
32 communications of the acm | november 2011 | vol. 54 | no. 11

V
viewpoints

A
n a n o n y m o usly a t t r i b -

u t e d adage states: “With
another name, social engi-
neering would not be mis-
taken for engineering.” Ap-

proximately 15 years ago, I published a
short article in the Journal of Engineer-
ing Education arguing—among other
things—that software engineering was
not then engineering.1 I have now been
asked whether enough has changed to
make me think software engineering
is engineering. My answer is: much
has changed—with some changes
weakening the separation between
engineering and software engineering
and some reinforcing it—but, over-
all, the argument stands. This answer
will surprise those who, unaware of
that article, think software engineer-
ing’s status as engineering is obvious.
I therefore think it wise to precede any
explanation of why software engineer-
ing is not engineering by disposing of
a few unexamined presumptions that
might make software engineering’s
status as engineering seem obvious.

Senses of Engineering
“Engineering” has at least four senses
in English. One, the oldest, understands
engineering as tending engines (origi-
nally, “engines of war”). Casey Jones
was an engineer in this sense; so is the
custodian of my building, a licensed
“boiler engineer”; and so too, the sailor

rated “marine engineer.” Neither engi-
neers (strictly speaking) nor software
engineers are engineers in this sense.

Almost the opposite of this first
sense is what we might call the func-
tional sense, engineering-as-inven-
tion-of-useful-objects. In this sense,
the first engineer may have been the
caveman (or cavewoman) who in-
vented the club, cutting stone, or fire
pit. Though this sense would certainly
make software engineers engineers,
there are at least two reasons to reject
it here. First, the functional sense is too
broad. Architects, industrial designers,
and even weekend inventors are all en-
gineers in this sense, making software
engineering’s claim to be engineer-
ing uninteresting. Second, the func-

tional sense is anachronistic. It takes
a sense of “engineering” that did not
exist much before 1700 and applies it
to cavemen, carpenters, tinkerers, and
the like, who would have understood
themselves quite differently.

The functional sense of engineer-
ing nonetheless seems relevant here.
Software engineering’s official Body
of Knowledge offers this definition of
software engineering: “the application
of a systematic, disciplined, quantifi-
able approach to the development, op-
eration, and maintenance of software,
and the study of these approaches;
that is, the application of engineering
to software.”2 The Body of Knowledge
assumes, without argument (a mere
“that is”), that engineering is a certain
function, any “systematic, disciplined,
quantifiable approach to the develop-
ment, operation, and maintenance
[of something]”. That assumption
must be false. It would force us, for ex-
ample, to rank accounting—a field no
one supposes to be engineering—as
“financial-records engineering” (since
accounting is a systematic, disciplined,
quantifiable approach to the develop-
ment, operation, and maintenance of
financial records).

Closer to our subject is a third sense,
engineering-as-discipline. A discipline
is a distinctive way of carrying on an
activity, some combination of knowl-
edge, skill, and judgment that must be

doi:10.1145/2018396.2018407	 Michael Davis

Computing Ethics
Will Software
Engineering Ever
Be Engineering?
Considering whether software engineering
and engineering can share a profession.

The Software
Engineering Code
of Ethics and
Professional Practice
differs in significant
ways from all
the engineering
codes I know.

V
viewpoints

november 2011 | vol. 54 | no. 11 | communications of the acm 33

learned. Any craft or trade has its dis-
cipline—as do many activities that are
not craft or trade, such as meditation
or calisthenics. In this sense, neither
architects, nor industrial designers,
nor weekend inventors are engineers.
Architecture and industrial design
each have a discipline easily distin-
guished from engineering’s. Weekend
inventors have no discipline at all; they
may invent any way they like.

Software engineering is not engi-
neering in this third sense. The body
of knowledge engineers are supposed
to learn differs in important ways from
software engineering’s body of knowl-
edge. So, for example, engineers have
to take courses concerned with the
material world, such as chemistry and
statistics; software engineers do not.
Software engineering’s official Body

(1.02).b Engineers do not now have
such a duty to moderate.

Software engineering has, indeed,
become a profession. What it has not
become is part of the engineering pro-
fession. Anyone who claims otherwise
must find a sense of engineering differ-
ent from those distinguished here, one
that makes software engineering a part
of engineering without including as well
disciplines, occupations, or professions,
such as architecture or accounting, that
clearly are not part of engineering.

Professions are voluntary associa-
tions. You cannot become a member
simply by claiming to be one. You must
be admitted (by the profession, not just
by a technical society like the ACM). En-
gineering has a long history of other oc-
cupations claiming to be engineering:
recent examples include genetic engi-
neering (a kind of tinkering with genes);
reengineering (a fad in management);
and financial engineering (gambling
on Wall Street). Software engineering
actually began with an attempt to copy
engineering practices, making its claim
to be engineering more respectable

b	 Software Engineering Code of Ethics and Pro-
fessional Practice (1999); http://www.acm.org/
about/se-code. For history of this document,
see my essay “Code Writing: How Software
Engineering Became a Profession,” Center for
the Study of Ethics in the Professions, Chica-
go, 2007; http://hum.iit.edu:8080/aire/sea/1/
book/index.html.

Software engineering
has, indeed, become a
profession. What it has
not become is part
of the engineering
profession.

of Knowledge was in fact an impor-
tant step in clarifying the distinction
between engineering proper and soft-
ware engineering. It requires software
engineers to know things other engi-
neers do not and not to know some
things other engineers do know.

The last sense of engineering we
need to distinguish here is engineer-
ing-as-profession. A profession is (we
may say) a number of individuals in
the same occupation voluntarily orga-
nized to earn a living by openly serving
a moral ideal in a morally permissible
way beyond what law, market, morali-
ty, and public opinion would otherwise
require.a An occupation is a discipline
by which one may, and some do, earn
a living. Both engineering and software
engineering are now occupations but,
having (as just noted) different disci-
plines, must be different occupations.
That is one reason why they cannot
share a profession. There is another.

The Software Engineering Code of
Ethics and Professional Practice dif-
fers in significant ways from all the
engineering codes I know. Software
engineers are, for example, supposed
to “[m]oderate the interests of the soft-
ware engineer, the employer, the client
and the users with the public good”

a	 For a defense of this definition, see my article
“Is Engineering a Profession Everywhere?”
Philosophia 37 (June 2009), 211–225.I

l
l

u
s

t
r

a
t

i
o

n
 b

y
 H

a
n

k
 o

s
u

n
a

34 communications of the acm | november 2011 | vol. 54 | no. 11

viewpoints

than most. But the enormous complex-
ity of software has forced software engi-
neering to develop in ways engineering
has not—and may never.c Many of the
very methods that make software engi-
neering useful distinguish it from engi-
neering. Engineers have good reason to
continue to treat software engineers as
belonging to another profession.d

I have, I hope, just explained why I
still think software engineering is not
engineering in a way that engineers
should recognize. I now want to point
out four reasons to think that engi-
neering might someday merge with
software engineering. All four are,
oddly, changes in engineering, not
software engineering.

˲˲ Electrical and computer engineer-
ing (ECE) is often thought to be the
field of engineering closest to software
engineering. Over the last decade, ECE
has become less committed to tradi-
tional engineering courses concerned
with the material world. So, for exam-
ple, a number of ECE departments,
including the one at the University of
Illinois at Urbana-Champaign, have
stopped requiring statics, dynamics,
and thermodynamics. If that trend
continues, then either ECE will split
off from the main body of engineer-
ing or engineering’s core of required
engineering courses will increasingly
resemble software engineering’s.

˲˲ Since the 1700s, engineers have
had to know just two natural sciences:
physics and chemistry. Recently, some
programs in environmental engineer-
ing, biomedical engineering, and agri-
cultural engineering have begun to al-
low students to substitute biology for
physics or chemistry. For engineers,
this makes sense, since several of the
new frontiers of engineering rely on bi-

c	 Michal Young and Stuart Faulk, “Sharing
What We Know About Software Engineering,”
in Proceedings of the FSE/SDP Workshop on Fu-
ture of Software Engineering Research (FoSER
‘10), ACM, 439–442, argue that engineering
has much to learn from software engineer-
ing—inadvertently making clear how much
engineering’s discipline differs from soft-
ware engineering’s.

d	 For a darker route to this conclusion, see Da-
vid L. Parnas, “Risks of undisciplined develop-
ment,” Commun. ACM 53, 10 (Oct. 2010), 25–
27. Note that Parnas, though a star of software
engineering, is an electrical engineer—both
by discipline and declaration—looking at
software engineering the way knowledgeable
engineers typically do.

ology rather than physics and chemis-
try (as until recently). But, if this trend
continues, engineering’s science core
will increasingly resemble the science
courses software engineers take to sat-
isfy general distribution requirements.

˲˲ Engineers are increasingly replac-
ing mechanical systems with software.
Not only do most engineers now use
software regularly, many write speci-
fications for software, modify existing
programs themselves, or even write
(simple) programs. Whether or not
software engineers do any engineering,
engineers increasingly engage in ac-
tivities that look like software engineer-
ing (even if these engineers do not call
themselves “software engineers” and
do not work the way that software en-
gineers would). Whether some fields of
engineering will dissolve into software
engineering seems an open question.

˲˲ Computer science used to have an
accreditation body separate from en-
gineering’s. That is no longer true. All
computer science programs, includ-
ing software engineering, are now un-
der engineering’s accreditation body,
ABET. Of course, the accreditation
process and standards distinguish
between engineering programs and
computer science programs. But that
distinction does not preclude eventual
merger. ABET has always distinguished
between various fields (or subdisci-
plines) of engineering. So, for example,
it always sent mechanical engineers to
review a mechanical engineering pro-
gram; electrical engineers, to review an
electrical engineering program; and so
on. The expansion of ABET’s accredita-
tion powers makes it easier than before
for software engineering to merge into

engineering, indeed, for all of comput-
er science to do that.

Having pointed out four reasons
that seem to point to software engi-
neering’s eventual merger with engi-
neering, I now point out three reasons
to believe the merger will not happen
soon, if at all:

˲˲ All engineering is still fundamen-
tally about physical systems; software
engineering is not. Even a field so
closely allied to software engineering
as computer engineering must take
into account physical factors in design,
for example, heat produced in a micro-
chip or speed of electrical current, to a
degree software engineers do not.

˲˲ Software engineering is today a
large profession, indeed, one of the
largest—half the size of engineering,
true, but about the same size as medi-
cine or law. With so many practitio-
ners, software engineering is more
likely to divide than to join up with an-
other large profession.

˲˲ If computer science ever ceased to
be the home of software engineering,
the most likely new home might well
be management information systems
or information technology manage-
ment. These business disciplines re-
semble software engineering at least
as much as engineering does. In prac-
tice, most software engineers work
more with information systems man-
agers than with engineers.

Conclusion
Whether knowledge of the future is
possible is a perennial question in phi-
losophy. What is certain is that proph-
ets are seldom right on any important
question. So, I make no claim to know
whether software engineering will ever
merge with engineering. I claim only to
know that—despite the common term
“engineering”—software engineering
is not now engineering.	

References
1.	A bran, A. et al. Guide to the Software Engineering

Body of Knowledge—2004 Version. IEEE Computer
Society (2004), 1.

2.	D avis, M. Defining engineering: How to do it and why
it matters. Journal of Engineering Education 85, (Apr.
1996), 97–101.

Michael Davis (davis2643@gmail.com) is a senior fellow
at the Center for the Study of Ethics in the Professions
and a professor of philosophy at Illinois Institute of
Technology, Chicago.

Thanks to Keith Miller and Rachelle Hollander for helping
me think through this column.

Copyright held by author.

Whether or not
software engineers
do any engineering,
engineers
increasingly engage
in activities that
look like software
engineering.

