
Chapter 1

Introduction

In this chapter we introduce the notions of a Partial Differential Equation (PDE) and its solution.
We attempt classifying all partial differential equations in at least three different ways.

1.1 Preliminaries

Partial differential equation is an equation involving an unknown function (possibly a vector-
valued) of two or more variables and a finite number of its partial derivatives.
In the sequel we reserve the following terminology and notations:

• Independent variables: denoted by x = (x1, x2, · · · , xn) ∈ Ω ⊆ Rn (n ≥ 2)

• Dependent variables: denoted by u = (u1, u2, · · · , up) ∈ Rp also called unknown function.

• Let α = (α1, · · · , αn) ∈ (N ∪ {0})n, and |α| = α1 + · · · + αn. Then Dαu denotes

Dαu =
∂α u

∂xα1

1 ∂xα2

2 · · ·∂xαn
n

(1.1)

• For l ∈ N, Dlu denotes the tensor of all partial derivatives of order l. That is, collection of
all partial derivatives Dαu such that |α| = l of the vector function u.

We now define a PDE more formally.

Definition 1.1 (PDE) Let Ω ⊆ Rn, m ∈ N and F : Ω × Rp × Rnp × Rn2p × · · · × Rnmp −→ Rq

be a function. A system of Partial differential equations of order m is defined by the equation

F
(

x, u, Du, D2u, · · · , Dmu
)

= 0, (1.2)

where some mth order partial derivative of the vector function u appears in the system of equations
(1.2).

Remark 1.2 The equation (1.2) consists of q equations. Note that the unknown vector function
u has p components. If p = q, the system of PDE is called determined. If p < q, then the system of
PDE is called over-determined system. If p > q, then the system of PDE is called under-determined
system. I feel that we should not attach too much of importance to this terminology.

Definition 1.3 (Solution of a PDE) Let U be an open subset of Rn and Φ : U −→ Rp be a
function which is m times differentiable. Then Φ is said to be a solution of the PDE (1.2) if it
satisfies

F
(

x, Φ(x), DΦ(x), D2Φ(x), · · · , DmΦ(x)
)

= 0 for all x ∈ Ω.
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6 1.1. Preliminaries

What equations we study? In our course we restrict our studies to equations where (m, n, p, q) =
(1, 2, 1, 1) or (m, n, p, q) = (2, 2, 1, 1). We are going to study non-linear first order PDE and linear
second order PDE.

Remark 1.4

1. There is no guarantee that an equation such as (1.2) will have a solution. In fact, the PDE
(ux)2+1 = 0 has no solution. Thus we cannot hope to have a very general existience theorem
for equations of type (1.2).

2. To convince ourselves that we do not expect every PDE to have a solution, let us recall the
situation with other types of equations involving Polynomials, Systems of linear equations,
Implicit functions. In each of these cases, existence of solutions was proved under some
conditions. Some of those results also characterised equations that have solution(s), for
example, for systems of linear equations the characterisation was in terms of ranks of matrix
defining the linear system and the corresponding augmented matrix.

3. In the context of ODE, there are two basic theorems that hold for equations of a special form
called normal form. They are Peano’s existence theorem and Cauchy-Lipschitz-Picard’s
existence and uniqueness theorem. We refer the reader to any good book on ODE or my
lecture notes on ODE (available on my homepage). Recall that these theorems address the
existence of solutions to initial value problems for a first order system of Ordinary differential
equations, and this was enough to study any ODE in normal form (of any order). Can we
do the same for PDE as well? Unfortunately, it is not possible. We will see this at a later
time. One problem is that same kind of problems are not interesting for all PDEs.

1.1.1 Examples of PDE

1. Laplace Equation

∆u ≡
n

∑

i=1

∂2u

∂x2
i

= 0. (1.3)

2. Heat Equation
∂u

∂t
− ∆u = 0. (1.4)

3. Wave Equation
∂2u

∂t2
− ∆u = 0. (1.5)

4. Schrödinger Equation

i
∂u

∂t
= − ~

2m
∆u + V (x)u(t, x) = 0, t > 0, x ∈ R. (1.6)

5. Burgers’ Equation
∂u

∂t
+ u

∂u

∂x
= µ

∂2u

∂x2
, t > 0, x ∈ R, (1.7)

where µ ≥ 0.

6. Korteweg-de Vries (KdV) Equation

∂u

∂t
+

∂3u

∂x3
+ u

∂u

∂x
= 0 t > 0, x ∈ R. (1.8)
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7. Benjamin-Bona-Mahony (BBM) Equation

∂u

∂t
+

∂3u

∂t ∂x2
+ u

∂u

∂x
= 0 t > 0, x ∈ R. (1.9)

8. Vlasov-Poisson (VP) Equation

∂f

∂t
+ v • ∇x f + E • ∇v f = 0 t > 0, x ∈ Rn, v ∈ Rn,

E = ∇xV, ∆V =

∫

Rn

f(t,x,v) dv, V = V (x), f ≥ 0.

(1.10)

9. Maxwell’s Equations

∂E

∂t
= curlB

∂B

∂t
= −curlE

divB = divE = 0.

(1.11)

10. Euler’s Equations for incompressible, inviscid flow

∂u

∂t
+ u • Du = −Dp

divu = 0.

(1.12)

11. Navier-Stokes Equations for incompressible, viscous flow

∂u

∂t
+ u • Du − ∆u = −Dp

divu = 0.

(1.13)

12. Minimal Surface Equation

(

1 + |∇u|2
)

∆u −
n

∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi ∂xj

= 0. (1.14)

Differences between ODE and PDE

1. A general solution of an ODE involves arbitrary constants. Obtaining a general solution for
PDEs is difficult and a general solution would involve arbitrary functions (See § 2.1.2). Let us
look at a simple example now. Consider the PDE ux = 0. Any arbitrary function of y solves
this PDE. This is the simplest possible linear equation of first order and it has an infinite
dimensional space of solutions. Compare this situation with that of a linear first order ODE
dy
dt

= 0 where y = (y1, · · · , yp), whose solution space is Rp which is finite dimensional.

2. In differential equations the unknown function has the interpretation of the state of a system
when the equations decribe evolution of a physical system in time. For ODEs the indepen-
dent variable is time and for PDEs one of the independent variables has the interpretation
of time. Now the initial state (state of the system at time t = 0) for ODEs is prescribed
as an element of Rn (n is the length of the unknown vector y); while for PDEs the initial
state varies in a function space. Thus solving a PDE means finding the states of the system
at different times and each of these states vary in an infinite dimensional space of function
while solving ODE means finding the states of the system but are in a finite dimensional
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space.1

For those of you who know some Functional analysis, you understand the difference between
finite and infinite dimensional spaces. One important theorem which is lacking in infinite
dimensional spaces is a Heine-Borel theorem concerning compactness. Thus the topologies
more suited to infinite dimensional spaces are some kind of weak topologies which we do not
address here.

3. Linear ODEs have global solutions. Linear PDEs posed on R2 do not necessarily have
solutions defined on R2 (See § 2.2.5).

1.2 Classification

Partial differential equations can be classified in at least three ways. They are

1. Order of PDE.

2. Linear, Semi-linear, Quasi-linear, and fully non-linear.

3. Scalar equation, System of equations.

Classification based on the number of unknowns and number of equations

in the PDE

If a PDE consists of more than one unknown function or more than one equation, it is called a
System of PDEs. Otherwise it is called a single PDE or a scalar PDE. These kinds of definitions
will have some problems. Think why!

Exercise 1.5 Classify the examples in § 1.1.1 into systems and scalar PDEs.

Classification based on highest order derivative appearing in the PDE

Exercise 1.6 Find the orders of each of the PDEs appearing in § 1.1.1.

Classification via Algebra

This classification is somewhat different from the previous ones. This is analogous to the Postal
Index Number (PIN). In PIN code, the first digit stands for a region (usually consists of more than one
State); the second and third digits correspond to a district and the last three digits determine the
location of the Post Office within the district. Similarly, PDEs may be classified just like ODEs are
classified, namely by categorising them into two: Linear and Nonlinear equations. But in the case
of PDEs it turns out that there can be another way of catergorising into two: Quasi-linear and
Non-Quasilinear. Quasi-linear PDEs are further categorised into two: Semi-linear, Non-semilinear.
Semi-linear PDEs are further categorised into two: Linear and Nonlinear. We have the following
picture.

Linear PDE $ Semi-linear PDE $ Quasi-linear PDE $ PDE.

We now define each of the terminology used above for scalar PDE, and one can extend these
concepts to systems of PDE easily. We choose to define them in english and then see explicitly
what it means for first order PDEs.

Definition 1.7

1I learnt this from my teacher.
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1. A PDE of order m is called Quasi-linear if it is linear in the derivatives of order m with
coefficients that depend on the independent variables and derivatives of the unknown function
or order strictly less than m.

2. A Quasi-linear PDE where the coefficients of derivatives of order m are functions of the
independent variables alone is called a Semi-linear PDE.

3. A PDE which is linear in the unknown function and all its derivatives with coefficients
depending on the independent variables alone is called a Linear PDE.

4. A PDE which is not Quasi-linear is called a Fully nonlinear PDE.

Remark 1.8

1. A single first order Quasi-linear PDE must be of the form

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (1.15)

2. A single Quasi-linear PDE where a, b are functions of x and y alone is a Semi-linear PDE.

3. A single Semi-linear PDE where c(x, y, u) = c0(x, y)u + c1(x, y) is a Linear PDE.

Examples of Linear PDEs Linear PDEs can further be classified into two: Homogeneous and
Nonhomogeneous. Every linear PDE can be written in the form

L[u] = f , (1.16)

where u 7−→ L[u] is a linear map, and f is a function of independent variables only. The linear PDE
(1.16) is said to be homogeneous if f is the zero function; otherwise it is called a nonhomogeneous
linear PDE.

Why to Classify?

1. Classification process does not achieve anything. One could have avoided doing it. However
since everyone does it, we also do it.

2. Some of the classifications are just branding a PDE. It is just immaterial what the branding
is.

3. Some of the classifications help people identify or guess or anticipate the properties of solu-
tions of PDEs in that class. For example, there could be one existence theorem that covers
all equations which fall under a particular classification.

1.3 Problems to be studied

In general it is difficult to find general solutions to PDEs. Recall that for first order ODEs we
studied Initial value problems and boundary value problems for the second order ODE. For PDEs,
we are going to study similar problems. It turns out that results for PDEs are somewhat different
from the “corresponding problems” for ODEs.

1.4 Properly posed problems in the sense of Hadamard

A mathematical problem is said to be properly-posed or well-posed in the sense of Hadamard if
the following three conditions are satisfied:

1. The problem should admit at least one solution.

2. The problem should admit at most one solution.

3. The solution should depend continuously on the data in the problem.
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1.5 Exercises

(1) We know the following classification of partial differential equations

Linear PDE $ Semi-linear PDE $ Quasi-linear PDE $ PDE.

Each of the above inclusions is a strict inclusion. Justify this statement by giving
examples.

(2) Give at least three examples of fifth order PDE belonging to each of the above classes.

(3) Classify the following equations by all the three ways of classification.

(i)
(

∂u
∂y

)2

+ ∂3u
∂x3 = 1.

(ii) sin
(

1 + ∂u
∂x

)2
+ u3 = sin x.

(iii) ∆u = 0.

(iv) e∆u = 1.

(v) utt − ∆u = sinu.

(vi)
∑∞

k=0
1
2k

∑

|α|=k aα(x, u)Dαu = sin ‖x‖.
(vii)

∑∞
k=0

1
2k

∑

|α|=k Dαu = sin ‖x‖.
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