂z
(x, y, z, t) · ū(x, y, z, t) dx dy dz,

where ū is the complex conjugate of u. All other observable quantities are
given by operators A, which act on functions. The expected value of the
observable A equals

∫∫∫

Au(x, y, z, t) · ū(x, y, z, t) dx dy dz.

Thus the position is given by the operator Au = xu, where x = x i + yj + zk,
and the momentum is given by the operator Au = −ih∇u.

Schrödinger’s equation is most easily regarded simply as an axiom that
leads to the correct physical conclusions, rather than as an equation that can
be derived from simpler principles. It explains why atoms are stable and don’t
collapse. It explains the energy levels of the electron in the hydrogen atom
observed by Bohr. In principle, elaborations of it explain the structure of all
atoms and molecules and so all of chemistry! With many particles, the wave
function u depends on time t and all the coordinates of all the particles and so
is a function of a large number of variables. The Schrödinger equation then
becomes

−ihut =
n

∑

i=1

h2

2mi

(uxi xi
+ u yi yi

+ uzi zi
) + V (x1, . . . , zn)u

for n particles, where the potential function V depends on all the 3n coor-
dinates. Except for the hydrogen and helium atoms (the latter having two
electrons), the mathematical analysis is impossible to carry out completely
and cannot be calculated even with the help of the modern computer. Nev-
ertheless, with the use of various approximations, many of the facts about
more complicated atoms and the chemical binding of molecules can be
understood. �

This has been a brief introduction to the sources of PDEs in physical
problems. Many realistic situations lead to much more complicated PDEs.
See Chapter 13 for some additional examples.
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EXERCISES

1. Carefully derive the equation of a string in a medium in which the resis-
tance is proportional to the velocity.

2. A flexible chain of length l is hanging from one end x = 0 but oscillates
horizontally. Let the x axis point downward and the u axis point to the
right. Assume that the force of gravity at each point of the chain equals the
weight of the part of the chain below the point and is directed tangentially
along the chain. Assume that the oscillations are small. Find the PDE
satisfied by the chain.

3. On the sides of a thin rod, heat exchange takes place (obeying New-
ton’s law of cooling—flux proportional to temperature difference) with
a medium of constant temperature T0. What is the equation satisfied by
the temperature u(x, t), neglecting its variation across the rod?

4. Suppose that some particles which are suspended in a liquid medium
would be pulled down at the constant velocity V > 0 by gravity in the
absence of diffusion. Taking account of the diffusion, find the equation
for the concentration of particles. Assume homogeneity in the horizontal
directions x and y. Let the z axis point upwards.

5. Derive the equation of one-dimensional diffusion in a medium that is
moving along the x axis to the right at constant speed V .

6. Consider heat flow in a long circular cylinder where the temperature
depends only on t and on the distance r to the axis of the cylinder. Here

r =
√

x2 + y2 is the cylindrical coordinate. From the three-dimensional
heat equation derive the equation ut = k(urr + ur/r ).

7. Solve Exercise 6 in a ball except that the temperature depends

only on the spherical coordinate
√

x2 + y2 + z2. Derive the equation
ut = k(urr + 2ur/r ).

8. For the hydrogen atom, if
∫

|u|2 dx = 1 at t = 0, show that the same is
true at all later times. (Hint: Differentiate the integral with respect to t,
taking care about the solution being complex valued. Assume that u and
∇u → 0 fast enough as |x| → ∞.)

9. This is an exercise on the divergence theorem

∫∫∫

D

∇ · F dx =
∫∫

bdy D

F · n d S,

valid for any bounded domain D in space with boundary surface
bdy D and unit outward normal vector n. If you never learned it,
see Section A.3. It is crucial that D be bounded As an exercise,
verify it in the following case by calculating both sides separately:
F = r2x, x = x i + yj + zk, r2 = x2 + y2 + z2, and D = the ball of ra-
dius a and center at the origin.
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10. If f(x) is continuous and |f(x)| ≤ 1/(|x|3 + 1) for all x, show that
∫∫∫

all space

∇ · f dx = 0.

(Hint: Take D to be a large ball, apply the divergence theorem, and let
its radius tend to infinity.)

11. If curl v = 0 in all of three-dimensional space, show that there exists a
scalar function φ(x, y, z) such that v = grad φ.

1.4 INITIAL AND BOUNDARY CONDITIONS

Because PDEs typically have so many solutions, as we saw in Section 1.2,
we single out one solution by imposing auxiliary conditions. We attempt to
formulate the conditions so as to specify a unique solution. These conditions
are motivated by the physics and they come in two varieties, initial conditions
and boundary conditions.

An initial condition specifies the physical state at a particular time t0. For
the diffusion equation the initial condition is

u(x, t0) = φ(x), (1)

where φ(x) = φ(x, y, z) is a given function. For a diffusing substance, φ(x)
is the initial concentration. For heat flow, φ(x) is the initial temperature. For
the Schrödinger equation, too, (1) is the usual initial condition.

For the wave equation there is a pair of initial conditions

u(x, t0) = φ(x) and
∂u

∂t
(x, t0) = ψ(x), (2)

where φ(x) is the initial position and ψ(x) is the initial velocity. It is clear on
physical grounds that both of them must be specified in order to determine
the position u(x, t) at later times. (We shall also prove this mathematically.)

�

In each physical problem we have seen that there is a domain D in which
the PDE is valid. For the vibrating string, D is the interval 0 < x < l, so
the boundary of D consists only of the two points x = 0 and x = l. For the
drumhead, the domain is a plane region and its boundary is a closed curve.
For the diffusing chemical substance, D is the container holding the liquid, so
its boundary is a surface S = bdy D. For the hydrogen atom, the domain is all
of space, so it has no boundary.

It is clear, again from our physical intuition, that it is necessary to specify
some boundary condition if the solution is to be determined. The three most
important kinds of boundary conditions are:

(D) u is specified (“Dirichlet condition”)

(N) the normal derivative ∂u/∂n is specified (“Neumann condition”)

(R) ∂u/∂n + au is specified (“Robin condition”)
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Figure 1

where a is a given function of x, y, z, and t. Each is to hold for all t and for x =
(x, y, z) belonging to bdy D. Usually, we write (D), (N), and (R) as equations.
For instance, (N) is written as the equation

∂u

∂n
= g(x, t) (3)

where g is a given function that could be called the boundary datum. Any
of these boundary conditions is called homogeneous if the specified function
g(x, t) vanishes (equals zero). Otherwise, it is called inhomogenous. As usual,
n = (n1, n2, n3) denotes the unit normal vector on bdy D, which points out-
ward from D (see Figure 1). Also, ∂u/∂n ≡ n · ∇u denotes the directional
derivative of u in the outward normal direction.

In one-dimensional problems where D is just an interval 0 < x < l, the
boundary consists of just the two endpoints, and these boundary conditions
take the simple form

(D) u(0, t) = g(t) and u(l, t) = h(t)

(N)
∂u

∂x
(0, t) = g(t) and

∂u

∂x
(l, t) = h(t)

and similarly for the Robin condition. �

Following are some illustrations of physical problems corresponding to
these boundary conditions.

THE VIBRATING STRING

If the string is held fixed at both ends, as for a violin string, we have the
homogeneous Dirichlet conditions u(0, t) = u(l, t) = 0.

Imagine, on the other hand, that one end of the string is free to move
transversally without any resistance (say, along a frictionless track); then
there is no tension T at that end, so ux = 0. This is a Neumann condition.

Third, theRobin conditionwould be the correct one if onewere to imagine
that an end of the string were free to move along a track but were attached to
a coiled spring or rubber band (obeying Hooke’s law) which tended to pull it
back to equilibrium position. In that case the string would exchange some of
its energy with the coiled spring.

Finally, if an end of the string were simply moved in a specified way, we
would have an inhomogeneous Dirichlet condition at that end.
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DIFFUSION

If the diffusing substance is enclosed in a container D so that none can escape
or enter, then the concentration gradient in the normal direction must vanish,
by Fick’s law (see Exercise 2). Thus ∂u/∂n = 0 on S = bdy D, which is the
Neumann condition.

If, on the other hand, the container is permeable and is so constructed that
any substance that escapes to the boundary of the container is immediately
washed away, then we have u = 0 on S.

HEAT

Heat conduction is described by the diffusion equation with u(x, t) = temper-
ature. If the object D through which the heat is flowing is perfectly insulated,
then no heat flows across the boundary and we have the Neumann condition
∂u/∂n = 0 (see Exercise 2).

On the other hand, if the object were immersed in a large reservoir of
specified temperature g(t) and there were perfect thermal conduction, then
we’d have the Dirichlet condition u = g(t) on bdy D.

Suppose that we had a uniform rod insulated along its length 0 ≤ x ≤ l,
whose end at x = l were immersed in the reservoir of temperature g(t). If heat
were exchanged between the end and the reservoir so as to obey Newton’s
law of cooling, then

∂u

∂x
(l, t) = −a[u(l, t) − g(t)],

where a > 0. Heat from the hot rod radiates into the cool reservoir. This is an
inhomogeneous Robin condition.

LIGHT

Light is an electromagnetic field and as such is described by Maxwell’s equa-
tions (see Chapter 13). Each component of the electric and magnetic field
satisfies the wave equation. It is through the boundary conditions that the
various components are related to each other. (They are “coupled.”) Imagine,
for example, light reflecting off a ball with a mirrored surface. This is a scat-
tering problem. The domain D where the light is propagating is the exterior
of the ball. Certain boundary conditions then are satisfied by the electromag-
netic field components. When polarization effects are not being studied, some
scientists use the wave equation with homogeneous Dirichlet or Neumann
conditions as a considerably simplified model of such a situation.

SOUND

Our ears detect small disturbances in the air. The disturbances are described
by the equations of gas dynamics, which form a system of nonlinear equations
with velocity v and density ρ as the unknowns. But small disturbances are
described quite well by the so-called linearized equations, which are a lot
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simpler; namely,

∂v

∂t
+

c20
ρ0

grad ρ = 0 (4)

∂ρ

∂t
+ ρ0 div v = 0 (5)

(four scalar equations altogether). Here ρ0 is the density and c0 is the speed
of sound in still air.

Assume now that the curl of v is zero; this means that there are no sound
“eddies” and the velocity v is irrotational. It follows that ρ and all three
components of v satisfy the wave equation:

∂2v

∂t2
= c20 �v and

∂2ρ

∂t2
= c20 �ρ. (6)

The interested reader will find a derivation of these equations in Section 13.2.
Now if we are describing sound propagation in a closed, sound-insulated

room D with rigid walls, say a concert hall, then the air molecules at the wall
can only move parallel to the boundary, so that no sound can travel in a normal
direction to the boundary. So v · n = 0 on bdy D. Since curl v = 0, there is
a standard fact in vector calculus (Exercise 1.3.11) which says that there is
a “potential” function ψ such that v = −grad ψ . The potential also satisfies
the wave equation ∂2ψ/∂t2 = c20 �ψ , and the boundary condition for it is
−v · n = n · grad ψ = 0 or Neumann’s condition for ψ .

At an open window of the room D, the atmospheric pressure is a constant
and there is no difference of pressure across the window. The pressure p is
proportional to the density ρ, for small disturbances of the air. Thus ρ is a
constant at the window, which means that ρ satisfies the Dirichlet boundary
condition ρ = ρ0.

At a soft wall, such as an elastic membrane covering an open window, the
pressure difference p − p0 across the membrane is proportional to the normal
velocity v · n, namely

p − p0 = Z v · n,

where Z is called the acoustic impedance of the wall. (A rigid wall has a very
large impedance and an open window has zero impedance.) Now p − p0 is in
turn proportional to ρ − ρ0 for small disturbances. Thus the system of four
equations (4),(5) satisfies the boundary condition

v · n = a(ρ − ρ0),

where a is a constant proportional to 1/Z. (See [MI] for further discussion.)
�

A different kind of boundary condition in the case of the wave equation
is

∂u

∂n
+ b

∂u

∂t
= 0. (7)
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Figure 2

This condition means that energy is radiated to (b > 0) or absorbed from
(b < 0) the exterior through the boundary. For instance, a vibrating string
whose ends are immersed in a viscous liquid would satisfy (7) with b > 0
since energy is radiated to the liquid.

CONDITIONS AT INFINITY

In case the domain D is unbounded, the physics usually provides conditions
at infinity. These can be tricky. An example is Schrödinger’s equation, where
the domain D is all of space, and we require that f |u|2 dx = 1. The finiteness
of this integral means, in effect, that u “vanishes at infinity.”

A second example is afforded by the scattering of acoustic or electro-
magnetic waves. If we want to study sound or light waves that are radiating
outward (to infinity), the appropriate condition at infinity is “Sommerfeld’s
outgoing radiation condition”

lim
r→∞

r

(

∂u

∂r
−

∂u

∂t

)

= 0, (8)

where r = |x| is the spherical coordinate. (In a given mathematical context
this limit would be made more precise.) (See Section 13.3.)

JUMP CONDITIONS

These occur when the domain D has two parts, D = D1 ∪ D2 (see Figure 2),
with different physical properties. An example is heat conduction, where D1

and D2 consist of two different materials (see Exercise 6).

EXERCISES

1. By trial and error, find a solution of the diffusion equation ut = uxx with
the initial condition u(x, 0) = x2.

2. (a) Show that the temperature of a metal rod, insulated at the end x = 0,
satisfies the boundary condition ∂u/∂x = 0. (Use Fourier’s law.)

(b) Do the same for the diffusion of gas along a tube that is closed off at
the end x = 0. (Use Fick’s law.)
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(c) Show that the three-dimensional version of (a) (insulated solid) or (b)
(impermeable container) leads to the boundary condition ∂u/∂n = 0.

3. A homogeneous body occupying the solid region D is completely insu-
lated. Its initial temperature is f (x). Find the steady-state temperature that
it reaches after a long time. (Hint: No heat is gained or lost.)

4. A rod occupying the interval 0 ≤ x ≤ l is subject to the heat source
f (x) = 0 for 0 < x < l

2
, and f (x) = H for l

2
< x < l where H > 0. The

rod has physical constants c = ρ = κ = 1, and its ends are kept at zero
temperature.
(a) Find the steady-state temperature of the rod.
(b) Which point is the hottest, and what is the temperature there?

5. In Exercise 1.3.4, find the boundary condition if the particles lie above an
impermeable horizontal plane z = a.

6. Two homogeneous rods have the same cross section, specific heat c, and
density ρ but different heat conductivities κ1 and κ2 and lengths L1 and
L2. Let k j = κ j/cρ be their diffusion constants. They are welded together
so that the temperature u and the heat flux κux at the weld are continuous.
The left-hand rod has its left end maintained at temperature zero. The
right-hand rod has its right end maintained at temperature T degrees.
(a) Find the equilibrium temperature distribution in the composite rod.
(b) Sketch it as a function of x in case k1 = 2, k2 = 1, L1 = 3, L2 = 2,

and T = 10. (This exercise requires a lot of elementary algebra, but
it’s worth it.)

7. In linearized gas dynamics (sound), verify the following.
(a) If curl v = 0 at t = 0, then curl v = 0 at all later times.
(b) Each component of v and ρ satifies the wave equation.

1.5 WELL-POSED PROBLEMS

Well-posed problems consist of a PDE in a domain together with a set of
initial and/or boundary conditions (or other auxiliary conditions) that enjoy
the following fundamental properties:

(i) Existence: There exists at least one solution u(x, t) satisfying all
these conditions.

(ii) Uniqueness: There is at most one solution.

(iii) Stability: The unique solution u(x, t) depends in a stable manner on
the data of the problem. This means that if the data are changed a
little, the corresponding solution changes only a little.

For a physical problem modeled by a PDE, the scientist normally tries to
formulate physically realistic auxiliary conditions which all together make a
well-posed problem. The mathematician tries to prove that a given problem
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is or is not well-posed. If too few auxiliary conditions are imposed, then
there may be more than one solution (nonuniqueness) and the problem is
called underdetermined. If, on the other hand, there are too many auxiliary
conditions, there may be no solution at all (nonexistence) and the problem is
called overdetermined.

The stability property (iii) is normally required in models of physical
problems. This is because you could never measure the data with mathemat-
ical precision but only up to some number of decimal places. You cannot
distinguish a set of data from a tiny perturbation of it. The solution ought not
be significantly affected by such tiny perturbations, so it should change very
little.

Let us take an example. We know that a vibrating string with an external
force, whose ends are moved in a specified way, satisfies the problem

T ut t − ρuxx = f (x, t)

u(x, 0) = φ(x) ut (x, 0) = ψ(x)

u(0, t) = g(t) u(L , t) = h(t)

(1)

for 0 < x < L. The data for this problem consist of the five functions
f (x, t), φ(x), ψ(x), g(t), and h(t). Existence and uniqueness would mean
that there is exactly one solution u(x, t) for arbitrary (differentiable) func-
tions f, φ, ψ, g, h. Stability would mean that if any of these five functions are
slightly perturbed, then u is also changed only slightly. To make this precise
requires a definition of the “nearness” of functions. Mathematically, this re-
quires the concept of a “distance”, “metric”, “norm”, or “topology” in function
space and will be discussed in the context of specific examples (see Sections
2.3, 3.4, or 5.5). Problem (1) is indeed well-posed if we make the appropriate
choice of “nearness.”

As a second example, consider the diffusion equation. Given an initial
condition u(x, 0) = f (x), we expect a unique solution, in fact, well-posedness,
for t> 0. But consider the backwards problem!Given f (x), find u(x, t) for t < 0.
What past behavior could have led up to the concentration f (x) at time 0? Any
chemist knows that diffusion is a smoothing process since the concentration
of a substance tends to flatten out. Going backward (“antidiffusion”), the
situation becomes more and more chaotic. Therefore, you would not expect
well-posedness of the backward-in-time problem for the diffusion equation.

As a third example, consider solving a matrix equation instead of a PDE:
namely, Au = b, where A is an m × n matrix and b is a given m-vector. The
“data” of this problem comprise the vector b. If m > n, there are more rows
than columns and the system is overdetermined. This means that no solution
can exist for certain vectors b; that is, you don’t necessarily have existence. If,
on the other hand, n > m, there are more columns than rows and the system
is underdetermined. This means that there are lots of solutions for certain
vectors b; that is, you can’t have uniqueness.

Now suppose that m = n but A is a singular matrix; that is, det A = 0
or A has no inverse. Then the problem is still ill-posed (neither existence nor
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uniqueness). It is also unstable. To illustrate the instability further, consider a
nonsingular matrix A with one very small eigenvalue. The solution is unique
but if b is slightly perturbed, then the error will be greatly magnified in the
solution u. Such a matrix, in the context of scientific computation, is called
ill-conditioned. The ill-conditioning comes from the instability of the matrix
equation with a singular matrix.

As a fourth example, consider Laplace’s equation uxx + u yy = 0 in the
region D = {−∞ < x < ∞, 0 < y < ∞}. It is not a well-posed problem to
specify both u and uy on the boundary of D, for the following reason. It has
the solutions

un(x, y) =
1

n
e−

√
nsin nx sinh ny. (2)

Notice that they have boundary data un(x, 0) = 0 and ∂un/∂y(x, 0) =
e−

√
n sin nx , which tends to zero as n → ∞. But for y �= 0 the solutions

un(x, y) do not tend to zero as n → ∞. Thus the stability condition (iii) is
violated.

EXERCISES

1. Consider the problem

d2u

dx2
+ u = 0

u(0) = 0 and u(L) = 0,

consisting of an ODE and a pair of boundary conditions. Clearly, the
function u(x) ≡ 0 is a solution. Is this solution unique, or not? Does the
answer depend on L?

2. Consider the problem

u′′(x) + u′(x) = f (x)

u′(0) = u(0) = 1
2
[u′(l) + u(l)],

with f (x) a given function.
(a) Is the solution unique? Explain.
(b) Does a solution necessarily exist, or is there a condition that f (x)

must satisfy for existence? Explain.

3. Solve the boundary problem u′′ = 0 for 0< x < 1 with u′(0) + ku(0) = 0
and u′(1) ± ku(1) = 0. Do the + and − cases separately. What is special
about the case k = 2?

4. Consider the Neumann problem

�u = f (x, y, z) in D

∂u

∂n
= 0 on bdy D.
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(a) What can we surely add to any solution to get another solution? So
we don’t have uniqueness.

(b) Use the divergence theorem and the PDE to show that
∫∫∫

D

f (x, y, z) dx dy dz = 0

is a necessary condition for the Neumann problem to have a solution.
(c) Can you give a physical interpretation of part (a) and/or (b) for either

heat flow or diffusion?

5. Consider the equation

ux + yu y = 0

with the boundary condition u(x, 0) = φ(x).
(a) For φ(x) ≡ x , show that no solution exists.
(b) For φ(x) ≡ 1, show that there are many solutions.

6. Solve the equation ux + 2xy2u y = 0.

1.6 TYPES OF SECOND-ORDER EQUATIONS

In this section we show how the Laplace, wave, and diffusion equations
are in some sense typical among all second-order PDEs. However, these
three equations are quite different from each other. It is natural that the
Laplace equation uxx + u yy = 0 and the wave equation uxx − u yy = 0 should

have very different properties. After all, the algebraic equation x2 + y2 = 1
represents a circle, whereas the equation x2 − y2 = 1 represents a hyperbola.
The parabola is somehow in between.

In general, let’s consider the PDE

a11uxx + 2a12uxy + a22u yy + a1ux + a2u y + a0u = 0. (1)

This is a linear equation of order two in two variables with six real constant
coefficients. (The factor 2 is introduced for convenience.)

Theorem 1. By a linear transformation of the independent variables, the
equation can be reduced to one of three forms, as follows.

(i) Elliptic case: If a2
12 < a11a22, it is reducible to

uxx + u yy + · · · = 0

(where · · · denotes terms of order 1 or 0).

(ii) Hyperbolic case: If a2
12 > a11a22, it is reducible to

uxx − u yy + · · · = 0.
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(iii) Parabolic case: If a2
12 = a11a22, it is reducible to

uxx + · · · = 0

(unless a11 = a12 = a22 = 0).

The proof is easy and is just like the analysis of conic sections in analytic
geometry as either ellipses, hyperbolas, or parabolas. For simplicity, let’s
suppose that a11 = 1 and a1 = a2 = a0 = 0. By completing the square, we
can then write (1) as

(∂x + a12∂y)
2u +

(

a22 − a2
12

)

∂2
y u = 0 (2)

(where we use the operator notation ∂x = ∂/∂x, ∂2
y = ∂2/∂y2, etc.). In the el-

liptic case, a2
12 < a22. Let b = (a22 − a2

12)
1/2

> 0. Introduce the new variables
ξ and η by

x = ξ, y = a12ξ + bη. (3)

Then ∂ξ = 1 · ∂x + a12∂y, ∂η = 0 · ∂x + b∂y , so that the equation becomes

∂2
ξ u + ∂2

ηu = 0, (4)

which is Laplace’s. The procedure is similar in the other cases. �

Example 1.

Classify each of the equations
(a) uxx − 5uxy = 0.
(b) 4uxx − 12uxy + 9u yy + u y = 0.
(c) 4uxx + 6uxy + 9u yy = 0.

Indeed, we check the sign of the “discriminant” d = a2
12 − a11a22. For

(a) we have d = (−5/2)2 − (1)(0) = 25/4 > 0, so it is hyperbolic.
For (b), we have d = (−6)2 − (4)(9) = 36 − 36 = 0, so it is parabolic.
For (c), we have d = 32 − (4)(9) = 9 − 36 < 0, so it is elliptic. �

The same analysis can be done in any number of variables, using a bit of
linear algebra. Suppose that there are n variables, denoted x1, x2 . . . , xn , and
the equation is

n
∑

i, j=1

aijuxi x j
+

n
∑

i=1

ai uxi
+ a0u = 0, (5)

with real constants aij, ai , and a0. Since the mixed derivatives are equal, we
may as well assume that aij = aji. Let x = (x1, . . . , xn). Consider any linear
change of independent variables:

(ξ1, . . . , ξn) = ξ = Bx,

where B is an n × n matrix. That is,

ξk =
∑

m

bkm xm . (6)
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Convert to the new variables using the chain rule:

∂

∂xi

=
∑

k

∂ξk

∂xi

∂

∂ξk

and

uxi x j
=

(

∑

k

bki

∂

∂ξk

)(

∑

l

bl j

∂

∂ξl

)

u.

Therefore the PDE is converted to

∑

i, j

aijuxi x j
=

∑

k,l

(

∑

i, j

bki aijbl j

)

uξkξl
. (7)

(Watch out that on the left side u is considered as a function of x, whereas on
the right side it is considered as a function of ξ.) So you get a second-order
equation in the new variables ξ, but with the new coefficient matrix given
within the parentheses. That is, the new matrix is

BAtB,

where A = (aij) is the original coefficient matrix, the matrix B = (bij) defines
the transformation, and tB = (bji) is its transpose.

Now a theorem of linear algebra says that for any symmetric real matrix
A, there is a rotation B (an orthogonal matrix with determinant 1) such that
BAtB is the diagonal matrix

BAtB = D =



















d1

d2

·
·

·
dn



















. (8)

The real numbers d1, . . . , dn are the eigenvalues of A. Finally, a change of
scale would convert D into a diagonal matrix with each of the d’s equal to
+1, −1, or 0. (This is what we did, in effect, early in this section for the case
n = 2.)

Thus any PDE of the form (5) can be converted by means of a linear
change of variables into a PDE with a diagonal coefficient matrix.

Definition. The PDE (5) is called elliptic if all the eigenvalues
d1, . . . , dn are positive or all are negative. [This is equivalent to saying that the
original coefficient matrix A (or −A) is positive definite.] The PDE is called
hyperbolic if none of the d1, . . . , dn vanish and one of them has the opposite
sign from the (n − 1) others. If none vanish, but at least two of them are
positive and at least two are negative, it is called ultrahyperbolic. If exactly
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one of the eigenvalues is zero and all the others have the same sign, the PDE
is called parabolic.

Ultrahyperbolic equations occur quite rarely in physics and mathematics,
so we shall not discuss them further. Just as each of the three conic sections
has quite distinct properties (boundedness, shape, asymptotes), so do each of
the three main types of PDEs. �

More generally, if the coefficients are variable, that is, the aij are functions
of x, the equation may be elliptic in one region and hyperbolic in another.

Example 2.

Find the regions in the xy plane where the equation

yuxx − 2uxy + xu yy = 0

is elliptic, hyperbolic, or parabolic. Indeed, d = (−1)2 − (y)(x) =
1 − xy. So the equation is parabolic on the hyperbola (xy = 1), elliptic
in the two convex regions (xy > 1), and hyperbolic in the connected
region (xy < 1). �

If the equation is nonlinear, the regions of ellipticity (and so on) may
depend on which solution we are considering. Sometimes nonlinear transfor-
mations, instead of linear transformations such as B above, are important. But
this is a complicated subject that is poorly understood.

EXERCISES

1. What is the type of each of the following equations?
(a) uxx − uxy + 2u y + u yy − 3u yx + 4u = 0.
(b) 9uxx + 6uxy + u yy + ux = 0.

2. Find the regions in the xy plane where the equation

(1 + x)uxx + 2xyuxy − y2u yy = 0

is elliptic, hyperbolic, or parabolic. Sketch them.

3. Among all the equations of the form (1), show that the only ones that
are unchanged under all rotations (rotationally invariant) have the form
a(uxx + u yy) + bu = 0.

4. What is the type of the equation

uxx − 4uxy + 4u yy = 0?

Show by direct substitution that u(x, y) = f (y + 2x) + xg(y + 2x) is a
solution for arbitrary functions f and g.

5. Reduce the elliptic equation

uxx + 3u yy − 2ux + 24u y + 5u = 0
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to the form vxx + vyy + cv = 0 by a change of dependent variable

u = veαx+βy and then a change of scale y′ = γ y.

6. Consider the equation 3u y + uxy = 0.
(a) What is its type?
(b) Find the general solution. (Hint: Substitute v = u y .)

(c) With the auxiliary conditions u(x, 0) = e−3x and u y(x, 0) = 0, does
a solution exist? Is it unique?


