The Journal of Systems and Software 85 (2012) 1455-1466

Contents lists available at ScienceDirect

af

=
i

iy
L il

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A longitudinal case study of an emerging software ecosystem: Implications for
practice and theory

Geir K. Hanssen &b+

a Department of Computer and Information Science, Norwegian University of Science and Technology (NTNU), Sem Selands vei 7-9, NO7491 Trondheim, Norway
b SINTEF ICT, NO7465 Trondheim, Norway

ARTICLE INFO ABSTRACT

Article history:

Received 6 May 2010

Received in revised form 6 April 2011
Accepted 7 April 2011

Available online 19 April 2011

Software ecosystems is an emerging trend within the software industry, implying a shift from closed
organizations and processes towards open structures, where actors external to the software development
organization are becoming increasingly involved in development. This forms an ecosystem of organiza-
tions that are related through the shared interest in a software product, leading to new opportunities
and new challenges to the industry and its organizational environment. To understand why and how this
change occurs, we have followed the development of a software product line organization for a period of
approximately five years. We have studied their change from a waterfall-like approach, via agile software
product line engineering, towards an emerging software ecosystem. We discuss implications for practice,
and propose a nascent theory on software ecosystems. We conclude that the observed change has led to
an increase in collaboration across (previously closed) organizational borders, and to the development
of a shared value consisting of two components: the technology (the product line, as an extensible plat-
form), and the business domain it supports. Opening up both the technical interface of the product and

Keywords:

Software ecosystems

Software product line engineering
Agile software development
Longitudinal case study

the organizational interfaces are key enablers of such a change.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Arecent development within software engineering is the emer-
gence of software ecosystems (Messerschmitt and Szyperski, 2003;
Bosch, 2009). This new concept and its implicit reference to ecology
imply a shift of focus from the internals of the software organiza-
tion (the individual organism) towards its environment and the
relations and actions within (the ecosystem). Viewing the software
industry and the market it serves as an ecosystem, may introduce
a set of new challenges and opportunities (Jansen et al., 2009a,b),
for example new business models, open innovation, collaborative
development, issues of ownership, strategic planning, and variabil-
ity management. This seems to be a part ofa general developmentin
the software industry (Qualman, 2009), where customers expect to
be more involved in the shaping of the technology they use, where
innovation is no longer an internal matter, where time to market is
decreasing, and adoption rates are increasing.

To understand some of this ongoing development we have stud-
ied CSoft, a medium size software product line organization for
a period of approximately five years. During this time they have

* Correspondence address: SINTEF ICT, box 4760 Sluppen, NO-7465 Trondheim,
Norway. Tel.: +47 92492454; fax: +47 73592977.
E-mail address: ghanssen@sintef.no

0164-1212/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j,js5.2011.04.020

moved from a closed and plan-driven approach to a practice of agile
software product line engineering (SPLE) and now further towards
a software ecosystem. Based on three recent studies of this orga-
nizational development we have designed and conducted a final
study, collecting new qualitative data to investigate in more detail
this development in general, and how the organization relates to
its environment in particular. Inspired by our detailed insight into
a real industrial case and with the ambition to try to understand
some of the details of how a concrete ecosystem develops, we have
define research question 1 to be:

Why and how is software product line engineering developing
towards a software ecosystem?

Our study will give insight into three aspects of this question:
(1) how this ecosystem has emerged, (2) how the present organi-
zation works in terms of its structure, its processes, and its product
line, and (3) how the organization relates to actors in its external
environment.

To help develop this understanding and to contribute to the
growing research on software ecosystems, we relate our findings
from this case study to the general theory of organizational ecology
(Emery and Trist, 1965; Trist, 1977), which is derived from socio-
technical theory. This theoretical platform has matured for decades
and describes how organizations in general relate to their external

dx.doi.org/10.1016/j.jss.2011.04.020
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:ghanssen@sintef.no
dx.doi.org/10.1016/j.jss.2011.04.020
jteodoro
Highlight

jteodoro
Highlight

jteodoro
Highlight

jteodoro
Highlight

jteodoro
Highlight

jteodoro
Highlight

jteodoro
Highlight

jteodoro
Highlight

1456 G.K. Hanssen / The Journal of Systems and Software 85 (2012) 1455-1466

environment. We have found that this knowledge is relevant, appli-
cable and beneficial to the software engineering domain, and that
existing literature on software ecosystems lacks this theoretical
connection. Thus, research question 2 is:

What are the characteristics of software ecosystems?

Several recent studies have suggested definitions and developed
important concepts but the terminology and connectivity between
these concepts are still vague. We believe that this field of research
can benefit from the development of an empirically grounded the-
ory of software ecosystems. The results obtained from this study
are used to propose such a theory, as a starting point. We also dis-
cuss implications for practice as well as providing advice for further
research.

The rest of this paper is organized as follows: Section 2 provides
relevant background information about the concepts being dis-
cussed, such as socio-technical theory, organizational ecology and
software ecosystems. Section 3 explains the applied study method.
Section 4 provides the results of the study as a thematically struc-
tured overview of the qualitative data, illustrated by quotations
from interviews and observations. Section 5 presents a discussion
of the results related to the defined research questions and pro-
vides implications for theory and practice. Section 6 concludes the
study and provides directions for future research.

2. Background
2.1. Socio-technical theory and organizational ecology

Socio-technical theory is a view of the organization as the sum
of and interplay between a social system and a technical system.
That is (1) the people, their relations, their knowledge, and how
they work together as a whole, and (2) the tools and techniques
being used to perform the work. A fundamental principle of socio-
technical theory is the natural interdependence between these two
systems, meaning that to improve the performance of the organi-
zation (productivity, quality of work, etc.) both subsystems have
to be considered at the same time. Changing one affects the other.
This principle was first drafted by Trist and Bamforth (1951), based
on their studies of changes of work processes in coalmines.

Through studies that followed, the theory has been developed
to consider how organizations relate to their external environment
(Emery and Trist, 1965). This implies that an organization has to
be understood as both (1) the internal interplay between a social
subsystem and a technical subsystem (the socio-technical system),
and (2) the interplay between the organization and its external
environment.

Emery and Trist (1965) developed a simple classification sys-
tem of four types of organizational environments - forming a
series, in which the degree of causal texturing is increased. Thus,
understanding and ordering the types of environments is useful in
understanding socio-technical systems beyond the limits of a single
organization. The first, and the simplest type, is ‘the placid, ran-
domized environment’ where “goods” and “bads” are unchanging,
and are randomly distributed in the environment (Emery and Trist,
1965, p. 7). The optimal strategy is to ‘do one’s best’ on a purely
local basis — there is no difference between strategy (planning)
and tactics (execution). The second type is ‘the placid, clustered
environment’ where “goods” and “bads” are not randomly dis-
tributed but band together in certain ways. Strategy is different
from tactics, and survival becomes critically linked with what an
organization knows about its environment. Organizations in this
environment tend to become hierarchical, with a tendency towards
centralized control and coordination (Emery and Trist, 1965, p. 8).

dynamism

low high
2 high placid clustered turbulent
<
Q
& 4
£ l
© low random placid disturbed reactive

Fig. 1. Types of organizational environments.

The third type, ‘the disturbed-reactive environment’, is an envi-
ronment where there is more than one organization of the same
kind. The existence of a number of similar organizations becomes
the dominant characteristic of the environmental field. These orga-
nizations compete, and their tactics, operations and strategy are
distinguished. The flexibility encourages a certain decentralization,
and it also puts a premium on quality and speed of decisions at var-
ious peripheral points (Emery and Trist, 1965, p. 9). The fourth,
and the most recent type is ‘turbulent fields’. This type implies
that significant variances arise from the field itself, not simply
from the interaction of the component organizations. Three trends
contribute to the emergence of these dynamic field forces: (i) the
growth to meet type-three conditions, (ii) the deepening interde-
pendence between the economic and other facets of the society,
and (iii) the increasing reliance on research and development to
achieve the capacity to meet competitive challenge. A change gra-
dient is continuously present in the field (Emery and Trist, 1965, p.
10) (Fig. 1).

This interplay, inherent in turbulent organizational environ-
ments, has been further studied, leading to the development of the
concept of organizational ecology (Trist, 1977). It is particularly rel-
evant to organizations operating in complex and unstable domains.
Viewing the organizational environment as an ecosystem means
that it is considered to be an open system as opposed to a closed
one, organizational borders are permeable, and organizations relate
dynamically to other organizations in the same field.

Developing the ecology concept further, Trist describes three
classes of organizations within the turbulent environment. In a
Class 1 system member organizations are linked to a key organi-
zation among them. The key organization acts as a central referent
organization, doing so even though many of them are only partially
under its control, or linked to it only through interface relations.
Interface relations are as basic to systems of organizational ecology
as superior-subordinate relations are to bureaucratic organizations.
Interface relations require negotiation as distinct from compli-
ance. In a Class 2 system the referent organization is of a different
kind. It is a new organization brought into being and controlled
by the member organizations rather than being one of the key
constituents. A Class 3 system has no referent organization at all.

Technocratic bureaucracies have been the natural organiza-
tional form for disturbed-reactive environments (up to the 1960s
or so), and this is a form that has been applied to many software
engineering organizations. However, this type of system fails to
adapt to conditions of persistent and pervasive environmental tur-
bulence, mostly because it is constructed and optimized to work
wellin stable environments. This leads to the emergence of the new
ecologically oriented systems, which show clear differences in that
they promote self-regulation (as opposed to centralized control),
and that they have a networked character (as opposed to segregated
organizations). According to Trist (1977, p. 172), such systems, lack-
ing formal structure, exist through the use of technology. Further,
they also need shared values. Trist used the example of the 60/70s

jteodoro
Highlight

jteodoro
Highlight

G.K. Hanssen / The Journal of Systems and Software 85 (2012) 1455-1466 1457

youth-culture that had a set of distinct (political) values. A more
appropriate example from a business perspective is a shared value
in growth and profit.

Unlike the micro-level (the single organization) and the
macro-level systems (society), the intermediate level systems
(organizational ecosystems) are hard to see, understand, and
describe due to their weak structuring. They are also the most
recent type, so there is less experience with them. This relates
especially to software engineering ecosystems, which is a new but
rapidly advancing concept (Messerschmitt and Szyperski, 2003;
Bosch, 2009) despite decades of development of software engi-
neering as a practice and business. This approach is driven by the
Internet as a rich and speedy collaborative platform (the technol-
ogy), and a common interest in the product line (the shared value).

2.2. Software ecosystems

Software ecosystems is a more recent term, that refers to a net-
worked community of organizations, which base their relations to
each other on a common interest in a central software technology.
Some other definitions of this emerging concept have been pro-
posed, for example by Messerschmitt and Szyperski (2003): “a set
of businesses functioning as a unit and interacting with a shared mar-
ket for software and services, together with the relationships among
them.” (p. 2). Another definition by Bosch (2009), focusing more
on the common interest in the software and its use, is: “the set
of software solutions that enable, support and automate the activi-
ties and transactions by the actors in the associated social or business
ecosystem and the organizations that provide these solutions.” (p. 2).

Well-known examples of communities that may be seen as
software ecosystems are Apples iPhone/Appstore platform, and
the open-source development environment Eclipse. The first is an
example of a partially closed and controlled ecosystem, and the lat-
ter is an example of an open ecosystem allowing more flexibility
in use and development. This simply illustrates that the ecosystem
concept may refer to a wide range of configurations. Yet, they all
involve two fundamental concepts: (1) a network of organizations
and (2) a common interest in central software technology. These
organizations may have different relations to the central software
technology, and for this reason, different roles in the ecosystem.
There are three key role types:

- First, one organization (or a small group) acts as the keystone
organization, and is in some way leading the development of the
central software technology.

- The second key organizational role is the end-users of the central
technology, who need it to carry out their business, whatever that
might be.

- The third key role is third party organizations that use the central
technology as a platform for producing related solutions or ser-
vices. In addition to these key roles, various other related roles
might be part of the ecosystem (Jansen et al., 2009a), for example
standardization organizations, resellers, and operators.

A fundamental property of the central software technology is
that it is extensible beyond the keystone organization (Alspaugh et al.,
2009). Extensibility can be achieved in various ways, for exam-
ple by providing an application programming interface (API) or a
software development kit (SDK), by supporting exchange of open
data formats, or by offering parts of the technology as open source.
Opening up the technology in these, and potentially other ways,
enables external organizations to use the central software tech-
nology as a platform where existing services or data can be used
and extended. Bosch (2009) proposed a Software Ecosystem Tax-
onomy that identifies nine potential classes of the central software
technology, according to classification within two dimensions. The

first one is the category dimension, which is ranging from operating
system to application, and to end-user programming. The second
one is the platform dimension, ranging from desktop to web, and to
mobile. The case discussed in this paper is an application-web type.

The keystone organization has a special position in the ecosys-
tem as it controls, strictly or loosely, the evolution of the central
software technology. This may include various responsibilities, for
example typical software product development activities such as
strategic planning, R&D, and operational support. These responsi-
bilities come in addition to activities specific to ecosystems such
as enabling efficient external extensibility, provision of insight into
planning and development, and supporting ecosystem partners in
various other ways.

One potential benefit of being a member of a software ecosys-
tem is the opportunity to exploit open innovation (Chesbrough,
2006), an approach derived from open source software processes
where actors openly collaborate to achieve local and global bene-
fits. External actors and the effort they put into the ecosystem may
result in innovations being beneficial not only to themselves (and
their clients) but also to the keystone organization, as this may be a
very efficient way of extending and improving the central software
technology as well as increasing the number of users. Closer rela-
tionships between the keystone organization and the other actors
may drive both an outside-in process as well as an inside-out pro-
cess,asdescribed by Enkel et al. (2009). Also, the proximity between
the organizations in an ecosystem may enable active engagement
of various stakeholders in the development of the central software
technology (Hanssen and Fagri, 2008).

The ultimate objective for investing in and working towards an
ecosystem is that all members will gain more benefits from being a
part of it, as compared to the more traditional approach for software
product development with segregated roles, a low level of collab-
oration, and closed processes. A well functioning ecosystem is, in
summary, a complex configuration with collaboration across tra-
ditionally closed organizational borders. Such multi-organizations
are probably not established as a deliberate, planned effort. Rather,
they emerge as a result of many congruent factors such as technol-
ogy development, globalization, new collaborative patterns, and
clients becoming more and more accustomed to participating in
the shaping of the technology they use.

3. Study method

The case study reported in this paper is the last in a series of
four consecutive studies of the software product line organization
CSoft, constituting a longitudinal study started in 2004, and now
covering five years of the organization’s history (Hanssen and Fagri,
2006; Fegri and Hanssen, 2007; Hanssen and Faegri, 2008; Hanssen
etal.,,2010).In addition, two earlier papers written by other authors
provide background information on the historical development of
the organization (Moe et al., 2002; Johansen, 2005). Together, this
provides a valuable insight into the longitudinal development of a
software product line organization.

The name of the case organization and its product is kept anony-
mous due to a non-disclosure agreement that has been signed by
the author.

3.1. Study type

The study can be classified as a longitudinal single case study.
We have applied a set of principles for interpretative field studies
defined by Klein and Myers (1999) (Table 1).

jteodoro
Highlight

1458

Table 1

G.K. Hanssen / The Journal of Systems and Software 85 (2012) 1455-1466

Application of Klein and Myers seven principles of interpretive field research.

Principles (from Klein and Myers,
1999, p. 72)

Practiced in the case study

1. The Principle of the Hermeneutic
Circle

2. The Principle of Contextualization

3. The Principle of Interaction Between
the Researchers and the Subjects

4. The Principle of Abstraction and
Generalization

5. The Principle of Dialogical Reasoning
6. The Principle of Multiple

Interpretations
7. The Principle of Suspicion

Data are collected through repeated interviews with actors playing various roles. The data collection is
supported by observations and as collection of relevant documentation. The growing knowledge of the case
has guided the data collection.

The study of the case is conducted from two viewpoints - the present organization and its activities, and how
this organization has emerged over time.

A large part of the collected data is based on semi-structured interviews (Seaman, 1999) that followed open
interview guidelines to ensure a balance between thematic focus and room for reflection, correction, and
discussions. This allows for unplanned but relevant topics to be addressed.

Findings are related to the concept of organizational ecology (Trist, 1977), derived from socio-technical
theory. Key principles from this theoretical background are applied to the studied case. Some are adopted,
some are adjusted, and some are added.

The theory applied to the case was not used to plan and guide the data collection. The applicability of the
theory became evident through the analysis after the data had been collected.

This principle is followed by collecting data from both external actors and people with various roles in the
product line organization.

The data have been collected and analyzed by the author, who is external to the organization, having no
formal responsibilities, interests or agenda, except to create an unbiased view of the organization and its
development.

3.2. Data sources

Step 1 - All data were first examined to produce an intermedi-
ate analysis report, which documents the development process

During 2008, 2009 and 2010 new data were collected to investi-
gate the agile software product line organization, it s processes, and
in particular how they relate to external actors. Data are of three
types: interviews, observations, and collected documents. Table 2
shows the list of content for each type.

3.3. Sampling and collection

The focus of this study has been to investigate how CSoft relates
to external actors such as customers and third party organizations.
This has guided the sampling of interview respondents, selection
of events for observation and documents to be collected. Interview
respondents have been asked to recommend other respondents,
based on their understanding of the study (snowball sampling).
A single-person interview lasted approximately 30-40 min. Group
interviews lasted up to 3 h.

All data have been collected and stored in a database for later
analysis. Interviews were recorded using a digital voice recorder
and then transcribed.

3.4. Analysis

Data have been analyzed in two steps:

Table 2
Collected data.

in terms of roles, activities, and artifacts, in addition to high-
level concepts, necessary to understand how product planning
and development is conducted. This analysis created a structure
by grouping information coming from the various data sources.
Examples of such concepts are teamwork, planning, and inno-
vation. The objective of this report was to establish a broad
understanding of the context, i.e. the organizational set-up and
its processes. The report has been used in the description of the
study context (3.5), as well as a preparation for step 2.

Step 2 - All data, in textual format, were analyzed using a tool
for qualitative data analysis, NVivo™, Data were coded, meaning
that fragments of text, for example statements, facts, comments,
concerns, and ideas, were tagged with nodes describing the data
fragment. Examples of such nodes, which emerged from the anal-
ysis, are ‘co-creation’, ‘finding the right stakeholders’, ‘learning of
business processes and domain’, etc. These are detailed in Sec-
tion 4. This way of analyzing the data develops a meaning and
an interpretation of the data, and relates fragments from differ-
ent locations in the data material to concepts, which may be
grouped into categories. These results can then be used as the
basis for formulating a theory explaining some of the findings.
This approach resembles ‘grounded theory’ in that a theory is
developed, and that it is grounded on data (Glaser and Strauss,
1967). The theory being developed may be new, but it can also be

Interviews

R&D manager (semi-structured interview)

Manager of Professional Services (semi-structured interview)
Product Strategy Group manager (semi-structured interview)
Product Strategy Group members (3 semi-structured interviews)
Technical Account Manager (semi-structured interview)

Team leader (semi-structured interview)

Team member/developer (semi-structured interview)
Product Strategy Group manager (follow-up interview after observation of the

review meeting)

2 (of 3) members from the Architecture Team (group interview)

Observations

Product conference (various presentations and ad hoc conversations)

Customer review meeting (one R&D team + customer team +sales)

Webinar presentation of the new API

Documents Component A-E project roadmaps

Chief Strategy Officers keynote at a product conference

Chief Executive Officers keynote at a product conference

Vice President Product marketing - presentation at a product conference
Customer’s presentation at a product conference

jteodoro
Highlight

G.K. Hanssen / The Journal of Systems and Software 85 (2012) 1455-1466 1459

related to an already established theory. In the case of the CSoft
study, the analysis is related to the organizational ecology con-
cept explained in Section 2.1, and it seeks to apply this theory in a
software product-engineering context. Implications for theory are
discussed in Section 5.1.

3.5. Study context

3.5.1. The organization, processes and the product line

The organization. CSoft is a medium-size software company that
develops, maintains, and markets a single product line under the
same name. They have now become the market leader in the
high-end segment of the market. Currently CSoft employs about
260 people, including more than 60 developers. The main office
is located in Oslo, which houses the main section of the develop-
ment department as well as top management and various support
services such as operations, technical support, sales, training and
others. The rest of the organization is distributed internationally
with development departments, sales and other support services
in Eurasia and in the USA.

The development department is organized as a set of teams, each
responsible for one of the main modules in the product line. A team
is mostly a fixed group of 4-6 developers and a team leader, who
is experienced in the domain and the technology. The teams share
some supportive services such as the Chief Technical Officer (CTO),
a system architecture team, and QA-services (quality assurance).

Being a product line organization means that strategic planning
is a natural and important activity. This used to be a side activity
of some of the supportive roles but has now developed into a full-
time prioritized internal service. A Product Strategy Group (PSG),
consisting of five product managers, is responsible for developing a
product roadmap for each of the main modules, and supports their
development.

The processes. The overall SPLE process at CSoft can be described
as three interacting main processes, each with a different time hori-
zon (Hanssen and Fagri, 2008). First, the PSG drives a continuous
long-term (1-2 years) strategic process, creating product roadmaps
based on input from nearly all parts of the organization as well
as several external sources. These roadmaps are high-level plans,
or a vision, for the product line looking one to two years ahead.
They typically present business cases, key stakeholders to partic-
ipate in development, and prioritized product qualities, instead
of functional requirements or feature descriptions. The main con-
tent of these plans is made visible externally to the organization
through various meetings with customers and partners, at con-
ferences, and through other channels. Roadmaps do not describe
specific design decisions but rather high-level guidelines, which
are elaborated when detailed plans are laid out for the develop-
ment projects. In some cases, customers or related third parties
visit the R&D department to have close meetings directly with one
or more of the development teams to elaborate ideas and discuss
needs.

The second main process is the agile development process
Evo (Gilb, 2005), which the R&D department follows to manage
the approximately one-year long development projects, leading
towards the next main release of the product line (all components
are released at the same time). Each component team runs an Evo-
project, meaning that development is done in fortnightly iterations,
and that each iteration delivers new working software. Each itera-
tion ideally starts with a meeting with an external stakeholder to
explain and discuss needs and requirements. At the end of the iter-
ation the team meets with the stakeholder again to get feedback on
the outcome (new or improved software) from the iteration. Cus-
tomers come from all over the world, using a web meeting solution
(WebEx™) to communicate as effectively and closely as possi-

ble. This is a radical change compared with the previous waterfall
approach where feedback was rare.

The third and last process is the operational process, which
encompasses the day-to-day operations such as support, training,
sales and marketing, and high-level maintenance. Apart from being
common functions in a product organization they are also highly
valuable sources of input to both the strategic process and the Evo
development processes as they represent a wide, diverse, and con-
tinuous interface with customers.

The product line consists of five main modules, which together
support the core business operation of the customers: a value chain
of planning, data collection, analysis, and reporting of results. The
composition and use of the modules varies according to customer
and case. Some modules can be used in any configuration, while
the use of others depends on the situation. The software comes
with a set of predefined configurations for the most common usage
scenarios.

The product line offers an application programming interface
(API), which is implemented as standard web-services. Most mod-
ules offer an API, which enables clients to integrate the product with
other systems, and which is extensively used by other third-party
organizations to offer additional software solutions and/or services.
More than 60 such partners now base their business partly or com-
pletely on using the CSoft product line as a platform through these
APIs.

3.5.2. From creative chaos to an emerging software ecosystem

CSoft was established in 1996 and has grown continuously since
then. This development has gone through three phases, and has
now entered a fourth. This section presents a summary of these
phases of development, and it indicates some important milestones
in the development of the organization.

The timeline in Fig. 2 shows the main events (Pettigrew, 1990)
in the development of the organization, the approximate increase
in staff, and the studies of the organization.

1996-1999: “creative chaos”. The company initially grew out of a
small business providing manual services to very few clients. A
simple homemade software tool grew into a solution that could
be sold as a stand-alone software product. The main focus of the
company changed, and the development of this product became
the main objective. At the start, in 1996, there were only a few
employees providing the product to a handful of clients. The pro-
cess can best be described as ad hoc since the main drivers were
almost daily interactions with and feedback from customers. A cus-
tomer request was literally routed directly to the developers. This
start-up phase was a ‘creative chaos’ - that is, it had nearly no
plans and no control, but it was undoubtedly extremely creative
and productive. The product grew rapidly, not only in terms of
features and functionality, but also in terms of defects and com-
plexity. Work became stressful, with little control, and a lot of
overtime.

1999-2003: waterfall. As the number of customers increased the
organization formalized the development process, mostly accord-
ing to the principles of the waterfall model (Royce, 1970). This
somewhat disreputable approach to organizing software devel-
opment emphasizes upfront detailed planning of requirements,
design, and development. The development is divided in consec-
utive phases, where requirements are developed into a design,
and the design is developed into a software system, which is
tested close to deployment. Prior to this, the R&D department
was extended with a QA-manager. This structured approach estab-
lished a certain level of control, and helped the organization in
the continuing development of their product, which grew along-
side the customer base. After a few years, several problems arose,

jteodoro
Highlight

jteodoro
Highlight

jteodoro
Highlight

jteodoro
Highlight

1460 G.K. Hanssen / The Journal of Systems and Software 85 (2012) 1455-1466

Creative chaos Waterfall - SPLE

2 employees

*
CSoftis QA function EPG PMT
established established introduced established
[%2]
Q
9
>
o
Q.
% Introducing Evo 3 month
** waterfall trial

Agile product line engineering Software ecosystem

260 employees

External PSoft
community

First prod.

acquisition conference

PSG replace Architecture

Evo adopted PMT team est.

Fig. 2. Timeline of the development of the case organization.

clearly related to the waterfall approach (Johansen, 2005). Test-
ing and verification was postponed to the final stages leading
to late identification of problems, which in turn caused much
rework. Also, requirements were almost solely focused on func-
tionality, leaving out the quality perspective. To support a growing
R&D department, and to spread knowledge about the formalized
development process, an electronic process guide (EPG) was devel-
oped, and made available via the intranet (Moe et al., 2002). The
product expanded and eventually became a product line, capa-
ble of serving various usage scenarios. To manage this increasing
complexity a Product Management Team (PMT) was formed - a
group of experienced employees with other main responsibilities,
who were supposed to spend part of their time in strate-
gic product planning. In addition various specialized functions,
beyond software development, were introduced such as Technical
Account Managers (TAM), the operations department, and training
services.

2004 to approx. 2009: agile product line engineering. Due to a crit-
ically declining process performance, management of R&D was
looking for a way to improve the situation. At a software engineer-
ing conference, a few representatives from the company learned
about evolutionary development and the Evo method (Gilb, 2005).
As it seemed to address some of their concerns they initiated a
three-month testing period of this radically different development
approach in one of the release projects. Instead of an extensively
prepared process adoption, they started out with a few princi-
ples, focusing on requirements management, where functional
requirements were replaced by explicit expression and evaluation
of product qualities, preferably stated by customers involved in the
development process (Hanssen and Fagri, 2006). Early experience
showed that the number of issues near release was reduced, and
that the delivered product matched customer expectations better
than before. After this initial process trial, Evo was adopted on a per-
manent basis (Fegri and Hanssen, 2007; Hanssen and Fagri, 2008).
Alongside the growth in the organization and the product line the
PMT group was re-established as a full-time Product Strategy Group
managed by a Chief Strategy Officer (CSO). Another supportive ser-
vice, the architecture team, was established, originally with three
full time members. Their task was to handle the excessive level
of system entropy (Hanssen et al., 2010), and to support R&D in
architectural issues. In 2006 CSoft acquired a former competitor
(PSoft), and boosted the number of employees to 260. Adding new
offices, for both R&D and marketing, was a considerable challenge.
Through extensive internal training in the following year, the new
organization was mostly using Evo as the development process.

4. Results

This section structures and summarizes the results obtained
from the recent study of CSoft. First, we look at how the present
product line organization relates to its clients. Then we describe
the recent emergence of a community of third party organizations.
Together, these results show how CSoft relates to its external envi-
ronment, constituting a software ecosystem.

4.1. Engaging customers

An important aspect of the continuous change over the past
years is how CSoft now relate to their customers. The shift from
a plan-driven approach to an agile approach has included an
increased proximity to the customers. The initial experience from
collaborating with customers as external stakeholders in develop-
ment projects (Hanssen and Faegri, 2006; Fegri and Hanssen, 2007)
showed positive effects such as better management of require-
ments, and improved motivation among developers. It also showed
that the relationships with the stakeholders were fragile, and that it
takes continuous and careful management to maintain their moti-
vation to participate. These initial lessons inspired CSoft to further
develop and actively exploit close relationships with their cus-
tomers.

The main motivation for customers to spend time participating in
the development projects is the ability to affect development: no
payment or any other compensation is provided. One of the product
managers explained:

“... they see their wishes or their requirements or whatever in the
product at the end. And then you get very nice feedback like ‘I can

”

see that I said this and that, and in the next release you did it

This collaboration forms a self-regulating system where the sup-
plier and the stakeholders mutually adapt to each other through
their shared interest in developing the software product line. This
usually works well, but there is always a risk of having exter-
nal stakeholders, which do not provide the necessary input, as
explained by the manager of the PSG team:

“Everybody has busy jobs and projects that need to be on time etc.

It happens quite often that we have to cancel these meetings or that
they haven’t done anything since the last time. Then we can only
show them what we've done and get some ad-hoc feedback.”

The PSG manager also explained that it is relatively easy to dis-
cuss ideas, but that it is more of a challenge when they are included
in the development process:

jteodoro
Highlight

G.K. Hanssen / The Journal of Systems and Software 85 (2012) 1455-1466 1461

“There’s no problem to get them to discuss high-level plans, but it
varies when it comes to the development process”

Maintaining the motivation for participating is an important
task for the PSG.

Interestingly, large and leading customers tend to expect and
demand to be more and more involved at both planning and devel-
opment stages. One example is a product conference keynote given
by the VP from one of the large customers. He stated several
‘requirements’ (this was the word he used) for being involved, for
example:

“Regular meetings with product development teams”, “To work as
a stakeholder on new software develxopments that are key to us.”,
“Help to guide product strategy.”, and others.

Finding the “right” stakeholders for participation in the develop-
ment projects is not done through a formal and structured process,
but is mostly based on the collective knowledge about the cus-
tomers. The PSG manager says,

“We don’t have a formal process for selecting stakeholders. We
have internal discussions, listen to sales people etc. We know which
customers have asked for certain features or improvements or those
that are heavy users of a particular type of functionality.”

In addition, experience from previous participation is also useful
as explained by the R&D manager:

“We have become better at selecting [external stakeholders]. Those
that have disappointed us are never asked again. You end up with
a pool of persons that you know you can trust.”

In the very start when Evo and collaboration with external stake-
holders were at an experimental stage it took quite some effort
to recruit and stakeholders to the development projects and to
keep them active (Fegri and Hanssen, 2007). After some releases
where collaboration with external stakeholders have become an
integrated part of the development process the situation is turned
upside-down. When asked to explain this relationship, one of the
product managers told us:

“It’s almost a problem because as soon as you offer the capability
of being a stakeholder, the hardest part is rejecting people, turn-
ing them away active participation. So people are very keen on
participating.”

Co-creating the product line is one of the most significant effects
of engaging and communicating with external stakeholders. The
rationale is simple, CSoft have the most up to date knowledge of
the technology, and the ability to make use of it in the develop-
ment. Likewise, customers hold the most up to date knowledge of
their own business domain, and how it seems to develop. These two
pools of knowledge and competence are joined in several ways. One
important arena for sharing and gaining knowledge is the product
conference where management, strategists, developers and other
internal actors get to meet externals from various customers and
third parties. Equally important — customers can meet other cus-
tomers, third parties can meet customers or internals, etc. This
shows the networked character of the ecosystem that is shaped
around the product line. One example, from the product confer-
ence: several providers of third party products and services were
having stands at the conference, communicating with both existing
and potential customers and developers from CSoft.

Another major event, which is more directly focused on the
development of the product line, is the annual Advisory Board
meeting. Top management from some of the largest and most
demanding clients meet with the PSG and other actors who are
involved in the shaping of the product strategy. A PSG member
explains that they meet to:

“... discuss high level product strategy and how the demands of
their companies and the market are developing.” Bringing together
major competitors like this was a daring thing to do according to
the PSG manager: “The first time we did this it was a bit exciting -
would they discuss issues openly, and would they open up? It turned
out that they did very fast. They have many concurrent needs, and
even though they are competitors they see the value of doing this.”

From a practical point of view, we see that tools and infrastruc-
ture for collaboration are important enablers for co-creating the
product line. Especially the Webex online meeting solution low-
ers the threshold for having frequent and detailed meetings with
stakeholders:

From our observation of one of the customer review meetings we
saw alot of very detailed discussions that were made possible by on-
the-fly demonstration of the software through the screen sharing
solution. This sparked detailed discussions both on the customer
side and among the development team. The meeting resulted in a
list of clear actions points to be addressed in the next development
iteration.

Close corrective feedback in the Evo development projects is
another approach to co-creating the product line, but on a tactical
level. One of the developers describes the meeting with the external
stakeholder at the end of the two-week Evo iteration:

“What you get during a meeting is often very valuable. Especially
when you are about to move in the wrong direction, which you can
adjust. We get feedback saying that our solution is not quite what
they had in mind or what they need.”

This demonstrates one important function of the agile process;
the development teams get nearly immediate (within two weeks)
and detailed feedback. This closeness to a few selected customers
means that CSoft must also consider the needs of other customers,
as they are the referent organization, which always has the last
word in the development of the product line. This is partly achieved
through Evo’s focus on product qualities instead of product fea-
tures, which are typically emphasized in plan-driven development
methods. This is a useful abstraction, and it turns the focus from
predefined design (features) to effect and impact (qualities). Both
the product roadmaps and the evaluation meetings at the end of the
Evo iterations evaluate the product qualities. This means that both
the development teams and the external stakeholders have to con-
sider why something is needed, leaving the how to the developers.
The PSG manager explains:

“... we take one step back, and try to think about why our stake-
holder needs this, and then rethink other ways of solving their
problem. It is in this type of process that the smart things can turn
up - that your thinking is totally new and that you come up with
a solution which may be a totally different way of doing it, maybe
faster .. .".

Catching and following up on customer ideas on an ad hoc basis is
equally important as involving customers in regular processes such
as roadmapping and the Evo development projects. At the product
conference:

A customer representative told about a case where his company
gave input to CSoft on some changes they would have liked to see.
This led CSoft to invite a delegation from the (abroad) customer to
the R&D department in Oslo. Ten CSoft people spent the whole day
discussing the solution with four representatives of the customer.
This was perceived very positively, and in the end actually affected
the software.

Some of the largest customers may also request dedicated work-
shops to discuss needs and ideas. The PSG manager talks about this:

1462 G.K. Hanssen / The Journal of Systems and Software 85 (2012) 1455-1466

“...forsome of our largest customers, mostly by their initiative, we
organize workshops once a year, usually on a strategic level. They
want to know what the roadmaps may bring for the next couple of
years, and talk a lot about their needs etc.”.

The close contact with customers is also a valuable source of learn-
ing about competing solutions. One of the team leaders talks about
customers visiting the R&D department:

“In these meetings they demonstrated the solution they used today,

and actually demonstrated how they used the competing solutions
- what worked well and what needed improvements, as well as
ideas they might have. These meetings gave the team a wealth of
details, and it was quite clear what to deliver to the stakeholder.”

The PSG manager also explains the value of learning from the
use of competing solutions:

“...alternatively they do it using other tools today when not using
our solution. The option to work more closely with them and to get
that knowledge made us more capable to meet their needs better
than before when the development was more of the black-box type”.

Learning the business processes and domain is another valuable
outcome from the direct contact with selected stakeholders. One
of the developers talks about one of the stakeholder meetings in an
Evo project:

“... we have tried to solve a task in a way we believed would be
reasonable, but to people who actually use this it is obvious that we
have misunderstood the process. This gives us guidance as early as
possible.”

This illustrates the shared interest that the customers and the
supplier have - customers want to learn about the product line and
its development. Correspondingly, CSoft learns about the business
that their product line is supporting.

4.2. An emerging third party community

At present around 60 external organizations base their busi-
ness completely or partly on CSoft as a platform. This can be
value-adding solutions or products, related services, and consult-
ing. Examples are solutions for data visualization or voice data
capture technology, assistance in using various components in the
product line, and training. This networked community (Fricker,
2009) has not been planned and deliberately established by CSoft,
it has emerged spontaneously over the past years. This emergence
is mostly driven by customers’ need for additional features and
services on one hand, and the opportunity to extend and use the
product line as a platform on the other hand. Also, building solu-
tions and providing services based on the product line means that
external organizations get immediate access to a large group of
established users of the product line.

Providers of third-party solutions are considered to be important
external stakeholders, and are included in the development of the
product line in very much the same way as customers.

“During a product conference, a representative from a third party
company, delivering an integrated product, explained that when
they needed to improve the integration with the CSoft platform they
took on the role of an Evo stakeholder. Communication was mostly
done by phone, supported by web meetings with screen sharing.”

Offering an efficient integration technology enables a third party
community. Over the past few years a set of simple APIs have been
offered to enable external actors to make extensions to the product
line. The development of these APIs have followed the develop-
ment of the product line, where each new release has improved
existing and offered new APIs due to requests from external actors.

This means that there is a long (a year) connection time between
a request for an interface and its actual release. As more and more
externals have made use of this connection point to the software it
has been given increasingly higher priority in the development of
the product line. An excerpt from one of the roadmaps exemplifies
this:

“We are in dialogue with some clients/prospects who are building
their portal in a Content Management System, and need to inte-
grate content from module X [name removed for anonymity] into
it. Some competitors seem to have APIs that are easier to use than
our SOAP! based APIs, making it easier to integrate with other por-
tals/communities. It is therefore an ambition to provide an easier
API for including module X content into an external portal.”

Due to the extensive use of the APIs by externals and their
increasing demand for integration with the product line it became
clear that the simple web-service based interface had become obso-
lete. This has led CSoft to develop and offer a new API called
FlexibilityFramework (FF), which enables a closer integration to
core services in the product line than the previous (and still
existing) simple messaging-based APIs offer. A recent webcast,
where the CSO presents FF explains further the motivation for this
improved interface:

“CSoft is like a supertanker. It is large, can take huge loads, travel

far, and take heavy weather. These are all very positive things, on
the other hand, the consequence of that approach is that we are
quite careful at looking after the supertanker. That means various
procedures, on policy, on quality assurance and so forth. And that
means that we get less nimble than we would like. The question
we posed ourselves is how can we behave like a speedboat while
having all the benefits of the supertanker? I'd like you to think of
FF as the speedboat. The tanker is still there. It will still take heavy
loads and perform extremely well, but in order to be nimble we can
build a few speedboats. And they have independent lives from the
supertanker and can run on different development schedules.”

The last argument is worth a comment; with this new interface
to the product line external actors are disconnected from the long
release cycles of the product line, and can develop value-adding
solutions independently. This is likely to further drive the growth
of the third party community.

Actively supporting the community has become a regular activity
in addition to the continuous development of the product line. As
this community has emerged and grown, CSoft have seen its value,
and started to actively support it. In 2007 a dedicated web-portal
was launched to make this community visible and each partner is
listed and presented. There are five types of partners, those offering
technology that is integrated with the product line, those offering
value adding services, some can prepare the use of the product line,
some can use it on behalf of clients and some offer consultancy
services.

5. Discussion

We have now described the CSoft case, emphasizing the present
organizational set-up, its processes and the product line, the devel-
opment timeline of the organization (Section 3.5.2), and how the
present organization relates to its external environment (Section
4). Using this insight we now seek to provide answers to our first
research question: Why and how is software product line engineering
developing towards a software ecosystem?

! Simple Object Access Protocol, http://www.w3.org/TR/soap12-part1/.

http://www.w3.org/TR/soap12-part1/

G.K. Hanssen / The Journal of Systems and Software 85 (2012) 1455-1466 1463

First of all, the initial motivation for changing the waterfall-
like development process by adopting Evo in 2004/2005 was that
CSoft struggled with unstable requirements incurring high costs
due to little flexibility in the process. Much emphasis was given
to extensive and thorough requirements engineering upfront, but
with little effect (Hanssen and Faegri, 2006). The immediate expe-
rience from involving stakeholders in the short Evo development
iterations was that developers felt more comfortable and secure
by having this close and continuous dialogue on requirements and
results (Hanssen and Faegri, 2006). However, in the first release
projects using Evo, it became a considerable challenge to maintain
the motivation of the external stakeholders throughout the project.
The new process was fragile (Feegri and Hanssen, 2007).

(Change 1) From our study we see that this has clearly changed;
now external stakeholders are keen to participate — CSoft actually
has to turn down candidates. This change is the result of a learn-
ing process that has progressed during the first years of using Evo
- customers have gotten to know of this practice and some have
gained experience as stakeholders. The engagement of customers
and users is generally considered to be an important success fac-
tor in any kind of software development (Keil and Carmel, 1995;
Chiasson and Green, 2007).

(Change 2) We can also observe another change that took place
internally at CSoft. The first experimentation with Evo was only
done as an R&D-internal matter, like a kitchen experiment. How-
ever, as this turned out to be an improvement of the development
practice, this way of working eventually became adopted in the
rest of the organization. Now, all parts of the organization, from
operational support to the top management, are supporting this
practice. An example is the CEO explaining the software develop-
ment process Evo and its strategic importance in his keynote at
a large product conference. Another example is the strengthening
of the PSG, which has a liaison function between customers and
development teams. This tells us that changing a product line orga-
nization takes effort and time, and that both internal and external
actors need to learn from practice to accept this opening of the
organization and its work processes.

(Change 3) Another change we can see from the results is an
increasingly higher external visibility of plans and strategies. Ini-
tially this kind of information was kept internal, but it is now more
and more openly communicated through various channels. It has
turned out that doing this does not introduce the presumed risk
of leaking vital information to competitors, but that it is rather an
advantage as external actors see what might be coming, they can
relate it to their own business, and potentially respond to it.

(Change 4) Another related change is the opening of the product
line at the technical level, first with the SOAP-based APIs and now
the recent and more efficient Flexibility Framework. Initially this
represented a minimal and very limited opportunity for extending
the product line, but it quickly grew to a considerable extent as
it represented tangible business value. This aspect has eventually
been given more attention, and has been designated as strategically
important in some of the roadmaps. We see several benefits from
allowing externals to use the product line as a platform. Firstly, it
increases the variability of the product line - it can be used in more
specialized ways, serving more needs. Secondly, existing users rep-
resent a great opportunity to the third parties (being the second
component of a symbiosis-like relationship). Thirdly, letting exter-
nals deal with specialization and minor extensions enables the
product line organization itself to maintain focus on developing
the core product line. This may be the most important effect (Zook,
2010).

To recap the first research question - this change and the
organization it has resulted in explains why and how software prod-
uct line engineering at CSoft has developed towards a software
ecosystem.

Why (1) Customers expect and have learned to value to be involved in
development and in product strategy making. (2) A plan-based
development approach is unfit when serving a volatile domain where
the product line is under continuous and extensive development. (3)
The total demands and requirements from customers can become too
high for one product line organization to manage alone.

How (1) CSoft learns about the business it serves through active
collaboration with customers and third parties. (2) CSoft makes
strategy and plans visible externally. (3) The technical interface of the
product line is opened. (4) Both customers and value-adding third
parties are considered as external stakeholders. (5) CSoft actively
support and assist the community of third parties.

5.1. Implications for theory

Software ecosystems, as a concept, have the potential of becom-
ing an important field of practice and research in the years to come.
To contribute to the development of this field in general, and to
answer our second research question in particular: What are the
characteristics of software ecosystems? - We propose to shape a theo-
retical platform to be used in future research. Just like the taxonomy
suggested by Bosch (2009), a theory of software ecosystems is valu-
able and useful to generalize the concept and bring together results
from more empirical studies. The theory may over time develop
towards a unified and empirically justified understanding of the
concept.

Fortunately, the theory of organizational ecology (Trist, 1977),
briefly presented in the background section, seems to fit well as a
starting point. It concerns organizations operating in complex and
unstable domains, in principle a suitable description of software
ecosystems - and certainly of CSoft. Using this general theory of
organizational ecology, we derive a set of theoretical propositions
suitable to software ecosystems:

1. Member organizations in a software ecosystem are linked to
a key organization among them, which acts as a central refer-
ent organization, doing so even though many of them are only
partially under its control or linked to it only through interface
relations. (This is the Class 1 system according to Trist’s classifica-
tion.) CSoft is an example of such a referent organization. None
of the external organizations are formally controlled by CSoft.
However, all activity in the ecosystem is related to the product
line, which is controlled by CSoft.

2. Software ecosystems promote self-regulation. Our study of CSoft
show that the collaborative approach can be seen as a self-
regulating system in that the referent organization to a large
degree adapts to its external environment, and that the exter-
nal environment adapts to the referent organization. This is in
contrast to the previously centralized control that was applied
in the development of the product line.

3. Software ecosystems have a networked character. CSoft and its
external environment constitute a network of customers and
third party organizations. Even competitors may be considered
a part of this network, although this aspect has not been studied
in particular here.

4. Software ecosystems exist through the use of technology. The
ecosystem, which CSoft is a part of, relies on the use of tech-
nology to enable collaboration. Examples are web-meetings,
web-casting, and the software-as-a-service deployment model.

5. Software ecosystems have shared values. In the CSoft ecosystem
the software (product line) is this shared value. For CSoft, the
value is revenue from licenses and services, for the customers
the value is improved business operations, and for the third par-
ties the value is revenue from sales of value-adding solutions.
This common interest in the shared value creates motivation to
collaboratively care for the shared value.

These five propositions constitute a start of a theory for soft-
ware ecosystems. In addition to these principles adopted from
Trist’s work (Trist, 1977) we also propose two extensions:

jteodoro
Highlight

1464 G.K. Hanssen / The Journal of Systems and Software 85 (2012) 1455-1466

learns about

v

participates External environment

Product
line

develops
Supplier guides

e

& Customers

serves

sees Third
parties

Strategy |[€¢———

learns about

Fig. 3. A conceptual model of a keystone-centric software ecosystem.

6. The shared value of a software ecosystem is both the software prod-
uct and the business domain. Through the increased proximity
to the external environment, CSoft have an interest in both the
product line and the business it serves. Likewise, customers have
an interest both in their business and the technology they use to
drive it.

7. As a software ecosystem emerges, the control of and influence on
its development becomes a shared responsibility between the sup-
plier and the external environment. An opening of the product line
process, with external stakeholders participating in develop-
ment and with external visibility of plans and strategies, means
that some of the control and influence move towards customers
and third-parties. This affects the motivation to collaborate, and
is of benefit to all members of the ecosystem.

5.2. Implications for practice

From the analysis of our findings we derive a set of implications
for practice, relevant to other software product line organizations
similar to CSoft:

e Support the external environment by sharing information on
plans and strategies - this opens a channel for valuable input
and enables collaboration with externals.

e If appropriate, encourage and support a third party community;
it can be a valuable extension to the normal development of the
product line.

e Establishing and benefiting from a software ecosystem takes
time. A successful development relies on repeated cycles of
experimentation and learning. This learning process needs to
involve all types of actors.

Based on our findings we can derive a strategy that can be
of practical value to other product line organizations. The shared
interest in the product line (the shared value) is a key enabler
for driving the collaboration between the actors in the ecosystem.
Thus, a viable strategy would be to (1) make the product line sup-
plier more involved in the development of the business domain and

(2) make external actors more engaged in the development of the
technology.

To summarize our study we propose a simple conceptual model
of a software ecosystem. This model represents the case we have
studied, and could serve as a basis to reflect on and guide other
similar cases (Fig. 3).

The model illustrates the main actors in a software ecosys-
tem of the type that CSoft is part of — we define this ecosystem
as a “keystone-centric” type. The rectangles in the model repre-
sent actors and artifacts. The arrows represent activities connecting
these roles and artifacts. An activity may also relate to another
activity.

Note that there are several other potential variations, with more
loosely coupled communities controlling the ecosystem. However,
for the CSoft case we see that it is the supplier (key organiza-
tion) that develops the product line. This development is guided
by a strategy, which points out needs and opportunities and main
paths of development. Both the strategy and the development of
the product line are to some extent visible to external actors. These
consist of (at least) customers and third parties, but can also involve
others. Third parties use the product line as a platform to serve
customers with additional solutions and services. Being a part of
an ecosystem means that these actors learn about each other. The
supplier learns about requirements, needs, ideas, opportunities,
etc. In return, external actors learn about the development of the
technology of common interest (the product line), and may even
participate actively in the development.

5.3. Limitations

The case study of CSoft is subject to three limitations.

Firstly, this is a single case study, which naturally affects the
generalizability of the conclusions. Yet there are good reasons for
selecting such an approach. First of all, the number of relevant cases
is still low. In addition, focusing on a single case means that the
study can be more thorough than a study of multiple cases, with
respect to available resources. Yin (2002) discusses the single case
study design (pp. 38-41) and presents several arguments in favor

G.K. Hanssen / The Journal of Systems and Software 85 (2012) 1455-1466 1465

of choosing such a design. One of these is particularly applicable
to CSoft, namely that it is a unique case, at least for the researcher
who conducted the study. According to Yin, such a study may act
as a prelude to further studies of a relatively new topic, such as
software ecosystems in this case.

The second limitation concerns the completeness of the study.
Only a subset of the employees was contacted. Likewise, relatively
few samples of all available documentation were collected and ana-
lyzed. This is naturally due to the relatively long duration of the
study.

The third limitation concerns the applicability of the findings
and conclusions of this study. The organization investigated is a
medium-size product line organization and a web/application type
of ecosystem (according to the taxonomy proposed by Bosch, 2009).
Thus, results do not necessarily apply to all other types of software
ecosystems.

6. Conclusions and directions for future research

Over a period of approximately five years we have studied a
software product line organization and its external environment,
showing and explaining an emerging software ecosystem.

We conclude that the development that has occurred has pro-
duced effects both internally in the product line organization and in
its external environment. The change has led to an increase in col-
laboration across (previously closed) organizational borders, and
it has developed a shared value consisting of two components: the
technology (the product line) and the business it supports. Opening
up both the technical interface of the product and the organiza-
tional interfaces are key enablers of such a change.

Based on our study we propose the following seven directions
for future research:

(1) As Jansen et al. also point out (2009a) we need to see more
empirical studies of various types of software ecosystems, how
they develop, and the effects they produce. Such studies should
naturally be focused towards the industry, and be longitudinal
as well as exploratory. In particular it would be valuable to get
a better understanding of ecosystems as seen from the point of
view of external actors.

(2) Tobuild acommon understanding of software ecosystems: how
they shape, how they work, and what their effects are, we advise
a further refining of a theory of software ecosystems, as the one
proposed in Section 5.1. One way of developing these concepts
would be to apply them to existing well known ecosystems such
as iPhone app store, MS CRM, Eclipse, Android and others.

(3) The emergence of software ecosystems comes with new busi-
ness models affecting intellectual property rights, economic
models, competition, etc. We need to see more dedicated stud-
ies of these issues to realize the potential of ecosystems.

(4) Software ecosystems are closely related to the more mature
concept of open source software development. We need to bet-
ter understand the similarities and the differences in order
to transfer knowledge between these two related domains
(Fitzgerald, 2006).

(5) The engine of a software ecosystem is the collaboration with
external actors. We have showed some examples through our
studies, but this is a broad topic that needs further investigation.

(6) The study of software ecosystems potentially relates to several
disciplines such as business strategy, sociology, technology and
innovation management, economy, and others. We have briefly
touched a few of these and we see a need to investigate these
links further.

(7) Software ecosystems affect the shape of control structures. We
believe that control shifts from the supplier towards the users,
a transition that needs to be better understood.

Acknowledgements

We are grateful to the people at CSoft for sharing their pre-
cious time, and providing highly valuable input to this study. This
work was done as a part of the EVISOFT project (grant 156701/220)
and the Agile project (grant 179851/140), both partly funded by
the Research Council of Norway. We also greatly appreciate the
feedback from the anonymous reviewers, which have helped in
improving this manuscript.

References

Alspaugh, T.A., Hazeline, U.A,, et al., 2009. The role of software licenses in open
architecture ecosystems. In: Jansen, S., Brinkkemper, S., Finkelstein, A., Bosch, J.
(Eds.), First International Workshop on Software Ecosystems (IWSECO). CEUR-
WS, Falls Church, USA, pp. 4-18.

Bosch, J., 2009. From software product lines to software ecosystems. In: 13th Inter-
national Software Product Line Conference (SPLC'09),. IEEE Computer Society,
San Fransisco, USA, pp. 111-119.

Chesbrough, H., 2006. Open innovation: a new paradigm for understanding indus-
trial innovation. In: Chesbrough, H., Vanhaverbeke, W., West,]. (Eds.), Open
Innovation: Researching a New Paradigm. Oxford University Press, Oxford, pp.
1-12.

Chiasson, M.W., Green, LW., 2007. Questioning the IT artefact: user practices that
can, could, and cannot be supported in packaged-software designs. European
Journal of Information Systems 16, 542-554.

Emery, F.E., Trist, E.L., 1965. The causal texture of organizational environments.
Human Relations 18, 21-32.

Enkel, E., Gassman, O., et al., 2009. Open R&D and open innovation: exploring the
phenomenon. R&D Management 39 (4), 311-316.

Fitzgerald, B., 2006. The transformation of open source software. MIS Quarterly 30
(3), 587-598.

Fricker, S., 2009. Specification and analysis of requirements negotiation strategy
in software ecosystems. In: Jansen, S., Brinkkemper, S., Finkelstein, A., Bosch, J.
(Eds.), First International Workshop on Software Ecosystems. CEUR-WS, Milan,
Italy, pp. 19-33.

Fagri, T.E., Hanssen, G.K., 2007. Collaboration and process fragility in evolutionarily
product development. IEEE Software 24 (3), 96-104.

Gilb, T., 2005. Competitive Engineering: A Handbook for Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage. Elsevier
Butterworth-Heinemann, Burlington.

Glaser, B.G., Strauss, A.L., 1967. The Discovery of Grounded Theory: Strategies for
Qualitative Research. Aldine Transaction, New York.

Hanssen, G.K., Faegri, T.E., 2006. Agile customer engagement: a longitudinal qual-
itative case study. In: 5th International Symposium on Empirical Software
Engineering (ISESE’06),. ACM, Rio de Janeiro, Brazil, pp. 164-173.

Hanssen, G.K., Fegri, T.E., 2008. Process fusion - agile product line engineering: an
industrial case study. Journal of Systems and Software 81, 843-854.

Hanssen, G.K., Yamashita, A.F,, et al., 2010. Software entropy in agile product evolu-
tion. In: 43d Hawaiian International Conference on System Sciences (HICSS'10),.
IEEE Computer Society, Hawaii, USA, pp. 1-10.

Jansen, S., Brinkkemper, S., et al., 2009a. Business network management as a survival
strategy: a tale of two software ecosystems. In: First International Workshop on
Software Ecosystems (IWSECO),. CEUR-WS, Falls Church, USA, pp. 34-48.

Jansen, S., Brinkkemper, S., et al., 2009b. Introduction to the proceedings of the first
workshop on software ecosystems. In: First International Workshop on Software
Ecosystems,. CEUR-WS.

Jansen, S., Finkelstein, A., et al., 2009c. A sense of community: a research agenda for
software ecosystems. In: 31st International Conference on Software Engineering
(ICSE’09),. IEEE Computer Society, Vancouver, Canada, pp. 187-190.

Johansen, T., 2005. Using evolutionary project management (Evo) to create faster,
more userfriendly and more productive software. Experience report from FIRM
AS. In: Bomarius, F., Komi-Sirvi6, S. (Eds.), 6th International Conference on Prod-
uct Focused Software Process Improvement (PROFES’05). Springer Verlag, Oulu,
Finland, pp. 216-223.

Keil, M., Carmel, E., 1995. Customer-developer links in software development. Com-
munications of the ACM 38 (5), 33-44.

Klein, H.K., Myers, M.D., 1999. A set of principles for conducting and evaluating
interpretive field studies in information systems. MIS Quarterly 23 (1), 67-93.

Messerschmitt, D.G., Szyperski, C., 2003. Software Ecosystems, Understanding an
Indespensable Technology and Industry. The MIT Press, Cambridge.

Moe, N.B., Dingseyr, T., et al., 2002. Process guides as software process improvement
in a small company. In: EuroSPI, Nuremberg, Germany, pp. 177-188.

Pettigrew, A.M., 1990. Longitudinal field research on change: theory and practice.
Organization Science 1 (3), 267-292.

Qualman, E., 2009. Socialnomics: How Social Media Transforms the Way We Live
and Do Business. John Wiley & Sons.

1466 G.K. Hanssen / The Journal of Systems and Software 85 (2012) 1455-1466

Royce, W.W., 1970. Managing the development of large software systems. In: IEEE
WESCON, Loas Angeles, USA, pp. 1-9.

Seaman, C.B., 1999. Qualitative methods in empirical studies in software engineer-
ing. IEEE Transactions on Software Engineering 25 (4), 557-572.

Trist, E.L., 1977. A concept of organizational ecology. Australian Journal of Manage-
ment 2 (2), 161-175.

Trist, E.L., Bamforth, K.W., 1951. Some social and psychological consequences of the
longwall method of coal-getting. Human Relations 4 (1), 3-38.

Yin, R, 2002. Case Study Research. Sage Publications Inc., Thousand
Oaks.

Zook, C., 2010. Profit from the Core: A Return to Growth in Turbulent Times. Bain &
Company, Inc., Boston.

Geir Kjetil Hanssen works as a senior research scientist at SINTEF ICT, Norway's
largest independent research institution. He holds a PhD degree in informatics from
the University of Trondheim (NTNU).

	A longitudinal case study of an emerging software ecosystem: Implications for practice and theory
	Introduction
	Background
	Socio-technical theory and organizational ecology
	Software ecosystems

	Study method
	Study type
	Data sources
	Sampling and collection
	Analysis
	Study context
	The organization, processes and the product line
	From creative chaos to an emerging software ecosystem
	1996-1999: "creative chaos"
	1999-2003: waterfall
	2004 to approx. 2009: agile product line engineering

	Results
	Engaging customers
	An emerging third party community

	Discussion
	Implications for theory
	Implications for practice
	Limitations

	Conclusions and directions for future research
	Acknowledgements
	References

