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1 Introduction
In this short note Neumann stability analysis is used to show:

e that a central differencing scheme is unstable;

e that both a second-order derivative and a fourth-order derivative are
dissipative; this is true for all the nth-order derivative, where n is even;

e that the Crank-Nicolson scheme is stable.

In the final section, we also show that the Gauss-Seidel solver converges
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2 Central differencing

We want to solve the unsteady convection equation (zero viscosity)
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Discretizing this equation on an equidistant mesh, using explicit discretiza-
tion in time and central differencing in space gives
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Note that explicit time integration is similar to solving a steady problem
in 2D or 3D, because in 2D or 3D the iterative solver is always explicit to



a certain degree. Denote the exact solution to Eq. 2 by Tz" and the actual
computed (i.e. approximate) solution by T;*. They are related as
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where " is the error at time level n, which may be due to, for example,
round-off errors. Insert Eq. 3 into Eq. 2 so that
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Since T} exactly satisfies Eq. 2 we get an equation for the error, i.e.
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The error € can be represented as a Fourier series
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where EJ is the amplitude and 3 = v/—1. The computational domain is
[0,L]. The wave number is denoted by k which is defined as the period
length 27 divided by the wave length X (see Fig. 1), i.e.
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The minimum wave number corresponds to the largest wave length (the
entire computation domain), and the largest wave number corresponds to
the smallest wave length (the cell size), see Fig. 1, i.e.
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Inserting the wave number
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(N is number of cells) into Eq. 6 gives
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Figure 1: Minimum and maximum wave length and wave number on a
computational grid.

Since the problem is linear we can choose one Fourier component so that

Eq. 5 gives (dropping subscript m)
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where ¢ = mn/N. Note that low ¢ corresponds to low frequencies and vice
versa. The value ¢ = m corresponds to the highest resolved frequency, i.e.
) = 2Az, see Fig. 1. Divide by e/ so that
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Using
e’ = cos(¢) + gsin(¢) (13)
we obtain
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Defining the amplification factor
En+1
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we can write Eq. 14 as
G=1-josin¢ (16)



The condition for a scheme to be stable is that the modulus of G should be
smaller than one. We find that that is never true because

IG]? =1+ 0%sin®¢p > 1 (17)

for all ¢ and o (o0 must be > 0). Thus the scheme is unstable. Note that
for the highest frequency (® = 7) the damping is neutral (G = 1), which
means that odd-even oscillations are not affected at all.

3 Second derivative as dissipation term

Assume that we have the equation
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We add a second derivative on the RHS as a dissipation term and analyze
the time derivative and the RHS with von Neumann analysis. Thus we have
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Discretize the RHS as
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and introduce € as in Section 2
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Divide by e’? and use Eq. 13 so that
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Finally we get by use of Eq. 15
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Provided 8 < 1/4, we see that |G| < 1 for all ¢, i.e. the scheme is dissipative
(damping). A central difference of a second derivative can thus be used as
a dissipation term. It is not often used as a such, because it would then
interfere with the physical diffusion term. However, in compressible flow
simulations is is sometimes used as a dissipation term at shocks where it is

added locally.



4 Fourth-order derivative as dissipation term

The Rhie-Chow interpolation is equivalent to adding a fourth-order deriva-
tive term of the pressure. Below it is shown that this adds dissipation, i.e.
it is stabilizing. Assume that we have the equation
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We add a fourth derivative on the LHS (see p. 224, and Eqgs. 17.3.16 and

17.3.17 in [1]) as a dissipation term and analyze the time derivative and the
RHS with von Neumann analysis. Thus we have
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where 7) is a small coefficient ( < 1). Discretizing the equation above using
explicit discretization in time and central differencing in space gives
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Introduce € as in Section 2 so that
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Divide by e/* and use Eq. 15
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Using Eq. 13 gives
A
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If nAt/(Az)* is small (to keep G > —1), we find that for high ¢ (¢ — =),
i.e. high frequencies, the term is indeed dissipative (|G| < 1). Please recall
that ¢ = m corresponds to odd-even grid oscillations which are exactly the
ones we want to damp.

5 Crank-Nicolson Time Discretization

Discretizing the following equation
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gives [2]
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Introduce € as in Section 2 gives
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Introducing G = E™"*!/E™ and using Eq. 13 we get
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so that
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We see that |G| < 1 for all frequencies (all ¢) which means that the scheme
is stable.

6 Convergence of the Gauss-Seidel Method (the
Scarborough condition)

The Scarborough condition states that [2]
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Below, we will prove this statement.
We want to solve the 2D equation
apTp = agTg +awTw + asTs + anTn = (36)

Tp = (agTE + awTw + asTs + anTn)/ap

If we do this by starting in the south-west corner of the computation domain
(low 4, low j), Tw and Ts will be new values (iteration level k + 1), whereas
Tr and Ty will be old values (iteration level k). We can then rewrite Eq. 36
as

T1I§+1 = (aETE + aWTxI/CV—i—1 + ClsTkéH—1 + aNT]I\CI)/aP- (37)



Now introduce the error
b =Tk T, (38)

where T is the exact solution to Eq. 36. When solving Eq. 36 iteratively
with Gauss-Seidel, we want the error € to go to zero. Insert Eq. 38 into
Eqg. 37 so that
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Now let
e = max{|ek |, |eft [, 5T, ek |}, (40)
and insert it into Eq. 39 we get
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Thus we find that if the sum of off-diagonal coefficients is smaller than or
equal to the diagonal element,

lag| + |law| + |as| + |an|
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<1, (42)

(the row condition or the Scarborough condition), then the maximum error
will decrease, i.e. the iterative solver will converge. Note that this is a
sufficient condition but not necessary, i.e. if the Scarborough condition is
satisfied, the iterative solver will converge, but the solver may converge even
if the condition is not satisfied.

6.1 The Spectral Radius

The condition in Eq. 42 is commonly expressed by saying that the spectral
radius (the maximum eigenvalue) must be smaller than or equal to one.
Eqg- 36 can be written on matrix form as
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Split the matrix A into a lower triangular, a diagonal and an upper trian-
gular matrix as

A=L+D+U (45)

The Gauss-Seidel solver can now be written on matrix form (cf. Egs. 37 and
44)

(D+ L)T""! = B" —UT™ (46)
Define the error vector as (cf. Eq. 38)
8n+1 _ Tn+1 o T (47)

where T is the exact solution to the equation system 43. Subtracting the
equation
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from Eq. 46 gives
(D+L)e"™ = —Ue™ = " = —(D + L) U™ (49)
Replace U by Eq. 45, and we get
e = (D4+ L)' [A— (L + D)]e" =[1 — (D + L)' Ale". (50)
Now define G =1 — (D + L)' A so that Eq. 50 can be written
el = Gen. (51)
If we diagonalized the matrix G by solving the eigenvalue problem
|G —IA =0 (52)

where X is the eigenvalue vector (with eigenvalues );) of G, Eq. 51 can be
written as

el = Xe™. (53)

The condition for convergence (cf. Eq. 42), i.e. the maximum error should
decrease [max(¢"*!) < max(g")], can now be expressed as the

max()\;) <1, (54)

i.e. the maximum eigenvalue must be smaller than one. As mentioned above,
the maximum eigenvalue is called the spectral radius.
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