Higor Amario de Souza, 5619750.

MAC 5779 — Engenharia de Software Experimental
Protocolo da pesquisa: Experimento controlado.

Titulo: Depuracao de programas com miiltiplos defeitos.

Problema e contextualizacao

As atividades de teste e depuracao de programas sdo responsaveis por uma parcela significativa do
processo de desenvolvimento de programas. O esfor¢o para detectar (teste), localizar e corrigir
(depuracdo) defeitos consome entre 50% e 80% do desenvolvimento e manutencao (Collofello and
Woodfield, 1989). A depuracdo de programas é geralmente realizada de forma manual pelos
desenvolvedores (Jones et al., 2007).

Diferentes estudos propdem técnicas para automatizar a tarefa de depuragao de programas, a
maioria delas baseada em informacdes de cobertura de cédigo (Naish et al., 2010; Wong et al.,
2010; Mariani et al., 2011). A partir da cobertura obtida dos testes executados, tais técnicas indicam
comandos mais suspeitos de conter defeitos. No entanto, os experimentos para avaliar a eficicia de
localizacdo das técnicas em geral sdo realizados em programas contendo um tnico defeito por
versdo. A eficacia de localizacdo é medida pela quantidade de cédigo que precisa ser verificado até
que o defeito seja localizado. Nos casos em que a avaliacdo é feita em programas contendo
multiplos defeitos, o desempenho de localizacdo é inferior ao desempenho em programas com um
defeito por versdao (Naish et al., 2010; Wong et al., 2010).

Na pratica, ao procurar defeitos em programas reais, a quantidade de defeitos em um
programa € desconhecida (Jones et al., 2007). Portanto, é necessario que as técnicas de localizacdao
de defeitos consigam indicar comandos suspeitos em programas com multiplos defeitos de forma
eficaz para que sejam adotadas em ambientes reais de desenvolvimento.

Experimento 1 — Comparacao entre técnicas usando programas reais

O objetivo deste experimento € avaliar a eficacia e a eficiéncia de localizacdo da técnica proposta,
chamada Multiple Faults (MF), em comparacao com ao menos uma técnica de localizacao
existente. A eficacia sera medida por meio da localizacdo ou nao dos defeitos dentro do tempo
previsto. A eficiéncia sera medida pela quantidade de cliques realizados nas listas geradas pelas
técnicas até a localizacdo do defeito.

Entre as possiveis técnicas para comparagao, estao as propostas por Jones et al. (2007) e por Wong
et al. (2010). A escolha depende da possibilidade de obter os programas que implementam essas
técnicas. No caso de ndo ser possivel obter esses programas, iremos desenvolver programas que
representem as técnicas e valida-los comparando os resultados obtidos nos benchmarks usados nos
artigos.

A escolha pela métrica de quantidade de cliques tem como objetivo medir a quantidade absoluta de
esforco para localizar defeitos. Os experimentos serdo conduzidos em programas reais de grande
porte (programas contendo acima de 10.000 linhas de c6digo para uso real, e ndo somente para
experimentos cientificos). Entre os critérios para selecdo dos programas estdo: programas de
cédigo-aberto, ou programas proprietarios autorizados, que contenham testes automatizados;
programas de diferentes dominios; programas escritos em Java (a principio); e programas que
estejam em um repositorio de codigo.



Apos selecionar os programas, sera necessario identificar os defeitos existentes entre suas diferentes
versoes usando as informacdes do repositério. Esses defeitos serdo mapeados e registrados, e assim
sera possivel criar diferentes versdes dos programas incluindo e excluindo os defeitos mapeados. Os
resultados dos testes serdo analisados para as versdes contendo quantidade diferentes dos defeitos
para estudar a interferéncia entre os defeitos.

As técnicas de localizacdo serdo avaliadas para as diferentes versoes geradas dos programas, e sera
possivel medir o desempenho de localizacdao em diferentes condi¢des, como programas contendo
uma determinada quantidade de defeitos ou programas contendo defeitos que interferem em outros
defeitos. A coleta dos resultados sera automatizada.

Portanto, as variaveis independentes sdo a técnica de localizacdo, a quantidade de defeitos no
programa, o uso de defeitos que interferem em outros defeitos, o0 dominio do programa, o tamanho
do conjunto de teste, as caracteristicas dos defeitos e o tamanho do programas. A variavel
dependente é a quantidade de clique para localizar o defeito. As técnicas de localizagdo serao
avaliadas fixando os valores das varidveis independentes e variando uma a uma. Isso permitira a
analise de cada um dos fatores no experimento.

Entre as ameacas a validade interna esperadas estao os fatores citados acima. A escolha das
quantidade de cada um desses fatores pode influenciar os resultados obtidos pelas técnicas. Entre as
ameacas externas estdo a generalizacdo dos resultados, ja que os programas utilizados podem nao
ser representativos de um modo geral.

A andlise estatistica sera feita com uso do teste de hipotese de Wilcoxon rank-sum ndo-pareado para
a quantidade de cliques supondo que a distribuicdo da amostra ndo sera normal. Sera avaliada a
quantidade de cliques até localizar o defeito, uma medida de razdo. O teste de Anderson-Darling
sera aplicado para avaliar a normalidade dos dados.

Experimento 2 — Uso pratico da técnica proposta

O objetivo deste experimento controlado sera avaliar a eficacia e a eficiéncia de localizacdo de
defeitos da técnica MF (MF), em comparacao com o uso tradicional de depuracgdo (T). Pretende-se
avaliar se MF pode ser usada por desenvolvedores para localizar defeitos.

Utilizaremos o IDE Eclipse para o experimento. Sera desenvolvido um plugin da técnica MF para
possibilitar a avaliagdo de seu uso. O uso tradicional também sera avaliado no Eclipse, em que o
desenvolvedor usara o depurador simbdlico do IDE para procurar pelo defeito.

A selecdo dos participantes sera feita por conveniéncia. Os participantes devem ser desenvolvedores
universitarios e/ou da industria com conhecimento prévio do Eclipse e experiéncia em depuracdo de
programas. E esperada a participacdo de 30 pessoas. Como comparagéo, Parnin e Orso (2011)
contaram com 34 participantes em seu experimento sobre o uso de técnicas de depuracao
automatizada por programadores.

Ao aceitar participar do experimento, os participantes responderdo a uma prova de conhecimentos
sobre a linguagem Java e também a um questionario sobre informagoes pessoais como idade e
tempo de experiéncia em depuracdo e programacdo. A prova sera baseada em contetudo de
certificacOes na linguagem, contendo questdes de diferentes niveis de conhecimento.

O resultado da prova e o questionario serdo usados para avaliar o nivel de conhecimento e o tempo
de experiéncia em depuracdo e programacao dos participantes, que serdo classificados como
iniciantes ou experientes. Os participantes serdo separados em dois grupos contendo



desenvolvedores iniciantes e experientes usando a selecao por casamento.

Para o experimento, serdo utilizados dois programas contendo dois defeitos cada. Os programas sao
de dominios diferentes (Ant e Commons-Math). O tempo para a localizacdo de cada defeito sera de
30 minutos. Os participantes receberdo um treinamento sobre o uso do plugin MF, com duracao de
30 minutos, incluindo um exercicio pratico.

Os grupos irdo alternar entre grupo de controle e grupo experimental entre os dois programas. O
grupo de controle usara o Eclipse para buscar pelos defeitos sem o plugin. Serdo fornecidas
informag0es sobre o resultado da execucao dos testes JUnit para auxiliar os integrantes do grupo de
controle. O grupo experimental utilizara o plugin MF.

A eficacia sera medida por meio da localizagdo ou ndo dos defeitos dentro do tempo previsto. A
eficiéncia serd medida pela quantidade de cliques realizados nas listas geradas pelas técnicas até a
localizacdo do defeito e o tempo gasto até a localizacdo. Para medir a quantidade de cliques do
grupo de controle serd necessario criar um plugin para o Eclipse que faca essa medicdo. O plugin da
técnica MF também contara o ndmero de cliques. Ao localizar o defeito, o desenvolvedor clica em
um botdo que sera colocado no Eclipse para encerrar a busca por aquele defeito.

O tempo total maximo para a realizagdo do experimentos € de 3h30m por participante, incluindo a
prova (1h), realizada em uma data anterior ao experimento, o treinamento (30m) e o experimento
para localizacdo dos quatro defeitos (2h).

Entre as ameacas a validade interna esperadas estdo a selecdao, que tentou-se minimizar usando a
selecdo por casamento e a prova de conhecimentos. Para evitar as ameacas de competicdo e
desmoralizacdo, os grupos alternardo entre grupo de controle e experimental de acordo com o
programa utilizado. A auséncia de um pré-teste minimiza as ameacas de contaminacao, selegao-
testagem, selecao-maturacdo e selecao-abandono.

Entre as ameacas externas estao a generalizacdo da amostragem, ja que a amostra nao €
representativa de populacdo como um todo. No entanto, o experimento sera importante para avaliar
a capacidade pratica de uso da técnica de depuracdao automatizada.

O tempo exigido para localizar os defeitos pode ser muito longo ou curto, e apenas a execugao de
um piloto pode indicar se o tempo esta adequado.

A andlise sera feita com uso do teste de hipotese de Wilcoxon rank-sum ndo-pareado para a
quantidade de cliques supondo que a distribuicdo da amostra ndo sera normal. Os dados coletados
serdo tempo de localizacdo e quantidade de cliques, duas medidas de razdo. O teste de Anderson-
Darling sera aplicado para avaliar a normalidade dos dados.



Referéncias

Collofello JS, Woodfield S. Evaluating the effectiveness of reliability-assurance techniques. Journal
of Systems and Software 9 (3), 191-195. 1989.

Jones, J. A.; Bowring, J. F.; Harrold, M. J. Debugging in parallel. In: Proceedings of the 2007
International Symposium on Software Testing and Analysis. New York, NY, USA: ACM, 2007.
(ISSTA ’07), p. 16-26.

Kitchenham, B., Pfleeger S. Personal Opinion Surveys. Guide to Advanced Empirical Software
Engineering Cap. 3. 2008.

Mariani, L.; Pastore, F.; Pezze, M. Dynamic analysis for diagnosing integration faults. Software
Engineering, IEEE Transactions on, v. 37, n. 4, p. 486 —508. 2011.

Naish, L.; Lee, H. J.; Ramamohanarao, K. Statements versus predicates in spectral bug localization.
In: Software Engineering Conference (APSEC), 2010 17th Asia Pacific. [s.n.], 2010. p. 375 —384.

Parnin, C. e Orso, A. Are automated debugging techniques actually helping programmers? In:
Proceedings of the 2011 International Symposium on Software Testing and Analysis. New York,
NY, USA: ACM, 2011. (ISSTA °11), p. 199-2009.

Wainer, J. Experimento em sistemas colaborativos. Sistemas Colaborativos, Cap. 24, p.405-432,
2011.

Wettel, R.; Lanza, M.; Robbes, R., Software systems as cities: a controlled experiment,. In:
Proceedings of the 2011 International Conference on Software Engineering. Honolulu, HI, 2011.
(ICSE 2011), p.551-560.

Wong, W. E.; Debroy, V.; Choi, B. A family of code coverage-based heuristics for effective fault
localization. Journal of Systems and Software, v. 83, n. 2, p. 188-208, 2010.



