
SEQUENCES AND SERIES OF FUNCTIONS: I

PETE L. CLARK

1. Pointwise Convergence and Cautionary Tales

Consider a sequence of functions {fn : [a, b] → R}∞n=1. What would it mean for fn

to converge to a function f?

Note that for each point x in [a, b], plugging in x we get a sequence of numbers
{fn(x)}. It seems reasonable to define fn → f to mean that for each x that we
plug in, the sequence of numbers fn(x) converges to f(x). More formally:

Definition: Let {fn} be a sequence of functions and f be any function. 1 We
say that fn converges pointwise to f if for every x in the domain, fn(x) → f(x).

We also say that f is the pointwise limit of the sequence {fn}. Note that
the pointwise limit, if it exists, is uniquely determined: it is just the function
x 7→ limn→∞ fn(x).

In a similar way we can define a series of functions converging (or summing) point-
wise to a function f , namely

∑

∞

n=1 fn(x) = f means: Sn(x) → f pointwise, where
Sn(x) := f1(x) + . . . + fn(x).

The highest form of praise that we have for a numerical sequence is “convergent”,
and similarly the most we could expect out of a numerical series is for it to be
absolutely convergent. The situation is much more interesting for sequences and
series of functions: if each of the fn’s has some nice property (like integrability,
continuity or differentiability) and fn → f , it is natural to wonder whether the
limit function f retains this nice property.

Especially, we are interested in the following “example”: suppose {an}
∞

n=0 is some
sequence of numbers, and define fn(x) = anxn. Then

∑

∞

n=0 fn =
∑

∞

n=0 anxn is

a power series. Notice that the Nth partial sum,
∑N

n=0 anxn, is just a polyno-
mial, and as such it has all kinds of nice properties: for instance it is infinitely

differentiable. We saw that when the quantity θ lim sup |a
1

n

n | < ∞, then taking
R = 1

θ
, the power series converges at least for x in the open interval (−R, R). We

would very much like such functions – i.e., functions defined by convergent power
series – to be nice functions: as we saw earlier in the course, if only it turns out
to be true that f =

∑

n anxn is itself infinitely differentiable, and if it is the case
that f ′ =

∑

n f ′

n =
∑

n nanxn−1, then we can work with the (vastly larger) class of

1It is implicit that the fn’s and f have a common domain, say a closed interval [a, b] to fix
ideas. The common domain could also be something like (−∞, b), (a,∞) or (−∞,∞).

1
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functions given by power series in much the same way as we work with polynomials.

Thus it is very natural to ask the following questions: suppose that fn → f is
a sequence of functions converging pointwise to a limit function f . Then:
a) If each fn is Riemann-integrable, must f be Riemann-integrable?

a’) If so, is
∫ b

a
f = limn→∞

∫ b

a
fn?

b) If each fn is continuous, must f be continuous?
c) If each fn is differentiable, must f be differentiable?
c’) If all the fn’s and f are differentiable, is f ′ = limn→∞ f ′

n?

Before attempting to give answers, let us note that all of these questions are really
questions of the form: can the order of two limiting processes be interchanged? For
instance, since f = limn→∞ fn, part a’) is really asking: if we take the limn→∞

first and then do the
∫

, will we get the same answer as if we took the
∫

followed by
the limn→∞? Similarly, asking whether f is continuous is asking whether, for each
c ∈ [a, b] it is true that limx→c f(x) = f(c), and since f = limn→∞ we are asking
about the validity of the following equation:

f(c) = lim
n→∞

lim
x→c

fn(x)
?
= lim

x→c
lim

n→∞

fn(x) = lim
x→c

f(x).

The first and the last equalities certainly hold (by definition of f), so what is at
issue is the apparently innocuous swapping of the order of the two limits. Similar
remarks apply to the differentiation question, since this is also a limiting operation.

Remember two lessons we learned from our study of infinite series: once we give
a formal definition of a limiting processes we have to be careful in not assuming
that the consequences of this definition are necessarily what we would intuitively
expect. (For instance, we found that the product of two convergent series is not
always a convergent series; that changing the order of the terms can affect the sum
and even the convergence; and that even regrouping the sum by adding parentheses
can make a divergent series converge. In summary, none of the distributive, the
commutative, or associative laws for ordinary finite sums behaved as we would have
initially expected.) However, we did not just give up and go home: we found that
most of the facts that we wanted to be true about series are true, provided we work
with some additional hypotheses (in the case of series, the magic hypothesis was
absolute convergence).

It turns out that the same (rather strange) phenomenon crops up again for se-
quences (and series) of functions: the answer to each of these questions is “NO!”
However we will not give up; rather we will find additional conditions that suffice
to ensure that the answer is “YES.” In particular, these hypotheses will hold for
power series on the interior of the interval of convergence.

First let us give a very simple example to deflate our hopes that “lim’s” can be
interchanged willy-nilly.
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Example 1: Consider am,n = m
m+n

. We let m and n both range over all posi-
tive integers. It is easy to see that

lim
m→∞

lim
n→∞

amn 6= lim
n→∞

lim
m→∞

amn.

Indeed, for any fixed m, limn→∞
m

m+n
= 0, and since limm→∞ 0 = 0, we get that

limm→∞ limn→∞ amn = 0. On the other hand, for any fixed n, limm→∞
m

m+n
=

limm→∞
1

1+ n

m

→ 1
1+0 = 1, so limn→∞ limm→∞ amn = limn→∞ 1 = 1.

Now you may say to yourself, “Wow, scary. But I don’t care about limits of double
sequences.” Okay, but consider the following:

Example 2: Let fn = xn : [0, 1] → R. Of course each fn is continuous (in-
deed, infinitely differentiable). However, for any x ∈ [0, 1), limn→∞ xn = 0, while
limn→∞ 1n = 1. Thus the limit function is the function which is identically zero on
[0, 1) and jumps up to 1 at x = 1, so is discontinuous. Thus the limit of even such
a simple sequence of continuous functions can be discontinuous.

Example 3: Let {rk}
∞

k=1 be an enumeration of the rational numbers in the unit
interval [0, 1]. We define a sequence of functions fn : [0, 1] → R as follows: if x
is irrational then fn(x) = 0 for all n. Otherwise, x = rk for a unique k and we
define fn(rk) to be equal to 0 if k > n and to be equal to 1 if k ≤ n. In other
words, the function fn is nonzero precisely at r1, r2, . . . , rn, and at these numbers
it takes the value 1. Since each fn is discontinuous precisely at these n points
r1, . . . , rn and is clearly bounded, it is Riemann-integrable. However, we claim that
fn converges pointwise to the function which is 0 at every irrational number and
1 at every rational value; this is our prototypical example of a function which is
not Riemann integrable. For every irrational x, fn(x) = 0 for all x, and the zero
sequence converges to zero. 2 If x = rk, then for all n ≥ k, fn(rk) = 1, so the
sequence is ultimately constant, hence converging to 1.

Example 4: Let fn : [0, 1] → R be defined as follows: fn(x) = n for x ∈ (0, 1/n)
and fn(x) = 0 otherwise. (Draw a picture!) Since fn is bounded and discontinuous

only at the finite set of points {0, 1
n
}, it is integrable. Moreover,

∫ 1

0 fn = 1, the

area of a rectangle with width 1
n

and height n. We claim that fn → 0 pointwise:

indeed fn(0) = 0 for all n and for any x > 0, for all n such that 1
n

< x (i.e., for all

sufficiently large n) we have fn(x) = 0. However, clearly
∫ 1

0 0 = 0, so despite the
fact that the limit function is integrable, we have

0 =

∫ 1

0

lim
n→∞

fn 6= lim
n→∞

∫ 1

0

fn = 1.

We could continue by giving many more examples of bad behavior of pointwise lim-
its. For instance, the limit function in Example 2 was discontinuous, but not too
discontinuous in the cosmic scheme of things: it has only a simple discontinuity at a
single point, so in particular it is a regulated function. But this need not be the case,
and in fact if we think carefully we already know there are worse examples than this:

2“Nothing can come of nothing. . . ” – King Lear
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Example 5: We can construe the differentiation process as passage to a point-
wise limit. Namely, suppose that f : [a, b] → R is a differentiable function.

Put fn(x) = n(f(x + 1
n
) − f(x)) =

f(x+ 1

n
)−f(x)
1

n

. Since as n → ∞, 1
n

→ 0,

limn→∞ fn(x) = f ′(x). Note that since f is differentiable it is continuous and,
being built out of continuous functions in a suitable way, each fn is clearly contin-
uous (in fact differentiable). But recall that a derivative f ′ need not be continuous
(e.g. f(x) = x sin( 1

x
)). In the cited example the right-hand limit of f ′ as f ap-

proaches zero fails to exist. This gives an example of a pointwise limit of continuous
(even differentiable) functions not being regulated.

Exercise 73*:
a) Suppose f : [a, b] → R is a regulated function which satisfies the Intermediate
Value Property: for any subinterval [c, d] of [a, b] and any number L in between
f(c) and f(d), there exists a point x ∈ (c, d) such that f(x) = L. Show that f is
continuous.
b) Conclude from Darboux’s Theorem that a derivative which is not continuous
fails to be regulated.

2. Introducing Uniform Convergence

Let us not give up too easily. It turns out that a slightly stronger form of conver-
gence is enough to give positive answers to many of these questions.

Definition: Let {fn} be a sequence of functions with domain [a, b]. We say fn

converges uniformly to f and write fn
u
→ f if: for all ε > 0, there exists an N

depending only on ε such that for all n ≥ N and all x ∈ [a, b], |fn(x) − f(x)| < ε.

How does this definition differ from the definition of pointwise convergence? The
answer is subtle but critical: we say that fn → f pointwise if for all x ∈ [a, b],
fn(x) → f(x). This in turn means that for any fixed x and all ε > 0, there exists
an N such that n ≥ N implies |fn(x)− f(x)| < ε. The only difference is that since
in the definition of pointwise convergence we are concerned only with one value of x
at a time, the N we choose is thus allowed to depend not only on ε but also on the
point x itself. In the definition of uniform convergence, there must exist a single
N which makes |fn(x) − f(x)| < ε for all x ∈ [a, b]. Thus uniform convergence is a
astronger condition than pointwise convergence (and implies it).

One could be forgiven for thinking that this small stengthening – namely, of re-
quring N to be independent of x – would not make much difference. In light of
Examples 2 and 5, the following results show that it makes all the difference in the
world. After we prove them, we will come back for a closer look at how the two
definitions really differ.

Theorem 1. Let fn be a sequence of functions defined on [a, b], and let c be a point

of [a, b]. Assume that for every n, limx→c fn = Ln. Suppose also that fn
u
→ f . Then

the sequence Ln is convergent, and its limit L is equal to limx→c f .
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Remarks: In other words, the Theorem is asserting precisely that, under the hy-
pothesis of uniform convergence, we have

lim
x→c

lim
n→∞

fn(x) = lim
n→∞

lim
x→c

fn(x).

In other words, assuming uniform convergence the two limits can be interchanged.
The statement of the theorem is a bit complicated; in applications one uses

mostly the following consequence.

Corollary 2. Suppose that fn is a sequence of continuous functions and fn
u
→ f .

Then f is continuous.

Exercise 74: Prove Corollary 2. (This is immediate from the various definitions;
the point is to make you go over them and understand them.)

Proof of Theorem 1: Note that, as usual, there is a Cauchy criterion for uniform

convergence: fn
u
→ f if and only if: for all ε > 0 there exists N = N(ε) such that

|fn(x) − fm(x)| < ε for all x in [a, b].
The first real step is to show that the sequence Ln is convergent. Since we don’t

know what we’re trying to show it converges to, we should try to prove that it’s
Cauchy instead, so we consider the difference |Ln −Lm|. Now comes the trick: for
any x ∈ [a, b] we have

|Ln − Lm| ≤ |Ln − fn(x)| + |fn(x) − fm(x)| + |fm(x) − Lm|.

The middle term can be made small precisely by the Cauchy condition for uniform
convergence: specifically, we choose N such that n, m ≥ N implies |fn(x)−fm(x)| <
ε
3 for all x in the domain. Now we look at the first and last terms and see that, by
definition of Ln and Lm, they too can be made small by taking x sufficiently close
to c: there exists a δ > 0 such that if 0 < |x − c| < δ then |Ln − fn(x)| < ε

3 and
|Lm − fm(x)| < ε

3 . This gives that |Ln − Lm| < ε for all m, n ≥ N , so that the
sequence {Ln} is Cauchy and hence convergent, say to L.

The second step is to show that limx→c f(x) = L and this is remarkably similar:

|f(x) − L| ≤ |f(x) − fn(x)| + |fn(x) − Ln| + |Ln − L|.

Since Ln → L and fn(x) → f(x), the first and last term will each be less than ε
3

when n is sufficiently large. Since fn(x) → Ln, the middle term will be less than ε
3

for x sufficiently close to c. Overall this shows |f(x)−L| < ε for x sufficiently close
to c, i.e., that limx→c f(x) = L, completing hte proof of the theorem.

While we are here, let’s prove one more result about uniform convergence.

Theorem 3. Let fn be a sequence of integrable functions on [a, b]. Assume that

fn
u
→ f . Then f is integrable and moreover,

lim
n→∞

∫ b

a

fn =

∫ b

a

f.

Proof: Fix ε > 0 and choose N such that n ≥ N implies |fn(x) − f(x)| < ε for all
x ∈ [a, b]. Now let P be any partition of [a, b]. Since |f(x)| ≤ |fn(x)| + ε, we get
that

U(f, P ) ≤ U(fn, P ) + U(ε, P ) = U(fn, P ) + (b − a)ε
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and similarly

L(f, P ) ≥ L(fn, P ) + L(−ε, P ) = L(fn, P ) − (b − a)ε.

But this means that ω(f, P ) ≤ ω(fn, P ) + 2(b − a)ε. By the Darboux integrability

criterion, we can choose P so that the first term is arbitrarily small. Thus
∫ b

a
f−

∫ b

a
f

is bounded by a quantity that goes to zero as n → ∞, so f is (Darboux) integrable.
Since we showed in particular that the difference between the upper sums U(f, P )

and U(fn, P ) goes to zero as n approaches infinity, we must have that
∫ b

a
fn →

∫ b

a
f .

This completes the proof of the theorem.

3. Uniform Convergence and Differentiability

In light of Corollary 2 and Theorem 3, one might expect that if fn
u
→ f , and each

fn is differentiable, then f is differentiable and f ′ = limn→∞ f ′

n. However, this is
not the case: differentiability is a much more delicate property that continuity or
integrability. We give two different counterexamples.

Example 6: Let f(x) : R → R be a function which is bounded, differentiable, and
such that limn→∞ f ′(n) does not exist; for instance, one could take f(x) = sin(πx

2 ).
Define

fn(x) :=
1

n
f(nx).

Then fn
u
→ 0: indeed, if |f(x)| ≤ M for all n, then |fn(x)| < M

n
. Thus, taking

n to be sufficiently large such that M
n

< ε, we get |fn(x) − 0| < ε for all real
x. Evidently the limit function, f(x) ≡ 0, is differentiable. However, f ′

n(x) =
1
n

(

n · f′(nx))=f ′(nx) , so limn→∞ f ′

n(1) = limn→∞ f ′(n), which does not exist by
hypothesis. Thus, although the uniform limit is differentiable, the sequence of
derivatives f ′

n(x) does not converge at x = 1.

Example 7: More fundamentally, I claim that one cannot tell whether a contin-
uous function is differentiable by looking at its graph: the differentiability of a
continuous function can be gained (or lost) by arbitarily small variations.

To see what we are getting at, we will find a sequence of differentiable functions
fn : [−1, 1] → R which converge uniformly to f(x) = |x|. Essentially, we will
“round off the corner” at x = 0 by making smaller and smaller changes. Indeed,
the function fn will be equal to f(x) = |x| except on the open interval (−1

n
, 1

n
) in

which range it will be given by some polynomial Pn(x). We want to choose Pn(x)
so that the piecewise-defined function f(x) is differentiable at x = ± 1

n
; in order to

do this we need to require that Pn( 1
n
) = | 1

n
| = 1

n
, Pn(− 1

n
) = |−1

n
| = 1

n
, P ′

n( 1
n
) = 1

and P ′

n(−1
n

) = −1
n

. (In other words, we need the values of Pn and its derivative at

x = ± 1
n

to be equal to the corresponding values of |x| and its derivative at these
points.) We will also require Pn(0) = 0, and search for the simplest polynomial
function that satisfies these properties.

In fact we have five independent conditions on Pn(x), so there will be a unique
degree four polynomial satisfying all these conditions. To see what it is, we should
in principle write out an arbitrary degree four polynomial and solve five linear equa-
tions for the five unknown coefficients of P . However, we can cut down our work
a bit by noticing that all our conditions are compatible with Pn(x) being an even
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function of x, which for a quartic polynomial means that it is of the form

Pn(x) = Ax4 + Bx2 + C.

Since we want Pn(0) = 0, this gives C = 0. We now have only two unknowns to
solve for, using the two conditions

1

n
= Pn(

1

n
) = A(

1

n
)4 + B(

1

n
)2

and

1 = P ′

n(
1

n
) = A(

1

n
)3 + 2B

1

n
.

This system is easy to solve (for instance, multiply the first equation by 4, multiply
the second equation by 1

n
, and then subtract the second equation from the first to

eliminate B): we get A = −1
2 n3 and B = 3

2n, so

Pn(x) =
−1

2
n3x4 +

3

2
nx2.

Recall that we have defined a function fn(x) by:
fn(x) = Pn(x), if x ∈ [− 1

n
, 1

n
].

fn(x) = |x|, if x ∈ [−1, 1] \ [− 1
n
, 1

n
].

We claim that fn
u
→ |x|; since all the fn’s and f(x) = |x| are even, by symmetry

we may show uniform convergence on [0, 1]: thus we need to show that or in other

words that fn − x
u
→ 0. Fix ε > 0; we will find an N such that n ≥ N implies

|fn(x) − x| < ε for all x ∈ [0, 1]. Note that since fn(x) = x unless x < 1
n
, in

estimating the difference between fn(x) and x we may assume that x ≤ 1
n
, or

nx ≤ 1. In this case we have

|fn(x) − x| = |Pn(x) − x| = |x||
−1

2
(nx)3 +

3

2
(nx)|.

Using the estimate nx ≤ 1, this quantity is at most 2|x| ≤ 2
n
. In other words, we’ve

shown that |fn(x) − x| ≤ 1
n

for all x on [0, 1], and this shows that fn − x
u
→ 0.

Remarks: a) As we will see at the very end of the course, a much stronger re-
sult is true: for any continuous function f : [a, b] → R, there exists a sequence of

polynomials Pn such that Pn
u
→ f on [a, b]. This is Weierstrass’s Approxima-

tion Theorem, and it is justly remembered as one of the greatest results of one
of the great analysts of all time. This is an incredibly deep result, even given – as
we are – the benefit of hindsight. As far as I know there is no really conceptually
straightforward proof of this result, and in analyzing this example we are closer
than you might expect to the heart of the matter: it turns out that finding a se-
quence of polynomials Pn(x) converging uniformly to |x| on [−1, 1] is half of the
proof of Weierstrass’ theorem! Note well that we did not acheive this goal here: our
functions fn(x) are not polynomials (in fact fn(x) fails to be twice differentiable at
x = ± 1

n
, as you are invited to check).

b) As we may (or may not) see later on, there are continuous functions which
are not differentiable at any point: this result is also due to Weierstrass. In fact
even more is true: in a sense that we will unfortunately not be able to make precise
in this course, “most” continuous functions f : [a, b] → R are not differentiable at
any point.
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Nevertheless there is still a result about convergence of derivatives: we just need a
stronger hypothesis.

Theorem 4. Let fn be a sequence of differentiable functions on [a, b] such that
fn(x0) converges for some point x0 of [a, b]. If f ′

n converges uniformly on [a, b],
then fn converges uniformly on [a, b] to a function f , and moreover we have f ′(x) =
limn→∞ f ′

n(x) for all x ∈ [a, b].

Proof:3 Fix ε > 0,and choose N such that m, n ≥ N implies |fn(x0)− fm(x0)| < ε
2

and |f ′

n(t) − f ′m(t)| < ε
2(b−a) for all t ∈ [a, b]. This latter estimate can be viewed

as telling us that the derivative of g := fn − fm is small on the entire interval [a, b];
applying the Mean Value Theorem to g, we get

(1) |g(x) − g(t)| = |x − t||f ′(c)| ≤ |x − t| ·
ε

2(b − a)
≤

ε

2
,

valid for all x, t ∈ [a, b] and all m, n ≥ N . Now for all x ∈ [a, b]

|g(x)| ≤ |g(x) − g(x0)| + |g(x0)| < ε.

This shows that the sequence fn is uniformly Cauchy, hence uniformly converges
to some function, say f , on [a, b]. Now fix an x in [a, b] and define ϕn(t) :=
fn(t)−fn(x)

t−x
, ϕ(t) := f(t)−f(x)

t−x
, the point of this being that limx→t ϕn(t) = f ′

n(x)

(for any n). Now the first inequality in (1) shows that

|ϕn(t) − ϕm(t)| ≤
ε

2(b − a)

for all m, , n ≥ N , so that ϕn converges uniformly for all t 6= x. Since fn → f , by

definition of ϕn and ϕ we get ϕn
u
→ ϕ for all t 6= x. Now we can apply Theorem 1

on the interchange of limit operations:

f ′(x) = lim
t→x

ϕ(t) = lim
t→x

lim
n→∞

ϕn(t) = lim
n→∞

lim
t→x

ϕn(t) = lim
n→∞

f ′

n(x),

completing the proof of the theorem.

Remark: This was, of course, not an easy proof. You should compare the result
with Theorem 7.12 in your text. The version we give is stronger for two reasons:
first, we require fn to converge to f only at a single point. The second, and more
interesting, difference is that Theorem 7.12 in your text assumes that the f ′

n’s are
continuous. If we assume this additional hypothesis, then the proof becomes much

easier: it is enough to know that if fn
u
→ f is a uniformly convergent sequence of

functions on [a, b], then defining antiderivatives Fn(x) :=
∫ x

a
fn and F (x) :=

∫ x

a
f ,

then Fn
u
→ F . Then: if f ′

n

u
→ f ′ and f ′

n is continuous for all n, then f ′ is neces-

sarily continuous and
∫ x

a
f ′

n

u
→

∫ x

a
f ′ and you can use the Fundamental Theorem

of Calculus to get the desired conclusion. In fact the argument will again only use
the pointwise convergence of fn to f at a single point (namely a). You are asked
to fill in the details in the exercises.

Thus the real point of going the long way around is not to assume that the
derivatives f ′

n are continuous. (In fact the easier argument would work even if f ′

n

were merely assumed to be Riemann-integrable, but as we saw, not all derivatives

3Taken from Rudin’s Principles of Mathematical Analysis, pp. 152-3. Note this is stronger
than the version which appears in your text.
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have this property.) It is a general theme in analysis that functions with continu-
ous derivatives are very well-behaved, whereas things are much more delicate for
arbitrary differentiable functions.

4. Some criteria for uniform convergence

We are now convinced that the right notion of convergence of a sequence of
functions is uniform convergence. It would therefore be nice to have some general
criteria by which we can show that a particular sequence of functions is uniformly
convergent. We present several of these; the most useful by far is Weierstrass’ cri-
terion for uniform convergence of series of functions.

First a definition: let I be an interval (perhaps infinite) and let f : I → R be
any function. Let us define the norm of f , ||f ||, to be supx∈I ||f ||. Note that
||f || ∈ [0, +∞]: it could be infinite. In fact, to say that ||f || < ∞ is precisely to say
that f is bounded, in which case ||f || is just the least M which works as a bound
for f . So there is really nothing new here except the notation.

However, the notation is useful: for instance, we find that the statement “fn
u
→ f”

is equivalent to: ||fn − f || → 0. (We should be a little careful about one point:
||fn−f || could, for any given n be infinite; what we mean by the convergence to zero
is that it is finite for all sufficiently large n and from this point on the sequence of
ordinary real numbers converges to zero.) Although I swore to the department chair
that I would not use the words “m∃tric sp@ces” in this course, you are encouraged
to think of ||fn − f || as the distance between the functions fn and f .

Theorem 5. (Weierstrass M-Test) Let fk be a sequence of functions defined on an
interval I. Suppose that

∑

∞

k=1 ||fk|| < ∞. Then
∑

∞

k=1 fk is uniformly convergent.

Proof: Put Sn(x) =
∑n

k=1 fk(x) and Mk := ||fk||. Then, what we are really
assuming is that

∑

∞

k=1 Mk = M < ∞ (hence the rather silly name “M Test”), so
in particular the sequence of partial sums is Cauchy: for all ε > 0, there exists
N = N(ε) such that for all n ≥ N and all m ≥ 1 we have

Sn+m − Sn =
n+m
∑

k=n+1

Mk < ε.

But this means that for all x ∈ I,

|Sn+m(x) − Sn(x)| = |fn+1(x) + . . . + fn+m(x)| ≤ |fn+1(x)| + . . . + |fn+m(x)|

≤ Mn+1 + +Mn+m < ε,

so Sn(x) is uniformly convergent by the Cauchy criterion.

As a simple application of this result, suppose that fn(x) is any sequence of func-
tions with ||fn|| ≤ 1 for all n (i.e., each is bounded by 1) and

∑

∞

n=1 an is any
absolutely convergent real series. Then the series of functions

∑

∞

n=1 anfn is uni-
formly convergent by the M Test. For instance, take {gn(x)} to be any sequence

of function and take fn(x) = sin(gn(x)). Then
∑

∞

n=1
sin(gn(x))

n2 is uniformly conver-
gent.

Your text contains a further result which is interesting but (honestly) much less
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useful. To state it, we first need a little terminology: by an increasing sequence

of functions {fn} defined on an interval I, we mean a sequence such that, for all
x ∈ I, fn(x) ≤ fn+1(x) for all n. Caution: this is not the same as a sequence of
increasing functions: rather, the point is that for fixed x, as we increase n the func-
tion values get larger and larger. For instance, fn(x) = sin x − 1

n
is an increasing

sequence of functions, although each fn is certainly not an increasing function.

Theorem 6. (Dini’s Theorem) Let {fn} be an increasing sequence of continuous
functions defined on a closed interval [a, b]. If the sequence is pointwise convergent,
it converges uniformly.

Exercise 75*: Prove Dini’s Theorem. (Hint: consult Exercise 6 in §7.3 of your text,
which breaks up the proof into a sequence of steps. Even with all this coaching,
this is still not an easy exercise.)


