Higor Amario de Souza, 5619750 — 20 de maio de 2013.

MAC 5779 — Engenharia de Software Experimental

Projeto de Pesquisa (Doutorado): Experimento controlado.

Tema: Depuracdo automatizada em programas contendo multiplos defeitos.
Problema e contextualizacao

As atividades de teste e depuracao de programas sao responsaveis por uma parcela significativa do
processo de desenvolvimento de programas. O esforco para detectar (teste), localizar e corrigir
(depuracado) defeitos consome entre 50% e 80% do desenvolvimento e manutencdo (Collofello and
Woodfield, 1989). A depuracdo de programas é geralmente realizada de forma manual pelos
desenvolvedores (Jones et al., 2007).

Diferentes estudos propdem técnicas para automatizar a tarefa de depuragdo de programas, a
maioria delas baseada em informacdes de cobertura de codigo (Naish et al., 2010; Wong et al.,
2010; Mariani et al., 2011). A partir da cobertura obtida dos testes executados, tais técnicas indicam
comandos mais suspeitos de conter defeitos. No entanto, os experimentos para avaliar a eficacia de
localizacdo das técnicas em geral sdo realizados em programas contendo um tnico defeito por
versao. A eficdcia de localizacdao é medida pela quantidade de c6digo que precisa ser verificado até
que o defeito seja localizado. Nos casos em que a avaliacdo é feita em programas contendo
multiplos defeitos, o desempenho de localizagdo é inferior ao desempenho em programas com um
defeito por versao (Naish et al., 2010; Wong et al., 2010).

Na pratica, ao procurar defeitos em programas reais, a quantidade de defeitos em um
programa € desconhecida (Jones et al., 2007). Portanto, é necessario que as técnicas de localizacao
de defeitos consigam indicar comandos suspeitos em programas com multiplos defeitos de forma
eficaz para que sejam adotadas em ambientes reais de desenvolvimento.

Objetivo geral

Melhorar a efic4cia de localizacdo de defeitos em programas contendo multiplos defeitos por meio
da avaliacdo da técnica de depuragdo a ser proposta em comparagdo com o atual estado da pratica. A
eficacia é medida pela quantidade de defeitos que sdo localizados e a eficiéncia é medida pela
quantidade de codigo do programa que precisa ser verificada até atingir o codigo defeituoso.

Objetivos especificos

- Avaliar a eficacia e a eficiéncia de localizacdo para o uso pratico da técnica realizando
experimentos com desenvolvedores.

- Avaliar a eficcia e a eficiéncia de localizacdo em programas reais (contendo milhares de linhas de
codigo e utilizados de modo pratico).

Questoes de pesquisa

A técnica proposta é mais eficaz e mais eficiente para a localizagdo de defeitos em programas
contendo multiplos defeitos quando comparada ao atual estado da pratica?

A técnica proposta é eficaz e eficiente para ser usada por desenvolvedores para localizar defeitos em
programas reais?



Hipotese

A técnica proposta é mais eficaz e mais eificente para a localizagdo de defeitos em programas
contendo multiplos defeitos em relacdo ao atual estado da pratica.

Experimento

O objetivo do experimento controlado sera avaliar a eficacia e a eficiéncia da técnica proposta
Multiple Faults (MF) em comparagao com o uso tradicional de depuracao (T). Utilizaremos o IDE
Eclipse para o experimento. Sera desenvolvido um plugin da técnica MF para a avaliacdo de seu
uso. O uso tradicional também sera realizado no Eclipse, em que o desenvolvedor podera utilizar o
depurador simbolico para procurar pelo defeito.

A selecdo dos participantes devera contar com desenvolvedores universitarios e da industria e sera
feita por conveniéncia. E esperada a participacido de 30 pessoas. Ao aceitar participar do
experimento, os participantes responderdo a uma prova de conhecimentos sobre a linguagem Java,
assim como um questionario sobre informacoes pessoais como idade, tempo de experiéncia em
programacao, tempo de experiéncia com depuragao, etc. A prova sera baseada em questoes de
certificacOes na linguagem, contendo diferentes niveis de conhecimento. Os participantes deverao
ter conhecimento prévio do Eclipse.

De acordo com o resultado das respostas, os participantes serdo classificados como iniciantes ou
experientes. Os participantes serao separados em dois grupos, controle e experimental, usando a
selecdo por casamento.

O grupo de controle usara o Eclipse para buscar pelos defeitos sem o plugin. Esse grupo recebera
um treinamento sobre o uso do depurador do Eclipse e uma breve explicacdao sobre o JUnit. O grupo
experimental recebera um treinamento sobre o uso do plugin MF. O tempo previsto para ambos
treinamentos sera de 30 minutos, incluindo um exercicio pratico.

Serdo utilizados dois programas contendo dois defeitos cada. Os programas sdao de dominios
diferentes (Ant e Commons-Math). Os mesmos defeitos serdo utilizados pelos dois grupos. O grupo
de controle recebera também as informacdes sobre o resultado da execucao dos testes JUnit. O
tempo para a localizagdo de cada defeito sera de 30 minutos.

A eficacia sera medida por meio da localiza¢do ou ndo dos defeitos dentro do tempo previsto.

A eficiéncia sera medida pela quantidade de cliques realizados nas listas geradas pelas técnicas até a
localizacdo do defeito. Para medir a quantidade de cliques do grupo de controle sera necessario criar
um plugin para o Eclipse que faca essa medicdo. O plugin da técnica MF também contara o niimero
de cliques. Ao localizar o defeito, o desenvolvedor clica em um botdo no Desktop para encerrar a
busca por aquele defeito.

O tempo total maximo para a realizacdo do experimentos é de 3h30m por participante, incluindo a
prova (1h), realizada em uma data anterior ao experimento, o treinamento (30m) e o experimento
para localizacdo dos quatro defeitos (2h).

Entre as ameacas a validade interna esperadas estdo a selecao, que tentou-se minimizar usando a
selecdo por casamento e a prova de conhecimentos. As ameacas de competicdo e desmoralizacao
devem ser consideradas e seus efeitos sdo dificeis de mensurar porque pessoas de um mesmo grupo
podem comportar-se de uma das duas formas. Como ndo estamos aplicando um pré-teste, nao ha



como medir tais ameacas. Por outro lado, a auséncia de um pré-teste minimiza as ameacas de
contaminacao, selecao-testagem, selecao-maturacao e selecao-abandono.

Entre as ameacas externas estdao a generalizacao da amostragem, ja que a amostra nao é
representativa de populagdo como um todo.

O tempo exigido para localizar os defeitos pode ser muito longo ou curto, e apenas a execugao de
um piloto pode indicar se o tempo esta adequado.

A andlise sera feita com uso do teste de hipétese de Wilcoxon rank-sum nao-pareado para a
quantidade de cliques supondo que a distribui¢do da amostra ndo sera normal. Os dados coletados
serdao tempo de localizacao e quantidade de cliques, duas medidas de razao. O teste de Anderson-
Darling sera aplicado para avaliar a normalidade dos dados.

Resultados esperados

Espera-se que a técnica resultante deste trabalho possa ser usada de forma pratica na industria de
software. O uso da técnica deve proporcionar reducao do tempo de desenvolvimento de programas
e um aumento na qualidade dos programas.

A técnica deve ser adaptavel a diferentes linguagens de programacao e a programas com
caracteristicas diversas.



Referéncias

Collofello JS, Woodfield S. Evaluating the effectiveness of reliability-assurance techniques. Journal
of Systems and Software 9 (3), 191-195. 1989.

Jones, J. A.; Bowring, J. F.; Harrold, M. J. Debugging in parallel. In: Proceedings of the 2007
International Symposium on Software Testing and Analysis. New York, NY, USA: ACM, 2007.
(ISSTA ’07), p. 16-26.

Mariani, L.; Pastore, F.; Pezze, M. Dynamic analysis for diagnosing integration faults. Software
Engineering, IEEE Transactions on, v. 37, n. 4, p. 486 —508. 2011.

Naish, L.; Lee, H. J.; Ramamohanarao, K. Statements versus predicates in spectral bug localization.
In: Software Engineering Conference (APSEC), 2010 17th Asia Pacific. [s.n.], 2010. p. 375 —384.

Wainer, J. Experimento em sistemas colaborativos. Sistemas Colaborativos, Cap. 24, p.405-432,
2011.

Wong, W. E.; Debroy, V.; Choi, B. A family of code coverage-based heuristics for effective fault
localization. Journal of Systems and Software, v. 83, n. 2, p. 188-208, 2010.



