xiv Preface to Part 1

being given in two parts. The first part includes most of the basic material
on time dependent equations including parabolic and hyperbolic problems,
multi-dimensional problems, systems and dissipation and dispersion. The
second part includes chapters on stability theory for initial-boundary value
problems (the GKSO theory), numerical schemes for conservation laws,
numerical solution of elliptic problems and an introduction to irregular
regions and irregular grids. When I teach the course, I usually cover most of
the first five chapters during the first semester. During the second semester
I usually cover Chapters 6 and 7 (systems and dissipation and dispersion),
Chapter 10 (elliptic equations) and selected topics from Chapters 8, 9 and
11. In other instances, I have covered Chapters 8 and 9 during the second
semester, and on one occasion, I used a full semester to teach Chapter 9.
Other people who have used the notes have covered parts of Chapters 1-7
and Chapter 10 in one semester. In either case, there seems to be sufficient
material for at least two semesters of course work.

At the end of most of the chapters of the text and in the middle of several,
we include sections which we refer to as “Computational Interludes.” The
original idea of these sections was to stop working on new methods, take
a break from theory and compute for a while. These sections do include
this aspect of the material, but as they developed, they also began to
include more than just computational material. It is in these sections that
we discuss results from previous homework problems. It is also in these
sections that we suggest it is time for the students to try one of their
new methods on one of the problems HW0.0.1-HW0.0.4 from the Prelude.
There are also some topics included in these sections that did not find a
home elsewhere. At times a more appropriate title for these sections might
have been “etc.”.

At this time I would like to acknowledge some people who have helped
me with various aspects of this text. I thank Drs. Michael Kirby, Steve
McKay, K. McArthur and K. Bowers for teaching parts of the text and
providing me with feedback. I also thank Drs. Kirby, McArthur, Jay Bour-
land, Paul DuChateau and David Zachmann for many discussions about
various aspects of the text. Finally, I thank the many students who over
the years put up with the dreadfully slow convergence of this material from
notes to text. Whatever the result, without their input the result would not
be as good. And, finally, though all of the people mentioned above and oth-
ers have tried to help me, there are surely still some typos and errors of
thought (though, hopefully, many mistakes have been corrected for the
Second Printing). Though I do so sadly, I take the blame for all of these
mistakes. I would appreciate it if you would send any mistakes that you
. find to thomas@math.colostate.edu. Thank you.

JW. Thomas
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8

Stability of Initial-Boundary—Value
Schemes

8.1 Introduction

Since early in Chapter 1, we have been computing solutions to initial-
boundary-value problems. In Chapter 2 we included some theory that could
be used to prove convergence of schemes for solving initial-boundary-value
problems. In Example 2.2.2 we used the definition of convergence to prove
the convergence of the basic difference scheme for the heat equation with
zero Dirichlet boundary conditions. For the same difference scheme, in Sec-
tion 2.5.2 we noted that the consistency and stability analyses done earlier
in the text along with the Lax Theorem for a bounded domain (Theorem
2.5.3) imply convergence. We also pointed out that we could directly apply
the definitions of consistency and stability, and Theorem 2.5.3 to obtain
convergence for a hyperbolic scheme.

As we started developing tools for proving convergence (via the Lax
Theorem), we found that the methods for initial-boundary—value schemes
based on Chapter 2 worked nicely when we had Dirichlet or Neumann
boundary conditions and symmetric difference operators (Example 3.1.7,
Example 3.1.9, Example 4.3.4, Section 4.4.3.3, etc.) but that they cannot be
used when either the difference operator is not symmetric (Example 3.1.6,
Example 3.1.8, and all of the schemes given in Chapter 5 and 6 for hyper-
bolic equations) or when the boundary condition makes the finite difference
operator nonsymmetric (the example done in Section 3.2 with the mixed
boundary condition). Thus, at the moment we do not have sufficiently good
methods for proving stability for initial-boundary-value schemes.
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Remark 2: Also, we do not apply the approximation (10.5.114) for just
one value of j. We let A, ,, denote that average value of the approximations
given by approximation (10.5.114) over all j (or over a sampling of the j's).
If the approximate eigenvalue Ay, does not appear to be converging as a
function of k, the w chosen is probably greater than w;.

Remark 3: We must realize that this approach depends on an asymptotic
result, i.e., k must generally be large before (10.5.114) gives a good approx-
imation of A\;. As we see below in HW10.5.22, if the calculation is made
too early, we get a bad approximation (maybe better than we presently
have, but not good enough to warrant all of the work). In parts (a)(iii)
and (a)(iv) of HW10.5.22 we see that the approach can give us a very good
approximation of wy.

Remark 4: We notice in part (b) of HW10.5.22 that if the solution and
initial guess (i.e., the initial error) are sufficiently trivial and contain only
one of the eigenvectors, the technique will compute that eigenvalue associ-
ated with that eigenvector, and will do it well with only three iterations.
However, we should understand that we have not found the largest eigen-
value of the Jacobi iterations matrix and cannot find w,. In general, if
the eigenvector associated with the largest eigenvalue is not present in the
eigenvector expansion of the initial error, the above procedure will not find
an approximation to the largest eigenvalue (and hence will not compute
wp). The procedure will find an approximation to the largest eigenvalue as-
sociated with one of the eigenvectors present in the eigenvector expansion
of the initial error.

Of course, there are other approaches to finding approximations of w,. We
have included one approach mainly to give a taste of how it might be done
and to emphasize that it must be done. For a more complete discussion,
which includes some computer programs, see [22], page 223.

HW 10.5.22 Consider the problem

V% = F(z,y), (z,y)€ R=(0,1)x (0,1)
=0, (z,y)ondR.

(a) For F(z,y) = €**¥, determine an approximation of w; by
(i) using (&3_—""3-) for one point j.

Wiy —Wjy
(ii) using the average of (-:—:—3:—:’):1) over 100 points.
2 1
. Wiyg —Wj, . .
(iii) using (—*‘1’——9-'01,9 = ) for one point j.
. - . Wijig —Wj .
(iv) using the average (—-‘l——awjg = ) over 100 points.

(b) Repeat part (a) using F'(z,y) = sinz sin 27y.
{c) Explain why the computation done in parc (b) gives a bad approxima-
tion of wy.
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10.6 Elliptic Difference Equations: Neumann
Boundary Conditions

To this point in our consideration of elliptic boundary value problems, we
have treated only Dirichlet boundary conditions. There are other boundary
conditions we could consider other than Dirichlet and Neumann boundary
conditions but these are clearly the two most common types of boundary
conditions. We consider mixture boundary conditions and Robin boundary
conditions in Section 10.8. In this section we will consider the numerical
solution of elliptic partial differential equations with Neumann boundary
conditions. For further results, analytic and numerical, see (21].
We consider the model problem

~V% =F in R=(0,1) x (0,1) (10.6.1)
dv
= on JR. (10.6.2)

It is easy to see that if v is a solution to problem (10.6.1)-(10.6.2), so
is v + ¢ for any constant ¢. Hence, we know that we have a nonunique
solution to problem (10.6.1)-(10.6.2). One might be tempted to say that
because the problem does not have a unique solution, it cannot be an
important problem. This is not the case. Problem (10.6.1)~(10.6.2) is easily
as important as the analogous problem with Dirichlet boundary conditions.
We must must be able to solve problems of this form and must be very
careful to handle the numerical consequences of the nonuniqueness.

To talk about solutions to problem (10.6.1)-(10.6.2), one must prescribe
conditions on F and g that will allow solutions to exist. We prove the
following proposition.

Proposition 10.6.1 If R is a Green’s region and problem (10.6.1)-(10.6.2)
has a solution v, then

—-/F(z,y)da;dy:/ g(z,y) ds. (10.6.3)
R i 3R

For any constant c, v+c will also be a solution to problem (10.6.1)-(10.6.2).

Proof: Before we start the proof, we define a Green’s region to be a
region in the plane sufficiently nice to satisfy the hypotheses for the first
Green'’s formula,

/vlvzvgdmdy= —/(Vul,Vv2)dxdy+/ Ul?}’i ds,
R R sr On

where (Vv;, Vv,) denotes the dot product of Vv, and Vug. If welet v; = 1
and ve = v, we obtain (10.6.3).

Remark 1: The converse of Proposition 10.6.1 is also true. See [21], page
154.
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Remark 2: We shall refer to condition (10.6.3) as the analytic compat-
ibility condition. It is also a conservation condition. The term on the left
represents the amount of the material injected into or pumped out of the
region, and the term on the right represents the amount of the material
that flows into or out of the boundary of the region.

We wish to approximate the solution to problem (10.6.1)-(10.6.2) numer-
ically. We will proceed much in the same way that we did for the analogous
Dirichlet problem. We want an analogue to Theorem 10.3.3, and then we
want to study the solution to the discrete problem. For convenience, we
consider a grid on the region R = [0,1] x [0,1], (zj, y&) = (jAz,kAy), 7 =
0,...,M, k=0,... ,M, where Ay = Az . We difference the partial dif-
ferential equation as we have before, and we approximate equation (10.6.1)
by

—$(6§+65)u,~k=ij s k=1,...,M—1 (10.6.4)

It is not as clear how we should approximate the boundary conditions
(10.6.2). As was the case when we considered Neumann boundary condi-
tions for parabolic equations, Sections 1.4 and 4.4.3.2, at least two of the
obvious choices are to use the first or the second order approximations of
the normal derivative. We treat each of these cases in the following two
sections.

10.6.1 First Order Approximation

The treatment of the boundary conditions for Dirichlet boundary condi-
tions was very routine and easy. It should not surprise us that the approx-
imation of the boundary conditions might be more difficult and important
when we consider Neumann boundary conditions. Using a first order ap-
proximation of the derivative in boundary condition (10.6.2) leaves us with
the following discrete boundary conditions.

_ Mk Yok kA“z“‘)k = gok, k=0,...,M (10.6.5)
UMK ;’;M___—lk = gmr, k=0,..,M (10.6.6)
SBLZW0 g j=0,. M (10.6.7)
ujM;ZjM—l =gim, j=0,..,M (10.6.8)

‘We should note that the negative signs in formulas (10.6.5) and (10.6.7)
are due to the fact that the normal vector associated with the Neumann
boundary condition is assumed to be an outward normal. Thus we must
consider solving equations (10.6.4)—(10.6.8). This system of equations can
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be written as

Au=f (10.6.9)

where A is the (M — 1) x (M — 1) block matrix

Ty -1 (&)
. -I T -1 @©
= — . . . 10.6.10
A= Lo , (10.6.10)
e -1 T -I
e I T
T, and T are the (M — 1) x (M — 1) matrices
2 -1 o .-
-1 3 -1 0
T, = , (10.6.11)
0 -1 3 -1
0 -1 2
3 -1 0
-1 4 -1 0
T = T (10.6.12)
0 -1 4 -1
0 -1 3

I is the (M — 1) x (M — 1) identity matrix, © is the (M — 1) x (M — 1)
zero matrix, and f is given by

f=F+b;+b, (10.6.13)

where F, b,, and by are the L = (M — 1)?-vectors

CF=[F; - Fy-i1 Fiz -+ Fyaamal’, (10.6.14)
1
by =—==[g010 -~ Ogrr1 9020 - gnm m—1]T (10.6.15)
and
1
by =—A~;[glo s+ gm-100 -+ 0 giar -+ gm-1m] - (10.6.16)

See Figure 10.6.1 for the full matrix written out for the case of M = 5.
We include most of the important properties of matrix A and equation
(10.6.9) in the following proposition.
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Ax?

FIGURE 10.6.1. Matrix A, as in equation (10.6.9), represents the matrix associated with solving difference equation (10.6.4) along

with the first order approximation of the Neumann boundary conditions given by (10.6.5)~(10.6.8) with M = 5. A boldface zero

represents a zero that is due to a boundary condition term.

10.6.1 First Order Approximation 375

Proposition 10.6.2 (1) A1 =6

(2)1is the only vector in the null space of A.

(3) If u! and u? are any two solutions to equation (10.6.9), then there
exists a constant ¢ such that ul = u? +cl, where 1 =1 --- 1]T.

(4) Equation (10.6.9) has a solution if and only if

M-1M-1
—Az? Z ZFJ"“A’”Z[910+91M]+A1'Z[9Mk4-90k]
k=1 j=1
(10.6.17)

Proof: To see that statement (1) is true, one need only compute Al. The
null space of a matrix A is defined to be {X : AX = 8} and is denoted
by N(A). Statement (1) can be expressed as 1 € N(A).

(2) If we eliminate the first row and column of the matrix 4, we can apply
Proposition 10.2.5 to the resulting submatrix to show that this submatrix
is of full rank (the submatrix is invertible). As usual, it is easy to see
that the submatrix is diagonally dominant. Likewise, it is easy to see that
the first row of the submatrix satisfies the strict inequality necessary for
Proposition 10.2.5. Technically, the irreducibility of the submatrix follows
from the fact that any two grid points can be connected by a chain of
neighboring points. It is also not difficult to use the characterization of
irreducibility given immediately preceding Proposition 10.2.5 (if a change
in any of the components of the right hand side will cause a change in the
solution) to see that the submatrix is irreducible.

Since the submatrix formed by eliminating one row and one column is of
full rank, L — 1 where L = (M —1)2, then the rank of A is at least L — 1.
Since we know that 1 € N(A), then the rank of A is L — 1, and 1 is the
only vector in N(A).

(3) When we know that the rank of Ais L — 1 and 1 € N(A4), we know
that we can solve equation (10.6.9) for L — 1 of the variables in terms of
one of the variables, i.e., all solutions of equation (10.6.9) are of the form

u=ug+cl

where ug is a fixed vector. Statement (3) then follows easily.

(4) Since 1 € N(A), we know that equation (10.6.9) is solvable if and only
if (f,1) = 0, [31)}, page 17. If we return to equations (10.6.13)~(10.6.16), we
see that

0= (f,1)
=(F 1)+(bz’1)+(by’1)
M-1M-1
=Z ZFJk+A Z[gok+ng]+ Z[g]0+g_7M]
7=1 k=1

Tt is easy to see that this is the same as equation (10.6.17).
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The results given in Proposition 10.6.2 show that equation (10.6.9) is
not a nice equation. Considering the analytic analogue, equations (10.6.1)—
(10.6.2), this should not surprise us. In fact, it is clearly good that 1 € N(A)
and that all solutions are of the form u = ug + c1. Both of these facts show
that the numerical problem (10.6.9) mimics the analytic problem (10.6.1)—
(10.6.2) well. In addition, since the analytic problem had an analytic com-
patibility condition that must be satisfied for solvability, it is also logical
that we have a discrete compatibility condition, (10.6.17), that must
be satisfied for equation (10.6.9) to be solvable.

Remark 1: Just as the analytic compatibility condition could be described
as a conservation property, the discrete compatibility condition (10.6.17)
can also be described as a conservation law for difference equations (10.6.4)—
(10.6.8).

Remark 2: One problem we face is the fact that if we assume that F and g
are nice enough to satisfy the analytic compatibility condition (10.6.3), this
is not enough to imply that " and g will satisfy the discrete compatibility
condition (10.6.17). If the integrals involved in the analytic compatibil-
ity condition are approximated by the appropriate numerical integration
scheme, we see that

O=/F(:r,y)dzdy+/ glz,y)ds
R 8R
1 1
:/F(z,y)dzdw/ s 0o+ [ o, dy
R
0 o 0
+/ g(x,l)dm+/ 9(0,3) dy
1 1

M-1M-1 M-1 M-—-1
~ Z Z ijAIAZ + Z gjoA:L‘ + ZngA:I:
k=1 j=1 j=1 k=1
M-1 M-—1
-+ Z 9; MAT + Z gorAr + O(Ax).

F=1 k=1

We note that the numerical approximation is not well done. If we consider
rectangular regions centered at the grid points, the area integral omits a
strip (O(Axz)) around the region. The line integrals skip little chunks in
each corner.

More importantly, we see that if F' and g satisfy the analytic compatibil-
ity condition, F' and g will generally only approximately satisfy the discrete

compatibility condition. Because of this fact, part (4) of Proposition 10.6.2
is gemerally not satisfied. In addition, if we review our solution methods, we

do not have any methods that are designed for solving singular equations.

To explain what happens when the discrete compatibility condition is only
approximadtely satisfied and obtain a system of equations that we can solve,
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we consider a slight variation of system (10.6.9),

Au=f (10.6.18)

(1) o=[3)mr-[1]

We are then able to prove the following proposition related to equation
(10.6.18).

Proposition 10.6.3 (1) System (10.6.18) s solvable.

(2) If the solution to system (10.6.18) is of the form g = [ug 0]7, then the
discrete compatibility condition (10.6.17) is satisfied and ug is a solution
to system (10.6.9) such that (ue,1) = 0.

(3) If the solution to system (10.6.18) is of the form iy = [ug M7, where
A #£ 0, then ug is a solution to the equation

where

=i

Au=f-A1 (10.6.19)

such that (ug,1) = 0.

Proof: (1) From [31], page 17, we see that the range of the matrix A is
orthogonal to N(AT). Since A is symmetric, N(AT) = N(A). The fact that
the range of A is the span of the columns of A implies that 1 is independent
of the columns of A. Then, since the rank of A is L — 1, the rank of [A 1]
is L. Since [17 0] is independent of the rows of (A 1] (for essentially the
same reason), the rank of 4 is L + 1, i.e., A is of full rank and, hence,
solvable for any right hand side.

(2) If the solution of equation (10.6.18) is in the form @ = [up 0]7,
then ug satisfies Au = f and (ug,1) = 0 because of the form of equa-
tion (10.6.18). The discrete compatibility condition is satisfied because, as
in Proposition 10.6.2, 1 € N(A) implies that (f,1) = 0 (since equation
(10.6.9) is solvable).

The proof of part (3) is a consequence of the hypotheses and the form of
A, @ and f.

Remark 1: In both of the parts (2) and (3) of Proposition 10.6.3 above,
we have constrained our solutions to satisfy (ug,1) = 0. The solutions
to equation (10.6.9) (part (2) of the proposition) and (10.6.19) are of the
form ug + ¢1 for some constant vector ug. Requiring that the solution be
orthogonal to 1 forces ¢ to be zero.

Remark 2: Part (3) of Proposition 10.6.3 first appears to be bad in that
we cannot solve the problem that we want to solve. However, instead of
being as bad as it first appears, the situation is quite nice. Because the
discrete compatibility condition is satisfied only approximately, we know
that equation (10.6.9) does not generally have a solution. Part (3) takes
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care of the problem and gives the best solution possible—given the approx-
imation of the boundary conditions. The solution to equation (10.6.19) is
a solution to equation (10.6.9) where the array Fj; (the function F') has
been replaced by

Fji = Fjp — A1. (10.6.20)
In other words, system (10.6.18) is smart enough to realize that we have
the wrong Fj (part of it could be due to g) and fixes it for us. As we shall
see in the next theorem, X is small.
Now that we understand what we are solving when we solve the discrete
problem associated with problem (10.6.1)—(10.6.2), we state the following
analogue of Theorem 10.3.3.

Theorem 10.6.4 Let v € C4(R) be a solution to Neumann problem (10.6.1)-

(10.6.2). Letii = [ug AT be a solution to equation (10.6.18). Then

Al = O(Az)
g ~ Vljoo = O(A2).

Proof: See [21], page 69.

Remark 1: As in Theorem 10.3.3, the hypothesis that v € C* implies
that v has continuous derivatives up through order four. In addition, as
in Theorem 10.3.3, the constants involved in the @ notation depend on
the derivatives of v. There is dependence on the fourth derivations due to
the fact that difference equation (10.6.4) is a second order approximation
to the partial differential equation (10.6.1). There is also dependence on
the second derivatives of v because of the first order approximation of the
boundary conditions.

Remark 2: From the proof of Theorem 10.6.4, it can be seen that the fact
that the convergence above is only of first order in Az and Ay is due to
the treatment of the boundary conditions.

Remark 3: We might recall that in Example 2.3.4 when we used the
one dimensional version of the first order approximations for the Neumann
boundary condition used here, we found that the difference scheme was
not norm consistent (the truncation error was not of first order, as one
might expect). (We did find in Example 8.6.2 that we could prove that the

scheme was convergent order Az by the Osher result.) Yet here we find

that we obtain first order convergence using these approximations. The
difference is due to the time dependence involved in the norm consistency
definition, Definition 2.3.2. Since we do not have to define consistency here
that is compatible with the Lax Theorem, we have no problem with these
boundary conditions.

HW 10.6.1 Use conservation methods similar to those used in Sections~

1.6 and 1.6.1 to derive difference equations (10.6.4)-(10.6.8).

10.6.2 Second Order Approximation 379

10.6.2 Second Order Approrimation

Now that we have seen that we obtain first order convergence using the first
order approximation of the boundary conditions (while the difference equa-
tion was a second order approximation to the partial differential equation),
we might hope that if we use a second order approximation to the boundary
conditions, we will obtain second order convergence. To show that this is
the case, we essentially have to repeat everything done in the last section.
We will include as much of the material that we feel is necessary and/or
helpful, leaving the rest to your imagination or your own reading.

To use a second order approximation for the boundary conditions, as
we did for parabolic equations in Chapter 4, we consider the difference
equation at both the interior and boundary grid points, i.e., we consider

1 .
—E(Jg—kéz)ujk:ij, G k=0,...,M. (10.6.21)

Of course, the problem with difference equation (10.6.21) is that it reaches
to fictitious points outside of the domain. These points are eliminated by the
use of the following second order approximation of the Neumann boundary
condition.

Ut —U_1k
ik Tk , k=0,...,M 10.6.22
AT Jok ( )
UMtLk — UMk o k=0,..., (10.6.23)
2Azx
Uj1 — Uj—1 .
e £ S Sl RN =0,...,M 10.6.24
AT gijo, J s ( )
UjM+1 — UjM—1 .
UM Z UM =0,...,M. 10.6.25
e giMm, J ( )

Difference equation (10.6.21) along with boundary conditions (10.6.22)-
(10.6.25) can be written as

Au =f, (10.6.26)
where A is the (M + 1) x (M + 1) block tridiagonal matrix
T -2 © ...
-1 T -I e

e -1 T I



380 10. Elliptic Equations

T is the (M + 1) x (M + 1) matrix
4 -2 0
-1 4 -1 0
e , (10.6.28)
0 -1 4 -1
0 -2 4

I is the (M + 1) x (M + 1) identity matrix, © is the (M + 1) x (M + 1)
zero matrix, and f is given by

f=F+b; + by, (10.6.29)

where F, b, and by, are the L = (M + 1)%-vectors

F =[Foo -+ Frmo Fo1 -+ Fuuml”, (10.6.30)
2
b, =Z;[900 0---0gm0g010 - gum]T (10.6.31)
and
2 T
b, =A_z[900 - gm0 0 - Ogor -+ gmm) - (10.6.32)

The full matrix A is given in Figure 10.6.2 for M = 4. Compare the form
of A with that given for the scheme using the first order approximation of
the Neumann boundary conditions given in Figure 10.6.1 (noting that for
Figure 10.6.1 we used M = 5, whereas here we used M = 4 so that we
could fit it on a page).

Before we get too serious about equation (10.6.26), we notice that as
in the previous section, A1 = @ (1 € N(A)) and 1 is the only vector in
the null space of A. One of the differences from the case of the first order
approximation is that now A is not symmetric. Generally, nonsymmetry
tends to cause problems.

We next would like to find the discrete compatibility condition associated
with equation (10.6.26). When A is nonsymmetric, we do not get the same
result as we did for the case of the first order approximation. (Equation
(10.6.9) is solvable if and only if (f,1) = 0.) In that result, we were using
the fact that the matrix A was symmetric. However, the result given in
[31], page 17, is that equation (10.6.26) is solvable if and only if (f,u*) =0
Jor all u* € N(AT). Using this result, we can proceed as we did in the case
- of the first order approximation and obtain the following proposition.

Proposition 10.6.5 (1) A1 = 6 and N(4) = {1}.
(2) ATu* = @ where u* is the L = (M — 1)%-vector

u = u? . u? w7,

FIGURE 10.6.2. Matrix A, as in equation (10.6.26), represents the matrix associated with solving difference equation (10.6.4) along

with the second order approximation of the Neumann boundary conditions given by (10.6.22)-(10.6.25) with M

represents a zero that is due to a boundary condition term.

4. A boldface zero



382 10. Elliptic Equations

made up of the (M — 1)-vectors

and ) 1T
2
e=fr oy
and N(AT) = {u*}.
(3) If u® and u® are any two solutions to equation (10.6.26), then there
exists a constant ¢ such that u® =u® + cl.
(4) Equation (10.6.26) has a solution if and only if

M M M 1
~AZ?D Y sseFik =Az Y 553 (950 + 95 M]
=0

k=0 j=0
M
+AzY ] ssklgme+ gol (10.6.33)
k=0
where sy = %, 3M=% andsj:IfOTjZI,.._ M —1.

Proof: The proofs of (1), (2) and (3) follow the same approach used for
parts (1), (2) and (3) of Proposition 10.6.2.

The proof of part (4) follows from the fact mentioned earlier that equa-
tion (10.6.26) is solvable if and only if (f,u*) = 0 for all u* € N(AT) and
the fact that N(AT) = {u*}, given in part (2) in this proposition. Equation
(10.6.33) is the same as (f, u*) = 0, where u* is as defined in part (2).

We can then proceed as we did in the last section and consider the
variation of equation (10.6.26),

An =T, (10.6.34)
~

= A * _ = f
A=<1T l:)), u=[t\l},andf=[0].

We are then able to prove the following proposition.

Proposition 10.6.6 (1) System (10.6.84) is solvable.

(2) If the solution to system (10.6.34) is of the form fig = [ug 0|7, then the
discrete compatibility condition (10.6.33) is satisfied, and ug is a solution
to system (10.6.26) such that (ug, 1) = 0.

(3) If the solution to system (10.6.34) is of the form Gp = [ug  A]T, where
A # 0, then ug is a solution to the equation

where

Au=f—u* (10.6.35).

such that (ug,1) = Q.
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Proof: The proof follows much as the proof of Proposition 10.6.3. 'The
only difference is that we must use the complete result (we do not have a
symmetric matrix) that N(4) & R(AT) = R and N(AT) @ R(A) = RE
(i.e., the null space of A is independent of the range of AT | the span of the
rows of A; and the null space of AT is independent to the range of A4, the
span of the columns of A4).

We note that as in the case of the first order approximation, if the dis-
crete compatibility condition is not satisfied (as it generally will not be),
system (10.6.34) adjusts the right hand side the appropriate amount. We
also note that the discrete compatibility condition (10.6.33) is a O(Ax?)
approximation of the analytic compatibility condition (10.6.3).

We now obtain the following convergence result, analogous to Theorems
10.3.3 and 10.6.4.

Theorem 10.6.7 Letv € C*(R) be a solution to Neumann problem (10.6.1)-
(10.6.2). Let i = [ug \]T be a solution to equation (10.6.34). Then
1Al = O(Az?)
lluo — Voo = O(A?).

Proof: See {21], page 71.
Remark: We should note that the nonsymmetry in the matrix associ-
ated with the second order approximation can be approached by another
method. If we define the (M + 1) x (M + 1) diagonal matrices

[ g
= O

Dl )

Ol
= O

O N

Dy =2D) =

o
i O

and the (M + 1) x (M + 1) block diagonal matrix

D, 6 -
e D, ©

o
I

© Dy ©
.. @ Dy
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then the matrix DA is symmetric. Hence, instead of considering equation
(10.6.26), we consider equation

DAu = Df. (10.6.36)

The same results used in Section 10.6.1 can be used with equation (10.6.36)
to obtain solvability conditions, etc. The results obtained in this manner
are equivalent to those given in Propositions 10.6.5 and 10.6.6.

10.6.8 Second Order Approximation on an Offset Grid

In Section 2.3 we showed that when we have Neumann boundary conditions,
it is more logical to use an offset grid, i.e., a grid where the boundary
points fall halfway between the grid points instead of on the grid points,
for example, if we consider the grid

G = {(zj,y) 125 = (j - 1)Az + Az/2, §=0,... , M,
Yk = (k—1)Az + Az/2, k=0,..., M} (10.6.37)

where Ax = Ay = 1/(M —1). A picture of the grid is given in Figure 10.6.3.
Note that there are no grid points on the boundaries of the region and the
points associated with j = 0, j = M, k = 0, and kK = M are fictitious points
outside of [0,1] x [0, 1]. As we have done before, we consider the equation

1
m(62+5§)u1~k=ij, jk=1,... ,M—1. (10.6.38)

Using a centered approximation for the derivatives applied at the boundary
(which are not grid points), we get the following approximations of the

Neumann boundary conditions. ~
ULk — UQk
-——'Ax—=gl/2k, k=1,...,M—1 (10639)
UME —UM-—1k
T = gM—l/2k, k = 1,. . ,M— 1 (10640)
Uj1 —Ujo .
—]—M—J—Zgjl/z, jzl,...,M’—l (10.6.41)
Uj M — Uj M1 ,
]_A—ZJ—— = ng—l/27 J= 1,. - ,M - 1. (10642)

We note specifically that evaluating gatj = %,j = M -1,k = 4, and
k=M - % centers the normal derivative evaluation on the boundary of
the domain.

If we then proceed as we have done in the last two sections, use equa-
tions (10.6.39)—(10.6.42) to eliminate ujo, 4; M, Uok, and uag from the
equations given in (10.6.38), and write this system as a matrix equation,
we get the same system that we got in Section 10.6.1. Hence, equations
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FIGURE 10.6.3. An example of a two dimensional offset grid.

(10.6.38)—(10.6.42) can be written in matrix form as equation (10.6.9). We
should recall that this is the same type of situation that we found in Ex-
ample 2.3.5 (where we found that exactly the same numerical scheme that
was not consistent with respect to the usual grid, and hence could not be
proved convergent by the Lax Theorem, was consistent with respect to the
offset grid, and could be proved convergent by the Lax Theorem).

The next obvious steps that should be taken are to prove analogues
of Propositions 10.6.2 and 10.6.3 and Theorem 10.6.4. Clearly, since the
system of equations that we consider on the offset grid is the same sys-
tem considered in Section 10.6.1, it is not necessary to prove analogues to
Propositions 10.6.2 and 10.6.3. One difference between the approach taken
in Section 10.6.1 and here is that the discrete compatibility condition with
respect to the offset grid appears to be a better approximation of the an-
alytic compatibility condition (i.€., we actually integrate over the entire
region) than in Section 10.6.1. Of course, because we consider exactly the
same matrix equation for the offset grid as we did in Section 10.6.1, the
discrete compatibility conditions are the same (the discrete compatibility
condition was due to the equation being solved, not the grid).

The major difference between considering equation (10.6.9) as an ap-
proximation to our problem on the usual grid versus on the offset grid is
the convergence as Ax approaches zero. Since the approximation of the
boundary conditions is now a second order approximation, we obtain the
following convergence theorem.
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Theorem 10.6.8 Let the function v € C*(R) be a solution to Neumann
problem (10.6.1)-(10.6.2). Lett = [up A7 be a solution to equation (10.6.18)
with respect to the offset grid (10.6.37). Then

Al = O(Az?)
lluo - vlieo = O(AZ?).

Hence, we see the dichotomy. From Theorem 10.6.4 we see that the solu-
tion of equation (10.6.18) converges first order in Ax to the solution of prob-
lem (10.6.1)-(10.6.2) when we consider equation (10.6.18) to approximate
problem (10.6.1)—(10.6.2) on the usual grid. However, the same solution of
equation (10.6.18) converges to the solution of problem (10.6.1)—(10.6.2)
second order in Az when we consider equation (10.6.18) to approximate
problem (10.6.1)—(10.6.2) on the offset grid. Clearly, it pays to choose care-
fully the grid to be used.

10.7 Numerical Solution of Neumann Problems

10.7.1 Introduction

As we did with the Dirichlet problem, now that we know that the solution
to the discretized Neumann problem converges to the solution of the ana-
lytic Neumann problem and we know that though the discrete problem is
not uniquely solvable, it is uniquely solvable to an additive constant, we
turn to the task of solving the discrete problems. At this point we know
enough about our discrete problems to know that the numerical solution of
these problems will not be as straightforward as it was for their Dirichlet
counterpart. A summary of our situation is as follows.

e We wish to solve either system (10.6.9) or (10.6.26) but know that
neither of these systems has a unique solution.

e Most often—when the discrete compatibility condition is not satisfied
because it is only an approximation to the analytic compatibility
condition—a solution to systerms (10.6.9) and (10.6.26) does not exist.

e Thesituation is not as bad as it seems. Systems (10.6.18) and (10.6.34)
are uniquely solvable and give approximate solutions to the discrete
Neumann problem.

Thus, it seems clear that the most obvious approach is to consider solv-
ing equations (10.6.18) or (10.6.34). Of course, we do not want to try to
solve either equation (10.6.18) or (10.6.34) directly, so we consider iterative
solvers. If we inspect both of these systems, we find the following facts.
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o If the matrix A is symmetric, then matrix A in equation (10.6.18)
is symmetric. Even though matrix A in equation (10.6.34) is not
symmetric, A can easily be symmetrized using the matrix D defined
in the Remark, page 383.

o Neither of the matrices A4 are positive definite (due to the zero on the
diagonal).

e Neither of the matrices A are consistently ordered.

o The matrix A inherits most of its eigenvalues and eigenvectors from
the matrix A. If 4 # 0 is an eigenvalue of A and x the eigenvector
associated with p, then p is an eigenvalue of A associated with the
eigenvector [x 0]7.

e The zero eigenvalue of A (and its associated eigenvector 1) corre-
sponds to the eigenvalue p = /I and eigenvector x = {17 VL|T of
A (where L = (M —1)? and L = (M + 1)? for the cases of first and
second order approximation, respectively).

Thus we cannot apply Jacobi, Gauss-Seidel, or SOR relazation schemies
to solve equations (10.6.18) or (10.6.34) (if we write Aas L+ D+U, D!
will not exist).

10.7.2 Residual Correction Schemes

A different approach is to try to apply the iterative schemes directly to
equation (10.6.9) or (10.6.26). It should be clear that we can apply the
residual correction algorithms to these problems. Because A is not invert-
ible, it is not clear that the iterations will not converge to an approximate
solution of either (10.6.9) or (10.6.26). To be specific, we consider solving
equation (10.6.26) and assume that f satisfies (f,u*) = 0 (the discrete
compatibility condition is satisfied).

It is not difficult to see that since 1 is an eigenvector of A associated
with the zero eigenvalue,

Rj1=(I-BA1=1-0= (1)1,

i.e., A = 1 is an eigenvalue of the matrix R;. Hence, the spectral radius of
R; will not be less than one.

This is not terrible. Suppose that R is an iteration matriz associated with
a residual correction scheme for solving equation (10.6.26), the eigenvalues
of R satisfy

A1 =1> x| 2>+ |AL],

the eigenvector associated with \; = 1 is x; = 1, and the eigenvectors of the
matriz R are independent. An analysis similar to that used in Section 10.5.1



