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1AbstratAn Adaptive Cell-Centered Projetion Methodfor the Inompressible Euler EquationsbyDaniel Franis MartinDotor of Philosophy in Engineering-Mehanial EngineeringUniversity of California at BerkeleyProfessor Phillip Colella, ChairAdaptive methods for the numerial solution of partial di�erential equations onentrateomputational e�ort where it is most needed. Suh methods have proved useful for overominglimitations in omputational resoures and improving the resolution of numerial solutions to awide range of problems. By loally re�ning the omputational mesh where needed to improve theauray of the solution, we more eÆiently use omputational resoures, enabling better solutionresolution than is possible with traditional single-grid approahes, representing a more eÆient useof omputational resoures.In this work, we present an adaptive ell-entered projetion method for the inompressibleEuler equations. It is an extension of the adaptive mesh re�nement (AMR) methodology developedby Berger and Oliger for hyperboli problems. Our algorithm is fully adaptive in time and spaethrough the use of subyling, in whih �ner grids are advaned at a smaller timestep than oarserones. When oarse and �ne grids reah the same time, they are then synhronized to ensure that theglobal solution is onservative and satis�es the divergene onstraint aross all levels of re�nement.



2Our method introdues three main innovations. First, we extend a ell-entered approxi-mate projetion disretization to a multilevel hierarhy of re�ned grids. Employing a ell-enteredprojetion disretization permits the use of only one set of (ell-entered) solvers, whih simpli�esimplementation and extension of this algorithm. Also, we use a volume-disrepany sheme to ap-proximately orret for advetion errors due to the presene of oarse-�ne interfaes. Finally, wesynhronize oarse and �ne levels by performing multilevel solves over all grids whih have reahedthe same time.Results are presented whih show that the method presented in this work is seond-orderaurate, does not introdue instabilities due to the presene of oarse-�ne interfaes, and whihdemonstrate the inreased solution auray due to loal re�nement.

Phillip Colella, Chair Date
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Chapter 1
Introdution

Adaptive numerial methods whih fous omputational e�ort where it is needed have beena fous of muh researh. Solutions to the equations whih govern the behavior of many physialphenomena, inluding those of uid dynamis, an display behavior over a great number of sales.In many ases, it is neessary to resolve features on very small sales in order to aurately omputelarger-sale features of the solution.The traditional solution to numerial under-resolution of a problem has been to employ auniformly �ne omputational mesh over the entire problem. In general, for a �nite-di�erene/�nite-volume method, the auray of the solution depends on the mesh spaing. The �ner the �nite-di�erene mesh (i.e. the more mesh points in a given region), the more aurate the solution.Unfortunately, due to limitations in omputational resoures, it is often impossible to use a singleuniform mesh to solve a given problem to the desired auray. On the other hand, it is often thease that the �nest resolution is only required in regions whih only make up a small fration of theomputational domain. Computing an unneessarily �ne solution outside these regions representsa waste of omputational resoures. One example of this arises in aerodynamis. When omputing



CHAPTER 1. INTRODUCTION 2the ow around an airraft, high resolution is often required to adequately resolve rapidly varyingfeatures like boundary layers and wakes, while in large regions far from the body, the solution varieslittle, requiring less resolution to aurately represent the solution. In many ases, use of a uniform�ne mesh will result in the bulk of available omputational resoures being spent omputing anunneessarily aurate solution in regions far from the body, while important ow features near thebody are under-resolved due to a lak of resoures.In reognition of this, there has been muh e�ort toward developing methods whih adaptthe �nite-di�erene mesh to plae more grid points in regions where higher resolution is needed,while using fewer grid points in regions where a oarser mesh is suÆient to adequately resolvethe solution. Baker [11℄ provides a good survey of adaptive methods in a �nite-element ontext(although the re�nement onepts are generally appliable).One strategy is known as lustering. In this approah, the total number of grid points andgrid topology is kept onstant, and the grid itself is moved to plae higher resolution (in the formof a �ner mesh) where neessary, while oarsening the grid in regions where a �ne mesh is deemedunneessary. The mesh itself deforms to follow features in the ow. For this reason, this approahis often known as the moving-grid approah. This approah has found the most appliation inaerodynamis, partiularly in steady-state solutions. Advantages of this method inlude preservationof the basi topology of the mesh, whih an be very useful in parallel implementations beausepartitioning and load-balaning of the solution an be maintained as the solution evolves. Also, ithas the advantage of a uniform disretization on a �xed-logi mesh, rather than disrete oarse and�ne regions. With the proper grid generation algorithms, transitions between oarse and �ne regionsan be made smooth, eliminating disontinuities in the omputational mesh itself. In priniple, the



CHAPTER 1. INTRODUCTION 3goal of this strategy is equidistribution of error among all the ells in the omputational domainfor a given number of mesh points. In this sense, solutions are optimal, in that they represent thebest possible use of available omputation [11℄. Like the moving grid approah, unstrutured gridsalso have the advantage of a uniform problem desription, in that the disretizations used in re�nedregions will be the same as those used in oarser regions. This makes it easy to add adaptivity to anexisting method, beause it does not involve new disretizations. Unfortunately, it is generally morediÆult to ontrol the auray of the disretization in unstrutured-grid methods, partiularly forproblems without a variational formulation. As in the moving grid approah, are must also betaken to ontrol the quality of the resulting grid, with respet to stability and onditioning of therepresentation of the problem on the mesh. Moreover, unstrutured grid methods generally requiremore memory to store the various metris neessary for omputation.Strutured meshes, in ontrast, are made up of a regular tessellation of ells whih allhave the same loal onnetivity. The most ommon type of strutured mesh is a retangularCartesian mesh. Design and implementation of �nite-di�erene methods on strutured meshes isvery well understood, and the regularities of the mesh an be exploited to inrease the auray ofthe disretization. Also, it is simple to apply multigrid aelerated iterative methods to onstrutonstrut fast ellipti and paraboli solvers for strutured meshes. The main disadvantages of stru-tured meshes has been the diÆulty of adapting suh meshes to omplex geometries, although someprogress has been made in this area [2, 3, 8, 21, 28, 50℄. Also, loal re�nement on strutured mesheswill result in a disontinuity in the mesh spaing between oarse and re�ned ells, whih often en-tails a loss of auray. Strutured mesh �nite-di�erene approahes have been used extensively ina variety of appliations, inluding aerodynamis, shok dynamis, and atmospheri uid dynamis.



CHAPTER 1. INTRODUCTION 4
cells that need to be refined(a) cells that need to be refined(b)Figure 1.1: Loal re�nement strategies: (a) ell-by-ell re�nement, (b) blok-strutured re�nementOn strutured meshes, loal re�nement an either be ell-by-ell or blok-strutured (Figure1.1). In ell-by-ell re�nement, ells are individually hosen for re�nement and are re�ned individ-ually. While this is eÆient, in that no ells are re�ned unneessarily, it leads to fairly ompliatedtree-like data strutures whih must maintain nearest-neighbor lists. This an result in a largeamount of overhead in managing the AMR omputation.In ontrast, we will use blok-strutured re�nement, in whih ells tagged for re�nementare grouped together into bloks, whih are then re�ned in logially retangular pathes. Whilethis results in some unneessary re�nement, it enables greater eÆieny in managing the ompositegrid struture, sine there is a smaller number of irregular nodes (on the order of one per path,rather than one per node), and irregular indexing is on�ned to oarse-�ne boundaries, rather thanpotentially every ell. Also, this makes it simpler to separate the implementation of uniform-gridalgorithms from the adaptive aspets of the alulation, whih in most ases an be represented asboundary onditions on the various re�ned regions. Beause most of the alulation an be doneon retangular arrays of data, it is easier to optimize the bulk of the omputation. Advaning



CHAPTER 1. INTRODUCTION 5bloks of ells also makes it easier to re�ne in time as well as spae, by taking smaller timestepswhen advaning re�ned pathes. Unfortunately, this does make the omplete adaptive algorithmmore ompliated to program, beause update operations are performed in two steps: regular gridalulations on unions of retangular grids whih make up levels of re�nement, and alulations onan irregular set orresponding to the boundary of the union of retangles at a level of re�nement withthe grids whih make up the oarser levels of re�nement. In ontrast, when updating the solutionon an unstrutured grid, only one set of operations must be performed, although the unstruturednature of the mesh requires that they be irregular in nature for all ells in the omputational domain.The re�nement strategy we will follow is based on that of Berger and Oliger [19℄, as extendedfor hyperboli onservation laws by Berger and Colella [18℄. In [19℄, regions marked for re�nementwere overed by retangular pathes of re�ned ells. These pathes ould be oriented arbitrarilyto better align with solution features like shoks. Along with spatial re�nement, their method alsoinluded temporal re�nement (\subyling") { re�ned pathes were updated using a smaller timestepthan that of the oarse grid. To simplify inter-level ommuniation and boundary onditions, manylater implementations based on this strategy (for example that in [18℄) did not orient re�ned pathesarbitrarily, instead nesting re�ned pathes ompletely within oarse grid ells, whih aligned there�ned grids with the oarse mesh. A variation of this strategy was used by Arney and Flaherty [9℄who used tree-strutured blok re�nements of individual pathes of ells.The basi blok-strutured re�nement strategy of [19℄ has been applied suessfully for anumber of appliations. It was applied to gas dynamis alulations in two dimensions by Bergerand Colella [18℄, and in three dimensions by Bell, et al. [15℄. Steinthorsen et al. [58℄ extended thismethodology to the ompressible Navier-Stokes equations. Berger and Jameson [21℄ and Dudek [34℄



CHAPTER 1. INTRODUCTION 6developed methods for omputing steady-state ompressible ows in ompliated geometry usingblok-strutured re�nement of mapped grids. Skamarok and Klemp [57℄ implemented an adaptivemethod for atmospheri ows based on a ompressible ow model whih retained the arbitrarilyoriented subgrids of [19℄. Algorithms to adaptively ompute time-dependent solutions to porousmedia ows were developed by Hornung and Trangenstein [40℄ and by Propp [51℄.To ompute steady-state solutions to the inompressible Navier-Stokes equations, Thomp-son and Ferziger [65℄ used an adaptive multigrid method based on the adaptive multigrid algorithmoriginally developed by Brandt [24℄. For time-dependent inompressible ows, Howell and Bell [41℄and Minion [48℄ developed adaptive projetion methods whih did not re�ne in time but did enforethe divergene onstraint on the omposite solution aross all levels of re�nement. In atmospherimodeling, the anelasti equations for atmospheri motion are similar in struture to those for inom-pressible ow. Clark and Farley [30℄ and Stevens [59, 60℄ onstruted adaptive projetion methodsfor the anelasti equations whih were fully adaptive in time and spae, but whih did not enforethe inompressibility onstraint on the omposite grid hierarhy, but instead on a grid-by-grid basis.Finally, Almgren et al. [5℄ have developed an adaptive projetion method whih re�nes intime as well as spae and whih enfores the divergene onstraint in a omposite sense aross allre�nement levels. That algorithm is the starting point for this work.1.1 AMR for Inompressible FlowsOur goal will be to extend the blok-strutured adaptive mesh re�nement (AMR) strategiesdeveloped for hyperboli onservation laws by Berger and Colella [18℄ to the inompressible Eulerequations in two dimensions. The addition of loal re�nement substantially ompliates the design
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x

yFigure 1.2: Blok-strutured loal re�nement. Note that re�nement is by a disrete amount and isorganized into logially-retangular pathes.and implementation of projetion algorithms, beause of the need to suÆiently ouple the solutionsaross interfaes between oarse and �ne solutions.1.1.1 Disretization IssuesFollowing [18℄, we will employ nested re�nements of blok-strutured grids along with aorresponding re�nement in time as well as spae. In this approah, groups of ells are re�ned inlogially retangular bloks, whih simpli�es management of re�ned regions. Additional re�nementan easily be nested within existing re�ned pathes, as shown in Figure 1.2.Using loally re�ned grids ompliates the design of projetion methods in many ways. Thealgorithm of [18℄ was intended for the solution of hyperboli onservation laws; onservation wasmaintained by the use of loal orretions where �ne and oarse solutions meet. Beause solutionsto the equations of inompressible ow are also ellipti in nature, additional steps must be taken toensure that the method presented in this work respets the appropriate smoothness of these solutions



CHAPTER 1. INTRODUCTION 8in the presene of loal re�nement.Speial numerial operators must be de�ned whih at on the omposite solution aross thedi�erent levels of re�nement. For example, the hoie of the disretization of projetion operatorsbeomes important. In [41℄ an idempotent projetion disretization was used, in whih the �nite-di�erene stenils produed a loal deoupling of the omputational grid. It was found that thisdeoupling had to be respeted aross the interfaes between oarse and �ne regions, signi�antlyompliating the algorithm.We will use a non-idempotent projetion algorithm, often referred to as an approximateprojetion, whih has simpler stenils. Beause repeated appliation of the approximate projetionwill not produe the same result as one appliation, issues like stability of the projetion operatorand the hoie of projeting the veloity �eld u or the approximation to �u�t beome more impor-tant. Almgren et al. [5℄ use a node-entered projetion whih was developed using a �nite-elementformulation; as suh, the stability and auray of their projetion is well understood. We will usethe approximate projetion of Lai [44℄, for whih there are fewer analytial results, but for whihthere is also a fairly large body of experiene.Re�nement in time as well as spae ompliates the algorithm as well. Sine di�erentregions will be advaned using di�erent timesteps, enforing the divergene onstraint beomesmore ompliated. For example, if we are projeting the veloity �eld, u � n must be ontinuousaross the interfaes between oarse and �ne regions. Sine the time-enterings of the veloity onthe oarse grid, u, and on the �ne grid, uf , an be di�erent due to the di�erent timesteps in oarseand �ne regions, enforing this smoothness beomes more diÆult. If the veloity �eld update �u�tis being projeted, enforing this smoothness beomes more diÆult still.



CHAPTER 1. INTRODUCTION 9Another issue in the design of loally adaptive methods is that of freestream preservation.In the hyperboli algorithm of [18℄, the solution on the oarse grids is updated, and then the solutionon the �ne grid is updated, using boundary onditions interpolated from surrounding oarse ells.In general, after both oarse and �ne advanes, the oarse solution in regions overed by re�nedpathes will not be equivalent to the averaged �ne solution whih overs it. Also, uxes arossthe oarse-�ne interfae omputed during the oarse update will not be equal to those omputedduring the �ne update. In order to maintain onservation, the �ne solutions are averaged onto theoarse-grid regions, and the ux into the oarse-grid ells adjaent to re�ned pathes is orreted sothat the ux into oarse ells aross oarse-�ne interfaes is the average of the ux omputed arossthe oarse-�ne interfae from the �ne side during the �ne-ell updates. These orretions ensurethat onserved quantities will be onserved. If the advetion sheme is onsistent, and there is noexpliit spae/time dependeny of the ux funtion, then a passively adveted salar �eld whih isspatially onstant will remain onstant as the ow evolves. This property is known as freestreampreservation.In the ase of inompressible ow, the same property of onstant salar �elds to remainonstant should be observed. For inompressible ow, however, advetive uxes are omputed usingadvetion veloities whih are themselves omputed by solving an ellipti PDE during the loaltimestep. While averaging �ne solutions onto overed regions of oarse grids and orreting advetiveuxes into oarse ells adjaent to re�ned pathes (as in [18℄) will ensure onservation, there is noguarantee that freestream preservation will be maintained, beause there is no guarantee that theoarse- and �ne-level advetion veloities aross the oarse-�ne interfaes will be onsistent. So,additional steps must be taken to ensure that the property of freestream preservation is maintained



CHAPTER 1. INTRODUCTION 10in the omputation of inompressible ows on loally re�ned grids.While the algorithm in Almgren et al. [5℄ addresses eah of these issues, the spei�sof the algorithm are ompliated. Many speialized algorithmi piees are required to enfore theappropriate smoothness and onservation of the solution. Our approah has been to attempt tosimplify the algorithm to redue the number of algorithmi omponents, with the goal of making iteasily extensible to more ompliated problems.This work extends [5℄ in several important ways. First, we employ a ell-entered disreteprojetion operator, similar to the one developed in [44℄ and used in [48℄. Beause our algorithmwill require a ell-entered solver for the projetion of edge-entered advetion veloities and foraddition of di�usion (see, for example, [5℄), using a ell-entered projetion has the advantage ofsimpliity in that only one set of (ell-entered) solvers need be developed. This will make extensionof this work to more ompliated problems and geometries muh simpler, sine the author hasfound that onstrution and extension of solvers in a loally adaptive ontext an be fairly time-onsuming. Unlike [48℄, we re�ne in time as well as spae, whih means that, as in [5℄, a set ofsynhronization operations must be performed. Also, unlike [48℄ and [5℄, we apply the projetion tothe entire veloity �eld, instead of to the approximation to �u�t , whih appears to be neessary forour ell-entered projetion when temporal re�nement is employed.Unlike [5℄, in whih levels are synhronized in oarse-�ne pairs, we performmultilevel elliptisolves in our synhronization projetion, synhronizing all levels whih have reahed the same pointin time. One a multilevel solver has been developed, this is oneptually simpler, and there issome evidene that synhronization based on multilevel solves are more aurate, at least in theell-entered ase. Finally, we maintain freestream preservation in a di�erent way. In [5℄, freestream



CHAPTER 1. INTRODUCTION 11preservation is maintained exatly by a projetion of the advetion veloity mismath, followed bya re-advetion step on the oarse level. Then, the orreted advetive uxes are interpolated to�ner levels. In this work, we instead employ a lagged orretion based on the volume-disrepanyformulation used by As et al. [1℄ and by Trangenstein and Bell [66℄, whih is approximate in nature.In pratie, we show that the volume-disrepany method restrits advetion errors to those made inthe ourse of a single timestep immediately adjaent to oarse-�ne interfaes. In ontrast, withoutthis orretion, advetion errors aumulate and are adveted by the ow, orrupting the globalsolution. While the algorithm in [5℄ solves the inompressible Navier-Stokes equations, this work willsolve the equations of invisid inompressible ow, leaving extension to the visous ase for futurework. Sine the stability issues involved in implementing projetion methods for inompressibleow are more diÆult in the invisid ase, the invisid equations are a suÆient test for the newprojetion disretization and algorithm presented in this work.1.2 Thesis OverviewIn this thesis, a seond-order adaptive projetion method for the inompressible Eulerequations in two dimensions is presented and results are presented to demonstrate its e�etiveness.Chapter 2 desribes the single-grid implementation of the projetion method we will use.First, the projetion method is introdued, and some bakground is presented, along with the on-strution of the various disretizations of the projetion used in this work. Then, our single-gridstrategy of point relaxation oupled with multigrid aeleration for solving Poisson's equation isdesribed and explained. Finally, the single-grid version of the projetion algorithm used in this



CHAPTER 1. INTRODUCTION 12work is outlined and its onvergene is demonstrated .In Chapter 3, our adaptive strategy for numerially solving Poisson's equation on an adap-tive hierarhy of re�ned grids is presented. Speial are is given to the issues of oarse-�ne mathingonditions and the onstrution of omposite operators. This solution strategy is then extended tothe speial ases of solving on individual levels and groups of levels whih do not omprise the entireomputational domain. Beause the solution of Poisson's equation is entral to the the projetionmethod, we also explore other strategies for solving the equations in the ontext of AMR, with aneye toward the eventual implementation in the time-dependent adaptive projetion method. Finally,an error analysis of the adaptive solutions is performed, to determine the soures and size of theerrors in this method.In Chapter 4, the single-grid projetion algorithm of Chapter 2 is extended to an adap-tive framework. First, the issues raised by the addition of loal temporal and spatial re�nementare explored, inluding subyling (re�nement in time), oarse-�ne boundary onditions, the on-strution of omposite and level-based operators, and the synhronization operations whih must beperformed to maintain the proper smoothness of the solution for onservation and auray. Thenthe reursive timestep on a level in the multilevel algorithm is presented. Finally, the method usedto initialize the omputation at the initial timestep and after a regridding operation is outlined.Chapter 5 desribes the various methods used to estimate the error in a solution in orderto deide where to plae re�ned pathes. In this work, the grids an be pre-de�ned by the user, theuser an provide a solution-based error riteria, or Rihardson extrapolation an be used to estimatethe loal trunation error of the solution to determine whih ells to re�ne. Also, the method usedto group the \tagged" ells into lusters and reate a new grid hierarhy is desribed.



CHAPTER 1. INTRODUCTION 13Results of test problems used to validate the method are presented in Chapter 6. Severaltest problems were seleted to demonstrate the onvergene and performane of the method. Inpartiular, we demonstrate that ow features are not signi�antly orrupted by passage througha oarse-�ne interfae, that the volume-disrepany orretion is an e�etive tool for ontrollingadvetion errors, and that the use of loal re�nement with this algorithm allows attainment of theauray of the equivalent �ne-grid omputation.In Chapter 7, issues involved in designing and implementing the adaptive algorithm insoftware form are disussed. Extensive use was made of the objet-oriented funtionality of theC++ programming language, along with the numerial optimization of FORTRAN 77. Also, weused BoxLib [52℄, a C++ lass library designed to assist in the implementation of �nite-di�ereneon logially retangular grids.In the �nal hapter, we summarize what was learned in the ourse of this work and presentonlusions based on the �nal results.
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Chapter 2Finite Di�erene Methods on aSingle Grid

This hapter will desribe the single-grid projetion method used to solve the Euler equa-tions in this work.2.1 Finite-Di�erene NotationIn a �nite-di�erene omputation, the spatial domain is disretized into a �nite number ofells; the goal of the omputation is to approximate the exat solution in eah ell. In a onsistent andstable omputation, the more ells in the omputation, the better the approximation. A ompletedesription of the theory and pratie of �nite-di�erene methods and their plae in the greaterframework of numerial mathematis is obviously far beyond the sope of this work; the reader isreferred to a basi text in numerial PDE's, suh as [62℄.We will use a regular strutured Cartesian mesh in this work. The two-dimensional domain
 is divided into ells by plaing a regular retangular grid over the domain. For a retangulardomain extending from (xlo; ylo) to (xhi; yhi), this is simple { in two dimensions, there will be nx
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Figure 2.1: Basi Cartesian �nite-di�erene grid. Note that �x 6= �y in this ase.ells in the x-diretion, and ny ells in the y-diretion. In general, we will index the ells by (i; j) =(0::nx � 1; 0::ny � 1). The ell spaing is denoted as (�x;�y) = (Lxnx ; Lyny ), where Lx = (xhi � xlo)and Ly = (yhi � ylo) . See Figure 2.1.The boundary of 
 will be denoted as �
; the boundary of the physial domain will alsobe referred to as a physial boundary.Quantities de�ned on this Cartesian grid may be ell-entered, edge-entered, or node-entered. A quantity is said to be ell-entered if it is de�ned at the enter of the �nite-di�ereneell; �ij = �(xelli ; yellj ), where(xelli ; yellj ) = (xlo + (i+ 12)�x; ylo + (j + 12)�y):A quantity is said to be node-entered if it is entered at a node on the omputational grid:
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Figure 2.2: Centering of �nite-di�erene quantities. � is ell-entered, � is node-entered, and F x and F yare edge-entered�i� 12 ;j� 12 = �(xnodei� 12 ; ynodej� 12 ), where(xnodei� 12 ; ynodej� 12 ) = (xlo + i�x; ylo + j�y):Quantities whih are entered along the edges between ells are alled edge-entered. In two dimen-sions, an edge-entered quantity is either entered on an x-edge, where it is entered between the(i; j) and (i�1; j) ells on the grid, or it is entered on a y-edge between the (i; j) and (i; j�1) ells.In other words, the x-edge quantity F xi� 12 ;j is entered at (xnodei� 12 ; yellj ), while the y-edge quantityF yi;j� 12 is entered at (xelli ; ynodej� 12 ). See Figure 2.2.2.1.1 Ghost Cell Implementation of Physial Boundary ConditionsBoundary onditions will be enfored with the use of ghost ells, imaginary ells outsidethe omputational domain whih will ontain appropriate values for � (see Figure 2.3). This hasthe advantage of omputational simpliity as well as ease of programming, sine it is often possible
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Figure 2.3: Ghost ells outside omputational domain. Solid ells are within the omputational domain,while dashed ells are ghost ells outside the omputational domain used to enfore boundary onditions.to use the same disretization of the operator both in the interior of the domain and for ells alongthe boundary. The ghost ell values will be set using appropriate disretizations of the boundaryonditions. For Dirihlet boundary onditions, the ghost ell value an be omputed as (using theleft boundary as an example): ��1;j = 2�BC � �0;j : (2.1)where �BC is the value of �(xlo; j) spei�ed for the inhomogeneous boundary ondition. This is theresult of a linear extrapolation of � through �BC on the physial boundary, and so is O(h2) for thevalue of �(� 32�x; yj). For homogeneous Dirihlet boundary onditions, this redues to:��1;j = ��0;j (2.2)We an also represent an inhomogeneous Dirihlet boundary ondition by the third-orderextrapolation formula: ��1;j = 83�BC � 2�0;j + 13�1;j : (2.3)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 18For Neumann boundary onditions, the ghost-ell value is given by:��1;j = �0;j ��x����n�BC (2.4)where ���nBC is the normal derivative spei�ed by the Neumann boundary ondition. For homoge-neous Neumann boundary onditions, ����n�BC is 0. Finally, at times we will want to extrapolateto ompute boundary onditions. We will use either linear extrapolation:��1;j = 2�0;j � �1;j (2.5)or seond-order extrapolation: ��1;j = 3�0;j � 3�1;j + �2;j : (2.6)2.2 Poisson's EquationPoisson's equation appears in the desriptions of many physial problems, suh as uid dy-namis, and eletrodynamis, and will be neessary for our solution algorithm for the inompressibleEuler equations. Beause of the simpliity of our problem (for the onstant-density Euler equationswe will be restrited to the onstant-oeÆient ase), we will be able to employ fairly simple solutiontehniques.We wish to solve the onstant-oeÆient Poisson's equation:�' = r � r' = � on 
; (2.7)with boundary onditions: a(x; y)�'�n + b(x; y)' = f(x; y) on �
: (2.8)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 19Note that if a is zero, we are solving a problem with Dirihlet boundary onditions, while if b is zerowe are solving a problem subjet to Neumann boundary onditions.For simpliity, we will assume a uniform Cartesian grid in two dimensions, with �x =�y = h. The extension to a non-uniform mesh is straightforward. (See, for example, [36℄.) �i;jwill be the disrete approximation to '(xi; yj). � and � will be ell-entered, so that �i;j representsthe solution at (x; y) = (h(i+ 12 ); h(j + 12 )). We will use the standard 5-point disretization of theLaplaian operator: (L�)i;j = (�i+1;j + �i�1;j + �i;j+1 + �i;j�1 � 4�i;j)h2 (2.9)For the time being, we will restrit our disussion to homogeneous Dirihlet boundary onditions, ' =0 on �
; this orresponds to the boundary ondition (2.8) with a = 0, b = 1, and f = 0. The physialboundary onditions will be enfored using the ghost-ell formalism desribed in Setion 2.1.1, andwe will approximate these boundary onditions using (2.1). We will use multigrid aelerated pointrelaxation to solve this equation, beause the extension of multigrid to the loally-re�ned ase isstraightforward and well-understood.2.2.1 Trunation Error AnalysisWe de�ne �ei;j as the exat solution to the ontinuous problem, evaluated at the ell-enters:�ei;j = '(xi; yj) (2.10)Then the trunation error �i;j is de�ned as:�i;j = �i;j � L(�e)i;j (2.11)where L is the disretization of the Laplaian operator given in (2.9).



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 20It is not diÆult to show, using Taylor expansions, that�i;j = (O(h2) for interior ellsO(1) for boundary ells: i = 0, i = (nx � 1), j = 0, or j = (ny � 1) (2.12)The trunation on the interiors is O(h2) due to a anellation of errors inherent in the entered-di�erene disretization of L. As we see, there is a loss of auray at the boundary, in part beausewe an no longer take advantage of these anellations, and in part beause of the lower-order natureof the boundary ondition disretization in (2.2).If we de�ne the solution error �,�i;j = �i;j � �ei;j (2.13)then the solution error satis�es the following error equation:L� = �: (2.14)The solution error � is O(h2) at all points on the grid, despite the lower-order approximation at theboundary. This is beause, for smooth solutions, it is possible to maintain global auray even whenusing a less-aurate disretization on a set of ells whih has a lower dimension than the problemspae. In our ase, the problem spae is two-dimensional, while the redued-auray disretizationon the boundary is on a one-dimensional set of ells. In general, we an lose one order of aurayon a set of ells one dimension less than the problem spae. This would imply that we an have anO(h) boundary ondition and still maintain global seond-order auray in our problem. This anbe most easily understood using the modi�ed-equation analysis of Johansen [43℄.In that approah, we view the disrete solution as the solution to a ontinuous problemwith a pieewise-onstant harge distribution in eah ell. Sine Poisson's equation is linear, weexpet that we an separate the solution error � into the sum of ontributions to the total error



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 21from the soure in eah ell. We de�ne �(kl) as the solution error indued by � (kl), whih is anapproximation to the trunation error �k;l integrated over the ell volume:�(kl) = (Lh)�1� (kl); (2.15)� (kl)i;j = �h2�i;j if (i; j) = (k; l)0 otherwiseGiven the interpretation of � (kl) as a harge of strength h2�k;l loated at (xk ; yl), we expet that�(kl) = O(h2)�k;l: (2.16)The total error at point (i; j), �i;j , would then be the sum of the errors indued by the trunationerror in eah ell in the domain: �i;j = Xk;l2
 �(kl)i;j : (2.17)In interior ells, this would be �i;j�h2 = O(h4). If the boundary ondition disretization isO(h), then in the boundary ells, this would be � bndryi;j �h2 = O(h3). There are O( 1h2 ) interior ells,for a total ontribution of O(h2) to �, while there are only O( 1h ) boundary ells, so their ontributionto � is also O(h2). So, using boundary onditions for whih � = O(h) on the physial boundary stillleads to a seond-order aurate method.For the ase of Dirihlet boundary onditions, one obtains a sharper result: if ell (k; l) isadjaent to a physial boundary, then �(kl) = O(h3)�k;l. To leading order in h, the �eld indued by� (k;l) is that indued by a harge �k;lh2, plus that indued by an image harge of strength �k;lh2,entered at the ghost-ell (�1; j) (for the left boundary). From potential theory, the e�et on thesolution of a dipole soure an be approximated by:�(d) � �i;j � h2 � [ln(d+�x)� ln(d��x)℄� O(h3)�O(h): (2.18)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 22One again, there are O( 1h ) boundary ells, so the e�et of the boundary ells on the solution error isatually O(h3), one order less than that of the interior ells. From this, it follows that one an use aboundary ondition for whih � = O(1) at boundary ells, but still maintain seond-order aurayin the solution. In partiular, the boundary ondition represented by (2.2) leads to a seond-orderaurate method.2.2.2 Point RelaxationIt is well known and doumented in the literature that solving the resulting system ofequations diretly is an O(N 32 ) operation, where N = nxny is the number of grid points. This isomputationally expensive; instead, we will use an iterative sheme. Rather than solve the systemof equations exatly, we will ompute a series of (hopefully) better approximations to the solution,starting with an initial guess �0, and ontinuing with the nth iterate f�ngn�1. We ontinue untilthe error in our solution is less than a given tolerane.One way to onstrut an iterative method is as an assoiated unsteady problem for ~�, wherethe steady state solution (� ~��t = 0) is the solution:� ~��t = L~�� � (2.19)De�ning a step-size � and using forward Euler, we an disretize this assoiated problem as:~�n+1i;j = ~�ni;j + �(L~�n � �)i;j (2.20)It is obvious that this method is linear, and will also leave the exat solution unhanged.This still leaves open the question of whether this will onverge to a steady-state solution,and if so, how to selet the proper �. One way to analyze this method is to plae the problem in



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 23residual-orretion form. We �rst de�ne the residual R:Resn = �� L~�n (2.21)This is an indiation of how well we are solving the equation { at steady state, when we have reahedthe solution to Poisson's problem, the residual will go to zero. We an also de�ne Æn as the error inthe nth iterate of �: Æni;j = ~�ni;j � �: (2.22)Using equations (2.21) and (2.22) in (2.19), we see that the error satis�es the heat equation:�Æ�t = LÆ: (2.23)We would like to see how Æ behaves. For stability and onvergene we desire that Æ ! 0 as t!1.In the ase of (2.20), we would like to show that for the operator L:LÆ = (I + ��)Æ; (2.24)(where I is the identity operator) that the norm of Æ is redued:jjLÆjj � jjÆjj: (2.25)In the ase of doubly periodi boundary onditions, we an use Fourier analysis to examinethe behavior of Æ. To avoid onfusion with i = p�1, we will temporarily replae the indies (i; j)with (jx; jy). Using the disrete Fourier transform:Ænjx;jy = nx2Xkx=�nx2 +1 ny2Xky=�ny2 +1 akxakye2�i(kxjx+kyjy)h (2.26)If we apply a Fourier transform to the operator L,(LÆ)jx;jy = nx2Xkx=�nx2 +1 ny2Xky=�ny2 +1 akxaky�(kx; ky)e2�i(kxjx+kyjy)h (2.27)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 24where the symbol �(kx; ky) represents the e�et of the operator L on the error with a wavenumber(kx; ky). For stability, �(kx; ky) � 1 for all wavenumbers kx and ky . Note that we an relatethe �nite-di�erene notation and Fourier spae notation by reognizing that we an de�ne a shiftoperator S to represent a shift by one on the �nite-di�erene grid. So, if we are onsidering ell(jx; jy), ell (jx + 1; jy) will be represented by Sx. Likewise, ell (jx; jy � 1) will be represented by�Sy. In Fourier spae, this beomes a multipliation:Sx(Ænjx;jy ) = nx2 +1Xkx=�nx2 +1 ny2 +1Xky=�ny2 +1 akxakye2�i(kx(jx+1)+kyjy)h= nx2 +1Xkx=�nx2 +1 ny2 +1Xky=�ny2 +1 akxakye2�ihkxe2�i(kxjx++kyjy)h (2.28)So if we onsider a single wavenumber omponent (kx; ky), then the shift operator Sx is just amultipliation by e2�ikx . The y-diretion shift is similar, as is the negative shift.To understand the behavior of our operator L(Æ), we will examine its e�et on a singlewavenumber omponent of the error. If we use the standard 5-point disretization of the Laplaian,thenL(Æ)jx;jy = nx2 +1Xkx=�nx2 +1 ny2 +1Xky=�ny2 +1 akxaky [1+ �h2 (e2�ihkx+e2�ihky+e�2�ihkx+e�2�hky�4)℄e2�i(kxjx+kyjy)h(2.29)So, the symbol is:�(kx; ky) = 1 + �h2 [e2�ihkx + e2�ihky + e�2�ihkx + e�2�hky � 4℄= 1 + �h2 [2os(2�hkx) + 2os(2�hky)� 4℄: (2.30)The quantity in brakets will never be positive, so to ensure j�j � 1 for all (kx; ky), we require



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 25(looking at the worst ase, where os(2�hkx) = os(2�hky) = �1):1 + �h2 (�8) > �1� < h24 (2.31)to ensure that all Fourier modes of the error eventually deay to zero.Sine � is wavenumber-dependent, di�erent wavenumber omponents of the error will bedamped at di�erent rates. First, look at the slowly varying low-wavenumber omponents of theerror. Performing a Taylor expansion of (2.30) around (kx; ky) = (0; 0) yields:�(kx; ky)j(kx=0;ky=0) � 1� 4��2(k2x + k2y): (2.32)Sine � � h24 = O(h2), this beomes�(kx; ky)j(kx=0;ky=0) � 1� Ch2; (2.33)where C is a onstant. So, the low-wavenumber error will deay slowly. On the other hand, if we lookat the highest wavenumber present, whih is (kx; ky) = (nx2 ; ny2 ) (remembering that h = 1nx = 1ny ),then os(2�hkx) = os(2�hky) = �1. In this ase,�(nx2 ; ny2 ) = 1� 8�h2 : (2.34)If � = h28 , then the highest wavenumber mode will be damped ompletely in one iteration. So, thismethod is extremely eÆient at damping high-wavenumber omponents of the error, while dampinglower wavenumber omponents of the error muh more slowly.Note that in our present sheme, attempting to aelerate onvergene to steady stateby taking the maximum allowable value for the relaxation parameter, � = h24 , orresponds toreplaing the value of Æjx;jy with the average of its four neighbors Æjx+1;jy ; Æjx�1;jy ; Æjx;jy+1; and



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 26
+1 +1 +1-1 -1

-1 +1 -1 +1 -1

-1 +1 -1 +1 -1

+1 +1 +1-1 -1

Figure 2.4: Residual pattern whih auses stalled onvergene with point-Jaobi iterationÆjx;jy�1. Unfortunately, straightforward appliation of this sheme using the 5-point disretizationof the Laplaian operator su�ers from a loal deoupling of solution values, resulting in a lak ofonvergene for the ase of a high-wavenumber error (Figure 2.4) . In this ase, the values of +1and -1 simply ip bak and forth for eah iteration, and the method does not onverge to a steadystate solution.To avoid this problem, we instead use Gauss-Seidel with red-blak ordering (GSRB) it-eration. Instead of applying point-Jaobi iteration to eah ell in turn, we apply two half-stepoperations. We divide the ells into two groups in a hekerboard manner. First, we relax on the\red" ells (where i + j is even) to get an intermediate value Æn+ 12 . Then we relax on the \blak"ells (where i+ j is odd) using Æn+ 12 , (Figure 2.5):Æn+ 12jx;jy = ( Ænjx;jy if i+ j oddÆnjx;jy + h24 ( Ænjx+1;jy+Ænjx�1;jy+Ænjx;jy+1+Ænjx;jy�1�4Ænjx;jyh2 �Resjx;jy ) if i+ j evenÆn+1jx;jy = 8><>: Æn+ 12jx;jy + h24 ( Æn+12jx+1;jy+Æn+12jx�1;jy+Æn+12jx;jy+1+Æn+12jx;jy�1�4Æn+12jx;jyh2 �Resjx;jy ) if i+ j oddÆn+ 12jx;jy if i+ j even :(2.35)
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Figure 2.5: \Red-Blak" ordering of ells for GSRB iterationThis solves the deoupling problem for the error shown in Figure 2.4, instead replaing it with auniform (low-wavenumber) error of either 1 or -1.By itself, use of GSRB is not suÆient to aelerate onvergene signi�antly over point-Jaobi iteration, sine for low wavenumber omponents of the error, � = 1� O(h2). However, it isvery e�etive when ombined with multigrid aeleration, whih is desribed in the next setion.2.2.3 Multigrid AelerationWe have seen that GSRB iteration is very e�etive at damping high-wavenumber ompo-nents of the error, while it is less e�etive at reduing lower wavenumber omponents of the error. Infat, if � = h24 , high-wavenumber error is replaed by low-wavenumber error by the GSRB iteration.To aelerate onvergene, we will employ multigrid aeleration. This tehnique, originally devel-oped in the 1960s by various researhers [24℄, has reeived muh attention. A good introdutoryreferene is Briggs [25℄ or Wesseling [69℄. Brandt [24℄ inludes a brief overview of the history ofmultilevel and multigrid methods. The basi onept is that what onstitutes a \high" wavenum-



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 28ber is mesh-dependent. An error mode whih is a low-wavenumber error on a �ne mesh will be ahigh-wavenumber error on a oarser mesh. For a given �nite-di�erene grid 
, we an de�ne a seriesof oarsened grids 
k whih over the domain. In our onstrution, eah suessive grid oarseningwill be a fator of two oarser than the last, so that hk�1 = 2hk. Note that these oarsenings existindependently of any existing AMR grid hierarhy.The strategy will be to employ a relaxation sheme whih e�etively damps high-wavenumberomponents of the error, suh as GSRB, on a solution. Then, the solution is restrited to a oarsergrid using a restrition operator Rk�1k and relaxed on this grid; applying the relaxation on this meshwill damp a lower wavenumber error, whih has beome a high wavenumber error on this mesh. Thisproess is ontinued reursively until a oarsest level is reahed, where the problem an be solvedinexpensively. Then, the orretions on the oarser levels are interpolated bak into the �ner levelsolution with an injetion operator Ikk�1, followed by further relaxation on the �ne grid to eliminateany high-wavenumber error indued by the interpolation of the oarser orretions. This yle isthen repeated until the residual is suÆiently damped. The multigrid algorithm used in this work isoutlined in Figure 2.6. �1 is the number of smoothing iterations performed before oarsening, and�2 is the number of smoothing operations performed after the interpolation steps.Beause of the simpliity of the problems we are solving, we an use simple averaging for therestrition operator and pieewise onstant interpolation as an injetion operator. More ompliatedshemes exist, suh as Blak Box Multigrid [42℄, and might be more eÆient, but sine the simplermethods have worked suÆiently well for our problem, we have not explored these options in thiswork. As an example, Figure 2.7 is a plot of residual as a funtion of multigrid iteration for solving
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MG()ReskMAX = �kMAX � LkMAX (�kMAX )do while (iter < maxIter and kReskMAXk < tol)iter++MGCyle(�kMAX ; �kMAX )ReskMAX = �kMAX � LkMAX (�kMAX )end doend MGMGCyle (�k; �k)for i = 1; �1�k  GSRB(�k; �k)end forResk = �� Lk(�k)if (k > 0 )�k�1 = Rk�1k (Resk)Æk�1 = 0MGCyle (Æk�1; Resk�1)�k = �k + Ikk�1(Æk�1)for i = 1; �2�k  GSRB(�k; �k)end forelseBottomSolve (�0; �0)end ifend MGCyle Figure 2.6: Pseudoode for a multigrid V-yle
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Max(Residual) vs. Work Units
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0.00 50.00 100.00 150.00 200.00 250.00Figure 2.7: Max(Residual) vs. work units for a test problema sample problem in whih the right hand side is three Gaussian soures (shown in Figure 3.11) withhomogeneous Dirihlet boundary onditions, solved on a 32x32 grid. A work unit is the amount ofwork equivalent to one iteration at the �nest level, negleting interpolation and averaging. The linelabeled \GSRB" is a plot of the in�nity-norm of the residual as a funtion of work units when simpleGSRB iteration is applied (in the ase of GSRB, 1 work unit is 1 GSRB iteration). The line labeled\GSRB w/ Multigrid" shows the maxnorm of residual when GSRB with multigrid aeleration isapplied. In this ase, 2 GSRB iterations are performed on the way up and 2 more on the way bakdown on eah level. (In the notation of Figure 2.6, this orresponds to �1 = �2 = 2.) In this ase,eah multigrid yle orresponds to 4 iterations on a 32x32 grid (two on the way down, and twoon the way up), 4 iterations on a 16x16 grid, 4 on a 8x8 grid, and so on. So, in this ase, eahmultigrid v-yle represents 5.33 work units. Even given the added expense of a multigrid yle over



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 31that of simple iteration, it is obvious that multigrid aeleration enables rapid onvergene for ourtest problem.2.3 The Inompressible Euler EquationsThe evolution of invisid uid ows an be desribed by the Euler equations:�u�t = �(u � r)u� 1�rp; (2.36)r � u = �1� D�Dt (2.37)where u is the uid veloity vetor (u; v)T , t is the time, � is the uid density, and p is the pressure.The notation DDt represents the material derivative, whih in an Eulerian frame of referene is:DDt = ��t + (u � r): (2.38)The evolution equation for a passively adveted salar in inompressible ow is (we have exploitedthe fat that r � u = 0): �s�t +r � (us) = 0 (2.39)For very low Mah number ows, the uid beomes inompressible, whih implies that the materialderivative of the density is identially zero. In this ase, the onservation of mass equation (2.37)redues to a onstraint on the veloity �eld, r � u = 0: (2.40)In our ase, we will make the further assumption that the density � is onstant (extension of thiswork to the variable density ase is straightforward). Sine it is a onstant, we will without loss ofgenerality assume that � = 1 identially. The reader is referred to a standard text on uid mehanis(for example [13℄) for the onditions where these approximations are appropriate.



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 322.4 Projetion MethodsWhile equations (2.36) and (2.40) form a well-posed set of di�erential equations for theuid system, it is not lear how to onstrut a numerial method for their solution. Enforing theonstraint (2.40) will be problemati, and there is no evolution equation for the pressure.The projetion method, originally oneived by Chorin [29℄ provides a way to evolve asolution to the inompressible Euler equations in time. It is based on the Hodge-Helmholtz deom-position, whih uniquely deomposes any vetor �eld w into a divergene-free part, ud, and thegradient of a salar r�: w = ud +r�:where ud � n = 0 on �
 (2.41)This is an orthogonal deomposition. If we de�ne the inner produt:hud;r�i = Z
 ud � r�dV; (2.42)then hud;r�i = 0.The deomposition an be performed by solving for � in the following partial di�erentialequation: r � r� = r �w (2.43)r� � n = w � n on �
:One we have solved for �, then we an extrat ud by subtrating the gradient of � from the originalvetor �eld: ud = w �r�: (2.44)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 33We an now de�ne a \projetion" operator P , whih given a vetor �eld will return thedivergene free piee ud: P (w) = ud: (2.45)To obtain the gradient piee, (I � P )(w) = r�; (2.46)where I is the identity. From equations (2.43) and (2.44),P (w) = �I �r(��1)r��w: (2.47)The projetion operator has several important properties. First, it is idempotent, i.e.P 2(w) = P (w). Seond, the projetion is symmetri,hw; P (w)i = hP (w);wi;or P = P T . Also, it is a linear operator, and is norm-reduing, in the sense that kP (w)k � kwk.If we apply the projetion operator to the inompressible Euler equations (2.36) and (2.40),then the divergene onstraint (2.40) is no longer a separate equation { the onstraint is enforedby the projetion. If u(t) is divergene-free, then �u�t is also divergene-free, in whih ase, P (�u�t ) issimply �u�t . With this in mind, we an write:�u�t = P��(u � r)u�rp�: (2.48)We an then disretize this in time as:un+1 = un ��tP��(u � r)u�rp�= un ��tP��(u � r)u�; (2.49)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 34sine P (rp) = 0. From this, we an infer that the pressure is not an independent variable, butrather is determined by the requirements of the divergene onstraint. In the ontext of the Hodge-Helmholtz deomposition (2.41), when we projet the update to the veloity �eld in (2.49), thegradient of the pressure and the r� term in (2.41) are the same. This is the basis for the projetionmethod. As formulated by Chorin [29℄ and extended by Bell, Colella, and Glaz [16℄, the projetionmethod is a preditor-orretor method whih predits an intermediate veloity �eld u�, whih isa �rst approximation of un+1. The intermediate veloity u� is then \projeted" onto the spae ofdivergene-free vetors to produe un+1.u� = un ��t(u � r)u (2.50)un+1 = P (u�)rp = (I � P )u�In this basi example, we have desribed how a projetion method for inompressible owan be formulated. Note that the details of the spatial and temporal disretizations are left unspe-i�ed. There are many di�erent versions of the original projetion method in use, with a number ofdisretization and algorithmi hoies. These will be disussed in more depth in subsequent setions.The basi issues whih must be dealt with are the disretization of the projetion operator Pand the disretization of (u �r)u used in the preditor step. We will use the approximate projetionof Lai [44℄, beause of its simpli�ed linear algebra. To ompute the advetive terms, we will use theformulation of Bell, Colella, and Glaz [16℄, as extended by Bell, Colella, and Howell [17℄, whih usesa lagged pressure gradient, and upwinding in the veloity preditor to ahieve seond-order aurayin time.
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Figure 2.8: Edge-entered veloity �eld2.5 Disretizing the Hodge-Helmholtz ProjetionIn the previous setion, the basi projetion method proposed by Chorin [29℄ was outlined,while the details of the spatial disretization was left unspei�ed. In this setion, we will outline theapproah we will take in onstruting a projetion method whih we will later extend to an AMRalgorithm.2.5.1 The Disrete ProjetionOne possible disretization, known as the MAC (for Marker and Cell) [38℄ projetion, isa logial result of a edge-entered veloity �eld uedge, in whih normal veloities are de�ned ateah ell edge (see Figure 2.8). For this reason, we will also refer to the MAC disretization as anedge-entered disretization. Given a veloity �eld de�ned at ell edges, we de�ne the ell-entereddisrete divergene as: (Du)i;j = ui+ 12 ;j � ui� 12 ;j�x + vi;j+ 12 � vi;j� 12�y : (2.51)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 36This disretization is inomplete without spei�ation of the physial boundary onditions. Theboundary ondition on the edge-entered veloity �eld will be the physial boundary ondition onthe normal veloity at �
. In the ase of solid walls, this will be u � n = 0 on �
.We an also de�ne an edge-entered disrete gradient formula operating on a ell enteredvariable � as:(G�)i+ 12 ;j = (�i+1;j � �i;j�x ; �i+1;j+1 + �i�1;j+1 � �i+1;j�1 � �i�1;j�14�y )T (2.52)(G�)i;j+ 12 = (�i+1;j+1 + �i+1;j�1 � �i�1;j+1 � �i�1;j�14�x ; �i;j+1 � �i;j�y )T :Following the approah in [44℄, the boundary ondition on the gradient, regardless of the physialboundary ondition, is quadrati extrapolation of �, whih is equivalent to linear extrapolation ofG�. In this ase, both D and G are seond-order entered-di�erene operators. The operatorL = DG is the standard �ve-point Laplaian operator, and the appliation of the projetion isequally straightforward. First, solve L� = Duedge (2.53)for the ell-entered �. From (2.43), it is apparent that the proper physial boundary ondition on �is ���n = w �n. For the ase of solid walls, this beomes a homogeneous Neumann boundary ondition.So, when solving for �, we will use the ghost-ell implementation of the Neumann boundary onditionin (2.4) Further disussion of the boundary onditions for the projetion operator is presented inGresho and Sani [37℄, and in E and Liu [35℄. We then orret the edge-entered veloity �eld withthe gradient of �: uedge = uedge �G�: (2.54)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 37So, the projetion operator looks like:P = I �G(L)�1D: (2.55)While L is not generally invertible, it is invertible on the range of D. This disretization has theadvantages of seond-order auray, and it is simple to implement and generally well-behaved. Itis exat in the sense that it maintains in a disrete way the properties of the projetion operatoroutlined in Setion 2.4, i.e. P 2 = P and P = P T .Unfortunately, we would prefer to work with a ell-entered disretization for u and (u �r)u rather than one whih is edge-entered. We would like to take advantage of high resolutionmethods developed for the advetion-di�usion equations, whih generally require that variables beell-entered. Also, in the presene of irregular geometries, Cartesian grid methods are muh easierto onstrut with a ell-entered disretization.2.5.2 Cell-entered Disretization of the ProjetionE�orts to formulate an exat disrete projetion for ell-entered veloities were largelyunsuessful. We an use the entered-di�erene operators(DCCu)i;j = ui+1;j � ui�1;j�x + vi;j+1 � vi;j�1�y (2.56)(GCC�)i;j = (�i+1;j � �i�1;j2�x ; �i;j+1 � �i;j�12�y )T : (2.57)Boundary onditions for these ell-entered operators will be similar to those used in the edge-entered ase. For the divergene operator, we will use the ghost-ell representation of the physialboundary ondition. For solid walls, the homogeneous Dirihlet boundary ondition u � n is repre-sented using (2.2). Sine � is still ell-entered, physial boundary onditions for the gradient will
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δ δ δ δ δFigure 2.9: Deoupled grids reated by the exat DG operatorbe similar to those used in the edge-entered disretization: we will use a quadrati extrapolationof � to �ll ghost ells before omputing the ell-entered gradient operator.The orresponding projetion, following equations (2.51) through (2.55), isPCC + I �GCC(DCCGCC)�1DCC : (2.58)While this disretization produes an idempotent projetion, it is not well-behaved. The stenilfor DCCGCC produes a deoupling of the grid, in whih there are four separate grids whih areonly oupled together through boundary onditions (Figure 2.9). This deoupling has been shownto ause problems when there are soure terms present, and makes implementation of fast linearalgebra tehniques suh as multigrid diÆult [44, 55℄. Also, Howell and Bell [41℄ report signi�antompliations when implementing the deoupled stenil aross oarse-�ne interfaes.Strikwerda [61℄ proposed an exat projetion whih used non-symmetri operators. Whilethis eliminated the deoupling of the grids, it resulted in more ompliated linear algebra whihproved omputationally expensive to implement and su�ered from a lak of robustness in the presene



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 39of large density gradients [44℄.In response to these diÆulties, a non-idempotent disretization of the projetion was devel-oped by Almgren, Bell, and Szymzak [4℄. In this approah, we replae the badly-behaved DCCGCCoperator with an approximation to the Laplaian operator L whih has better properties. The ap-proximate projetion developed in [4℄ was based on a �nite-element formulation, whih resulted ina node-entered pressure. The ell-entered disretization we will use was developed by Lai [44℄. Inthis ase, we will employ seond-order approximations to all the operators involved, using the DCCand GCC from equations (2.56) and (2.57), but replaing the deoupled Laplaian of DCCGCC witha more standard disretization. In our ase, we will use the standard �ve-point Laplaian operatorof (2.9), so the projetion operator will be:P = I �GCC(L)�1DCC (2.59)Analysis of this projetion operator by Lai [44℄ has shown that it is a seond-order aurate operator.Note that the ell-entered operators an also be onstruted with the edge-entered op-erators using appropriate averaging from edges to ells and from ells to edges. First de�ne theappropriate averaging operators:(AvE!Cu)i;j = (ui+ 12 ;j + ui� 12 ;j2 ; vi;j+ 12 + vi;j� 122 )T ; (2.60)whih averages edge-entered quantities onto ell enters, and(AvC!E�)i+ 12 ;j = �i+1;j + �i;j2 (2.61)(AvC!E�)i;j+ 12 = �i;j+1 + �i;j2 ;whih averages ell-entered (vetor) quantities to ell edges. Then, the ell-entered operators



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 40de�ned in equations (2.56) and (2.57) an be written as:DCCu = D(AvC!Eu) (2.62)and GCC� = AvE!CG�; (2.63)respetively. In this ase, we an rewrite the approximate projetion (2.59) as:P = I �AvE!CG(L)�1DAvC!E (2.64)The disretization of (2.64) is not idempotent, P 2 6= P , sine L 6= DCCGCC . Non-idempotent disretizations of the projetion are often referred to as approximate projetions. Stabilityand onsisteny of the approximate projetion in (2.64) were shown in [44℄.2.5.3 Di�erent Projetion FormulationsIt was noted in the last setion that exat projetions for ell-entered variables are notwell-behaved, and the approximate projetion was introdued as an alternative. In pratie, the formof the projetion is not the only design hoie. We must also determine what is being projeted.There are four main variations. For idempotent disretizations of the projetion, the di�erentformulations would be equivalent. However, sine we are using an approximate projetion, hoie ofthe formulation to use has an impat on the performane of the method.We denote the disrete approximation to the advetive term (u � r)u as Nn+ 12 . The �rstand simplest version of the projetion is the pressure formulation, in whih the projetion will returnthe estimate of the latest pressure, through a projetion of the entire veloity �eld:1. u�� = un ��tNn+ 12



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 412. Solve Lpn+ 12 = 1�tD(u��)3. un+1 = u�� ��tGpn+ 12 :A variation on the �rst formulation is known as the pressure-inremental formulation, sinethe projetion atually returns an inrement to the pressure �eld, Æn:1. u� = un ��t(Nn+ 12 +Gpn� 12 )2. Solve LÆn = 1�tD(u�)3. un+1 = u� ��tGÆn4. pn+ 12 = pn� 12 + Æ.Note that we disriminate between the use of u� and u�� to denote the intermediate veloity �eld,in an attempt to be onsistent with previous de�nitions of u� in the literature, for example, those in[5, 44℄. We will use u� to refer to the intermediate veloity �eld whih inludes the e�et of rpn� 12 ,while we will use u�� to denote the intermediate veloity �eld omputed without the pressure term.In both of these algorithms, we are projeting a predition of the new veloity �eld. If theold veloity un is divergene-free, it is also possible to simply projet the update to the veloity�eld, whih is the predited �u�t . As before, this an be done in a pressure formulation:1. u�� = un ��tNn+ 122. Solve Lpn+ 12 = D(u���un�t )3. un+1 = u�� ��tGpn+ 12 ;or in a pressure-inremental formulation:



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 421. u� = un ��t(Nn+ 12 +Gpn� 12 )2. Solve LÆn = D(u��un�t )3. un+1 = u� ��tGÆn4. pn+ 12 = pn� 12 + Æn:An analysis of these four formulations is presented by Rider [54℄, who onluded that forapproximate projetions, it is better to projet the veloity �eld, rather than �u�t , beause of theerror due to the approximate projetion whih remains in un. This error an aumulate over manytimesteps. Also, any errors in the initial state will remain undamped by the shemes whih projetu��un�t . However, both the single-grid algorithm of Lai [44℄, and the AMR algorithm of Almgren, etal. [5℄ projet u��un�t with suess.Our algorithm will be based on the pressure form of the projetion of u��, in large partbeause of the extra demands of the adaptive algorithm.2.6 Single-Grid AlgorithmIn this setion, we will present the single-grid version of the algorithm, whih will advanethe solution u and s, where s is a passively adveted salar onentration �eld, from time tn to timetn+1. The new pressure pn+ 12 will also be omputed. It is assumed that at time tn we have theurrent solution un and sn. Our disretization of (2.36) will be:un+1 = un ��t[(u � r)u℄n+ 12 ��tr�n+ 12 (2.65)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 43where � will be our approximation of the pressure. We will disretize the salar update equationas: sn+1 = sn ��t[r � (us)℄n+ 12 (2.66)whih will be our evolution equation for s.The basi struture of the algorithm is a preditor-orretor sheme. We �rst predit anapproximation to the new veloity �eld, u��. This predited veloity �eld will not, in general, satisfythe kinemati onstraint on divergene. We then orret the veloity �eld by projeting u�� ontothe spae of vetor �elds whih satisfy the divergene onstraint.To ompute u�� and sn+1, we will need a set of edge-entered \advetion veloities", whihare an approximation of (un+ 12i+ 12 ;j ; vn+ 12i;j+ 12 ). To ompute these, we predit upwinded approximationsfor the edge-entered veloities at tn+ 12 , and then projet these veloities using an edge-enteredprojetion, whih ensures that our advetion veloities are divergene-free. To predit edge valuesat tn+ 12 , we use a Taylor series approximation, in whih we use (2.36) to replae the ��t term. Forexample: uL;n+ 12i+ 12 ;j = uni;j + �x2 �u�x + �t2 �u�t (2.67)= uni;j + �x2 �u�x + �t2 [�(u � r)u�rp℄n+ 12i;j= uni;j + 12(�x � u�t)�u�x � �t2 v �u�y � �t2 �p�xThis is an extrapolation from the left side of the edge. In order to ompute an upwinded solutionat the edge, we will also need an extrapolation from the right, whih will look like:uR;n+ 12i+ 12 ;j = uni+1;j � �x2 �u�x + �t2 �u�t (2.68)= uni+1;j � �x2 �u�x + �t2 [(u � r)u�rp℄n+ 12i+1;j
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 i+1/2Figure 2.10: Left and right extrapolated states= uni+1;j + 12(��x� u�t)�u�x � �t2 v �u�y � �p�xSee Figure 2.10. In two dimensions, we will also need to ompute top and bottom extrapolationsfor the (i; j + 12 ) edges. These are omputed analogously to the left and right states.We then use these advetion veloities to ompute updated values for the salar �eld sn+1,and the predited veloity �eld u��, whih are then projeted, ompleting the update. It is also worthnoting that we use onvetive, rather than onservative, di�erening to ompute the advetion term(u � r)u beause the advetion veloities will not be divergene-free in our multilevel algorithm,although they are solenoidal in this single-grid version.2.6.1 Computing Advetion VeloitiesFirst, we ompute approximate edge-entered advetion veloities uedge by averaging theell-entered un to edges: uedge = AvC!Eun: (2.69)Next, we use a Taylor expansion to extrapolate normal veloities to ell edges. For the



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 45(i + 12 ; j) edges, this will be (using the notation from [5℄ { the supersript L indiates that theextrapolation to edge (i+ 12 ; j) is from the left):unormi;j = 12(uedgei+ 12 ;j + uedgei� 12 ;j)~uL;n+ 12i+ 12 ;j = uni;j +min[ 12(1� unormi;j �t�x ); 12 ℄(ux)i;j � �t2�y (�uy)i;j (2.70)where ux is the undivided entered-di�erene in the normal diretion, in this ase,(ux)i;j = 12(uni+1;j � uni�1;j); (2.71)and �uy is the undivided upwinded transverse di�erene:vtani;j = 12(vedgei;j+ 12 + vedgei;j� 12 )(�uy)i;j = (uni;j � uni;j�1 if vtani;j > 0uni;j+1 � uni;j if vtani;j < 0. (2.72)Computing the right state is similar:~uR;n+ 12i+ 12 ;j = uni+1;j +max[ 12(�1� unormi;j �t�x );�12℄(ux)i+1;j � �t2�y (�uy)i+1;j : (2.73)Then, we hoose the upwind state:un+ 12i+ 12 ;j = 8>>><>>>: ~uL;n+12i+ 12 ;j if uedgei+ 12 ;j > 0~uR;n+ 12i+ 12 ;j if uedgei+ 12 ;j < 012 (~uL;n+ 12i+ 12 ;j + ~uR;n+ 12i+ 12 ;j ) if uedgei+ 12 ;j = 0 (2.74)Note that we do not inlude the pressure term in the extrapolation. It is unneessarybeause these veloities will be projeted. Also, unlike previous implementations of similar algo-rithms [5, 16, 44℄ we do not employ slope limiters when omputing ux and uy. Hildith [39℄ found



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 46that slope limiters, whih were developed to prevent osillations in ompressible ows with sharpdisontinuities, are unneessary for smooth, low Mah number ows.Extrapolation of normal y-diretion veloities is similar. One we have omputed a normaledge-entered veloity �eld, we apply an edge-entered projetion to ensure that our advetionveloities will be divergene-free. This is straightforward { we �rst solve:L� = D(un+ 12 ); (2.75)and then orret the veloity �eld, uAD = un+ 12 �G� (2.76)We now have a set of edge-entered advetion veloities at time tn+ 12 , whih we an use toompute the advetive terms in (2.65). Note that we have only omputed veloities normal to thefaes, whih would be (uADi+ 12 ;j ; vADi;j+ 12 )T .2.6.2 Salar AdvetionWe also would like to advet a passive salar onentration �eld with the ow. Sine wehave a divergene-free set of edge-entered advetion veloities, this is straightforward.First, we predit edge-entered upwinded values for sn+ 12 in the same way as for the veloitypreditor. As before, we ompute values for ~sL;n+ 12 and ~sR;n+ 12 , and then hoose the upwind valuebased on the loal sign of uAD. unormi;j = 12(uedgei+ 12 ;j + uedgei� 12 ;j)~sL;n+ 12i+ 12 ;j = sni;j +min[ 12(1� unormi;j �t�x ); 12 ℄(sx)i;j � �t2�y (�sy)i;jwhere, as before, (sx)i;j = 12(sni+1;j � sni�1;j)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 47and (�sy)i;j = ( sni;j � sni;j�1 if vtani;j > 0sni;j+1 � sni;j if vtani;j < 0. (2.77)For the right state:~sR;n+ 12i+ 12 ;j = sni+1;j +max[ 12(�1� unormi;j �t�x );�12℄(sx)i+1;j � �t2�y (�sy)i+1;j :Then, hoose the upwind state:sn+ 12i+ 12 ;j =8>>><>>>: ~sL;n+ 12i+ 12 ;j if uedgei+ 12 ;j > 0~sR;n+ 12i+ 12 ;j if uedgei+ 12 ;j < 012 (~sL;n+ 12i+ 12 ;j + ~sR;n+ 12i+ 12 ;j ) if uedgei+ 12 ;j = 0 (2.78)Then, we an ompute the uxes: FSi+ 12 ;j = uADi+ 12 ;jsn+ 12i+ 12 ;j (2.79)FSi;j+ 12 = uADi;j+ 12 sn+ 12i;j+ 12 :Finally, the updated state sn+1 an be omputed using the disrete analog to (2.66):sn+1i;j = sni;j ��t(FSi+ 12 ;j � FSi� 12 ;j�x + FSi;j+ 12 � FSi;j� 12�y ): (2.80)2.6.3 Veloity PreditorOne we have the divergene-free advetion veloities, we an ompute an approximationof Nn+ 12 = [(u � r)u℄n+ 12 . Although the advetion veloities are disretely divergene-free, whihmeans that onservative di�erening ould be used to ompute Nn+ 12 , we will instead use onvetivedi�erening beause in the multilevel ase, the advetion veloities will not, in general, be disretelydivergene-free, for reasons whih will be explained in Setion 4.4.2.First, we must re-predit edge-entered veloities as in Setion 2.6.1, this time using theprojeted uAD rather than AvC!E(un), whih was used in Setion 2.6.1. To save some work, we



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 48an re-use the normal veloities uAD as predited veloities uhalf . This means that we only mustompute the tangential edge-entered predited veloities. To ompute vhalfi+ 12 ;j , for example, weextrapolate in the same way as we did for uhalfi+ 12 ;j , in this ase inluding G� from (2.52) to representthe e�ets of the edge-entered projetion:unormi;j = 12(uADi+ 12 ;j + uADi� 12 ;j)~vL;n+ 12i+ 12 ;j = vni;j +min[ 12(1� unormi;j �t�x ); 12℄(vx)i;j � �t2�y (�vy)i;j (2.81)where (vx)i;j = 12(vni+1;j � vni�1;j); (2.82)and vtani;j = 12(vADi;j+ 12 + vADi;j� 12 )(�vy)i;j = ( vni;j � vni;j�1 if vtani;j > 0vni;j+1 � vni;j if vtani;j < 0. (2.83)For the \right" state,~vR;n+ 12i+ 12 ;j = vni+1;j +max[ 12(�1� unormi;j �t�x );�12℄(vx)i+1;j � �t2�y (�vy)i+1;j : (2.84)Then we an hoose the upwind state:vn+ 12i+ 12 ;j =8>>><>>>: ~vL;n+ 12i+ 12 ;j if uADi+ 12 ;j > 0~vR;n+ 12i+ 12 ;j if uADi+ 12 ;j < 012 (~vL;n+ 12i+ 12 ;j + ~vR;n+ 12i+ 12 ;j ) if uADi+ 12 ;j = 0 : (2.85)Finally, we add the pressure gradient term:vhalfi+ 12 ;j = vhalf �G�: (2.86)= vhalf � �i+1;j+1 + �i�1;j+1 � �i+1;j�1 � �i�1;j�14�y :



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 49One we have the edge-entered predited veloities uhalf , we an ompute the advetiveterms. First, we ompute a ell-entered \advetion" veloity uAD�CC :uAD�CC = AvE!CuAD:Then, [(u � r)u℄n+ 12i;j = uAD�CCi;j (uhalfi+ 12 ;j � uhalfi� 12 ;j)�x + vAD�CCi;j (uhalfi;j+ 12 � uhalfi;j� 12 )�y (2.87)[(u � r)v℄n+ 12i;j = uAD�CCi;j (vhalfi+ 12 ;j � vhalfi� 12 ;j)�x + vAD�CCi;j (vhalfi;j+ 12 � vhalfi;j� 12 )�yFinally, we an now ompute u��:u��i;j = uni;j ��t[(u � r)u℄n+ 12i;j (2.88)v��i;j = vni;j ��t[(u � r)v℄n+ 12i;j2.6.4 ProjetionOne we have omputed the intermediate veloity u��, all that remains is to projet it.Using the approximate projetion of Setion 2.5.2, this is straightforward. First, we solveL�n+ 12 = 1�tDCC(u��) (2.89)using the multigrid aelerated algorithm desribed in Setion 2.2.3. Then, we use this pressure toorret the veloity �eld onto the spae of vetor �elds whih satisfy the divergene onstraint:un+1 = u�� ��tGCC�n+ 12 : (2.90)2.7 FiltersA disussion of projetion methods would be inomplete without mentioning �lters. Inmuh of the literature on projetion methods, �ltering is used to remove non-physial veloity
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Figure 2.11: Non-physial veloity �eld preserved by approximate projetionmodes that the approximate projetion will not remove. As an example, onsider the veloity �eldin Figure 2.11. While it is obvious upon inspetion that this veloity �eld is not solenoidal, it is inthe null-spae of the DCC operator, so it is not removed by our projetion. Lai [44℄, found that thesenon-physial modes aused problems with reating ow. Rider [53℄ presents a survey of di�erent�lter formulations, as well as numerial experiments whih point to the neessity of �lters for someappliations, to remove errors whih aumulate and degrade the solution.While we have implemented the �lters mentioned in [53℄ in our single-grid versions of theode, developing a multilevel �lter proved diÆult, as will be desribed in Setion 4.7. Also, we sawno apparent degradation in our solution without �lters. So, the deision was made to defer �lteringuntil it proved neessary. Sine we do not use �ltering in our adaptive algorithm, we will not inlude�ltering in our single-grid algorithm either. The reader is referred to [39, 44, 53℄ for more involveddisussions on the role of �ltering in projetion methods.
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Figure 2.12: Initial vortiity distribution for shear layer problem2.8 Convergene of the AlgorithmTo demonstrate the onvergene and auray of the single-grid algorithm, solutions toa doubly periodi shear layer were omputed on a suession of �ner and �ner grids. The initialonditions were: u(x; y) = ( tanh(�s(y � 14 )) if y � 12tanh(�s( 34 � y)) if y > 12 (2.91)v(x; y) = Æssin(2�x)with �s = 42:0 and Æs = 0:05. This is the same problem studied by Brown and Minion [26℄, andrepresents a shear layer whih is between their \thik" and \thin" ases (Figure 2.12).To test the onvergene of the single-grid algorithm, the doubly-periodi vortex test asewas run on 32 � 32; 64� 64; 128� 128, and 512� 512 grids. Then, the error in eah omputationwas estimated by averaging a �ner solution onto the next oarser solution:E2h = Av(uh)� u2h (2.92)
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(a) (b)

() (d)Figure 2.13: Doubly Periodi Shear layer vortiity at t = 0:5 on (a) 64�64 grid, and (b) 128�128 grid,and at t = 1:0 on () 64�64 grid, and (d) 128�128 grid. Note formation of spurious vorties in solution in64�64 solution. Deformation of the vortiity ontours near the edges in the 64�64 solution is an artifat ofthe ontour plotter.



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 53The onvergene rate p an then be estimated as:p � 1ln(2) ln(E2hEh ) (2.93)The rate of onvergene was estimated for both omponents of veloity. The results are tabulatedin Table 2.1, for L1, L2, and in�nity-norms for time t = 0:5 and in Table 2.2 for L1, L2, andin�nity-norms for time t = 1:0. As an be seen, both omponents of veloity appear to onvergeat seond-order rates. The only exeption appears to be the in�nity-norm of the y�veloity (Table2.2()), whih shows a marked degradation in onvergene. It is believed that in this ase, theappearane of the spurious vortex in the under-resolved ases is a�eting these results, sine thespurious vortex is present in the oarser ases, but not in the �ner ases. While this is not a strongenough e�et to be seen in more global L1 and L2 norms, it is seen in the loal L1 norm. For thesolution at t = 0:5, the spurious ow feature has not yet appeared in a strong enough fashion toa�et the onvergene results.



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 54
h = 164 ! 1128 1128 ! 1256 1256 ! 1512Error(u) 0.0107698 0.0026623 0.000559159Rate || 2.02 2.25Error(v) 0.00703588 0.0017225 0.000369297Rate || 2.03 2.22(a) L1 normh = 164 ! 1128 1128 ! 1256 1256 ! 1512Error(u) 0.0214418 0.00518821 0.0011087Rate || 2.05 2.23Error(v) 0.00948762 0.00250181 0.000588511Rate || 1.92 2.09(b) L2 normh = 164 ! 1128 1128 ! 1256 1256 ! 1512Error(u) 0.105859 0.0282326 0.00760067Rate || 1.91 1.89Error(v) 0.0405071 0.0160055 0.004045Rate || 1.34 1.98() L1 normTable 2.1: Convergene for veloity, time = 0.5
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h = 164 ! 1128 1128 ! 1256 1256 ! 1512Error(u) 0.0594146 0.0129793 0.00244816Rate || 2.19 2.41Error(v) 0.0549152 0.0136606 0.00250969Rate || 2.01 2.44(a) L1 normh = 164 ! 1128 1128 ! 1256 1256 ! 1512Error(u) 0.0842932 0.0211447 0.00473912Rate || 2.00 2.16Error(v) 0.0661976 0.0195002 0.00454566Rate || 1.76 2.10(b) L2 normh = 164 ! 1128 1128 ! 1256 1256 ! 1512Error(u) 0.40088 0.133916 0.0273512Rate || 1.58 2.29Error(v) 0.200489 0.0975586 0.0329477Rate || 1.04 0.69() L1 normTable 2.2: Convergene for veloity, time = 1.0



56
Chapter 3Adaptive Solutions to Poisson'sEquation

This hapter will desribe the formulation of a Poisson solver using the ell-entered AMRmethodology. Some experimentation was performed to �ne-tune the algorithm with an eye towardonstruting the projetion method we will eventually use to solve the Euler equations. Sine proje-tion methods generally involve solving an ellipti equation for the pressure to enfore the divergeneonstraint, this will be an integral part of the omplete adaptive algorithm for the inompressibleEuler equations.3.1 AMR NotationIn this work, we will employ the blok-strutured loal re�nement strategy of Berger andColella [18℄, in whih a hierarhy of nested re�nements is employed.All omputations will start with a single base grid, whih will be as oarse as possible,in order to best exploit the advantages of adaptivity. This grid will span the entire omputationaldomain, whih we will denote as 
0. The base grid will have nx ells in the x-diretion and ny



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 57ells in the y-diretion; these ells will be indexed (i0; j0) = (0::n0x � 1; 0::n0y � 1), and will have ellspaing (h0;x; h0;y) = (Lxn0x ; Lyn0y ).Coarse ells will then be tagged for re�nement based on some estimate of the error in thesolution. (Error estimation will be disussed in more depth in Chapter 5.) Logially retangulargrids of re�ned ells will then be used to over these tagged ells. Cells in these re�ned pathes willuniformly be a fator of nref �ner than the ells in the oarse grid, with grid spaing (hfinex ; hfiney ) =( 1nref h0;x; 1nref h0;y). We will denote the union of these re�ned grids as a level, whih is indiative ofthe fat that all the grids on this level are at a given level of re�nement.If additional re�nement is neessary, additional re�nement an be added by re�ning pathesof the already-re�ned grids, resulting in a set of still-�ner grids nested within the initial re�ned gridswhih then make up a new, �ner level. This proess of nested re�nement an be ontinued until thesolution is well resolved in all regions of the domain or a maximum level of re�nement is reahed.For example, see Figure 1.2, whih depits a sample on�guration of nested re�nements.The olletion of di�erent levels of re�nement makes up a hierarhy of levels. We will indexthese levels as ` = 0::`max, where 0 is the oarsest level (the base grid), and `max is the �nest level.Eah level ` + 1 will be a fator of nr̀ef �ner in spatial resolution than level `. While in generalnr̀ef ould be any integer, we will restrit the re�nement ratio to be a power of two to failitate theuse of multigrid aeleration, whih was presented in Setion 2.2.3. The re�nement ratio may varybetween di�erent levels; for example, n1ref ould be 2 while n2ref ould equal 4.We will denote by 
` the union of grids making up the `th level of re�nement. In general,
` will be made up of more than one retangular path, or grid; these grids will be subregions of
` and will be indexed as 
`;k where k = 0:::ng̀rids � 1. So, for example, the level 1 domain 
1 will



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 58then onsist of the union of the level 1 grids, whih will ontain the ells whih have been re�nedby a fator of n0ref from the base level. Note that the grids whih make up a level need not beontiguous. In this implementation, grids at the same level of re�nement will not overlap, althoughthere is no reason why they ould not do so.We expet that the solution on re�ned grids is more aurate than the solutions on oarserlevels. This leads to the onepts of valid regions and the omposite solution. The re�ned patheswill overlay part of the original oarse 
0 grid. We will de�ne the valid region of the level 0 grids tobe those areas whih are not overed by �ner grids:
0valid = 
0 � P (
1) (3.1)where P (
1) is the projetion of the level 1 grids onto the level 0 grid { the level 0 ells whih areovered by level 1. Extending this to the entire multilevel hierarhy of grids, we an say that thevalid region will be the union of all ells not overed by re�nement:
valid = `max[̀=0 
` � P (
`+1) (3.2)= `max[̀=0 
v̀alidIn ontrast, we will de�ned the overed region as the part of a given level whih is overed by are�ned grid: 
̀overed = 
` � 
v̀alid (3.3)= P (
`+1)On eah level, the valid region will also ontain edges. Beause many quantities are edge-entered, we will also need to di�erentiate between valid and overed edges. On a level `, all edges
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`, whether overed by re�nement or not, will be denoted by 
`;�. The valid edges, whih we willdenote by 
`;�valid, will be the ell edges of valid level ` ells whih are not overed by �ner edges.This will onsist of all edges of level ` ells in the valid region 
v̀alid (inluding the outer edge �
`)with the exeption of the outer edges of the projetion of the next �ner level ` + 1, whih will beonsidered to be overed by �
`+1, the boundary of 
`+1.We will de�ne the omposite solution as the union of solutions on eah level's valid region.In other words, the solution will only arry any meaning in the �nest ells in a partiular loation;ells whih have been overed by �ner grids will not be onsidered to ontain valid information inthe omposite solution.However, in many ases, we will want to organize our omputations on a level-by-level basis,omputing on eah grid as if it were a single omplete retangle (to take advantage of vetorization,for example). For this reason, there will often be solution variables whih exist for all ells in agiven level, regardless of whether they are overed by �ner ells or not. The solution de�ned simplyon a level, regardless of whether or not it is overed by a re�ned path, will be known as the levelsolution. In many ases, the level solution in regions whih are overed by re�nement will just bethe spatially averaged �ner-level solution.As in Setion 2.1, variables an have di�erent enterings. One again, we an have ell-entered or edge-entered variables, whih an then be either omposite variables, or level variables.Composite variables are de�ned over the entire hierarhy of grids, in the valid regions of eah grid.On the other hand, level variables exist on eah level, in both the valid and overed regions on eahgrid. For a ell-entered variable �, the level variable is de�ned on all of 
`, and will be denoted



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 60by �`. Variables whih are omposite variables, whih only have meaning on the union of validregions on all levels, will be denoted by the supersript omp, so �omp is de�ned on the union ofvalid regions over all the levels whih make up the hierarhy of grids. It will also be useful to de�ne�omp;`, whih is the omposite variable �omp on the valid region of level `, 
v̀alid. For edge-enteredvariables, the notation will be similar. In partiular, for an edge-entered vetor �eld F, whih isde�ned at normal edges (see Figure 2.8), F` will be a level variable, de�ned at all ell edges on level`, 
`;�, while the omposite edge-entered �eld Fomp will be de�ned on the set of valid edges 
�valid:Fomp = `max[̀=0 Fomp;`valid :In our re�nement sheme, notie that ell edges in overed regions are always overlain by�ne-ell edges, in ontrast to ell enters. In partiular, the edges making up the outer edges ofre�ned grids will overlay the oarse-ell edges whih make up the outer edges of the projetion ofthe re�ned path. This edge will take on partiular importane, beause it is the loation of thedisontinuity in grid spaing. On one side of this edge, the valid solution is on a re�ned grid; onthe other side, the valid solution has oarse-level resolution. For this reason, we will all this theoarse-�ne interfae. We expet that the disontinuity in grid spaing will ause ompliations inour disretization, and so we expet that in regions neighboring the oarse-�ne interfaes speialare will be required.3.1.1 Proper Grid GenerationTo simplify boundary onditions and other ommuniation between the solution at di�erentlevels of re�nement, we will impose two requirements on the multilevel hierarhy of grids. First, wewill require that any oarse ell undergoing re�nement be re�ned ompletely; partial re�nement as
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Proper Refinement
          Of Cells

 Improper Refinement
            Of CellsFigure 3.1: Improper Re�nementshown in Figure 3.1 will not be allowed. Seond, we will require that the re�ned grids be properlynested. For any retangular path on level `, the boundary may be:1. a physial boundary where �
` oinides with the physial boundary �
,2. a shared boundary with another grid at level ` (referred to as a �ne-�ne interfae),3. a oarse-�ne interfae with the next-�nest level `� 1,4. a mixture of these.In partiular, we will not allow �
` to touh a valid level `0 ell for `0 < `� 1; it may only see thephysial boundary, other grids at this level, or the next-oarsest re�nement level. See Figure 3.2.Cells whih have been tagged for re�nement will be grouped together using the lusteringalgorithm of Berger and Rigoutsos [20℄ (see Setion 5.4.1) to form eÆient blok-strutured gridswhih over the \tagged" regions. Grid eÆieny is de�ned as the perentage of ells whih arere�ned whih were atually tagged for re�nement.�grid = Number of tagged ellsNumber of ells atually re�ned (3.4)
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NOT Properly Nested at Interior BoundaryFigure 3.2: Illustration of the proper nesting requirement



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 63For simpliity, all level ` ells will share a global index spae similar to that of level 0. Forlevel 1 (the �rst level of re�nement) this will be indexed (0::(n0refn0x)� 1; 0::(n0refn0y)� 1). This willsimplify ommuniation of information between the oarse and �ne levels. Conversion between thelevel 0 and level 1 indies is straightforward. A oarse ell (i0; j0) will orrespond to the �ne ells(i1; j1) = ((n0ref i0) + k; (n0ref j0) + l) for 0 � k; l � (n0ref � 1):Conversely, a �ne ell (i1; j1) is ontained by the oarse ell(i0; j0) = ( i1n0ref ; j1n0ref );where integer division with rounding down is used.3.1.2 Composite Operators and Level OperatorsSine we have de�ned omposite and level variables, we expet that we will need to de�neorresponding omposite and level operators, whih at on these variables.In general, a omposite operator will at on the omposite solution on the multilevel hier-arhy of grids. It will only ompute values of the operator in the valid regions of a level. De�nitionof a omposite operator will generally inlude speial disretizations at oarse-�ne interfaes to dealwith the disontinuity in grid spaing in a reasonable way. On the other hand, a level operator willat on level variables, and as suh will be essentially a single-grid operator whih does not needto know about loal re�nements. It will be de�ned for all ells on a level, whether they are validor overed by re�nement. Note, however, that if the level operator is being applied to a re�nedlevel (` > 0), that it may need boundary onditions from the next oarser level. In general, ourapproah will be to enfore boundary onditions with oarser levels through the use of ghost ells(Setion 2.1.1). If ghost ells around the grids on a re�ned level are �lled with appropriate values



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 64prior to the appliation of the operator, then the level operator an be de�ned without knowledgeof the level's position in the hierarhy of levels. For instane, in many ases we will want to useinterpolated oarse-level solution values as boundary onditions for �ne level operators. By �rst�lling �ne-level ghost ells with interpolated data, then applying the level operator, we an separatethe implementation of the operator from the details of the AMR implementation.In general, implementation of the level gradient, divergene, and Laplaian operators willbe the same as those de�ned in Chapter 2, with the addition of oarse-�ne boundary onditionsfrom oarser levels. We will disuss only the simple gradient, divergene, and onstant-oeÆientLaplaian operators; the extension to more ompliated operators is generally straightforward (see,for example, Bettenourt [22℄ or Propp [51℄.)To de�ne omposite operators, we will extend the de�nitions of the gradient, divergene,and Laplaian operators from the edge-entered disretizations desribed in Setion 2.5.1.For Poisson's problem, we are solvingL� = r � r� = �: (3.5)So, we will need to de�ne a omposite Laplaian operator. To simplify this, we will de�ne theLaplaian as the divergene of the gradient, and then develop appropriate omposite divergene andgradient operators whih an then be inorporated into the de�nition of the Laplaian operator.Gradient and Coarse-Fine InterpolationTo de�ne a omposite gradient operator, we will extend the edge-entered gradient de�nedin (2.52) to the ase of a multilevel hierarhy of grids. The omposite gradient will be de�ned onthe valid edges of a level `, 
`;�valid. One we have de�ned the omposite gradient, we will then de�nethe level-operator gradient as a simple extension of the omposite gradient operator.



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 65On edges whih are not oarse-�ne interfaes, de�nition of the gradient is straightforward:Gomp(�)xi+ 12 ;j = �i+1;j � �i;j�x (3.6)Gomp(�)yi;j+ 12 = �i;j+1 � �i;j�yFor omputation of G� at a oarse-�ne interfae, we will interpolate values for � usingboth oarse and �ne values. As an example, Figure 3.3 shows a oarse-�ne interfae with the oarseells to the right of the interfae and the �ne ells to the left. To ompute the x-omponent of thegradient aross the interfae, we will �rst interpolate a value into the ghost ell of the �ne grid (theirled X's in Figure 3.3), and then use this interpolated value to ompute a gradient:Gtop = �I;topi+1;jtop � �i;jtop�x (3.7)Gbottom = �I;boti+1;jbot � �i;jbot�xTo ompute �I , we �rst use quadrati interpolation parallel to the oarse-�ne interfae usingnearby oarse ells (marked as open irles in Figure 3.3) to get the intermediate points (markedwith solid irles in Figure 3.3). Using this intermediate value along with two �ne grid ells (markedwith X's in Figure 3.3), another quadrati interpolation is used normal to the interfae to get theappropriate ghost ell value (shown as irled X's in the �gure).We will heneforth denote this oarse-�ne interpolation operator as I(�fine; �rse):�` = I(�`; �`�1) on �
` (3.8)will mean that the ghost ell values for � on level ` along the oarse-�ne interfae with level ` � 1are omputed using this type of oarse-�ne interpolation.
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Figure 3.3: Interpolation at a oarse-�ne interfae
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Figure 3.4: Modi�ed interpolation stenil: Sine the left oarse ell is overed by a �ne grid, use shiftedoarse grid stenil (open irles) to get intermediate values (solid irles), then perform �nal interpolation asbefore to get \ghost ell" values (irled X's). Note that to perform interpolation for the vertial oarse/�neinterfae, we will need to shift the oarse stenil down.



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 67Sine we will want to use this type of quadrati interpolation wherever possible to link theoarse- and �ne-grid solutions, we must use di�erent interpolation stenils for speial ases like �negrid orners (Figure 3.4). If one of the oarse grid ells in the usual stenil is overed by a �nergrid, we then shift the stenil so that only oarse ells in (
�P (
f )) are used in the interpolationparallel to the oarse-�ne interfae. If a suitable oarse grid stenil does not exist, we then drop theorder of interpolation and use whatever oarse ells we do have.De�nition of the level-operator gradient G` is straightforward. We will simply extend thede�nition of Gomp, whih is only de�ned on the valid edges on a level 
�;`valid, to all edges on thelevel, 
`;�. Spei�ally, away from oarse-�ne interfaes with the oarser level `� 1, the ompositeoperator will use the same stenil as the edge-entered gradient desribed in (2.52). At the oarse-�ne interfae with level `�1, we will use the same oarse-�ne boundary ondition as was used for theomposite gradient. The oarse-�ne interpolation operator I(�`; �`�1) is used to ompute ghost-ellvalues, whih we an then use in the usual edge-entered gradient stenil.Divergene and Reux DivergeneWe will also need omposite and level divergene operators. We will de�ne the ompositedivergene operator as a multilevel analog to the edge-entered divergene of (2.51), whih is aell-entered divergene of edge-entered uxes.For a ell in whih none of the four edges are oarse-�ne interfaes, this redues to thenormal edge-entered D operator:(DompF)i;j = F xi+ 12 ;j � F xi� 12 ;j�x + F yi;j+ 12 � F yi;j� 12�y : (3.9)Note that for a ell in whih none of the four edges are oarse-�ne interfaes, this implies that theLaplaian operator (whih is the omposite divergene applied to the omposite gradient) will redue



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 68to the normal �ve-point Laplaian operator, whih we would expet.On the �ne side of the oarse-�ne interfae, we assume that we have already omputed anedge-entered ux on the oarse-�ne interfae. For instane, in the ase of the Laplaian operator,we have de�ned gradients on the oarse-�ne interfaes using the quadrati interpolation I to de�neboundary onditions with the oarse level. So, we an use (3.9) to ompute the omposite divergenefor these ells as well. On the �ne side of the oarse-�ne interfae, this will imply that the ompositeLaplaian one again redues to the normal �ve-point Laplaian operator, using the interpolatedghost ell values �I . This also implies that the level-operator divergene D`, whih will have noknowledge of any �ner levels, will simply be the edge-entered divergene de�ned in (2.51) appliedto all ells and edges (valid or overed) in 
`.For ells on the oarse side of a oarse-�ne interfae, we will replae the oarse-grid uxon the oarse-�ne interfae with the arithmeti average of the �ne-grid uxes. In the ase of theoarse-grid ell in Figure 3.3, the divergene operator will be:(DompF)i;j = F xi+ 12 ;j � hF x;fineii� 12 ;j�x + F yi;j+ 12 � F yi;j� 12�y ; (3.10)where hF x;fineii� 12 ;j is the arithmeti average of the uxes on the �ne-grid edges whih over oarseedge (i� 12 ; j) (whih is part of the oarse-�ne interfae with the �ne level).Assume that the oarse-grid uxes Frse an be extended to all edges in 
`;�, inludingthose overed by the oarse-�ne interfae edge between 
` and 
`+1. Adding and subtrating Fx;rsei� 12 ;j�xto the right hand side of (3.10), we get:(DompF)i;j = F xi+ 12 ;j � F x;rsei� 12 ;j�x � hF x;fineii� 12 ;j � F x;rsei� 12 ;j�x + F yi;j+ 12 � F yi;j� 12�y= (DrseFrse)i;j � 1�x�hF x;fineii� 12 ;j � F x;rsei� 12 ;j �; (3.11)



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 69where Drse is the oarse-level edge-entered divergene operator. By doing this, we have split theomposite divergene on the oarse side of the oarse-�ne interfae into the oarse-level operator plusa orretion for the e�et of the �ne grid. This will prove to be very useful in our implementation,so we will de�ne some assoiated notation.As in (3.11), it will often be neessary to ompute the di�erene between oarse and av-eraged �ne edge-entered values on oarse-�ne interfaes. To do this eÆiently, we de�ne a uxregister ÆF `+1, whih will store the di�erene in the edge-entered quantity F on the oarse-�neinterfae between level ` and `+1. ÆF `+1 will be owned by the �ne level `+1 beause it representsinformation on the boundary of level `+ 1. However, it will also have oarse-level (`) grid spaingand indexing beause it will generally be used to orret oarse-grid values with the appropriatelyaveraged �ne-grid values. See Figure 3.5. Note that the sign of the ontributions to ÆF is suhthat the ux register represents the amount whih must be added to the oarse grid uxes to ensureagreement with the �ne grid uxes.If we de�ne the reux divergene DR as the oarse-level edge-entered divergene appliedto edge-entered uxes on the oarse-�ne interfae, then we an re-write (3.11) as(DompF )i;j = (D`F`)i;j +DR(ÆF `+1)i;j ; (3.12)where ÆF `+1 = �F ` + hF `+1i on �
`+1: (3.13)For a oarse ell to the right of a oarse-�ne interfae (as in Figure 3.3),DR(ÆF `+1)ij = � 1�x (ÆF `+1)i� 12 ;j : (3.14)
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Figure 3.5: Flux register along �
1: the dashed lines represent the edge-entered ux register de�nedalong the oarse-�ne interfae. Note that the ux register has oarse-grid spaing.For a oarse ell to the left of a oarse-�ne interfae,DR(ÆF `+1)ij = 1�x (ÆF `+1)i+ 12 ;j : (3.15)The y-diretion is similar. Note that DR only a�ets the set of oarse ells immediately adjaent tothe oarse-�ne interfae.This will prove to be a very useful tool, in that we have separated the omposite operatorinto the appliation of a single-level operator Drse and a orretion for the e�et of �ner levels.There is no reason why the reux-divergene orretion piee annot be applied separately from thesingle-level piee. In fat, in many situations in time-dependent algorithms, this separation of oarseoperator and �ne-level orretion will beome neessary.



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 713.2 Solving Poisson's Equation on a Multilevel HierarhyIn this setion, we will desribe our approah to solving Poisson's equation on a multilevelhierarhy of grids. We will �rst desribe the disretization of our omposite Laplaian operator,inluding a motivation of why we take so muh are developing omposite operators. Then, wedesribe our multilevel solution algorithm, and present an example demonstrating the performaneof the algorithm.3.2.1 Composite Laplaian { Ellipti MathingFirst, we an de�ne the level-operator Laplaian, whih will be the level-operator divergeneD` applied to the level-operator gradient G`:L` = D`G`: (3.16)Reall that the level-operator gradient uses the oarse-�ne interpolation operator I to omputeboundary onditions with a oarser level `� 1. This means that L` will be the single-grid Laplaianoperator L de�ned in (2.9), with the addition of the oarse-�ne interpolation operator I to provideboundary onditions with level `� 1 where neessary:(L`�)i;j = (�i+1;j + �i�1;j + �i;j+1 + �i;j�1 � 4�i;j)h2 on 
` (3.17)�` = I(�`; �`�1) on �
`:As mentioned earlier, we will de�ne the omposite Laplaian as the omposite divergeneapplied to the omposite gradient: Lomp� = DompGomp� (3.18)



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 72On the oarse grid away from the re�ned pathes the omposite operator looks the sameas the single-grid Laplaian operator from (2.9):Lrse(�)i;j = �i+1;j + �i�1;j + �i;j+1 + �i;j�1 � 4�i;jh2 : (3.19)Likewise, on the �ne grid away from oarse-�ne interfaes the omposite operator looks likethe �ne-grid version of the single-grid Laplaian operator:Lfine(�)i;j = �fi+1;j + �fi�1;j + �fi;j+1 + �fi;j�1 � 4�fi;jh2f : (3.20)To de�ne the omposite operator where the normal stenils of the oarse and �ne operatorsross a oarse-�ne interfae, we �rst break the Laplaian into a ux-di�erening formulation usinga ontrol volume around eah ell. We an then write the Laplaian as the ell-entered divergeneof edge-entered uxes: L(�)i;j = r �F (3.21)= F xi+ 12 ;j � F xi� 12 ;j�x + F yi;j+ 12 � F yi;j� 12�ywhere F = r�: (3.22)Note that the uxes are edge-entered quantities; at a oarse-�ne interfae, they will be de�ned onthe interfae. For the operator on the oarse side of the interfae, the oarse ux will be the averageof the uxes used by the �ne operator. Using edge-entered uxes at the oarse-�ne interfae greatlysimpli�es the onstrution of the Laplaian operator aross oarse-�ne interfaes.Reall that the omposite gradient operator Gomp on a oarse-�ne interfae is de�nedthrough the use of the quadrati interpolation operator I to link oarse and �ne levels, and the



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 73omposite divergene operator links oarse and �ne levels by using the averaged �ne-grid uxes onthe oarse-�ne interfae to de�ne the divergene on the oarse side of the interfae.Applying the ux register and reux-divergene notation to the de�nition of the ompositeLaplaian operator, the omplete desription of the omposite Laplaian Lomp on the valid regionells of level ` will be: Lomp�ompi;j = L`�ì;j +DR(ÆF `+1)i;j (3.23)�` = I(�`; �`�1) on �
`ÆF `+1 = hG`+1�`+1i �G`�`�`+1 = I(�`+1; �`) on �
`+1In words, the Laplaian is the single-level operator L` plus a reux-divergene orretion to aountfor the e�et of a �ner level (if one exists). Boundary onditions for the Laplaian operator betweenthis level and a oarser level ` � 1 (if one exists) are enfored by using the quadrati interpolationoperator I to �ll ghost ells around 
`. The orretion for the e�ets of a �ner level is performedthrough a reux-divergene of the di�erene between the oarse and �ne uxes along the oarse-�neinterfae between levels ` and `+ 1. For the Laplaian operator, the ux is de�ned as the gradientof �. To ompute the �ne-level (`+ 1) gradient of � needed for the reux-divergene orretion, we�ll ghost ells around the �ner `+1 level using quadrati interpolation between the level ` and level`+ 1 solutions.In short, for the operators de�ned in the this setion, the basi philosophy will be toalways ompute boundary onditions with oarser levels using quadrati oarse-�ne interpolation,while enforing ux-mathing with �ner levels using reux-divergenes of the di�erene in the oarseand �ne uxes.



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 74Ellipti MathingWe have taken quite a bit of are while de�ning the omposite operators we will use. Inthis setion, we will present a ase explaining why we use suh ompliated operators.When solving Poisson's equation on a multilevel hierarhy, are must be taken to ensurethat the appropriate smoothness in the solution is maintained aross the oarse-�ne interfae. Sinesolutions to ellipti equations like Poisson's equation are nonloal in nature, we expet that a lakof smoothness at the oarse-�ne interfae will a�et the solution in a global way.The simplest approah would be to solve Poisson's equation on the oarse grid, where thesoure term on the oarse grid, �, is the average of �f (the soure term de�ned on the �ne grid)where the oarse grid is overed by the �ne grid. Then we ould solve the problem on the re�neddomain, using interpolated values from the oarse solution as boundary onditions for the �ne level.Unfortunately, it has been shown ([5℄) that the resulting omposite solution ontains an error whihsales with the oarse grid spaing. In other words, we are not attaining the inreased auray wewould expet from a alulation on a re�ned mesh.The problem with this sheme is that the oarse and �ne solutions are not suÆiently linked.Information is passed from the oarse grid to the �ne grid in the form of a Dirihlet boundaryondition, but the oarse solution is not modi�ed by the �ne solution in any way. This lak ofommuniation of information from the �ne solution bak to the oarse solution auses a disontinuityin ���n whih is O(h). Sine the derivative of a disontinuous �rst derivative of the solution will looklike a Æ�funtion in the seond derivative, our solution looks like:L�+ CÆ(xf )(���n fine � ���nrse) = � (3.24)In e�et, we have reated a singular harge on the oarse-�ne interfae whih is orrupting the



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 75solution. This harge is proportional to the mismath in the derivatives of the oarse and �nesolutions, and is O(h). Bai and Brandt [10℄ note that for a similar approah, the oarse solutionaway from a singular soure distribution is degraded beause of a lak of onservation of sourestrength between the problems being solved on the oarse grid and on the �ne grid.In order to attain the desired �ne-grid auray for solutions to Poisson's equation andto avoid orruption of the solution by oarse-�ne interfae error, we will need to ensure that theomposite solution satis�es both Dirihlet and Neumann mathing onditions at the oarse-�neinterfaes. This is the ellipti mathing ondition.Essentially, the problem with this algorithm is that it did not use the omposite operatorsdesribed in Setion 3.1.2. Interpolating using both oarse and �ne grids and using the same uxesfor both oarse and �ne grids links the two solutions enough to satisfy the ellipti mathing onditionand �x the oarse-�ne interfae problem. We an then attain the improved auray expeted fromre�nement.3.2.2 Trunation Error AnalysisQuadrati interpolation is the minimum neessary to maintain seond-order auray glob-ally. We will use the gradient operator in the onstrution of the Laplaian, whih is a seond-derivative operator; it involves a division by h2. If an interpolated quantity has a trunation errorof O(hp), division by h2 in the seond derivative results in a trunation error of O(p�2). If we de�ne�ei;j as the exat omposite solution,�e;`i;j = '(xi; yj) on 
v̀alid; (3.25)
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fine coarseFigure 3.6: Sample one-dimensional oarse-�ne interfaethen the trunation error � is de�ned on the valid regions of the level ` grids as:�i;j = �i;j � Lomp(�e)i;j : (3.26)For the one-dimensional example shown in Figure 3.6, where �Ii+1 is the interpolated value,and �i+1 � �Ii+1 = O(hp), we get:�2��x2 ji = �i+1 + �i�1 � 2�ih2 +O(h2) (3.27)= �Ii+1 + �i�1 � 2�ih2 + �i+1 � �Ii+1h2 +O(h2)so the error is O(max(hp�2; h2)). Even with quadrati interpolation (p = 3), there is still an O(h)error at the oarse/�ne interfae.Sine the disretization of the Laplaian on the interiors of grids away from oarse �neinterfaes is O(h2), we lose one order of auray along the oarse-�ne interfae due to the oarse-�ne interpolation error (along with the division by h2 in the Laplaian operator). The questionthen arises, \Does this oarse-�ne error degrade the auray of the global solution?" Sine theoarse/�ne interfae is a set of odimension one, we have observed that we an lose one order ofauray and still be O(h2) globally, similar to what we have observed at the physial boundary (seeSetion 2.2.1). This annot be improved by using higher-order interpolation; while the gradient at
` would be more aurate, the trunation error in the �rst oarse ell would still be O(h), due to



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 77the lak of anellation in the error in the gradient on the two edges.Using a modi�ed equation analysis, Johansen [43℄ has demonstrated that, in fat, theontribution of the higher trunation error at oarse-�ne interfaes is indeed O(h2). In essene, thisis the same reasoning presented in Setion 2.2.1, repeated here for ompleteness. While this is nota rigorous analysis, it does provide some insight, and agrees with what we see in pratie. First, wede�ne the trunation error, � , as �i;j = �� L(�e)i;j (3.28)where � is the disrete approximation to � used in the numerial method and L(�e)i;j is the disreteoperator applied to the exat solution �e. Then, as we have seen, we have these estimates for �i;j :�i;j = (O(h2) for interior ellsO(h) for ells adjaent to a C/F interfae (3.29)If we de�ne the solution error �i;j = �i;j � �ei;j , then the error satis�es the error equationL� = � (3.30)The expetation is that the ontribution of eah ell to � is proportional to the total harge on thatell. For an interior ell, this is �i;j �h2 = O(h4); for a boundary ell, it is �i;j �h2 = O(h3). Thereare O( 1h2 ) interior ells, for a total ontribution of O(h2) to �, while there are only O( 1h ) boundaryells, resulting in a total ontribution of O(h2) as well.3.2.3 Multilevel Multigrid Iteration AlgorithmThe algorithm desribed here is the logial extension of the multigrid algorithm desribedin Setion 2.2.3 to a multilevel hierarhy of loally re�ned grids. Our algorithm is a variant of one�rst proposed by Brandt [24℄, and extended by Bai and Brandt [10℄. Thompson and Ferziger [65℄



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 78used a similar multigrid algorithm to ompute steady inompressible ow, and Almgren, Buttke,and Colella [7℄ developed a node-entered version for use in a fast vortex method.The algorithm desribed here is based on that in Martin and Cartwright [47℄, whih is itselfa ell-entered extension of the node-entered algorithm of Almgren, Buttke, and Colella. [7℄. Asimilar algorithm has been used for steady ompressible ow by Dudek [34℄, and for semiondutordevie simulation by Bettenourt [22℄. The only substantial modi�ation in the algorithm from [47℄is the addition of a onjugate-gradient solver for unions of retangles for the oarsest level, insteadof repeated relaxation, as was used in the previous work (see Setion 3.2.5). This will allow elliptisolves whih have a oarsest level `base > 0, beause we will generally have to solve on an arbitraryunion of retangles at the bottom of the multigrid V-yle, instead of a single 1� n grid.For simpliity, we will �rst desribe the multilevel solution algorithm for the ase where weare solving over the entire domain (`base = 0) and nref = 2. Then we will extend the algorithm toover more general ases.We want to solve Lomp(�) = � on 
`base (3.31)where Lomp(�) is the omposite Laplaian operator desribed in Setion 3.2.1.For eah re�nement level from ` = 0 to `max, we will obviously need to store 
`, �`, and�`, where �` and �` are only de�ned on 
` �P(
`+1), that is, wherever 
` is not overed by a �nergrid. Sine we are using the residual-orretion formulation, for eah level we will also have to de�nethe residual R` and the orretion e` on the entire 
` (inluding the overed regions of 
`).In addition to the omposite Laplaian Lomp, whih is de�ned over the entire hierarhy oflevels, and the level-operator Laplaian L`, we will also de�ne the omposite Laplaian on level `,



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 79Lomp;`(�`; �`+1; �`�1), whih is de�ned on the valid region of level `:Lomp;`(�`; �`+1; �`�1) = Lomp� on 
` � P(
`+1) (3.32)Reall that away from the boundaries of 
v̀alid, Lomp;` is simply the normal Lh`�` that we are usedto dealing with. In ells whih abut the 
`=
`�1 boundary, we interpolate values into the borderells using the quadrati interpolation operator I and then evaluate Lh` as usual. Finally, for ellsadjaent to the 
`=
`+1 boundary, we use our ux mathing ondition to generate the uxes arossthe boundary. Thus, we always interpolate oarse grid information as mentioned earlier, and wealways use the ux mathing ondition to represent the inuene of the �ner grids.Note that we have expliitly shown the dependene of Lomp;` on both the oarser-levelsolution (in the form of quadrati interpolation with �`�1) and the �ner-level solution (in the form ofthe ux-mathing ondition with �`+1). In a similar way, we will expliitly show the dependene ofL` on the oarser-level solution through the oarse-�ne boundary ondition I(�`; �`�1) by referringto the level-operator Laplaian as L`(�`; �`�1).We will also need an operator whih performs a point relaxation for Poisson's equation.So, we de�ne GSRB LEVEL(e`; R`; h`) on 
`. This performs one iteration of Gauss-Seidel withRed-Blak ordering on the data on level `. This operator has no information about other levels,although it should know the appropriate operators and boundary onditions to relax on eah level.Therefore, this operator looks like:eì;j := eì;j + �fL`(e`; e`�1 = 0)�Rì;jg (3.33)with red-blak ordering. As before, red-blak ordering means that we relax using two passes throughthe domain in a hekerboard pattern: on the �rst pass, we relax on points where (i+j) is even



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 80(the RED pass); on the seond, we relax on points where (i+j) is odd (the BLACK pass). Notethat, beause the GSRB LEVEL is designed to be unaware of both oarser and �ner levels, therelaxation uses L` with all the oarse grid information set to 0. In other words, we use the oarse-�ne interpolation operator I(�`; 0`�1), where 0`�1 denotes a oarse level `� 1 grid with zeros in allthe ells. For interior ells, we use the normal relaxation parameter �interior = h24 .For eah level, the residual will ontain two omponents. First, as in normal multigridrelaxation, the residual on level ` ontains the residual from higher (�ner) levels, mostly the lowwavenumber error that is not damped out by the GSRB iterations at the �ner levels. In addition,there is the residual from the operators on level ` where there are no overlying �ner grids. If thereis no overlying �ne grid, then we are starting our multigrid V-yle on this level; otherwise, we aresimply ontinuing the multigrid relaxation whih was begun on the �ner levels.The multilevel multigrid algorithm we will employ is desribed in pseudoode form in Figure3.7. The funtion AMRPoisson(�) will all the reursive multigrid iteration funtion MGRelax(`)until the maximum residual has been dereased by a fator of �.The algorithm is strutured like the multigrid algorithm for a single grid, desribed inSetion 2.2.3 { we start at the �nest levels, then progressively oarsen and relax our way down theV-yle, then solve on the oarsest level, then interpolate and relax our way bak up the V-yle.The di�erene is that in this ase, the data to whih we are applying our various operators maynot be de�ned on the entire physial domain at that level. We will use the same interpolationand restrition operators that we used in the single-grid multigrid algorithm: R`�1` will be simplearithmeti averaging, and I `̀�1 will be pieewise onstant interpolation.Sine we ompute the oarser-level residual on the unovered regions of the oarser grids



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 81AMRPoisson(�)Res := �� Lomp(�):while (jResj > �j�j)Res := �� Lomp(�):MGRelax(`max).end whileend AMRPoissonMGRelax(`):if (` = `max) then Res` := �` � L`(�`; �`�1)if (` > 0) then�`;save := �`e`�1 := 0e` := GSRB LEVEL(e`;Res`; h`)�` := �` + e`Res`�1 := R`�1` (Res` � L`(e`; e`�1)) on P(
`)Res`�1 := �`�1 � Lomp;`�1(�`�1; �`; �`�2) on 
`�1 � P(
`)MGRelax(`� 1)e` := e` + I `̀�1(e`�1)Res` := Res` � L`(e`; e`�1)Æe` := 0Æe` := GSRB LEVEL(Æe`;Res`; h`)e` := e` + Æe`�` := �`;save + e`else solve/relax L0e0 = Res0 on 
0�0 := �0 + e0end ifend MGRelaxFigure 3.7: Pseudoode desription of AMR Poisson multigrid algorithm



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 82using the omposite operator Lomp;`�1(�`�1; �`; �`�2), note that we update �` with the urrentorretion before omputing the oarser residual, in order to ompute a residual whih reetsorretions made on the �ner level. However, on the way bak up the multigrid V-yle, we willwant to add the orretion to the original value for �, whih is why we save the original unorretedvalue for �` as �`;save.When we arrive at the oarsest level, we have one domain. We an then iterate on L0e0 =Res0 on 
0 using the single-grid multigrid algorithm desribed in Setion 2.2.3. One that is done,we update the oarse level solution, �0 := �0 + e0, and start bak up the V-yle.On the way up the multigrid V-yle, we must modify the algorithm slightly. First, weupdate the �ne grid (level `) orretion:e` = e` + I `̀�1(e`�1): (3.34)However, now we annot go diretly to a GSRB LEVEL iteration, beause we now have a oarse gridorretion whih we will need to use as a boundary ondition. We handle this the same way we handleany problem with inhomogeneous boundary onditions: we put the problem in residual-orretionform to make the boundary onditions homogeneous. So, we �rst must modify the residual:Res` := Res` � L`(e`; e`�1): (3.35)We then de�ne a orretion to the orretion, Æe`, set it to 0, and then perform a GSRB LEVELoperation on it: Æe` := GSRB LEVEL(Æe`;Res`; h`): (3.36)Then, we an update the orretion and the opy of �` whih we had saved:e` := e` + Æe` (3.37)
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Figure 3.8: Multigrid with nref 6= 2. Beause n1ref = 4, we perform an intermediate oarsening in themultigrid yle before oarsening from level 2 to level 1.�` := �`;save + e`: (3.38)3.2.4 Extension to nref = 2p; p > 1When nref is two, the multigrid oarsening and injetion is straightforward, sine theoarsenings used in the multigrid algorithm orrespond to existing levels of re�nement. This is notthe ase when nref is greater than two, however; we still want to oarsen by a fator of two formultigrid, but this will result in intermediate multigrid levels whih do not orrespond to the datain our multilevel grid hierarhy.In this ase, we will modify the algorithm slightly by doing a mini-multigrid V-yle,oarsening the �ne grids by repeated fators of two until the next oarsening would result in thesame grid spaings as an existing level of data in the AMR hierarhy. A shemati of this yle isshown in Figure 3.8. In this example, n1ref = 4. So, we �rst relax on level 2, then oarsen the level 2



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 84grids down to the intermediate level shown, oarsen the residual and orretion to this intermediatelevel, and relax using GSRB-LEVEL. Then, we interpolate the orretion bak to level 2 and relaxon level 2 again. Then, we oarsen the level 2 residual down to level 1 and ontinue on our way.Sine n0ref is 2, we an relax on level 1 and then oarsen diretly down to level 0, from whih we oneagain oarsen as far as possible, solve, and then proeed bak up the hierarhy. One the solutionhas been relaxed on level 1, we interpolate diretly to level 2, relax on level 2, then oarsen to theintermediate level again, where we relax again before interpolating the solution bak up to level 2and performing a �nal relaxation.The reason why we relax on the intermediate levels and then interpolate bak to the �nelevel before oarsening to the next oarsest AMR level is that oarse-�ne boundary onditions aresimpli�ed. Sine we are using the residual-orretion form of the equation, the oarse-�ne boundaryonditions on the orretion are a homogeneous version of the oarse-�ne interpolation disussedin Setion 3.1.2. In this interpolation, we use the same oarse grid used in the level 2/level 1interpolation, but with zeroes in all the ells. It is important for onsisteny that we use the sameoarse grid for all the intermediate oarsenings, so that the distane of the oarse-ell values fromthe oarse-�ne interfae remains onstant as we oarsen the grids.Note also that for nref = 8 there would be two intermediate levels, for nref = 16 therewould be three intermediate levels, et. (Although in pratie we rarely use nref > 4).3.2.5 Extension to `base > 0In various plaes we will want to solve a multilevel ellipti problem on levels ` � `basewhere `base > 0. In this ase, we are solving on all levels �ner than (and inluding) level `base, withappropriate oarse boundary ondition values provided from level `base�1 if neessary. This solution



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 85algorithm is similar to that presented in Setion 3.2.3 for the levels �ner than `base. When we reahlevel `base, we perform a proedure similar to that used for level 0 in Setion 3.2.3, oarseningthe level `base grids as muh as possible. In general, we will not be able to reah a 1 � n gridthrough repeated oarsenings of level `base grids. In most ases, we will reah a point where furtheroarsenings are impossible without destroying the \footprint" of the grids (Figure 3.10). In otherwords, further oarsening will result in a set of oarsened grids whih, when re-re�ned, will not bethe same as the original grids:
`;oarsest 6= refine(oarsen(
`;oarsest)):When we reah this level, we then solve the resulting oarsened residual-orretion equation exatly(or as exatly as possible) before starting bak up the hierarhy. At present, we use a onjugategradient solver [12℄ as a bottom solver. Our implementation of a onjugate gradient solver on a unionof retangles follows that of Bettenourt [22℄, and is detailed in Figure 3.9. Note that omputationsare arried out using omposite operators over the union of grids. Note also that the problemas de�ned with omposite operators over a union of grids is no longer symmetri, so the onjugategradient approah is not guaranteed to work. In our ase, the problem is simple enough that we havenot experiened any diÆulties; however, Bettenourt [22℄ found it neessary to use a BionjugateGradient Stabilized (BiCGStab) method for problems with strongly varying oeÆients.Coarse-�ne boundary onditions are enfored by using the oarse-�ne interpolation de-sribed in Setion 3.1.2 to ompute ghost-ell values for � when omputing the residual on level`base. Then, homogeneous oarse-�ne interpolation (again keeping the oarse grid data onstant) isused for the oarsenings of level `base, in the same way as for the intermediate multigrid levels inSetion 3.2.4.
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BottomSolve(�; b)res(0) = L(�)� borr(0) = 0for (i = 1; 2; :::)Smooth(orr(i�1); res(i�1))Smooth(orr(i�1); res(i�1))if ( i > 1 and �i�2 == 0:0 ) return�i�1 = Dot(orr(i�1) ; res(i�1))if (i == 1)p(1) = orr(0)else�i�1 = �i�1=�i�2p(i) = orr(i�1) + �i�1 � p(i�1)end ifq(i) = L(p(i))�i = �i�1=Dot(q; p(i))orr(i) = orr(i�1) + �ip(i)res(i) = res(i�1) � �iq(i)u(i) = L(orr(i))� res(0)if (ku(i)k < tol � kres(0)k) returnend for� = �+ orriend BottomSolve Figure 3.9: Pseudoode for the onjugate gradient bottom solver
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Figure 3.10: Best Coarsening: Grid on�guration at right is the best possible oarsening of the grids atleft.3.2.6 Level SolvesIn the AMR algorithm for the inompressible Euler equations whih is desribed in thenext hapter, we will also at times need to solve the ellipti equation on one level ` without solvingon either �ner or oarser grids. In this ase, the algorithm will be the same as that of the algorithmin Setion 3.2.5 if `base is also the �nest level. We simply ompute the residual on 
` without takingthe e�et of �ner levels (even if they do exist) into aount. Then, we implement multigrid in thesame way as in Setion 3.2.5 for level `base: oarsen as far as possible, apply the onjugate-gradientbottom solver, and then re�ne bak up to level `.
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(a) (b)Figure 3.11: AMR Poisson test problem (a) Soure distribution, and (b) Solution3.2.7 Performane of the AlgorithmThe AMRPoisson ode was tested on a sample problem with � equal to three Gaussianharges, as shown in Figure 3.11. To give an idea of grid plaement, the grids used for a solution withtwo levels of re�nement are shown as well. To judge the e�ets of adaptivity, we solved this problemwith a series of oarser base grids, but with the same error tolerane. By doing this, we solve theproblem to the same level of auray eah time, but more levels of re�nement beome neessary asthe base grid beomes oarser. The Rihardson extrapolation error estimation algorithm of Setion5.3 was used to estimate the loal trunation error of the solution; ells with estimated errors higherthan the spei�ed error tolerane were tagged for re�nement. Cells marked for re�nement werethen lustered into unions of retangles using the lustering algorithm of Berger and Rigoutsos [20℄,desribed in Setion 5.4.1. By setting the error tolerane �error for the Rihardson extrapolation



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 89Base Grid Size h = 1/64 1/128 1/256 1/512 1/1024 total1024 � 1024 |- |- |- |- 1048576 1048576512 � 512 |- |- |- 262144 2304 264448256 � 256 |- |- 65536 10496 2304 78336128 � 128 |- 16384 17280 10496 2304 4646464 � 64 4096 15360 17152 10496 2304 49408Table 3.1: Number of ells at eah grid resolution, tabulated for di�erent base grid sizes when solvingsample problemerror tagging routine to be 0.0005, no re�nements were needed for a base grid of 1024�1024, whileone level of re�nement was needed for a 512�512 base grid (and two levels were needed for a 256�256base grid, et.). For all of the solutions, the maximum error on the �nest grid as omputed using(3.39) was 4:27� 10�4.Error` = Average(L`(�`; �`�1))� L`�1(Average(�`)): (3.39)To show the e�ets of adaptivity on the resulting grid hierarhy, the total number of ells on eah levelis tabulated in Table 3.1. It is worth noting that, in every solution where re�nement is employed, thenumber of ells at the �nest resolution is onstant at 2304, while the number of ells at the seond�nest resolution is onstant at 10496. This points to the e�etiveness of Rihardson extrapolationas a onsistent indiator of the neessary resolution for attaining a given level of auray in thesolution. The onvergene history of this algorithm is shown in Figure 3.12 for re�nement ratios of 2,4, and 8 Adding loal re�nement to the solution did a�et the onvergene rates of the multigrid ylesomewhat. The onvergene results are shown in Table 3.2. With no re�nement, the Max(residual)was redued by an average fator of 16.0 per multigrid yle. In other words, the maximum of theresidual after one full multigrid V-yle was, on average, 116:0 times the maximum residual at the
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Convergence for nRef = 2
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Convergence for nRef = 4
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Convergence for nRef = 8
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0.00 5.00 10.00()Figure 3.12: Multigrid Convergene for (a) nref = 2, (b) nref = 4, and () nref = 8



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 91Re�nement Ratio 1 level 2 levels 3 levels 4 levels(no re�nement)2 16.00 31.87 37.23 35.264 16.00 20.58 25.25 |-8 16.00 5.23 |- |-Table 3.2: Convergene rates (average fator by whih max(residual) is redued for eah multigrid itera-tion), tabulated for di�erent re�nement ratios and number of levels of re�nementstart of the V-yle. When one level of re�nement (with a re�nement ratio of 2) was added to thesolution, the onvergene rate inreased to an average fator 31.9 redution per multigrid yle. Aseond re�nement led to inreased onvergene, with an average redution of 37.23. When a fourthlevel was added, however, the onvergene rate dereased to an average fator 35.26 redution in themax(residual).Re�nement ratios greater than 2 do appear to slow onvergene somewhat. With a re-�nement ratio of 4, one level of re�nement onverged with an average fator 20.58 redution inthe residual, while for two levels, the max(residual) was redued by an average fator of 25.25 permultigrid iteration. Using a re�nement ratio of 8 led to a markedly poorer performane, however.One level of fator 8 re�nement only showed an average redution in the max(residual) of a fator of5.3 per multigrid yle. For the rest of this setion, all timing results use a re�nement ratio of two.We believe that the slower onvergene rates for re�nement ratios greater than two are a result ofthe intermediate V-yles neessary in these omputations.To easily judge the e�ets of adaptivity, timings were normalized by the timing for theunre�ned 1024�1024 solution, whih was 58.11 se on an SGI Power Challenge. Also, the totalnumber of ells for all levels in eah solution (inluding the non-valid portions where grids areoverlain by �ner grids) was reorded and likewise normalized by the total number of ells for the
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Normalized Timings and Cellcounts
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0.00 1.00 2.00 3.00 4.00Figure 3.13: Normalized timings for the Poisson Solverunre�ned grid, 1048576. The total number of ells is an indiator of how muh memory was used inthe solution. A log plot of these normalized results appear in Figure 3.13. As an be seen, the totalnumber of ells in the solution dereases with the number of re�nement levels, ranging from 30.6%of the base number of ells with one level of re�nement to 4.5% of the base number of ells withthree levels of re�nement. Adding a fourth level of re�nement atually inreases the total numberof ells beause so muh of the base level is being re�ned (in this ase, 93.75 of the domain is re�nedto level 1). The timings initially derease strongly with additional levels of re�nement, up to twolevels of re�nement, then level o� at around 15% of the CPU time for the unre�ned solution andatually rise slightly. This leveling o� is due to the need when using Rihardson extrapolation toompute a solution with ` � 1 levels before generating a `th level. In other words, to ompute asolution with two levels of re�nement, �rst a single grid solution must be omputed, then the error



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 93estimator de�nes the level 1 grids, whih are then used to ompute a two level solution, and thenthe error estimator is able to reate the level 2 grids based on the error omputed in the two levelomposite solution. Sine the oarser levels are, in general, small in omparison to a �ner basedomain, this is generally inexpensive. However, with more levels of re�nement, this an begin too�set the savings in omputational time. In a sense, this is sub-optimal, beause more e�ort is beingspent on reomputing solutions on the oarse levels than on the �ner levels, espeially if the re�nedlevels are small ompared to the oarse levels. Bai and Brandt [10℄ suggest omputing the initialsolutions to less auray, inreasing the solution auray as the number of levels inreases. In theirexperiene, this evens out the amount of work spent on oarser levels.It should be noted, however, that one the break even point has been reahed on CPUtime, the additional re�nement in this ase still represents a savings in memory. Obviously, whenthe total number of ells inreases, as is the ase between three and four levels of re�nement, CPUtime will inrease faster than the number of ells in the solution, due to the overhead of generatingand managing the grid hierarhy.3.3 Alternate AlgorithmIn our time-dependent algorithm for the inompressible Euler equations, we will re�ne intime as well as spae. Sine di�erent levels will be advaned using di�erent timesteps, it will notgenerally be feasible to perform solves in the omposite manner outlined in the previous setions.Following the example of Berger and Colella [18℄, we will struture our multilevel solution algorithmas a series of solves on individual levels, along with orretions to enfore the proper oarse-�nemathing onditions. The level solves will onsist entirely of operations on single levels (with no



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 94inuene from �ner levels) and interpolated boundary onditions from oarser grids if neessary.One a solution based on level operators has been omputed on all levels, we will need to orretto the solution to ensure that the omposite solution satis�es the equations based on ompositeoperators.3.3.1 LevelSolve + Corretion FormulationIn the ase of Poisson's equation, this is straightforward. Using (3.23), we an re-ast theequation we are trying to solve on a given level ` as:Lomp;`(�`) = L`(�`;�`�1) +DR(Æ�`+1) = �` (3.40)�` = I(�`;�`�1) on �
`=`�1Notie that we have expliitly inluded the oarse-�ne interpolation operator, whih represents theoarse-�ne boundary ondition on � with the oarser level ` � 1. Æ�`+1 is the ux register whihontains the mismath in r� along the `=`+ 1 interfae, whih is:Æ�`+1 = �G`�`+ < G`+1�`+1 > on �
`=`+1 (3.41)where G`+1�`+1 is omputed using the standard oarse-�ne interpolation operator to ompute ghostell values for �I .This formulation leads to an obvious splitting into level operators and orretions. Let� = �+ e (3.42)where �` is the result of a level solve for � and e is the orretion �eld needed to ensure that �satis�es the omposite equation. In this ase, (3.40) beomes:L� = L`�` +DR(Æ�`+1) + L`e` +DR(Æe`+1) = � (3.43)



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 95�` = I(�`; �`�1) on �
`=`�1e` = I(e`; e`�1) on �
`=`�1With a little rearranging, this beomes the level solve equation for �:L`�` = �` (3.44)�` = I(�`; �`�1) on �
`along with an assoiated equation for e:L`e` = �DR(Æ�`+1)�DR(Æe`+1) (3.45)e` = I(e`; e`�1) on �
`whih we an solve through iteration, also using level solves.All that remains is to embed this formulation in an iterative algorithm. There are atuallytwo di�erent ways to do this. While the initial level solves for � must be ordered from the oarsestlevel followed by the suessively �ner levels beause of the oarse level boundary onditions, theorretion need not be done that way. The orretion may be solved from oarsest level to �nestlevel (bottom-up iteration), or it may be solved from the �nest level down to the oarsest level(top-down iteration). We will look at eah in turn. Both algorithms were then tested using a similartest problem to that used in Setion 3.2.7, but with only one Gaussian soure in the enter (to makevisualization simpler).3.3.2 Bottom-Up IterationIn this algorithm, we �rst do a series of single level solves for �, solving from the oarsestlevel up to the �nest, using the oarser level solution as a boundary ondition for the urrent level.



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 96Then, starting at the oarsest level, we solve for e, whih is the orretion due to the e�et of the�ner level solution. We then iterate on the orretion until the omposite residual is suÆientlyredued. The soure for the orretion on eah level ` has two omponents: the mismath betweenthe urrent level and the �ner (`+ 1) level appears as a reux-divergene around the projetion ofthe (`+1) grids, while the mismath between the solution on the level ` and the oarser `�1 solutionappears in the oarse-�ne boundary ondition. On the �nest level, all we are doing is relaxing theorretion to aount for the mismath due to the orretion on the oarser levels. A pseudoodedesription of this algorithm is shown in Figure 3.14.Convergene HistoryThe onvergene history for this algorithm is shown in Figure 3.15, whih shows the L1norm of the omposite residual vs. number of orretion iterations for two-, three-, four-, and �ve-level solutions (a two-level solution has a base grid and one level of re�nement). For this algorithm,the omposite residual dereases monotonially with orretion iterations. For eah ase, the residualdrops o� at a slower rate for (`max � 2) iterations (whih is (number of oarse-�ne interfaes) -1),and then drops o� very rapidly down to roundo�. This is apparently due to the need to orretfor the e�ets of the orretion on the omposite solution. Figure 3.16 shows the residual for thethree-level ase.3.3.3 Top-Down IterationIn this version of the algorithm, the level solves are done as before, but the orretionsare done starting at the �nest level and proeeding down to the oarsest level. This means that
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BottomUp(�)do ` = 0, `maxsolve L`(�`; �`�1) = �`, �` = I(�`; �`�1) on �
`=`�1if (` < `max)Æ�`+1 = �G`�` on �
`=`+1if (` 6= 0)Æ�` = Æ�` + hG`�`i on �
`=`�1Æe` = Æ�`end doRes = �� Lomp(�)while (kResk < �k�k) do:do ` = 0, `maxsolve L`(e`; e`�1) = DR(Æe`+1); e = I(e`; e`�1) on �
`=`�1if (` < `max)Æe`+1 = Æ�`+1 �G`e` on �
`=`+1if (` 6= 0)Æe` = Æe` + hG`e`i on �
`=`�1end doRes = �� Lomp(�)end whileend BottomUp Figure 3.14: Bottom-up iteration algorithm
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L1(Residual) vs. Correction Iterations
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0.00 5.00Figure 3.15: Convergene history { bottom-up iterationsthe oarse-level orretions used for the oarse-�ne boundary ondition for the urrent orretion islagged behind the urrent orretion. On the �nest level, the initial orretion does nothing, sinethe oarse orretion is initially 0, and there is no residual indued from a �ner level. Then, theinitial orretion on the oarser levels is solely due to the mismath in � (the level-solve solution)at the `=`+ 1 interfae. Subsequent orretions on a level ` then aount for the urrent mismathwith the �ner level `+ 1 as well as the lagged mismath with the oarser level `� 1. A pseudoodedesription of this algorithm is shown in Figure 3.3.3.Convergene HistoryThe onvergene history for this algorithm is shown in Figure 3.18, whih shows the L1norm of the omposite residual vs. number of orretions for two-, three-, four-, and �ve-levelsolutions. Note that, as opposed to the results shown in Figure 3.15, the residual initially rises,
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(a)

(b) ()Figure 3.16: Residual for bottom up iteration: (a) initial residual (after level solves), (b) after 1 multigridorretion iteration, and () after 2 multigrid orretion iterations
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TopDown(�)do ` = 0, `maxsolve L`(�`; �`�1) = �`, �` = I(�`; �`�1) on �
`=`�1if (` < `max)Æ�`+1 = �G�` on �
`=`+1if (` 6= 0)Æ�` = Æ�` + hG`�`i on �
`=`�1Æe` = Æ�`end doRes = �� Lomp(�)while (kResk < �k�k) do:do ` = `max; 0solve L`e = DR(Æe`+1); e = I(e`; e`�1) on �
`=`�1if (` 6= 0)Æe` = Æ�` + hG`e`i �G`e`�1 on �
`=`�1end doRes = �� Lomp(�)end whileend TopDown Figure 3.17: Top-down iteration algorithm
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L1(Residual) vs. Correction Iterations
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0.00 5.00 10.00 15.00Figure 3.18: Convergene history { top-down iterationsstays relatively onstant, and then begins a rapid derease to roundo� after `max iterations.As an be seen in Figure 3.19, it appears that the residual �rst inreases at all oarse-�ne interfaes, and then the large residual is eliminated at the level 0/1 interfae, then the level1/2 interfae, and so on up the hierarhy until all the large oarse-�ne interfae error has beeneliminated.This slowdown in onvergene is most likely due do the lagged nature of the orretions.One way to think about this is that there is not really one orretion, but a series of orretionse0; e1; e2; ::: and the total solution is equal to the result from the level solves � plus the sum of theorretions: � = �+ n=nmaxXn=0 en (3.46)Reiterating (3.45), the orretion should satisfy:
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(a) (b)

() (d)Figure 3.19: Residual for top down iteration: (a) initial residual after level solves, (b) after 1 multigridorretion iteration, () after 2 multigrid orretion iterations, and (d) after 4 multigrid orretion iterations.
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L`e = �DR(Æ�`+1)�DR(Æe`+1)e = I(e`; e`�1)With this algorithm, the orretion en is atually satisfying:L`en = �DR(Æ�`+1)�DR(ÆF e`+1n )� k=n�1Xk=0 [DR(Æe`+1k ) + L`ek℄ (3.47)en = I(eǹ; e`�1n�1)The notation ÆF e`+1n refers to the normal ux register, but with the �ne level omponent only, dueto the lagged nature of the orretion:ÆF e`+1n =< G`e`+1n > on �
`=`+1: (3.48)Note also the mismath in the oarse-�ne boundary ondition.The �rst orretion, e0, solves only for the mismath in � between the ` and ` + 1 levels,along with the e�et of the �ne level orretion on the solution. In subsequent iterations, the equationbeing solved is: L`en = �DR(ÆCe`+1n�1)�DR(ÆF e`+1n )en = I(eǹ; e`�1n�1) on �
`=`�1; (3.49)where ÆCe`+1n�1 is the oarse level ontribution to the level `=`+ 1 ux register:ÆCe`+1n = G`eǹ on �
`=`+1: (3.50)So, the e�et of the large oarse-�ne error is propagated down to the level 0/1 interfae, where it iseliminated, and then the level 1/2 interfae an be updated, and so on.



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 1043.4 Convergene and ErrorsWe also looked at the global onvergene of the multilevel Poisson solvers desribed in thishapter. Beause the omposite operators, residual, and onvergene riteria were de�ned in thesame way for eah method, we expet that the auray and errors in eah will be omparable. So,while the analysis in this setion was onduted using the bottom-up level solve/orretion algorithmof Setion 3.3.2 (beause that is what we were working on when this work was done), it should beappliable to the standard multilevel solution algorithm as well.3.4.1 ConvergeneTo obtain onvergene results, we solved Poisson's equation for a problem for whih wehave an exat solution. This enabled us to better look at errors in the solution and their behavior asthe grids were re�ned. The sample problem used was a single quarti soure, with Dirihlet physialboundary onditions set to be the exat solution on �
 if the problem was being solved in anin�nite domain using the higher-order ghost-ell disretization (2.3). For these onvergene studies,the strategy was to �x a ertain number of levels (in this ase we looked at two-level solutions { baselevel + one level of re�nement), and then let the Rihardson extrapolation error estimator (Setion5.3) generate grids adaptively based on its trunation error estimates. As we re�ne the base grids,we also sale the regridding error tolerane for onsisteny. Sine we expet the algorithm to beO(h2), we sale the tolerane in the same way; for example, the tolerane for a 128�128 base gridwould be 142 the tolerane of the 32�32 ase.Quantities that we looked at were:



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 105� Error: � = �exat � �� Trunation Error: � = L(�exat)� L(�) (3.51)= L(�exat)� �� Boundary trunation error, �bnd, the trunation error on ells adjaent to oarse-�ne interfaes(on both the �ne and oarse sides of the interfae).� Internal trunation error, �int: the omplement to �bnd�int = � � �bnd (3.52)� Boundary Error: The error in the solution whih is a result of trunation error at the oarse-�neinterfaes. To ompute this, we solve the equation:L(�bnd) = �bnd; (3.53)�bnd = 0 on �
� Internal error: The omplement to �bnd (this also inludes the error due to physial boundaryonditions). �int = �� �bnd (3.54)Plots of these errors vs. oarse grid spaing are shown in Figure 3.20 in L1 and L1 norms.The \bump" in the error after the 128�128 base grid ours due to a hange in the grid on�guration.
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Errors vs. grid spacing
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Errors vs. grid spacing
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CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 107Up to this point, the �ne grids oupy a orner in the domain, with both the top and right sidesof the re�ned path abutting the physial boundary. As the base grids get �ner, the �ne pathseparates from the physial boundary, so that it has oarse-�ne interfaes on all four sides. It isworth noting that this rearrangement of the grids has little, if any, e�et on the global error andtrunation errors { it just leads to a redistribution of the error between \internal" and \boundary"omponents.As expeted, the L1 norm of the global error is O(h2), as is �int. Also as expeted, the L1norm of the trunation error is O(h), due in this ase to the trunation error indued at the physialboundaries. The L1 onvergene of this algorithm appears to be between O(h1:6) and O(h2).3.4.2 E�ets of Loal Re�nementAnother interesting result was obtained by taking the 64�64 base grid ase and allowingthe grid generator to generate as many grids as it deemed neessary. The errors as a funtionof number of re�nements is shown in Figure 3.21 for the L1 and L1 norms. It is apparent thatre�nement is only bene�ial for one or two levels of re�nement, after whih the error no longerdereases, and atually inreases slightly. We believe this to be the result of two tendenies, bothdue to the inreasingly singular nature of the solution as we re�ne.First, we are re�ning smaller and smaller portions of the domain, so it is apparent thatloal improvement of the solution in a tiny portion of the domain will have little to no real e�et onthe global solution.Seond, although we are improving the auray of the solution on the interior of the�ne grids (note the steady improvement of the internal omponent of the trunation error), weare balaning this with the reation of new oarse-�ne interfaes, with their assoiated O(h) error.
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CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 109The e�ets of this inreased boundary error are most apparent by looking at the trunation error{ although the internal omponent dereases steadily as more �ne levels are added, the assoiatedinreased boundary error auses the total trunation error to remain onstant.This has impliations on our regridding and error-estimation strategies. For instane,Trompert and Verwer [67℄ inlude the inreased error due to interpolation errors on the oarse-�neboundary in their regridding riterion, and point out that it is best to plae oarse-�ne interfaeswhere the solution is not strongly varying, to minimize the e�ets of oarse-�ne interfae errors. Also,Propp [51℄ presents a ux-based Rihardson extrapolation error estimation method whih aountsfor the surfae to volume ratio of the re�ned grids.
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Chapter 4Adaptive Projetion Algorithm

This hapter will desribe the extension of the single-grid projetion algorithm de�ned inChapter 2 to AMR. We will extend the adaptive algorithm developed by Berger and Colella [18℄ forhyperboli onservation laws to onstrut an AMR projetion method for solving the inompressibleEuler equations. For ontext, a brief review of the algorithm in [18℄ is in order.4.1 AMR for Hyperboli Conservation LawsBerger and Colella [18℄ developed a loally adaptive methodology for solving hyperbolionservation laws. Their method re�ned in time as well as spae, and maintained onservation atoarse-�ne interfaes.4.1.1 Conservation LawsIn [18℄, the equation being solved is a system of hyperboli onservation laws, whih havethe form: �u�t + ��xfx + ��yfy = 0; (4.1)



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 111where u is the onserved quantity, and f = (fx; fy)T is the ux funtion. Integrating (4.1), usingthe divergene theorem: ��t Z
 udV = � Z
r � f(u)dV (4.2)= � Z�
 f(u) � ndS;where n is the normal of the boundary of 
. So, the hange in the integral of u over any givendomain will be equal to the integrated uxes through the boundary of the area.Using a onservative method will guarantee that u satis�es a disrete analog of (4.2). Intwo dimensions, a onservative method will take the form:Un+1 = Un � �t�x�Fn+ 12x;i+ 12 ;j � Fn+ 12x;i� 12 ;j�� �t�y�Fn+ 12y;i;j+ 12 � Fn+ 12y;i;j� 12�; (4.3)= Un ��tD(Fn+ 12 )where Uni;j is a ell-entered approximation to the ell average of u, R xi+12xi� 12 R yj+12yj� 12 u(x; y; tn)dydx,and Fx and Fy are numerial approximations to fx and fy, averaged over the ell-edges and overthe timestep. Beause we use the same edge uxes to update the ells on both sides of eah edge,U is onserved. In a numerial sheme, onservation implies that for any ell, or group of ells,the integrated hange in U over a time �t will be the sum of the numerial uxes F through theell-edges around the ells: X
 Un+1i;j =X
 Uni;j ��tX�
 F � n; (4.4)where P
 represents the sum over all the ells (i; j) in a region 
, and P�
 represents a sum overall of the ell edges whih also make up the boundary �
. (For more bakground on onservativemethods for hyperboli onservation laws, see LeVeque [46℄.)To advane this equation on a single grid, we would follow the proedure outlined in



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 112AdvaneSoln(t;�t)FillGhostCells(t; U(t))Compute F = (Fn+ 12x ; Fn+ 12y )TU(t+�t) = U(t)� �t�x�Fn+ 12x;i+ 12 ;j � Fn+ 12x;i� 12 ;j���t�y�Fn+ 12y;i;j+ 12 � Fn+ 12y;i;j� 12�end AdvaneSoln Figure 4.1: Single-grid update for hyperboli onservation lawsFigure 4.1. First, we �ll ghost ells around the physial domain with values whih represent theappropriate physial boundary ondition on U . Then, we step through all the edges in the domain,�rst omputing the edge-entered uxes Fn+ 12 = (Fn+ 12x ; Fn+ 12y )T . Finally, we update U using theonservative update (4.3).4.1.2 Adaptive MethodologyIn [18℄, blok-strutured loal re�nement is employed { the adaptive hierarhy of re�nedgrids used in that work is similar in struture to that desribed in Setion 3.1. In this sheme,re�nement is temporal as well as spatial { �ne ells are advaned using a �ner timestep than is usedto advane oarser ells. The authors employ a reursive timestepping algorithm in whih oarselevels are updated, followed by suessively �ner levels. Proper nesting of re�ned grids (see Setion3.1.1) ensures that interpolation of oarse-grid data an provide boundary onditions for the �ne-gridupdates.Re�nement in TimeMany implementations of time-dependent AMR algorithms, inluding those in [48, 67℄ ad-vane all levels at the same global timestep. While this results in a simpler time-stepping algorithm,



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 113it is less eÆient and less aurate due to the fat that the global timestep is restrited by thestability requirements of the �nest ells.For stability, most expliit time-dependent shemes must satisfy some form of a Courant-Friedrihs-Lewy (CFL) [31℄ ondition,� = max( u�x ; v�y )�t < C (4.5)where C is determined by the partiular sheme being used. � is known as the CFL number.For most expliit advetion shemes, C = 1. Note that this requires that as the mesh spaing isdereased, there must be a orresponding derease in the timestep.When loal re�nement is used, di�erent regions of the solution have di�erent levels of spatialre�nement. If all levels are advaned at the same timestep, the oarse levels will need to be advanedat a muh �ner timestep than would be ditated by the stability requirements of the oarse levelsalone, in order to ensure stability at the �nest levels. This results in more omputational work beingdone on the oarse levels (where less resolution is required) than is neessary, and so is less eÆientthan we would like. Also, the advetion shemes we are using are more aurate at moderate CFLnumbers, and beome more dispersive as the CFL number goes to zero [68℄.For these reasons, when solving time-dependent equations with loal re�nement, we wouldlike to re�ne in time as well as spae. This is known as subyling. Advaning the �ner grids at a �nertimestep ensures that the global timestep is not held hostage to the restritive stability requirementsof the �ner grid.In [18℄, �ner levels are advaned at a �ner timestep than oarser ones. If level ` + 1 is afator of nr̀ef �ner spatially than the oarser level `, then the �ner level will be advaned using a



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 114CompositeTimeStep(trse;�trse)Advane Urse(trse)! Urse(trse +�trse)for n = 0; nref � 1�tfine = 1nref �trsetfine = trse + n�tfineAdvane Ufine(tfine)! Ufine(tfine +�tfine)end forsynhronize(Urse(trse +�trse); Ufine(trse +�trse))end CompositeTimeStepFigure 4.2: Pseudoode for omposite solution advane for two-level asetimestep whih is a fator of nr̀ef �ner than the timestep on the oarser level:�t`+1 = 1nr̀ef �t`: (4.6)This results in a more eÆient time-stepping proedure, sine all levels are advaned using approx-imately the same CFL number.Time-stepping StrategyFirst, onsider the two-level ase, with one oarse and one �ne level. Assume that we havea omposite solution whih is de�ned at time trse:Uomp(trse) = �Urse(trse) on 
rseUfine(trse) on 
fine (4.7)The goal of omputation will be to advane the omposite solution to a new time trse +�trse.The timestepping strategy employed in [18℄ is to �rst advane the oarse level from trseto trse + �trse. (Figure 4.2) This oarse-grid update will be strutured exatly the same as thesingle-grid update desribed in Figure 4.1. Spei�ally, we ompute Fn+ 12 ;` on 
`;�, and apply the



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 115level-divergene operator omponentwise to obtain the update for U :U := U ��tD`F`:Then, the �ne level will be updated nref times, with a timestep of �tfine = 1nref �trse in a similarway. Eah �ne-level update will be strutured in the same way as Figure 4.1 for eah �ne-level grid(reall that the �ne level 
fine is made up of a union of retangular �ne-level grids), and will advanethe �ne-level solution from tfine to tfine+�tfine. First, we will �ll ghost ells around eah �ne-levelgrid with appropriate values. Then we an advane eah �ne-level grid independently, as if it werea single-grid solution. The only di�erene between the �ne-grid updates and the single-grid updateis that ghost ells may now represent boundary onditions from the oarse level or from another�ne-level grid as well as physial boundary onditions. By using ghost ells to enfore appropriateboundary onditions for eah �ne-level grid, we an separate the details of the AMR implementationfrom the level update, and use essentially the same update for eah grid as we used for the single-gridupdate. This enormously simpli�es addition of AMR apabilities to existing algorithms.In general, for the higher-order hyperboli shemes we will use, we will need to �ll a borderof ghost ells more than one ell wide around eah grid. When boundary onditions are omputed,we �ll enough ghost ells to omplete the stenils for eah ell in the valid domain on eah grid.Reall that the boundary of a �ne-level grid an be either a physial boundary, a oarse-�neinterfae with the oarse level, or a �ne-�ne interfae with another grid in the �ne level (or somemixture of the three). Filling ghost ells where �
fine is a physial boundary is straightforward,using the the standard ghost-ell formulation used in a single-grid update. Where �
fine is a oarse-�ne interfae with the oarse level, oarse-grid solution values U rse are linearly interpolated in timeto U rse(tfine), whih is possible beause the oarse level has already been updated to trse+�trse.



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 116Then Urse(tfine) is interpolated in spae using onservative linear interpolation to �ll the ghostells around the �ne level. Finally, where a �ne-level grid abuts another grid at the same level ofre�nement, the ghost ells are �lled by simply opying Ufine(tfine) from the interiors of the other�ne-level grids. By opying values from the interiors of eah grid at the urrent level, we an makethe interfaes between grids seamless, whih will make the solution independent of how the re�neddomain was deomposed into onstituent retangular grids, whih is an important property of thealgorithm.The �ne grid solution will be omputed for U(tfine); tfine 2 ftrse + k�tfinegnrefk=0 . Afternref timesteps, the �ne level will reah the same time as the oarse level, trse+�trse. At this point,the oarse and �ne solutions must be brought into agreement, a proess we will all synhronization.In [18℄, synhronization has two goals. First, we would like to use the more aurate �ne-levelsolution wherever possible, and we also need to ensure that the advane of the omposite solutionfrom trse to tfine is onservative.Synhronization of the oarse and �ne solutions for the hyperboli problem onsists of twosteps. First, the oarse-grid solution at trse + �trse is replaed where possible by the averaged�ne-grid solution: Urse(tsyn)i;j = Av(Ufine(tsyn))i;j on P(
�ne) (4.8)where tsyn is the new time whih both the oarse and �ne solutions have reahed.Then, the oarse-grid solution is orreted to ensure onservation. For onservation, theux out of the �ne ells aross the oarse-�ne interfae must be the same as the ux into the oarseells through the interfae. For example, onsider a ase where the oarse-�ne interfae is to theleft of ell (i; j) (Figure 4.3). In this ase, we used F rsex;i� 12 ;j to ompute the update for ell (i; j).
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Figure 4.3: Coarse and �ne uxes aross the oarse-�ne interfae.However, on the �ne side of the oarse-�ne interfae, the ux aross the (i� 12 ; j) edge during thesame interval was 1nref PhF finei, where the h�i notation represents a spatial average over the �needges whih overlay the oarse-ell edge (i� 12 ; j). The sum is over the subyled �ne-level timesteps,and the fator 1nref aounts for the fat that �tfine = 1nref �trse. For onservation, we requirethat the same uxes be used in the updates on both the oarse and �ne side of the interfae. Asa rule, we onsider the �ne-grid information to be more aurate, so we would like to update theoarse-grid ells adjaent to the interfae using the uxes omputed during the �ne-grid updates.For ell (i; j), this means that the update (4.3) must be modi�ed to use the �ne-grid omputeduxes:Un+1;rsei;j = Un;rsei;j ��trse�x �F rsex;i+ 12 ;j� 1nref XhF finex ii� 12 ;j���trse�y �F rsey;i;j+ 12 �F rsey;i;j� 12�: (4.9)Adding and subtrating dtrse�xrseF rsex;i� 12 ;j from (4.9), we getUn+1i;j = Un;rsei;j � �trse�x �F rsex;i+ 12 ;j � F rsex;i;j� 12���trse�y �F rsey;i;j+ 12 � F rsey;i;j� 12� (4.10)



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 118��trse�x � 1nref XhF finex ii� 12 ;j � F rsex;i;j� 12�Notie that we have reovered the original single-grid update (4.3) with a orretion for the e�et ofthe �ne grid. This �ne-grid orretion an be expressed using the ux register and reux-divergenenotation of Setion 3.1.2. If we de�ne the ux register ÆF fine as the di�erene in the oarse and�ne uxes: ÆF fine = 1nref XhF finei � F rse (4.11)and use the reux divergene operator DR de�ned in Setion 3.1.2, then (4.10) an be written:Un+1i;j = Un;rsei;j � �trse�x �F rsex;i+ 12 ;j � F rsex;i;j� 12���trse�y �F rsey;i;j+ 12 � F rsey;i;j� 12� (4.12)��trseDR(ÆF fine):= Un;rsei;j ��trseDrse(F rse)i;j ��trseDR(ÆF fine)i;jWe will all the operation of orreting the oarse grid solution by subtrating the reux-divergeneof the mismath in uxes reuxing.So, the oarse grid solution an be orreted to enfore the ux-mathing ondition requiredby onservation by a simple reuxing operation, whih an be performed separately from the oarse-grid update. In the ase of re�nement in time, as in the algorithm of [18℄, the reuxing operationis performed during the synhronization step, after al step, after all of the relevant oarse and �neupdates have been performed.One the �ne solution has been averaged onto the oarse level and the oarse uxes havebeen orreted by reuxing, then the advane of the omposite solution from time trse to trse +�trse is omplete.
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t+ t∆

0

t
level 0 level 2level 1Figure 4.4: Shemati of subyled timestep4.1.3 Reursive Timestepping AlgorithmThe two-level algorithm in the previous setion is generalized in [18℄ for any number oflevels by rede�ning the algorithm as a series of reursive single-level advanes. Figure 4.4 shows asample global timestep with 2 levels of re�nement; the �rst level of re�nement is a fator of 2 �nerthan the base level, while level 2 is a fator of 4 �ner than level 1. To update the omposite solution,we do a level advane for level 0 from time t0 to time t0 +�t0. Then, we perform a level advaneon level 1, with �t1 = 12�t0. Sine the timestepping is reursive, we then will do 4 level advaneson level 2, eah with a timestep of �t2 = 14�t1. This will bring level 2 and level 1 to the same time.We then synhronize levels 1 and 2. One level 1 and level 2 have been synhronized, level 1 an beadvaned again. One again, �t1 = 12�t0. Then, level 2 is advaned four times with �t2 = 14�t1.At this point, all the levels have reahed the new oarse time. So, we then synhronize all of the



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 120LevelAdvane(`; t`;�t`)�llGhostCells(t)ompute Fx̀; FỳU `(t` +�t`)i;j = U `(t`)i;j � �t`�x �Fx̀;i+ 12 ;j � Fỳ;i� 12 ;j���t`�y �Fỳ;i;j+ 12 � F `̀;i;j� 12 �Update Flux Registers:if (` < `max) ÆF `+1 = �F` � n`+1CF on �
`+1if (` > 0) ÆF ` = ÆF ` + 1n`�1ref hF` � nC̀F i on �
`if (` < `max) thenfor n = 0; nr̀ef � 1�t`+1 = 1nr̀ef �t`t`+1 = t` + n�t`+1LevelAdvane(`+ 1; t`+1;�t`+1)end forU `(t` +�t`) := U `(t` +�t`)��tDR(ÆF `+1)end ifend LevelAdvaneFigure 4.5: Pseudoode for reursive timestep used for hyperboli onservation laws in Berger and Colellalevels, whih will result in the �nal omposite solution at time t0 +�t0.The funtion LevelAdvane(`; t`;�t`) (Figure 4.5) will advane the level ` solution fromtime t` to time t`+�t`. Beause this funtion is reursive, all �ner levels (whih initially will also beat time t`) will also be advaned to the new time, and the appropriate synhronization operations willbe performed so that the entire omposite solution for levels `::`max will be advaned to the new time.So, to advane the entire solution from time t0 to time t0 +�t0, we all LevelAdvane(0; t0;�t0),whih will advane the entire omposite solution through a series of reursive level advanes.One the ghost ells have been �lled in the same way as the two-level ase, eah grid in level



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 121` an be updated independently, using the same update method as in the single grid ase. First,we ompute the uxes Fx and Fy for eah edge. Then, we ompute the update to U ` using thesingle-grid update de�ned by (4.3). At this point, the appropriate ux registers are updated. If a�ner level exists, then the level `+1 ux register is initialized with the oarse level ux (�F` �n`+1CF ),where n`+1CF is the loal normal of the oarse-�ne interfae between levels ` and ` + 1. If a oarserlevel exists, then the level ` ux register is inremented with the �ne-level ux from this timestep.One all the ells in level ` have been updated to time t`+�t`, we an reursively advaneany �ner levels, using the same timestepping proedure. The �ner level `+1 is advaned nr̀ef times,starting at the level ` initial time t`. The �ne timestep will be �t`+1 = 1nr̀ef �t`.One the �ne level has been advaned nr̀ef times, it has reahed the same time as the level` solution, whih is t` + �t`. At this time, the solutions on levels ` and ` + 1 are brought intoagreement: the level ` solution U `(t`+�t`) is replaed by the averaged �ne solution U `+1(t`+�t`)wherever level ` is overed by re�nement, and the level ` solution is orreted by reuxing themismath of �ne and oarse uxes to ensure onservation.4.2 Multilevel Disretization of the Inompressible Euler equa-tionsWe would like to extend the AMR methodology developed in the previous setion to thesolution of the inompressible Euler equations by extending the single-grid algorithm presented inSetion 2.6. In the single-grid algorithm, we advane the veloity �eld u and a passively advetedsalar �eld s from time tn to time tn +�t. Also in that algorithm, a lagged pressure �eld pn+ 12 isomputed to enfore the inompressibility onstraint. As in the previous setion, we will de�ne a



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 122solution on eah level u`; s` and the assoiated pressure on eah level �`. Also, as in the previoussetion, we will subyle in time, so during a level ` timestep from t` to t` + �t`, the level ` + 1solution will be advaned nr̀ef times. So, in a single level 0 timestep, we will ompute solution valuesfor eah level ` > 0 at the following times:u`(t`); s`(t`); t` 2 ft`�1 + k�t`gn`�1ref �1k=0 : (4.13)Beause the pressure is lagged in this algorithm, it will also be de�ned at lagged times on eah level,or �`(t`); t` 2 ft`�1 + (k � 12)�t`gn`�1refk=1 : (4.14)4.2.1 Level AlgorithmTo extend the reursive subyled algorithm of Setion 4.1.3 to the projetion algorithmdesribed in Setion 2.6, we will �rst need to express the single-grid projetion algorithm as a levelupdate whih will advane the level ` solution from time t` to t` +�t`. This is straightforward. Abrief outline of this level update is as follows:1. Compute advetion veloities uAD;` as in Setion 2.6.1, inluding level ` edge-entered (MAC)projetion for advetion veloities.2. Compute advetive update for salar:s`(t` +�t`)i;j := s`(t`)� �t`�x`�FS;`i+ 12 ;j � FS;`i� 12 ;j�� �t`�y`�FS;`i;j+ 12 � FS;`i;j� 12 �3. Compute intermediate veloity �eld u��;`:u��;`i;j := u`(t`)i;j ��t`[(u � r)u℄n+ 12 ;`i;j



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 1234. Projet intermediate veloity �eld to enfore divergene onstraint:Solve L`�`(t` + �t`2 ) = DCC;`u��;`u`(t` +�t`) := u��;` ��t`GCC;`�`(t` + �t`2 )4.2.2 Level OperatorsThe outline in the previous setion left open the issue of extending the ell-entered opera-tors GCC and DCC de�ned in Setion 2.5.2 to a level-operator formulation. In most ases, the leveloperator will simply be the orresponding single-grid operator, with a suitable oarse-�ne boundaryondition for use when the normal stenils ross a oarse-�ne interfae with level `�1. When de�ningoarse-�ne boundary onditions for these operators, rede�ning them as edge-entered operators withappropriate ell-to-edge and edge-to-ell averaging (equations (2.62) and (2.63) ) will prove useful.As in Setion 4.1, use of ghost ells around eah �ne grid will simplify the appliation of boundaryonditions by separating the boundary onditions from the operator disretization.GradientWe �rst de�ne the level operator version of the edge-entered gradient, G`, whih wewill then extend to the ell-entered operator GCC;` through the use of (2.63), repeated here foronveniene: GCC� = AvE!CG�: (4.15)G` will be the level-operator version of the edge-entered gradient G, whih was de�ned in(2.52). On grid interiors,Gì+ 12 ;j = (�ì+1;j � �ì;j�x` ; �ì+1;j+1 + �ì�1;j+1 � �ì+1;j�1 � �ì�1;j�14�y` )T (4.16)Gì;j+ 12 = (�ì+1;j+1 + �ì+1;j�1 � �ì�1;j+1 � �ì�1;j�14�x` ; �ì;j+1 � �ì;j�y` )T :



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 124Where this stenil rosses a oarse-�ne interfae with the oarser level `�1, we will use the quadratiinterpolation operator I from Setion 3.1.2 to �ll ghost ells around the level ` grid, whih will thenbe used in the normal stenil for G`.Then, de�nition of the ell-entered level-operator gradient GCC;` is straightforward, usingthe edge-to-ell averaging operator AvE!C :GCC;`� = AvE!CG`�: (4.17)Note that the G` operator ontains the oarse-�ne boundary onditions for GCC;`, sine the edge-entered gradient is de�ned on oarse-�ne interfaes with oarser levels through the oarse-�neinterpolation operator I . For this reason, it will not be neessary to expliitly de�ne a oarse-�neboundary ondition for the ell-entered gradient operator.DivergeneSimilar to the level-operator gradient, we will �rst de�ne the level-operator version of theedge-entered divergene operator, D`. We an then use (2.62) to de�ne the ell-entered level-operator divergene DCC .Reall that the edge-entered divergene operator D is a ell-entered divergene of edge-entered quantities. We de�ne the level-operator D` of the edge-entered vetor �eld u = (u; v)T inthe same way: D`u = uì+ 12 ;j � uì� 12 ;j�x` + vì;j+ 12 � vì;j� 12�y : (4.18)Sine the edge whih makes up the oarse-�ne interfae with the oarser level `� 1 is onsidered tobe a part of the level `, there is no need to speify a oarse-�ne boundary ondition for this operator.To de�ne the ell-entered divergene operator DCC;`, we will one again draw on the



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 125de�nition of the ell-entered divergene operator in (2.62):DCC;`u = D`(AvC!Eu`): (4.19)where AvC!E is the ell-to-edge averaging operator.So, the boundary ondition for the level-operator ell-entered divergene DCC;` where thestenil rosses a oarse-�ne interfae with level ` � 1 is de�ned by the boundary onditions set foru` before averaging to edges. Examination of the level-advane algorithm in the previous setionshows that in most ases, the divergene operator will be applied to the intermediate veloity �eldu��;` to ompute the right-hand-side for the level projetion. Beause of the subyled nature ofthe level ` timestep, it is not lear what, if any, oarse-grid quantity would be appropriate to use asa oarse-grid boundary ondition for u��;` (for example, u��;`�1 has the wrong entering in time).For this reason, it was deided to use linear extrapolation of u` to ompute ghost-ell values for u`at oarse-�ne interfaes.Advetive TermsWe also must ompute advetive terms in the level update, both the [(u � r)u℄` terms inthe momentum equation and the FS;` = r � (us) term in the advetion update, as well as in theomputation of the advetion veloities. This is similar to the method desribed in Setion 2.6.1,with the addition of suitable oarse-�ne boundary onditions. This part of the level advane hasa hyperboli harater to it, and is similar to the hyperboli onservation laws solved in Setion4.1. This onsists of extrapolating values for u and s to edges at time (t` + �t`2 ), then using theupwinded values to ompute the advetive updates. Beause of the hyperboli nature of this partof the update, we use the same oarse-�ne boundary onditions that were used in 4.1, whih wasonservative interpolation of oarse solution values in time and spae. Before the traing step,



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 126oarse-grid solution values are interpolated in time to t`, and then are onservatively interpolated inspae to �ll ghost ells around eah grid. One this is done, the single-grid traing and upwindingalgorithm of Setion 2.6.1 an be used in a straightforward manner.The omputation of advetion veloities inludes a level-operator version of the edge-entered projetion desribed in Setion 2.6.1. We �rst solve:L`�` = D`(un+ 12 ;`); (4.20)and then orret the veloity �eld to make it divergene-free:uAD;` = un+ 12 ;` �G`�` (4.21)Note that we have not spei�ed the oarse-�ne boundary ondition for �` in (4.20) and (4.21); wewill defer this issue until the spei�ation of the entire adaptive algorithm in Setion 4.5.4.3 A Simple Reursive TimestepOne the level advane algorithm of the last setion has been de�ned, it is straightforwardto extend the methodology of Berger and Colella to the inompressible Euler equations. To ensureproper oupling between levels, the appropriate veloity and salar ux registers ÆV and Æs are main-tained, and oarse grid veloities and salars are orreted to ensure onservation by the reuxingoperation desribed in Setion 4.1.2. The pseudoode for the reursive timestep for this algorithmis shown in Figure 4.6. Unfortunately, this algorithm su�ers from two signi�ant problems. Bothof these issues were identi�ed by Almgren et al. [5℄ in the onstrution of their adaptive projetionmethod for the inompressible Navier-Stokes equations.First, the omposite veloity �eld will not satisfy the divergene onstraint based on om-posite operators. We would expet that sine the divergene onstraint was enfored using level



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 127EulerAdvane(`; t`;�t`)FillGhostCells(`; t`)Compute uAD;`Compute advetive uxes: FS;`sì;j(t` +�t`) := sì;j(t`)� �t`�x`�FS;`x;i+ 12 ;j � FS;`x;i+ 12 ;j�� �t`�y`�FS;`y;i;j+ 12 � FS;`y;i;j� 12�Update salar ux registers:if (` < `max) Æs`+1 = �FS;`` � n`+1CF on �
`+1if (` > 0) Æs` = Æs` + 1n`�1ref hFS;` � nC̀F i on �
`Compute veloity advetion [(u � r)u℄`Update veloity ux registersif (` < `max) ÆV`+1 = �(uAD;` � n`+1CF )uhalf;` on �
`+1if (` > 0) ÆV` = ÆV` + 1n`�1ref h�(uAD;` � n`+1CF )uhalf;`i on �
`u��;` := u`(t`)��t`[(u � r)u℄`Solve L`�` = DCC;`u��;`u`(t` +�t`) := u��;` ��t`GCC;`�`if (` < `max) thenfor n = 0; nr̀ef � 1�t`+1 = 1nr̀ef �t`t`+1 = t` + n�t`+1EulerAdvane(`+ 1; t`+1;�t`+1)end forAvgDown(s`(t` +�t`); s`+1(t` +�t`))AvgDown(u`(t` +�t`);u`+1(t` +�t`))Reux: s`(t` +�t`) = s`(t` +�t`)��t`DR(Æs`)Reux: u`(t` +�t`) = u`(t` +�t`)��t`DR(ÆV`)end ifend EulerAdvaneFigure 4.6: Naive extension of Berger-Colella algorithm to inompressible Euler



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 128operators in a level-operator based level projetion, that the omposite pressure �eld � omputedby the level projetions will not satisfy the ellipti mathing ondition desribed in Setion 3.2.1.For example, if the initial veloity �eld is divergene-free, and (u � r)u is independent of time,enforing the divergene onstraint using level projetions orresponds to Dirihlet-only mathingfor the pressure solve. An equivalent statement is that there is no sense in whih the jump in thenormal veloities [u �nCF ℄ is zero at oarse-�ne interfae. Another issue is that veloity reuxing hasmodi�ed the oarse-level veloity �elds in a row of ells one-ell wide around oarse-�ne interfaeswith the �ner level. This veloity was not inluded in the oarse-level level projetion, and so willause a violation of the divergene onstraint.Also, this sheme will not be freestream preserving. Although we projet the advetionveloities uAD with an edge-entered projetion (Setion 2.6), the projetion we use is also based onlevel operators, and so the orretion �eld � also does not satisfy the ellipti mathing ondition. Thismeans that while the advetion veloities are divergene-free based on a level-operator disretization,they are not generally divergene-free based on omposite divergene operators.As a result, errors in advetion will our at oarse-�ne interfaes. While our advetionsheme will be onservative due to reuxing, it will not be freestream preserving. The resultingerrors will be apparent in the evolution of a salar �eld whih is initially onstant throughout thedomain. Beause of the non-solenoidal nature of the advetion veloity �eld, this salar, whihshould maintain its onstant value throughout its evolution, will begin to show errors at oarse-�neinterfaes, as it sees the e�ets of loal ontrations and expansions of the non-solenoidal advetionveloity �eld at the oarse-�ne interfaes.For example, onsider the two-level ase. Assume that a salar s has a onstant value s0



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 129in a region surrounding a oarse-�ne interfae. In this ase, the oarse-grid update will produe theorret solution, beause the uxes based on the oarse-grid solution will balane and lead to no nethange in s. The ux register for this oarse-�ne interfae will ontainÆs`+1 = �s0uAD;` � nCF + 1nref Xhs0uAD;`+1 � nCF i= s0��uAD;` � nCF + 1nref XhuAD;`+1 � nCF i�; (4.22)where uAD is the advetion veloity, the summation is over the subyled �ne-level timesteps, andthe hi denotes an arithmeti average of the �ne-level edge-entered values on the oarse-�ne interfae.Sine the oarse-grid update has already produed the orret solution, we would like the reuxingorretion to have no e�et. For that to happen, (4.22) implies that the oarse-grid advetion velo-ities uAD;` �nCF must equal the average of the �ne-grid advetion veloities 1nref PhuAD;`+1 �nCF i:However, beause the oarse- and �ne-grid advetion veloities were omputed using independentTaylor extrapolations and single-level ellipti solves, there is no guarantee this will be the ase. Asa result, we expet that the reuxing operation, while it preserves onservation of s, will generateviolations of freestream preservation, and s will not equal s0 in the ells immediately adjaent tothe oarse-�ne interfae. One these errors have been made, they will then be adveted throughoutthe ow, ontaminating the solution in regions away from oarse-�ne interfaes.In this work, we address these issues by onstruting a multilevel projetion whih is ap-plied at the end of eah oarse timestep, after the reuxing operations have been performed. Thiswill ensure that the omposite veloity �eld satis�es a omposite divergene onstraint. Also, we willintrodue a supplementary adveted quantity to trak freestream-preservation errors. We an thenuse this quantity to ompute orretions to the advetive veloity �eld to make the sheme approx-imately freestream preserving. In [5℄, these issues are resolved using somewhat di�erent tehniques;



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 130a omparison of the two algorithms will be deferred until Setion 4.6.1.4.4 Additions to Hyperboli Algorithm for InompressibleFlowAs desribed in the previous setion, a naive extension of the algorithm of Berger andColella to the inompressible Euler equations su�ers from two serious weaknesses, both springingfrom the fat that the divergene onstraint has been applied on a level-by-level basis, rather thanin a omposite sense. In this setion, we desribe the steps taken in this work to �x these problems.4.4.1 Composite ProjetionWe would like our omposite veloity �eld u to satisfy the divergene onstraint (2.40)based on a omposite divergene operator, rather than one based on the level divergene operatorused in the level projetions.After the subyled level solves, the resulting omposite veloity �eld will not, in general,satisfy the divergene onstraint based on omposite operators, even though we performed levelprojetions on the veloity �eld during eah level solve. This is the same e�et seen in Setion 3.2.1.While we used pressure information from oarser levels as a boundary ondition for the �ner grids,this represents only a Dirihlet boundary ondition for the pressure { Neumann mathing has notbeen enfored. One again, the solution on the �ner levels has seen the e�et of the oarser grids,but the oarse-level pressure �eld has not seen the e�et of the �ner levels.In addition, the reuxing operation for veloity has altered the oarse-level veloity �eld,adding a set of veloities to a ring of oarse ells one ell wide around the projetion of the �ne grids.This added veloity �eld was never projeted at all, and so a orretion must be made to ensure that



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 131the reuxed veloities do not ause the omposite veloity �eld to violate the divergene onstraint.To orret for these problems, we will de�ne a omposite projetion, whih will be based onomposite operators and will be applied to the omposite multilevel veloity �eld. This projetionwill be applied during the synhronization step, after the reuxing operations have been performed;for this reason, we will all this multilevel projetion the synhronization projetionWhile we have already de�ned the ell-entered Laplaian operator we will use in thiswork in Setion 3.1.2, we will need to de�ne omposite analogs of the single-level ell-enteredDCC and GCC operators de�ned in Setion 2.5.2. We expet that they will be similar to theell-entered level operators de�ned in Setion 4.2.2 (whih already ontain oarse-�ne boundaryonditions with oarser levels), with the addition of oarse-�ne boundary onditions in the form ofmathing onditions with a �ner level, if it exists. As in Setion 3.1.2, we also expet that awayfrom oarse-�ne interfaes, the omposite operator disretizations will redue to the appropriatesingle-level ell-entered disretization. We also expet that de�nition of the ell-entered operatorsDCC and GCC as edge-entered operators with appropriate ell-to-edge and edge-to-ell averaging(equations (2.62) and (2.63) ) will prove useful, sine we have already de�ned omposite MAC-entered divergene and gradient operators in Setion 3.1.2.Composite DivergeneIn Setion 3.1.2, we de�ned a omposite edge-entered divergene operator. Our ompositeell-entered divergene operator will be similar. Away from the oarse-�ne interfae, as usual, thedivergene will be the normal ell-entered DCC;` operator of (2.62). So, on the �ne grid, away fromthe oarse-�ne interfae, DCC;ompu = DCC;fineufine: (4.23)



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 132On the oarse grid away from the interfae,DCC;ompu = DCC;rseurse: (4.24)We will one again need to de�ne a speial omposite operator wherever the stenil of thenormal oarse or �ne divergene rosses a oarse-�ne interfae. As seen in (2.62), the ell-entereddivergene operator an be de�ned as an edge-entered divergene (2.51) of edge-entered veloitiesreated by averaging ell-entered veloities to edges. At oarse-�ne interfaes, we will ompute the�ne-level edge-entered veloities by using linear extrapolation to ompute ell-entered veloities inghost ells surrounding the �ne grid, and then using these values in the standard AvC!E operatorof (2.61). We will then de�ne the appropriate oarse-level edge-entered veloity on the oarse-�ne interfae edge as the arithmeti average of the edge-entered veloities used to ompute thedivergenes on the �ne side of the oarse-�ne interfae.So, on the �ne side of the oarse-�ne interfae,DCC;omp;CFu = Dfine(uedge;fine) (4.25)uedge;fine = AvC!Eufinewhere ghost-ell values for ufine along the oarse-�ne interfae are omputed using linear extrap-olation of the interior values of ufine, for onsisteny with the level-operator divergene operator.On the oarse side of the oarse-�ne interfae,DCC;omp;CFu = Drse(uedge;rse) (4.26)uedge;rse = � huedge;finei on �
fineAvC!Eurse elsewhere.



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 133Composite GradientWe de�ned a omposite edge-entered gradient operator in Setion 3.1.2 when we de�nedthe \uxes" in the omposite Laplaian operator. We will use this de�nition, along with (2.63),to onstrut our omposite ell-entered gradient operator. Sine most of the gradients we will beomputing will be of quantities like pressure, whih are de�ned by solving an ellipti equation, thisis appropriate. However, we will need to alter the operator on the oarse side of the interfae dueto the struture of many of the �elds to whih we will apply the gradient operator.We will use the edge-entered omposite gradient Gomp de�ned in Setion 3.1.2, wherequadrati oarse-�ne interpolation, along with ux-mathing, were used to de�ne the gradient op-erator at oarse-�ne interfaes. We reiterate here for ompleteness.Away from oarse-�ne interfaes, the omposite gradient is simply the oarse- or �ne-leveledge-entered gradient of (2.52):Gomp�omp = �Grse�rse on 
rseGfine�fine on 
fine (4.27)�fine = I(�fine; �rse) on �
`On the oarse-�ne interfae, we de�ne the �ne edge-entered gradients by using the quadratioarse-�ne interpolation operator from Setion 3.1.2 to de�ne ghost-ell values for � along the oarse-�ne interfae, and then using the normal �ne-level G operator to ompute the edge-entered gradi-ents. The oarse-level values for the gradient along the oarse-�ne interfae will be de�ned as thearithmeti average of the �ne-level gradients whih overlie the oarse edge.We an then average this edge-entered omposite gradient to ell enters to de�ne a ell-
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Typical Synchronization Correction Field
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0.00 5.00 10.00 15.00Figure 4.7: Typial synhronization orretion, orr. Fine grid is to the right of the oarse-�ne interfae.entered omposite gradient operatorGCC;omp, as in (2.63), whih is repeated here for onveniene:GCC;omp� = AvE!CGomp�; (4.28)In pratie, the only plae we will atually apply the omposite ell-entered gradientoperator will be during synhronization operations. While the disretization of the synhronizationprojetion will be disussed in the next setion, the struture of the resulting orretion �eldsneessitated a modi�ation to the de�nition of the gradient operator. In most ases, the soureterms for the synhronization projetion are primarily in a set of ells one ell wide on the oarseside of the oarse-�ne interfae, in essene a Æ�funtion in the diretion normal to the interfae. AÆ�funtion soure distribution to Poisson's equation implies a solution whih, although ontinuous,has a disontinuity in the �rst derivative (See Figure 4.7). In this ase, omputing the edge-enteredgradients using Gomp and then averaging to produe a ell-entered gradient will wash out the



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 135struture of the gradient �eld near the interfae beause the strongly positive and negative gradientson either side of the disontinuity will anel. The solution to this problem is to ompute thederivative in a one-sided way from the oarse side of the oarse-�ne interfae and use this one-sidedgradient for the oarse ell immediately adjaent to the oarse-�ne interfae. This preserves thestruture of the orretion aross the oarse-�ne interfae.So, in regions of the �ne grid away from the oarse-�ne interfae, we ompute the ell-entered gradient �elds aording to (2.63):GCC;omp�omp = GCC;fine�fine on 
�ne: (4.29)On the oarse grid away from the �ne grid, we likewise use the standard oarse disretization:GCC;omp�omp = GCC;rse�rse on 
rse: (4.30)On the �ne side of the oarse-�ne interfae, we �rst use the quadrati interpolation operator (Setion3.1.2) to ompute ell-entered �ne-grid ghost-ell values. Then, following (2.63), we ompute edge-entered gradients, whih are then averaged to ell-enters:GCC;omp�omp = GCC;fine�fine (4.31)�fine = I(�fine; �rse) on �
�neOn the oarse side of the oarse-�ne interfae, we will use linear extrapolation of the edge-entered gradients to provide an edge-entered gradient on the oarse-�ne interfae. For example,if the oarse-�ne interfae is loated at the (i � 12 ; j) edge (see Figure 4.8), then we ompute theell-entered gradient at oarse ell (i; j) as follows:(Gedge;rse�)i� 12 ;j = 2(Gedge;rse�)i+ 12 ;j � (Gedge;rse�)i+ 32 ;j (4.32)(GCC;omp�)i;j = AvE!C(Gedge;rse�):
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i- - 3Figure 4.8: Computing the omposite gradient on the oarse side of a oarse-�ne interfae for ell (i; j),when oarse-�ne interfae is loated at (i� 12 ; j) edge. Edge-entered gradient at (i� 12 ; j) is omputedby linear extrapolation of edge-entered gradients at (i+ 12 ; j) and (i + 32 ; j). Edge-entered gradients at(i+ 12 ; j) and (i� 12 ; j) are averaged to ell enter to get Gomp� at (i; j)Away from the oarse-�ne interfae, Gedge;rse� will be the edge-entered gradient of (2.52).Disretization of Composite ProjetionDuring the synhronization step, we will perform a synhronization projetion to ensurethat the veloity �eld satis�es the omposite divergene onstraint. If we separate the pressure �eldinto the ontribution from the level projetions and the remaining orretion,p = � + es; (4.33)then onstruting the synhronization projetion beomes straightforward. Sine the orretion dueto � has already been inluded in the veloities, we now use es to enfore the omposite onstraintby �rst solving: Lompes = 1�tsynDCC;ompu(tsyn) (4.34)e`bases = I(e`bases ; e`base�1s )



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 137with appropriate physial boundary onditions (if neessary), and then orreting the veloity �eld:unew = unew ��tsynGCC;ompes (4.35)e`bases = I(e`bases ; e`base�1s );where GCC;omp is the one-sided omposite gradient operator de�ned in Setion 4.4.1, and �tsynis the timestep of the oarsest level whih is at tsyn, in essene the timestep over whih the syn-hronization is being applied. The appropriate physial boundary onditions for es will be thehomogeneous form of the boundary ondition applied to the level pressure �. For solid walls, thiswill be a homogeneous Neumann boundary ondition.The projetion disretization we are using is approximate, in the sense thatDCC;ompGCC;omp 6=Lomp, where Lomp is the 5-point Laplaian operator, Lomp = DompGomp (Domp and Gomp arethe edge-entered divergene and gradient operators). In this ase, the disrete projetion operatoris: P = I �AvE!CGomp(Lomp)�1DompAvC!E : (4.36)The use of the averaging operators are what make this projetion approximate. Beause the dis-retization of the projetion operator used in this work is approximate, the projetion is not idem-potent; in other words, P 2 6= P .We would like to show that repeated appliation of the omposite projetion will be wellbehaved, in that it will be stable, and that the resulting veloity �eld will onverge to to a onsistentsolution. For a uniform grid with periodi boundary onditions, Lai [44℄ showed using Fourieranalysis that this projetion disretization is stable, in that jjP jj � 1, and that repeated appliationof the projetion will drive the divergene to zero, orDCC;omp(PNu)! 0
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Max(div) vs. # of Projection Applications
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0.00 50.00 100.00Figure 4.9: Max(divergene) vs. number of repeated projetion appliationsas N !1, where PN(u) represents the repeated appliation of the projetion N times.To demonstrate the e�etiveness and stability of this omposite projetion, we repeatedlyapplied the omposite projetion to a sample problem and evaluated the results. This was performedon the three-vortex test ase desribed in Setion 6.1.3. Figure 4.9 shows Max(Dompu) againstthe number of times the projetion was applied. It an be seen that the omposite divergene doesgo to zero as the projetion is repeatedly applied. Adding more levels of re�nement a�ets therate that the divergene is dereased, but does not appear to a�et the general behavior. Also,we would expet that eah new projetion has a smaller e�et on the solution, as the veloity �eldonverges toward one whih is ompletely divergene-free. The amount that eah appliation of theprojetion hanges the solution (in other words, Pn�Pn+1) is equal to (I�P )Pn, whih from (2.46)is just the gradient piee, GCC;ompe. Figure 4.10 shows max(GCC;omp(e)), whih is the maximumthat the solution is hanged in a given appliation of the projetion. As an be seen, this quantitydereases monotonially as the projetion is repeatedly applied. The magnitude of the orretion is
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Max(Grad(phi)) vs. # of Projection Applications
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0.00 50.00 100.00Figure 4.10: Max of the gradient piee returned by the projetion vs. number of repeated projetionappliations.muh larger in the �rst appliation of the projetion beause that is where the physial boundaryondition (solid walls, in this ase) is being enfored; the veloity �eld is initialized as if it were inin�nite spae, and then the initial projetion also enfores the physial boundary onditions.4.4.2 Freestream PreservationTo orret errors in freestream preservation, we follow the volume-disrepany approahused by Propp [51℄, whih in turn is based on work by As et al. [1℄, and Trangenstein and Bell [66℄.We start with a salar �eld initialized to one everywhere in the domain, whih we shall all�. As we advane the solution, we also ompute advetive updates to �, using (2.66) and followingthe algorithm detailed for passive salars in Setions 2.6.2 for the single-grid ase, and whih will bedesribed in 4.5.2 for the multilevel ase. Sine we know that � should remain one, � 6= 1 is a goodindiator of the advetion errors that are being made.We will ompute a orretion to the advetion veloities whih will return � to one, undoing



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 140the errors whih have been made. Sine we are orreting for errors in the advetion veloities, weast the orretion as a veloity �eld up whih we add to the advetion veloities. We would like ourorretion veloity �eld to undo freestream errors whih are manifest by � 6= 1. From the advetionequation (2.66), D(u�) = �n � �n+1�t : (4.37)Sine we would like to return � to 1, we set �n+1 to one. Also, we assume that the errors in � aresmall, and so we treat the � inside the divergene as onstant and pull it outside the divergene:D(up + uAD) = �n � 1��t : (4.38)Sine uAD is essentially divergene-free, DuAD � 0, and we are left with the orretion �eld. If wede�ne the orretion �eld uP as a gradient, up = Ge�; (4.39)then we are left with an ellipti equation to solve:Le� = �n � 1��t ; (4.40)where L is the Laplaian operator. Similar to the projetion operator, the physial boundary on-ditions for e� are re� = up � n; (4.41)whih in the ase of solid walls redues to a homogeneous Neumann boundary ondition on e�.Solving (4.40) for e�, we an then ompute the orretion veloity �eld up = Gompe�,whih we then add to the advetion veloity �eld in future timesteps. Sine this will be done as a



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 141synhronization operation, we will take �t to be �tsyn. Note that both up and uAD have edge-entering. The orretion veloity �eld up will tend to orret the errors made in advetion and willwork to drive � bak to one.In pratie, we make two modi�ations to (4.40). First, we assume that the � in thedenominator of the right hand side is approximately one. In that ase, the right hand side beomes��1�t . This hange is made to ensure that the ellipti equation is solvable. Also, we inlude a salingterm, �, to adjust the strength of the orretion. So, the equation we solve during the synhronizationstep is: Le� = �� 1�tsyn � (4.42)e`base� = I(e`base� ; e`base�1� ) on �
`base :Note that we have expliitly inluded the oarse-�ne boundary ondition for the ase where `base > 0.In this usage, the parameter � has a meaning { it is the reiproal of the number of `base timestepsit will take for � to return to one. We have found that values for � whih are greater than one areunstable, beause they introdue an overorretion. If we express the modi�ed evolution of � using(4.42), we �nd that it is a forward-Euler update of the equationD�Dt = ��t (�� 1): (4.43)For values of � greater than one, the forward Euler sheme we are using is unstable. So, � � 1 forstability. We have found that � = 0:9 has worked well for the problems examined in this work.When the gradient �eld up is added to the advetive veloity �eld uAD, then uAD is nolonger divergene-free, even in the grid interior regions. For this reason, we must use onvetivedi�erening when omputing the advetive terms of the veloity update, rather than a onservative



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 142disretization. This is why the single-grid algorithm outlined in Setion 2.6 employs onvetivedi�erening when omputing the advetive terms in Setion 2.6.3.4.5 Complete Multilevel AlgorithmThe following setions will desribe the reursive timestep used to advane the solution onlevel ` from time t` to t`+�t`. A basi pseudoode outline of our reursive level update is shown inFigure 4.11. Like the reursive timestep for hyperboli onservation laws desribed in Setion 4.1.3,the level ` timestep impliitly inludes the subyled advane of all �ner levels and synhronizationwith those levels, produing a omposite solution for levels �ner than and inluding level `.The synhronization strategy will be somewhat di�erent, however. In Setion 4.1.3, levelsare synhronized in oarse-�ne pairs. For example, in a three-level solution, at the end of a level 0timestep, they �rst synhronize levels 1 and 2, and then synhronize levels 0 and 1. In this work,we will perform synhronization operations whih involve ellipti solves over all levels whih havereahed the same time, whih we will all tsyn. We do this beause of the results of Setion 3.3, inwhih it was shown that struturing a multilevel ellipti solution as a series of level solves and thenmaking orretions to oarse-�ne pairs of levels is less aurate than performing a single multilevelsolve. This means that the ellipti solves used in the omposite projetion and in the freestreampreservation algorithm will be performed for all levels whih have reahed tsyn. This is done bytesting to see if the `� 1 level has reahed the time tsyn before performing a synhronization withthe urrent level ` as `base.We will now desribe eah step in the algorithm in turn.



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 143EulerLevelAdvane(`; t`;�t`)Compute Advetion Veloities uAD;`Compute Advetive Fluxes FS;`;F�;`Compute Advetive Updates:sì;j(t` +�t`) := sì;j(t`)� �t`�x`�FS;`x;i+ 12 ;j � FS;`x;i� 12 ;j�� �t`�y`�FS;`y;i;j+ 12 � FS;`y;i;j� 12 ��ì;j(t` +�t`) := �ì;j(t`)� �t`�x`�F�;`x;i+ 12 ;j � F�;`x;i� 12 ;j�� �t`�y`�F�;`y;i;j+ 12 � F�;`y;i;j� 12�Predit uhalfu��;`i;j = uì;j(t`)��t[(u � r)u℄n+ 12i;jUpdate advetive and veloity Flux Registers:if (` < `max) thenÆs`+1 = �FS;` � n`+1CF on �
`+1Æ�`+1 = �F�;` � n`+1CF on �
`+1ÆV`+1 = �(uAD;` � n`+1CF )uhalf;` on �
`+1end ifif (` > 0) thenÆs` = Æs` + 1n`�1ref hFS;` � nC̀F i on �
`Æ�` = Æ�` + 1n`�1ref hF�;` � nC̀F i on �
`ÆV` = ÆV` + 1n`�1ref h(uAD;` � nC̀F )uhalf;`i on �
`end ifProjet u��;` ! u`(t` +�t`) :Solve L`�` = 1�t`DCC;`u��;`u`(t` +�t`) = u��;` ��t`GCC;`�`if (` < `max)�t`+1 = 1nr̀ef �t`for n = 0; nr̀ef � 1EulerLevelAdvane(`+ 1; t` + n�t`+1;�t`+1)end forif (t` +�t` < t`�1 +�t`�1) Synhronize(`; t` +�t`; t`)end ifend EulerLevelAdvaneFigure 4.11: Reursive level timestep for the inompressible Euler equations.



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 1444.5.1 Computing Advetion VeloitiesFirst, we need to ompute advetion veloities with whih to ompute advetive updatesfor salars and veloities. This will be similar to the single-level algorithm in Setion 2.6.1. First, wemust �ll ghost ells around eah grid on this level. Coarse-�ne boundary onditions are omputed byonservative linear interpolation in spae and time of the veloities on the oarser level. One again,beause we have already advaned the level `� 1 solution to time t`�1 +�t`�1, we will be able tointerpolate the old and new oarse-level solutions u`�1(t`�1) and u`�1(t`�1 +�t`�1) in time to t`.Then u`�1(t`) is spatially interpolated using onservative linear interpolation to �ll the ghost ellsaround the level ` grids. Due to the stenils involved in the preditor step, it is neessary to �ll aring of ghost ells more than one ell thik to have all the neessary information for this step. Oneagain, ghost ells in zones where level ` grids abut eah other are �lled by opying u`(t`) solutionvalues from the interiors of other level ` grids, and physial boundary onditions are set in the sameway as for the single-grid problem.One the ghost ells have been �lled, we then predit edge-entered veloities un+ 12 inexatly the same way as was done in Setion 2.6.1. We �rst use a Taylor extrapolation to preditleft and right (top and bottom for the y�diretion) edge-entered values at time t` + �t`2 , and thenhoose the upwind state at eah edge.Then we perform an edge-entered projetion on these predited veloities to ensure thatthe advetion veloities are divergene-free. This is also a straightforward extension of the single-gridedge-entered projetion desribed in Setion 2.6.1. We �rst ompute the edge-entered divergeneof un+ 12 ;` using the operator D`. Note that there are no expliit oarse-�ne boundary onditionsneessary for this operator, beause we have predited edge-entered veloities along the boundary



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 145with level `� 1 using the interpolated oarse-level veloities. We then solveL`�` = D`un+ 12 ;` (4.44)�` = I(�`; �t2 [�`�1 + e`�1s ℄) on �
`: (4.45)The oarse-�ne boundary ondition on �` is designed to ensure mathing with the total pressure�eld, whih is � + es. We solve for �` using the level solver algorithm outlined in Setion 3.2.6.We then orret the edge-entered advetion veloities as in Setion 2.6.1, using the level-operator version of the edge-entered gradient:uAD;` = un+ 12 ;` �G`�` (4.46)�` = I(�`; �t`2 [�n� 12 ;`�1 + e`�1s ℄):Finally, we inlude the e�ets of the freestream preservation orretion from Setion 4.4.2:uAD;` = uAD;` + up (4.47)where up = Gompe�.4.5.2 Salar AdvetionOne we have the advetion veloities uAD;`, we an ompute the updated salar �elds,s(t` + �t`). As in the veloity preditor, the salar preditor will use interpolated oarse-levelboundary onditions for s`, interpolated in time and spae using onservative interpolation. Onethe boundary onditions have been set, the salar update follows the algorithm outlined in Setion2.6.2. First, we ompute edge-entered upwinded values for sn+ 12 ;`, and then use these to omputethe uxes, whih we use to perform the salar update:s`(t` +�t`) = s`(t`)��tD`(uAD;`sn+ 12 ;`) (4.48)



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 146Antiipating the reuxing orretion whih will be performed later, we initialize and/orupdate ux registers as neessary with the uxes. If a �ner level exists, we initialize the level `+ 1ux registers with the oarse-level uxes, and if ` > 0, we update the level ` ux registers with �neuxes as detailed in Figure 4.11. The vetor nC̀F is the loal normal of the oarse-�ne interfae forlevel `. We also advane �`, the freestream preservation indiator, in the same way as the advetedsalars s`. The level `=` + 1 oarse-�ne mismath information for � is stored in the ux registersÆ�`+1, whih are analogous to Æs`+1.4.5.3 Veloity PreditorAs in the single-grid algorithm, we now ompute the advetive omponent of the veloityupdate. Using the advetion veloities uAD;`, we now predit the tangential omponents of theedge-veloities uhalf;` as in Setion 2.6.3. As before, we use onservative linear interpolation in timeand spae from the oarse-level data to �ll a ring of ghost ells around �ne-grids for use in thepredition step. Also, as in Setion 2.6.3, we must now inlude the e�ets of G`�` in these preditedveloities.The omputation of advetion veloities in the multilevel algorithm di�ers from the singlelevel algorithm in the addition of up̀ to orret for oarse-�ne errors. In the single-grid algorithm, weuse the edge-entered uAD;` as the edge-entered uhalf;` normal to the ell edges. In the adaptivealgorithm, we must �rst remove the e�ets of up from uAD;`:uhalf;`i+ 12 ;j = uAD;`i+ 12 ;j � up;i+ 12 ;j (4.49)vhalf;`i;j+ 12 = vAD;`i+ 12 ;j � vp;i;j+ 12 :



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 1471. Predit edge-entered uhalf;`2. u��;` = un;` ��t`[AvE!C(uAD;`) �G`uhalf;`℄3. Update veloity ux registers:� If ` < `max; ÆV`+1 = �(uAD;` � n`+1CF )uhalf;` on �
`+1� If ` > 0; ÆV` = ÆV` + 1n`�1ref h(uAD;` � n`+1CF )uhalf;`i on �
`Figure 4.12: Veloity preditor portion of level advane algorithmIn essene, we are disriminating between the adveting veloity �eld uAD;` and the adveted veloity�eld uhalf;`.One the edge-entered veloities have been omputed, we ompute the advetive terms[(u � r)u℄n+ 12 ;` using equations (2.87). Note that uAD;` ontains the e�ets of the freestream preser-vation orretion up. Sine we have omputed all neessary edge veloities, there are no expliitoarse-�ne boundary onditions neessary for this step. The intermediate veloity u��;` an now beomputed, using (2.88).As in the salar update, we now antiipate the veloity reuxing in the synhronization stepby initializing and/or updating veloity ux registers. If a �ner level exists, we initialize its veloityux register with the veloity uxes aross the oarse-�ne interfae, (uAD;` �n`+1CF )uhalf;`. If a oarserlevel exists, we inrement it with the average of the veloity uxes aross the interfae. Note thatwe will be reuxing both normal and tangential omponents of veloity, so in two dimensions, theux register ÆV has two omponents. See Figure 4.12.



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 1484.5.4 Level ProjetionOne u��;` has been omputed, all that remains in the level advane is to perform the levelprojetion, whih will approximately enfore the divergene onstraint using level operators. Similarto the single-level projetion in Setion 2.6.4, we solve:L`�`(t` + 12�t`) = 1�t`DCC;`u��;` (4.50)�`(t` + 12�t`) = I(�`(t` + 12�t`); �`�1(t` + 12�t`)) on �
`where �`�1(t` + 12�t`) denotes linear interpolation or extrapolation of �`�1 in time using the oldand new oarse pressures �`�1(t`�1 � 12�t`�1) and �`�1(t`�1 + 12�t`�1). Equation (4.50) is solvedusing the level solver algorithm desribed in Setion 3.2.6. The veloity on the urrent level is thenorreted with the gradient of �`:u`(t` +�t`) = u�� ��tGCC;`�`(t` + 12�t`) (4.51)�`(t` + 12�t`) = I(�`(t` + 12�t`); �`�1(t` + 12�t`)) on �
`:4.5.5 Subyled Advane of Finer LevelsIf a �ner level `+1 exists, it is now advaned nr̀ef times with �t`+1 = 1nr̀ef �t`. Impliit inthe subyled advanes of level `+1 are the subyled advanes of all levels �ner than `+1 and anyneessary intermediate synhronizations between level `+ 1 and �ner levels. One this is omplete,all levels �ner than level ` will also be at t` +�t`.4.5.6 SynhronizationAt this point, we synhronize level ` will all �ner levels. As mentioned earlier, we �rst hekto see if a oarser level has also reahed the same time as the urrent level. If this is the ase, we



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 149Synhronize(`base; tsyn;�tsyn)AverageDown:for ` = `max � 1; `base;�1u`(tsyn) = Avg(u`+1(tsyn)) on P(
`+1)s`(tsyn) = Avg(s`+1(tsyn)) on P(
`+1)�`(tsyn) = Avg(�`+1(tsyn)) on P(
`+1)end forReux:for ` = `max � 1; `base;�1u`(tsyn) := u`(tsyn)��t`DR(ÆV`+1)s`(tsyn) := s`(tsyn)��t`DR(Æs`+1)�`(tsyn) := �`(tsyn)��t`DR(Æ�`+1)end forSynhronization Projetion:Solve Lompes = 1�tsynDCC;ompu(tsyn) for ` � `baseu(tsyn) := u(tsyn)��tsynGCC;ompes for ` � `baseFreestream Preservation Solve:Solve Lompe� = (�(tsyn�1)�tsyn � for ` � `baseup = Gompe�end Synhronize Figure 4.13: Synhronization for inompressible Euler equations.do the synhronization operations for all levels whih are at the urrent time tsyn = t`+�t`. If wedenote the oarsest level whih has reahed tsyn as `base, we synhronize all levels ` � `base. Thetimestep over whih the synhronization is being performed is then �tsyn = �t`base . A pseudoodedesription of the synhronization algorithm is in Figure 4.13.



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 150Averaging Fine Data to Coarser LevelsAs in the hyperboli algorithm in Setion 4.1, we �rst replae the solution on oarse gridswhih are overed by re�nement with averaged �ne-level solutions. This is done from the �ner levelsdown to oarser levels, so that the solution in all regions is replaed by the appropriately averaged�nest solution possible. This averaging down operation is done for the veloity �eld u(tsyn) thesalar s(tsyn), and the freestream preservation quantity �(tsyn).ReuxingTo ensure onservation, we then perform a reuxing operation for veloity and the advetedsalars s and �. This will be similar to the reuxing operations desribed for the hyperboli algorithmin Setion 4.1, and is essentially a reux-divergene of the mismath of the uxes, whih have beenstored in the appropriate ux registers. Note that both normal and tangential (to the oarse-�neinterfae) omponents of veloity in oarse ells adjaent to oarse-�ne interfaes are updated in thisstep.Synhronization ProjetionTo ensure that the omposite veloity �eld satis�es the divergene onstraint based onomposite operators, the omposite projetion desribed in Setion 4.4.1 is applied to the ompositeveloity �eld for all levels ` and �ner. We solve:Lompeomps = 1�tsynDCC;ompuomp (4.52)e`bases = I(e`bases ; e`base�1s ) on �
`base



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 151for the levels `base and higher, using the multilevel solver algorithm desribed in Setion 3.2.5. Wethen orret the veloities for levels `base � ` � `max:u`(tsyn) = u`(tsyn)��tsynGCC;ompes (4.53)e`bases = I(e`bases ; e`base�1s ):Freestream Preservation CorretionThe last synhronization operation is to ompute the freestream preservation orretionveloities up. This is similar to the synhronization orretion in that it involves a multilevel solvefor all levels ` � `base. In this ase, we solve (4.42):Lompe� = �� 1�tsyn � (4.54)e`base� = I(e`base� ; e`base�1� ):Then, the gradient of the orretion up an be omputed and stored for future use:up = Gompe� for ` � `base (4.55)e`base� = I(e`base� ; e`base�1� ):This ompletes the synhronization operations, whih in turn ompletes the level `basetimestep.4.6 InitializationBefore the initial timestep for a level `, initial values for �`�1 and e`�1s will need to beomputed for use as boundary onditions. Also, the initial veloity �eld must be projeted to ensurethat it satis�es the omposite divergene onstraint. Moreover, if a new grid on�guration for level



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 152` is de�ned as a result of regridding operations during the omputation, initial values for �`, es̀, andup will need to be omputed for the new grids. Note that after regridding, es and up will need tobe reomputed on the �nest unhanged level as well.As mentioned previously, at the beginning of the omputation the initial veloity �eld mustbe projeted to ensure that it satis�es the omposite divergene onstraint. This is a straightforwardappliation of the Hodge-Helmholtz deomposition (2.41), extrating the divergene-free omponentof the veloity �eld. We solve: Lompeompinit = DCC;ompuompinit (4.56)over the entire grid hierarhy, using the multilevel algorithm presented in Setions 3.2.3 and 3.2.4.Physial boundary onditions are imposed appropriately on the veloity and the orretion �eld einitas in the single-grid projetion, desribed in Setion 2.5.1. Then, the veloity �eld is orreted ontothe spae of vetors whih satis�es the divergene onstraint:uomp = uompinit �GCC;ompeompinit : (4.57)As before, appropriate physial boundary onditions are applied, based on the single-level projetionboundary onditions.For initialization purposes, we will de�ne `base as the �nest unhanged level in the gridhierarhy. For initialization before the initial timestep, `base will be -1. The basi strategy will beto ompute a single non-subyled timestep on all grids ` > `base, in the proess omputing all therequired quantities. Beause the usual edge-entered projetion in the advetion step uses es as aboundary ondition, we ompute two iterations of the initialization timestep { one in whih es isnot used as a oarse boundary ondition for �, and then a seond one where the es omputed in the



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 153�rst iteration is used for the oarse boundary ondition for �. Sine the initialization proess is notsubyled, the timestep f�t will be dependent on the stability requirements of the �nest level. Inpratie, we use half of the timestep we would normally use on the �nest level:f�t = 12�t`max (4.58)= 12� �x`maxmax(u`max) ;where � is the CFL number, de�ned in (4.5)The algorithm used to initialize � and es is shown in Figure 4.14. If the initializationis being performed after a regridding operation, instead of at the initial step, then there are alsoadvetion errors from previous timesteps whih muh be orreted as well. The advetion orretionup is based on the urrent � �eld, rather than on one omputed in an initialization timestep, beausethe goal of the freestream preservation orretion is to orret for errors whih have already ourred,while the goal of the initialization timestep is to predit reasonable values for � and es.Initializing �To initialize �, we do a non-subyled level advane on eah level greater than `base. Sinethe oarse-�ne boundary onditions for the edge-entered projetion require e`�1s , whih has notyet been omputed, we do two passes of the initialization algorithm. During the �rst pass, es isnot available, so we use the oarse-level � as the boundary ondition for all levels greater than`base. During the seond pass, we an use the estimate for es and � omputed during the previoustimesteps: L`�` = D`euhalf;`�` = ( I(�`; �`�1) if n = 1I(�`; e�t2 (�`�1 + e`�1s )) otherwise



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 154EulerInit(`base; tinit)Compute f�tfor n = 1; npassesif (`base > �1)Compute eu��;`base as usualProjet eu��;`base :Solve L`basee�`base = 1e�tDCC;`baseeu��;`baseeu`base := eu��;`base � f�tGCC;`basee�`baseend iffor ` = `base + 1; `maxPredit euhalf;` as in Set. 4.5.3Perform edge-entered projetion of advetion veloities: L`�` = D`euhalf;`Corret advetion veloities: euAD;` := euAD;` �G`�`Predit euhalf;` as in Set 4.5.3: eu��;` = u` ��t`[AvE!C(euAD;`) � reuhalf;`℄Update veloity ux registers:if (` < `max) ÆV`+1 = �(euAD;` � nCF )euhalf;` on �
`+1if (` > 0) ÆV` = ÆV` + h(euAD;` � nCF )euhalf;`i on �
`Projet eu��;` ! eu`(t` +�t`) :Solve L`�` = 1e�tDCC;`eu��;`eu`(t` +�t`) = eu��;` � f�tGCC;`�`end forfor ` = `max � 1; `base;�1Reux: eu` := eu` � f�tDR(ÆV`+1)end forCompute initial es: Solve Lompes = 1e�tDCC;ompeu for ` � `baseCompute initial eup:Solve Lompe� = (��1)�t`base � for ` � `baseup = Gompe�end forend EulerInitFigure 4.14: Initialization algorithm for the inompressible Euler equations



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 155One eu��;` has been omputed, we projet to get the initial estimate of the level pressure�`. Note that beause the initialization timestep is uniformly f�t for all levels, �` will have a timeentering at tinit + 12f�t for all levels. At oarse-�ne interfaes with oarser levels, the boundaryondition for � will reet this entering:�`(tinit + 12f�t) = I(�`(tinit + 12f�t); �`�1(tinit + 12f�t) on �
`: (4.59)Initializing esTo ompute an initial es, we �rst require a set of level-projeted veloities for all levels` � `base. We expet that es will hange on the oarsest unhanged level beause it will reetthe oarse-�ne interfae orretions for the new �ner levels. For this, we will need to ompute alevel-projeted veloity eu`base(tinit+f�t). For this reason, if `base 6= �1, we perform an initializationtimestep for `base as well.One level-projeted veloities eu`(tinit + 12f�t) have been omputed for all levels ` � `base,we an then ompute the initial estimate for the omposite pressure orretion es by performing aninitial synhronization projetion. We solve:Lompes = 1f�tDCC;ompeu for ` � `base (4.60)e`bases = I(e`bases ; e`base�1s );using the same multilevel projetion used in the usual synhronization projetion.Initializing Freestream Preservation CorretionFinally, when initializing a new hierarhy of grids after a regridding operation, we will needto ompute a new orretion �eld for freestream preservation errors. Unlike the initializations for



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 156� and es, we use the existing solution for � at tinit, sine the goal in this ase is to orret forthe errors whih have already ourred. So, the synhronization timestep in this ase will be thetimestep of the `base. As in a normal synhronization proedure, we �rst solve for e�:Lompe� = �� 1�t`base � for ` � `base (4.61)e`base� = I(e`base� ; e`base�1� ):Then, we de�ne the orretion veloity �eld whih will be added to the advetion veloities:up = Gompe� for ` � `base (4.62)e`base� = I(e`base� ; e`base�1� ):4.6.1 Comparison to Previous WorkVarious approahes have been used to ompute adaptive solutions to inompressible ows.To ompute steady-state solutions to the inompressible Navier-Stokes equations, Thompson andFerziger [65℄ used an adaptive multigrid method based on the adaptive multigrid algorithm originallydeveloped by Brandt [24℄.For time-dependent inompressible ows, Howell and Bell [41℄ onstruted an adaptiveprojetion method based on the exat projetion and the projetion formulation of Bell, Colella, andGlaz[16℄, in whih there was no re�nement in time. It was noted that the deoupled stenil of theexat projetion aused onsiderable ompliations at oarse-�ne interfaes beause the deouplingof the omputational grids had to be respeted aross oarse-�ne interfaes.Minion [48℄ onstruted a non-subyled adaptive version of the approximate ell-enteredprojetion of Lai [44℄ and the projetion formulation of [17℄, whih inluded a multilevel edge-enteredprojetion for advetion veloities.



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 157In atmospheri modeling, the anelasti equations for atmospheri motions are similar instruture to those for inompressible ow, with a divergene onstraint on veloity whih inludesthe e�et of atmospheri strati�ation. Clark and Farley [30℄ and Stevens [59, 60℄ have onstrutedadaptive methods for anelasti atmospheri dynamis based on the projetion method whih werefully adaptive in both time and spae. Neither of these methods, however, enfored the divergeneonstraint in a omposite sense aross all levels of re�nement, instead enforing it on a level-by-level basis, with boundary onditions interpolated from oarser grids. The lak of oupling of theoarse-level pressures to the �ne levels has been shown [60, 5℄ to ause a loss of auray in the �nalsolution. Almgren et al. [5℄ have developed an adaptive projetion method whih re�nes in timeas well as spae and whih enfores the divergene onstraint in a omposite sense aross all levels.Their projetion operator is based on the nodal sheme of Almgren, Bell, and Szymzak [4℄, and usesthe basi projetion formulation of [16℄ as extended by Bell, Colella, and Howell [17℄. In ontrast withthis work, the algorithm of [5℄ projets the approximation to �u�t , rather than the entire intermediateveloity �eld u��.In [5℄, the timestep is strutured in a similar way to this work, as a series of reursiveupdates starting with the oarsest level and then using suitably interpolated oarse level values toonstrut boundary onditions for the �ne-grid updates. Beause of temporal re�nement, eah �nelevel solution is updated multiple times for eah oarse level update. Any time the solutions on twolevels of re�nement reah the same loation in time, they are synhronized.In [5℄, ellipti mathing of the pressure �eld is also enfored by means of a synhroniza-tion projetion whih ensures that the omposite veloity �eld satis�es the onstraint based on a



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 158omposite operator. Beause �u�t is being projeted, the onstrution of the synhronization proje-tion is somewhat di�erent; the mismath in �u�t is stored and then used, along with the hange tothe oarse-grid veloity �eld aused by veloity reuxing, to expliitly ompute the soure for thesynhronization, whih appears as a soure term on the oarse level. Reall that in the algorithmpresented in this work, the omposite veloity �eld is simply re-projeted using omposite operatorsto ensure that ellipti mathing is enfored. Moreover, in [5℄, levels are synhronized in oarse-�nepairs, starting at the �nest level and ontinuing with suessively oarser level `=`� 1 pairs until alllevels at tsyn have been synhronized.Freestream preservation, the property that onstant �elds of adveted quantities in inom-pressible ow remain onstant, is enfored in [5℄ by a seond \MAC synhronization" step, whihensures that the advetion veloities also satisfy a divergene onstraint based on omposite opera-tors. A seond advetion step is then performed on the oarse level using the orretion veloities,and advetive orretions are then interpolated to �ner levels.A third di�erene between the algorithm of [5℄ and the one presented in this work is inthe initialization after re-regridding. Sine the pressure in [5℄ is stored as a omposite pressure,rather than separate level-based and orretion �elds, the existing pressure �eld is interpolated toprovide an existing pressure for newly re�ned regions. Sine we maintain separate level pressure�` and orretion e �elds, we must ompute a new orretion �eld e (as well as a new freestream-preservation orretion up) after regridding to aount for the new grid on�gurations.



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 1594.7 FiltersAs mentioned in Setion 2.7, many researhers have found veloity �ltering to be neessaryto prevent spurious veloity modes from ontaminating the solutions. Some attempt was made toextend the �lters used in single-grid projetion algorithms to this implementation, but they wereunsuessful. Two strategies were employed. First, an attempt was made to design a �lter withomposite operators. When this proved unsuessful, the �lters desribed in [53℄ were employed onthe interiors of grids. Beause the goal of �ltering is to remove osillatory modes that the interiordisretization of the approximate projetion leaves behind, it was felt that simply applying �lterson the interiors of grids would be suÆient to redue these modes, without upsetting the mathingonditions at the oarse-�ne interfaes.In pratie, however, employing �lters in this way aused notieable vortiity generation atoarse-�ne interfaes. In light of this, it was deided to not use �ltering at the present time. Otherprojetion method implementations have also not found �ltering to be neessary, inluding that of[27℄, for example. Almgren et al. only use �ltering when neessary to prevent obvious degradationof the solution in the form of \hekerboarding" of veloity. [6℄ For the test problems omputed inthis work, we have not found serious degradation of the solutions, so implementation of �ltering forthis algorithm has been deferred.
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Chapter 5Error Estimation

As an be imagined, the e�etiveness of adaptive methods depends strongly on appropriateplaement of re�nement. Almgren et al. [5℄ showed that re�ned pathes plaed without are didnot, in general, reap the bene�ts of inreased resolution. We would like our error estimation riteriato be able to predit where re�nement should be plaed to improve the auray of the solution.There have been many di�erent approahes to deiding where to plae re�ned pathes,ranging from fairly involved mathematial estimates of the error (for example, [19, 67℄, to fairlysimple usage of ow quantities of interest, suh as vortiity, density gradients, or energy (for example,[5℄). In this work, we have used variations on several of these methods.In this hapter, we will develop the methods used to estimate where regridding is needed;at present, we use four ways to deide where to plae re�ned pathes:� user-de�ned grids.� user-de�ned riteria� Rihardson extrapolation



CHAPTER 5. ERROR ESTIMATION 161The �rst is not truly an adaptive re�nement tehnique, sine the grids are pre-de�ned. Theremaining tehniques are automati, in that they require little or no user input (other than somesort of tolerane for the riteria) and are adaptive, in that they are able to respond to features inthe solution as they develop.For the adaptive grid generation tehniques, we follow a two-step proess. First, we lookat the existing hierarhy, apply our riteria to the urrent solution to \tag" ells in the existinggrid hierarhy for (further) re�nement (or un-re�nement: if a urrently re�ned ell no longer needsre�nement, it is not tagged, and so is no longer inluded in the list of ells to be re�ned). Then, weuse a lustering algorithm to group these tagged ells into new grids.5.1 User-De�ned GridsThe �rst, and most straightforward, method of determining grid plaement is to use pre-de�ned grids. This is most useful when the user has a good idea already where re�nement willbe most bene�ial or where there is an already known feature or region of interest in the solution.However, beause the grid strutures are de�ned without diret interation with the solution, thisis not really an \adaptive" method per se. As suh, it is generally not as useful as fully automatedgrid generation.5.2 User-De�ned CriteriaThere are many ases where the user will have an idea of whih features are of interestor are indiative of a need for re�nement. To support this, ells an be tagged based on any user-de�ned solution-based riteria. For example, one may want to tag on areas of high vortiity or high



CHAPTER 5. ERROR ESTIMATION 162heat release as indiators of interesting features in the solution. It is ommon to use derivatives ofsolution quantities like veloity or density as indiators of areas of high ativity whih ould bene�tfrom re�nement. In many ases, this is suÆient to improve the quality of the solution, espeiallyif the quantity of interest also has a strong solution-based indiator of the neessity for inreasedresolution.While this is a fully automati and adaptive grid generation tehnique, it does not nees-sarily ensure inreased auray of the solution. Beause it is not really an estimation of error, thereis no guarantee that re�nements based on solution features will improve the solution quality. Thereis always the hane that important features of the solution will be missed. On the other hand,re�nement may be based on spurious features of the solution. Baker [11℄ raises the possibility thaterrors due to the grid interfaes an then further exite these spurious features, resulting in furthersolution degradation. Also, Sweby and Yee [64℄ demonstrated that re�nement based on solutionfeatured an ause haoti behavior in the ase of moving-grid re�nement.In fat, even re�nement based on solution error will not neessarily improve solution quality.In many ases, solution errors are nonloal in nature, resulting from aumulation of disretizationerrors elsewhere in the domain [11℄. Minion [49℄ also shows that prevention of spurious vorties ininompressible ow an require re�nement in loations other than the neighborhood of the spuri-ous feature itself. For this reason, we believe that error estimates based on loalized measures ofdisretization error are a better indiator of where re�nement should be plaed for greatest bene�t.



CHAPTER 5. ERROR ESTIMATION 1635.3 Rihardson ExtrapolationThe use of Rihardson Extrapolation to estimate the trunation error of a numerial solu-tion has a long and rih history. Berger and Oliger [19℄, Berger and Colella [18℄, and Propp [51℄ haveused it for time-dependent problems, while Berger and Jameson [21℄, Dudek [34℄, and Bettenourt[22℄ have used it for steady-state problems. Variants of this proedure are also used in [21℄ and [45℄.The implementation of Rihardson extrapolation in this work is based on that desribed in Martinand Cartwright [47℄ and extended by Propp [51℄.The basi idea is to apply the operator L to the existing solution, oarsen the result, andthen ompare it to the operator applied to a oarsened version of the solution. It an be shown thatthe di�erene between the two is proportional to the loal trunation error. In terms of the existingoperators from Chapter 3:Error` = Average(L`U `)� L`�1Average(U `) (5.1)For steady-state problems, we are generally solving an equation of the form L(U) = f . For Poisson'sproblem, L is the Laplaian operator. For time-dependent problems, the equation we are solving is�U�t = L(U), so L is the right-hand-side of the disrete time evolution equation.As mentioned before, we expet that our sheme will lose auray at oarse-�ne interfaesand that the loal trunation error will be O(h) (one order less aurate than the rest of the sheme)due to the oarse-�ne interpolation error. For the same reasons, the sheme will also lose auray atphysial boundaries, sine we are using a lower order approximation there as well. So, if we naivelyuse the error omputed using (5.1) there, we will see a large error, whih will appear in a single layerof ells on both the oarse and �ne sides of the interfaes. Both in theory and in pratie, however,this error on the oarse-�ne interfaes and physial boundaries does not a�et the global auray
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Figure 5.1: Replaing error in �ne-grid boundary ells (shaded) with adjaent valuesof the sheme, sine it is on a set of one dimension less than the problem spae. (This assumes,of ourse, that the surfae/volume ratio is of order 1h , whih will not be true for very small grids,where the surfae/volume ratio approahes one.)So, we do not want to use the error omputed by (5.1) on these ells; if we did, re�nedgrids would simply expand until they reahed the physial boundaries. We do not, however, want tosimply ignore the possibility that we may want to re�ne these boundary ells. So, for eah boundaryell, we opy the error omputed on an adjaent ell whih is untainted by the oarse-�ne boundaryerror. For the ellipti equations in [47℄, areas of high error tend to be in pathes, rather than singleells; for the Euler equations, we have notied similar behavior. Sine we are dealing with pathesof high error, opying from adjaent ells is an adequate solution. On the �ne side of the oarse-�neinterfae, adjaent ell values are opied as shown in Figure 5.1. In [47℄, ells on the oarse sideof the oarse-�ne interfae were replaed with averages of the adjaent �ne-grid values (whih hadthemselves been replaed as neessary). In the ase of the Euler equations, the di�erenes in time-entering between solutions on eah level prelude this; instead, we simply opy the adjaent oarse



CHAPTER 5. ERROR ESTIMATION 165values.5.3.1 Rihardson Extrapolation for the Poisson ProblemFor the Poisson problem, the error equation (2.14) indiates that reduing the trunationerror should ertainly result in a redution of the solution error. For this reason, we expet thattrunation error is an exellent indiator of where re�nement is neessary to improve solution quality.Moreover, using loal trunation error as an indiator will loalize the soures of error. Due to theellipti nature of Poisson's equation, loal disretization errors will indue solution errors whih arenonloal in nature; using an estimate of loal trunation error to deide where to plae re�nementswill make it possible to loalize the soures of the global solution errors.Sine we want to estimate the error on all existing levels, inluding those partially overlainby re�ned grids, we need to modify this proedure slightly. Where a grid is overed by a re�nedpath, we use the error omputed on the re�ned level. Sine we know that the error is proportionalto h2, we an resale the �ne error by ( hhf )2 (the square of the re�nement ratio), and average it ontothe oarser grid. This gives a reasonable approximation of what the error in a re�ned region wouldbe if there were no re�nement.Also, sine for Poisson's problem there is no time entering of the di�erent solution levels,we an use the approah in [47℄ to replae the error omputed in oarse ells adjaent to oarse-�neinterfaes. In this ase, we replae the tainted oarse-ell values with the averaged adjaent �ne-gridvalues, as shown in Figure 5.2.
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Figure 5.2: Replaing error on the oarse side of the oarse-�ne interfae with averaged �ne-grid values(shaded).5.3.2 Rihardson Extrapolation for the Time-Dependent ProblemFor time-dependent problems, the operator L is the disrete time evolution of the solution.We would like the error estimate we onstrut to have a onsistent time entering, so we will takepseudo time steps as depited in Figure 5.3. The basi strategy will be to do a �ne timestep of�tfine entered around the urrent time tn, and then take a oarse time step of �trse = 2�tfineon the oarsened level, also entered around time tn. We will then ompare the �ne and oarseapproximations of �u�t to get an estimate of the trunation error. Note that we preserve the timeentering of the timestep and also maintain a onsistent CFL number for eah pseudo-timestep.Note also that this method requires an old solution at tn��tf , whih we use to ompute the initialstate for both the oarse and �ne approximations; the initial �ne state is omputed by averagingthe tn and tn�1 solutions in time, while the initial oarse state is omputed by spatial averaging ofthe tn�1 solution. At the initial timestep, this earlier time does not exist, and so we do not use thismethod, but instead use a user-de�ned method to onstrut the initial grid hierarhy.



CHAPTER 5. ERROR ESTIMATION 167
t

n

t +  ∆n
t

n

∆n
t

n
t -  

x

x
level

l

coarsened

level

Avg

Avg Avg

Figure 5.3: Rihardson Extrapolation time stepsFor the Euler equations, we will also only use the advetive part of the omplete timestep,Ad � (u � r)u to ompute estimations of the error. This will measure the error in the advetionproess. It has the advantage of having no nonloal ontributions from the ellipti projetion oper-ator, so it is a good loalized error measure. Also, sine the advetion step will provide the soureterm for the projetion, we expet that the errors in advetion will be nonloalized by the projetionoperator.We onstrut �ne and oarse approximations as follows:� Fine approximation1. Construt un� 12 ;fine = 12 (un + un�1)2. �tfine = (tn � tn�1)



CHAPTER 5. ERROR ESTIMATION 1683. Predit uhalf;fineG = (ufine;t=ni+ 12 ;j ; vfine;t=ni;j+ 12 ) as in Setion 4.5.34. MAC Projetion: L�fine = r � uhalf;fineG as in Setion 4.5.15. Corret predited veloities: ufinead = uhalfG �G�fine as in Setion 4.5.16. Store G�fine for future use on oarsened level.7. Re-predit veloities: trae uhalf;fine as in Setion 4.5.38. Adfine = �D(ufinead � uhalf;fine)9. F finevel = �ufinead � uhalf;fine� Coarse Approximation1. Construt un�1;rse = Avgfine!rse(un�1;`) andG�rse = Avgfine!rseG�fine from �ne approximation2. �trse = 2�tfine3. Predit uhalf;rseG = (urse;t=ni+ 12 ;j ; vrse;t=ni;j+ 12 ) as in �ne step4. Corret predited veloities: ursead = uhalf;rseG �G�rse5. Re-predit veloities: trae uhalf;rse6. Adrse = �D(ursead � uhalf;rse)7. F rsevel = �ursead � uhalf;rseNote that we save an ellipti solve by averaging the MAC projetion gradients from the �ne approx-imation for use during the oarse approximation.We then ompute the approximation to the error:EAD = Avfine!rse(Adfine)�Adrse (5.2)



CHAPTER 5. ERROR ESTIMATION 169The error we ompute in (5.2) has units of [L℄[T ℄2 . We would like to nondimensionalize this so thatwe an ompare it against a nondimensional tolerane. Following the example of the nondimen-sionalization of the Euler equations in uid dynamis (see, for example, Shlihting [56℄), we useE� = [U ℄2[L℄ , where [U ℄ is a harateristi veloity (in our ase Max(u) ), and [L℄ is a harateristilength, whih will usually be the length of the problem domain. Then, we an tag on all ells inwhih the saled error is greater than a tolerane � :EADE� > �: (5.3)Note EÀD is atually de�ned on a grid whih is a fator of 2 oarser than 
`. This means that whenwe tag on a ell beause it satis�es the riteria in (5.3), we are atually tagging the four (in twodimensions) level ` ells whih overlie the oarsened grid on whih EÀD is de�ned.5.4 Grid GenerationOne we have tagged ells for re�nement using one or more of the methods desribedabove, we then must generate suitable blok-strutured re�ned grids. This generation proess hastwo oniting goals. First, we would like to generate eÆient grids, in whih unneessary re�nementis kept to minimum. This is quanti�ed by de�ning a grid eÆieny,� = number of tagged ellstotal number of ells re�ned (5.4)and demanding that the grids we generate exeed a presribed eÆieny. We have found an eÆienyof around 70-80% to be useful. On the other hand, we would like to generate \blok-like" gridswhih minimize the surfae/volume ratio beause oarse-�ne interfaes arry with them a ost bothin omputational work needed to enfore synhronization between levels, and beause of the error



CHAPTER 5. ERROR ESTIMATION 1701. Tag ells using error estimators: Tìj = TRUE if tagged for re�nement2. Coarsen list of tagged ells: T rse = oarsen(T `; FB)3. Call lustering algorithm 
rsenew = Cluster(T rse; �grids)4. Re�ne grids to new level 
`+1new = Refine(
rsenew ; FB � nr̀ef )Figure 5.4: Basi grid generation algorithmindued by redued auray at the oarse-�ne interfae. As was seen in Setion 3.4.2, if gridswith a high surfae/volume ratio are produed, the inreased auray of the re�ned path anbe outweighed by the errors indued at the oarse-�ne interfaes. Also, beause we will be usingmultigrid aeleration for our ellipti solvers, we would like to have grid on�gurations whih areas oarsenable as possible (see Setion 3.2.5), in order to reap the bene�ts of multigrid. We enforea ertain degree of \blokiness" in the grids by use of a \bloking fator" FB , whih will be theminimum amount a set of grids an be oarsened. The bloking fator is enfored by oarsening thearrays of ells whih are tagged for re�nement by FB before alling the lustering algorithm, whihthen will produe oarse grids, whih are then re�ned up to the resolution required, as desribed inFigure 5.4. When oarsening the list of tagged ells, if any �ne ell whih falls inside a oarsenedell has been tagged for re�nement, then the entire oarsened ell is tagged.5.4.1 Clustering AlgorithmTo generate grid on�gurations from the list of tagged ells, we use the lustering algorithmof Berger and Rigoutsos [20℄. In this method, grid generation is an iterative and reursive proess.The smallest box possible is plaed around the tagged ells. If the grid generated by this box doesnot satisfy the grid eÆieny requirement, then the algorithm looks for a good \ut point" to split



CHAPTER 5. ERROR ESTIMATION 171the box in two. Cut points are found using an edge detetion algorithm that reates a histogramof the number of tagged ells in both the X and Y diretions, and then prioritizes ut points by�rst looking for gaps in tagged ells (where the histogram goes to 0, a natural ut point), and thenby looking for plaes where the seond derivative of the histogram hanges sign, whih is a goodindiator of a natural \edge" in the tagged ells. If all else fails, simple bisetion of the box is used.Then, ut the initial box along the ut point line, and draw the smallest possible boxes aroundeah of the two subgroups of tagged ells. If either of these boxes does not meet the grid eÆienyriterion, then we look for another ut point in the o�ending box(es). This is ontinued until wehave a set of boxes whih all satisfy the grid eÆieny riterion.
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Chapter 6Results

This hapter will desribe the results of the various test problems we have used to validatethe algorithm. The test problems are hosen to demonstrate the onvergene properties and robust-ness of the AMR algorithm. There are various questions whih must be answered to demonstratethe e�etiveness of the method desribed in this work. Questions we would like to answer are:1. Are ow features orrupted when they ross the oarse-�ne interfae?2. What is the e�et of the volume-disrepany orretion?3. Do we reah the auray of a globally re�ned alulation through the use of loal re�nements?6.1 Test Problem DesriptionsTo answer the questions posed in the previous setion, we will use three test problems,whih are :1. Steady-state vortex in a box2. Traveling ounter-rotating vortex pair
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Figure 6.1: Initial vortiity distribution for single vortex problem.3. Three o-rotating vorties6.1.1 Single Vortex in a BoxThe �rst test problem is a single steady-state vortex in a box. Initial onditions are givenby: u�(r) = (�( 12r � 4r3) if r < R�(Rr ( 12R� 4R3)) if r � R (6.1)where r is the radial distane from the vortex enter, u� is the azimuthal veloity omponent aroundthe vortex enter, R is the radius of the vortex path, and � is the vortex strength. For the singlevortex in a box problem, the vortex enter is plaed at (x; y) = ( 12 ; 12 ), R = 1:0, and � = 0:2. Theinitial vortiity distribution for this ase is shown in Figure 6.1.6.1.2 Traveling Vortex PairThe initial ondition is a pair of ounter-rotating vorties, eah with an initially ubivortiity pro�le. The ubi vortiity pro�le was hosen suh that both the vortiity ! and its
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Figure 6.2: Initial vortiity distribution for traveling vortex problem.derivative d!dr are equal to zero at the radius R from the vortex enter, and the irulation of thevortex is equal to 2��. The initial veloity for eah vortex in this ase is given by:u�(r) = (�� 83R5 r4 � 5R4 r3 + 103R2 r� if r < R�( 1r ) if r � R : (6.2)Using superposition, the veloity �eld indued by eah vortex is added together to reate the totalveloity �eld. For the test problem in this setion, there were two ounter-rotating vorties. The�rst vortex had a strength � = 0:35, a radius R = 0:15, and was entered at (x; y) = (:3; :65). Theseond vortex had a strength of � = �0:35, r = 0:15, and was entered at (x; y) = (:3; :35). Theinitial vortiity distribution is shown in Figure 6.2. Due to the veloity �eld indued by eah vortex,the net e�et is that the vortex pair translates to the right.6.1.3 Three Co-Rotating VortiesFor this test problem, the initial ondition is given by three vorties with the ubi vortiitypro�les desribed in Setion 6.1.2. In this ase, there are three o-rotating vorties. Eah vortex had
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Figure 6.3: Initial vortiity distribution for 3-vortex test asea strength of � = 0:50 and a radius of R = 0:75, and were entered at (0.68,0.5), (0.455, 0.65588457),and (0.455, 0.34411543). The initial vortiity distribution for this ase is shown in Figure 6.3. Thevorties indue a veloity �eld whih auses the three vorties to revolve around the enter of thedomain.6.2 Passage Through Coarse-Fine InterfaesTo demonstrate that ow features an pass aross oarse-�ne interfaes without distortionby the grid disontinuity, we ran the two-vortex test ase with a 32�32 base grid and one fator twore�nement, but holding the grid on�guration onstant at the original on�guration. In this ase,the traveling vorties will translate to the right, rossing the oarse-�ne interfae and passing ontothe oarse grid. This will demonstrate that ow features are not distorted as they ross the oarse-�ne interfae. Contour plots of the vortiity distribution are shown in Figure 6.4. For omparisonpurposes, the solution after 150 timesteps of a 32�32 single-grid ase is shown in Figure 6.5 As an



CHAPTER 6. RESULTS 176be seen, there is no notieable orruption of the vorties as they ross the interfae, exept for somespreading of the vorties, as is expeted due to the oarser resolution. Also, omparing the solutionsafter 150 oarse timesteps, it is evident that the two solutions do not notieably di�er, so we reoverthe oarse single-grid solution after passing from the �ne path, whih is what we expet.6.3 Volume-Disrepany CorretionWe would also like to examine the e�et of the volume-disrepany orretion desribedin Setion 4.4.2. We will use two test problems. First, we will look at the e�ets of the volume-disrepany orretion for the steady-state single-vortex problem desribed in Setion 6.1.1. Then,we will examine its e�ets in a time-dependent ase (inluding the e�ets of regridding) by lookingat the traveling vortex pair problem of Setion 6.1.2.6.3.1 Single VortexTo isolate the e�ets of the volume-disrepany orretion without the ompliations ofregridding, we ran the single-vortex test ase with and without the volume-disrepany orretion,whih orresponded to � = 0:9 and � = 0 respetively. A omparison of the distribution of � ispresented in Figure 6.6. Note that all of the plots in Figure 6.6 have the same sale, whih makesthe e�et of the volume-disrepany orretion evident. Reall that � 6= 1 is a measure of theerrors in advetion aused by the failure of freestream preservation. It is apparent from Figure 6.6that without the volume-disrepany orretion, errors in advetion are generated at the oarse-�neinterfae, whih are then adveted throughout the ow (whih in this ase is a ounter-lokwiserotating vortex), orrupting the solution even away from oarse-�ne interfaes. In ontrast, with� = 0:9, the advetion errors are on�ned to the ells immediately adjaent to the oarse-�ne
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(a) (b)

() (d)Figure 6.4: Vortiity distribution for traveling vortex problem after (a) 50 timesteps, (b) 75 timesteps,() 100 timesteps, and (d) 150 timesteps.
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Figure 6.5: 32�32 single-grid ase after 150 timestepsinterfae, and appear to be kept to the magnitude of the error made in one timestep. Sine thevolume-disrepany orretion is a lagged one, and as suh an only relax errors after they havebeen made, this is what we would expet.To further examine the advetion errors for the single-vortex ase, we ran a series of aseswith 32�32, 64�64, and 128�128 base grids, eah with one level of re�nement. To judge the e�etsof re�nement ratio on the advetion errors, eah ase was run with both nref = 2 and nref = 4.Max(�-1), whih is the error in �, is plotted against time for these ases in Figure 6.7. It is apparentfrom inspeting Figure 6.7 that, to �rst approximation, the advetion errors are a funtion of theoarse grid spaing; the e�et of the re�nement ratio is only seondary. This is espeially apparentin the no-orretion ase. Further inspetion of Figure 6.7(a) reveals that without the volume-disrepany orretion, the errors onverge at roughly O(h), where h is the oarse-grid spaing.(The atual order of onvergene for this ase appears to be between 1.1 and 1.3.) The dips inmax(�) at t = 12 and t = 25 arise beause the uid ontaining the maximum � is adveted into asoure of a de�ieny in � (� < 1), whih auses some anellation of the extrema of the error.
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(a)

(b)

()Figure 6.6: � after (a) 1 timestep, (b) 10 timesteps, and () 20 timesteps. Pitures on left are withvolume-disrepany orretion, pitures on right are without.
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Max(Lambda) vs. Time -- No Correction
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0.00 10.00 20.00(b)Figure 6.7: Max(�) vs. time for the single-vortex ase; (a) without volume-disrepany orretion, and(b) with orretion. Note that (a) and (b) have di�erent sales.



CHAPTER 6. RESULTS 181Comparison of the sales of Figures 6.7(a) and 6.7(b) shows that using the volume-disrepanyorretion drastially redues the maximum error, as was seen in Figure 6.6. As before, it appearsthat using the orretion restrits the error to something less than the error made in one timestep.Sine we expet this error to be O(h)�t, where �t is the oarse-grid timestep (whih is itselfO(h)), we would expet that this would restore seond-order auray to this aspet of the method.(The atual onvergene rate appears to be around 1.6 between the 32�32 and 64�64 ases, and1.85 between the 64�64 and 128�128 ases.)6.3.2 Traveling Vortex CaseBeause freestream preservation errors are generated at oarse-�ne interfaes, we expetthat hanging the grid struture as the solution evolves will ompliate the issue somewhat. Toexamine the performane of the volume-disrepany orretion in a fully time-dependent ase (in-luding regridding), we repeat the ases in the previous setion, but with the initial onditions forthe traveling vortex pair of Setion 6.1.2. In this ase, however, we allow the grids to hange dy-namially with the solution. For this set of test ases, we will regrid every two oarse-grid timesteps,using the Rihardson extrapolation error estimator of Setion 5.3.2. For the 32�32 base grid ase,we will use an error tolerane of � = 0:8. Beause we expet the trunation error to sale as h2, wedivide this tolerane by ( hhf )2 = 4 eah time we re�ne the base grid, so the error estimation toleranefor the 64�64 ase will be � = 0:2, and for the 128�128 ase, we will use � = 0:05. The distributionof the � �eld after 2, 24, 60, and 100 timesteps is shown in Figure 6.8, where no orretion wasapplied, and Figure 6.9, where the orretion was applied. Note that the olor sales are di�erentfor the two �gures.From examining Figure 6.8, it is apparent that as the grids move with the vorties, eah
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(a)

(b) ()

(d)Figure 6.8: � (without volume-disrepany orretion) after (a) 2, (b) 24, () 60, and (d) 100 timesteps.
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(a)

(b) ()

(d)Figure 6.9: � (with volume-disrepany orretion) after (a) 2, (b) 24, () 60, and (d) 100 timesteps.
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Max(Lambda) vs. Time -- No Correction

32,2Ref
64, 2Ref
128, 2Ref

Max(Lambda)

-3t x 101.5

2

3

5

7

1e-03

1.5

2

3

5

7

0.00 200.00 400.00 600.00(a)

Max(Lambda) vs. Time

32, 2Ref
64, 2Ref
128, 2Ref

max(Lambda)

-3t x 102

5

1e-04

2

5

1e-03

2

0.00 200.00 400.00 600.00(b)Figure 6.10: Max(�) vs. time for the traveling vortex pair ase; (a) without volume-disrepany orre-tion, and (b) with orretion. One again, note that (a) and (b) have di�erent sales..new oarse-�ne interfae results in the reation of a new set of errors, whih is left behind one theoarse-�ne interfae has moved. These errors are then adveted throughout the ow, as in the single-vortex ase. Even with the moving grids, Figure 6.9 shows that the volume-disrepany orretionstill on�nes advetion errors to the ells immediately adjaent to the oarse-�ne interfaes, and oneagain, limits them to approximately the error generated in one timestep. While this one-ell-wideerror is left behind when the oarse-�ne interfae moves, it is quikly removed by the ation of thevolume-disrepany orretions.Plots of Max(�) vs: time are shown in Figure 6.10. One again, note the radial redutionin the advetion error when the volume-disrepany orretion is employed. Note that due to



CHAPTER 6. RESULTS 185regridding, the max(�) plot for the orreted ase is muh more osillatory. This is expeted beauseas the grids move, the orretion �eld must adjust to the new grid on�guration. In other respets,the results of the time-dependent ase behave in the same way as for the steady-state alulation.This points to this tehnique as a robust method for orreting errors due to the mismath inadvetion veloities.6.4 Auray of AMR CalulationsAn important question for adaptive methods in general is whether loal re�nement anresult in improved auray. In Setion 3.2.1 it was demonstrated for Poisson's equation that simplyre�ning the omputational mesh without suÆiently linking oarse and �ne solutions did not improvethe global auray of the solution. Likewise, for our algorithm, we would hope that loal re�nementinreases the auray of the solution. While we expet some errors due to the redued auray atoarse-�ne interfaes, we hope that these errors are outweighed by the gain in auray from loalre�nement. Ideally, loal re�nement will result in auray omparable to that attained in a global�ne-grid omputation.To test this, we use the three-vortex problem. Sine there is no exat solution for thisproblem, a 512�512 single-grid omputation was performed, whih was treated as the \exat" so-lution for the purposes of this omparison. The errors were omputed by averaging the 512�512solution onto the valid regions of the omposite solution, subtrating the omposite solution, andthen using this omposite error to ompute the appropriate error norms. In these runs, the global(oarsest-level) timestep was presribed for eah run, so that the solution times would orrespond.Five ases were run, eah with one level of re�nement. Three ases were run with nref = 2, with



CHAPTER 6. RESULTS 186Base Grid Size h= 1/32 1/64 1/128 1/2562Ref 0.8 0.2 0.05 |4Ref 0.2 0.05 | |Table 6.1: Rihardson extrapolation error estimator toleranes used for three-vortex problem

Figure 6.11: Vortiity and grid on�guration for three-vortex ase, 64�64 base grid, one nref = 2re�nement.32�32, 64�64, and 128�128 base grids. Also, two ases were run with nref = 4, with 32�32 and64�64 base grids. To estimate error for grid plaement, the Rihardson extrapolation error estimatorof Setion 5.3 was used. Sine it was assumed that our method is O(h2), the tolerane for the errorestimator was adjusted to reet the expeted spatial resolution; for example, if the tolerane for aase with spatial resolution �x = �y = h was �, then the tolerane for a ase where �x = �y = h2would be �4 . The error estimation toleranes for eah ase is shown in Table 6.1The errors are tabulated in Tables 6.2 and 6.3 for the errors in the x� and y�veloities,respetively at t = 0:128. The vortiity distribution and grid on�gurations for the 64�64 base grid,nref = 2 ase are shown in Figure 6.11.
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Base Grid Size h= 1/32 1/64 1/128 1/256Single Grid 0.185132 0.0464363 0.0121967 0.002821032Ref 0.0527198 0.0156918 0.00477001 |4Ref 0.0200913 0.00717611 | |(a) L1(error)Base Grid Size h= 1/32 1/64 1/128 1/256Single Grid 0.490627 0.172484 0.0418936 0.008474922Ref 0.171974 0.0423418 0.00978566 |4Ref 0.0439739 0.011447 | |(b) L2(error)Base Grid Size h= 1/32 1/64 1/128 1/256Single Grid 3.53649 1.55637 0.390388 0.06663532Ref 1.51012 0.387115 0.074577 |4Ref 0.387326 0.0722894 | |() L1(error)Table 6.2: Errors for x-veloity, time = 0.128
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Base Grid Size h= 1/32 1/64 1/128 1/256Single Grid 0.178308 0.0461935 0.0119461 0.002776692Ref 0.0536107 0.0156112 0.00482953 |4Ref 0.0195496 0.00746759 | |(a) L1(error)Base Grid Size h= 1/32 1/64 1/128 1/256Single Grid 0.477776 0.171707 0.0421551 0.008499392Ref 0.171671 0.0427243 0.00970393 |4Ref 0.0438788 0.0116263 | |(b) L2(error)Base Grid Size h= 1/32 1/64 1/128 1/256Single Grid 3.47099 1.54005 0.398559 0.07795022Ref 1.56308 0.389457 0.0836362 |4Ref 0.380423 0.0771922 | |() L1(error)Table 6.3: Errors for y-veloity, time = 0.128



CHAPTER 6. RESULTS 189As an be seen, for both times examined, and for both veloity omponents, loal re�nementinreases the auray of the omputation as measured in L1; L2, and L1 norms. For the L2 and L1norms, the solution error is learly redued to a level omparable to the single-grid result with thesame resolution. In other words, we see the same error for the 64�64 base grid with one re�nement ofnref = 2 as for the 128�128 single-grid omputation. This is most apparent in the L1 norm, wherethe numbers are almost idential; agreement between AMR results and the equivalent-resolutionsingle-grid results is slightly worse in the L2 norm, and in the L1 norm, agreement is often onlywithin a fator of two. This trend is more apparent for the nref = 4 ases. We believe that this isbeause, while the dominant errors in the solutions are on the interiors of the re�ned grids aroundthe vortex enters, there are small errors in the solutions whih are generated at the oarse-�neinterfaes. While these errors do not ontribute signi�antly to the L1 and L2 norms of the error,they aumulate and a�et the L1 norm. One soure of error at the oarse-�ne error is due to theonservative linear interpolation of the oarse-grid solution used to ompute boundary onditions forthe advetive updates. If the �eld being interpolated is not well-represented by linear interpolation,some errors will be generated at the oarse-�ne interfae due to interpolation errors. In the ase ofveloity advetion, these interpolation errors will manifest themselves as �laments of vortiity one�ne ell wide whih are generated at oarse-�ne interfaes and then adveted through the ow.Another soure of error in AMR omputations, whih was mentioned by Almgren et al[5℄, is oarse-grid errors whih are transported into re�ned regions. This is an inherent problemwith loally adaptive methods, sine by design, the oarse-grid solution is less aurate than that inre�ned regions. These errors an be minimized by hoosing an appropriate error estimator, whihwill ensure that the oarse-grid errors are roughly the same sale as errors on the �ne grid.



CHAPTER 6. RESULTS 190Finally, the reation of new grids through regridding an introdue errors. In many ases,oarse-�ne errors at what were oarse-�ne interfaes remain behind as a shadow of the previous gridon�guration after the grids are moved. These errors are also then adveted through the ow. Aftera series of regridding operations, these errors an be reated in many di�erent regions of the domain.Also, in the present ode, when a region is newly re�ned from a oarser level, the oarse solution issimply interpolated to �ll the new re�ned grid. This reates errors on the new re�ned grid, sinethe newly interpolated �ne solution is not as smooth as if it had been a re�ned grid already. Forinstane, after the �rst post-regridding timestep, the divergene in newly-re�ned regions will ontaina high-frequeny omponent whih is eventually damped by repeated appliation of the projetionoperators as the solution evolves. When a previously re�ned region is oarsened, the new validregions on the oarse grid are �lled with the averaged �ne solution. In this ase, we also see errorsdue to the fat that the averaging proess introdues some error into the oarse solution. In eitherase, we see an inreased error in the newly re�ned or oarsened regions.So, while the L1 and L2 norms reet the improvement of the dominant solution errorsaround the vorties (whih respond well to re�nement beause they are on the interiors of the re�nedgrids), the lessened responsiveness of the L1 norm of the error reets the small errors generatedat the oarse-�ne interfaes, whih are eventually spread through the domain by the bakgroundow�eld. This e�et is more apparent for the nref = 4 ase, beause the errors at oarse-�neinterfaes are larger, due to the stronger disontinuity in the grid spaing at oarse-�ne interfaesfor nref = 4.This is borne out by examination of the error distributions in these ases. If we really areahieving �ne-grid auray, we would expet that the error distributions would look similar. We



CHAPTER 6. RESULTS 191espeially would like to see if solution errors near the oarse-�ne interfae are notieably orruptingthe solution. For the 64�64 base grid ase, Figure 6.12 shows the errors in the x-veloity, whileFigure 6.13 shows the errors in the y-veloity at t = 0:128. It is apparent that, while the errors lookvery muh like the errors in the orresponding single-grid ases, there is a small but notieable errorwhih is generated at oarse-�ne interfaes and is then spread throughout the ow.To better show these small AMR errors, Figures 6.14 and 6.15 show the same results, butwith a smaller olor-sale range, to better show these errors.It should be noted, however, that while the AMR solutions show some additional errordue to oarse-�ne interfae errors, in all ases, re�nement does improve the auray of the solutionin all norms. In other words, while there is some additional error relative to the uniformly �ne-grid solution, the use of AMR does markedly improve the auray of the solution relative to theuniformly oarse-grid solution. Also, the errors generated at oarse-�ne interfaes are still muhsmaller than the dominant errors in the solutions, whih are still due to solution features, ratherthan grid boundaries.Also, some of the oarse-�ne interfae error ould be redued if the error-estimation riteriatook oarse-�ne errors into aount, as the error-estimation of [67℄ does; also, it might bene�t fromthe ux-based Rihardson extrapolation error-estimation method used by Propp, whih takes thesurfae/volume ratio of re�ned grids into aount.6.5 PerformaneAlmgren et al [5℄ demonstrated that when suitable are is used in optimizing the imple-mentation of an adaptive projetion algorithm, that sizeable savings in CPU time ould be realized.
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(a)

(b) ()Figure 6.12: Error in x-veloity at t=0.128 for (a) 128�128 single-grid omputation, (b) 64�64 base gridwith one fator 2 re�nement, and () 32�32 base grid with one fator 4 re�nement.
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(a)

(b) ()Figure 6.13: Error in y-veloity at t=0.128 for (a) 128�128 single-grid omputation, (b) 64�64 base gridwith one fator 2 re�nement, and () 32�32 base grid with one fator 4 re�nement.
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(a)

(b) ()Figure 6.14: Error in x-veloity at t=0.128 for (a) 128�128 single-grid omputation, (b) 64�64 base gridwith one fator 2 re�nement, and () 32�32 base grid with one fator 4 re�nement. Note that the sale ofthe olor map has been altered to emphasize small errors
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(a)

(b) ()Figure 6.15: Error in y-veloity at t=0.128 for (a) 128�128 single-grid omputation, (b) 64�64 base gridwith one fator 2 re�nement, and () 32�32 base grid with one fator 4 re�nement. Note that the sale ofthe olor map has been altered to emphasize small errors



CHAPTER 6. RESULTS 196In light of their results, we would expet that due to the similarity of the algorithms, suitable op-timization of the ode used in this work would produe similar savings. We do not present timingresults here beause the purpose of this work was to develop an algorithm whih represented a sim-pli�ation of the algorithm used in [5℄. Beause the ode used in this work was a development ode,optimization for CPU eÆieny was not performed as part of this work. We expet that after someoptimization, the algorithm presented here would present similar savings.It should be mentioned that the plae where the omputational osts inurred by thealgorithm in this work are muh higher than in [5℄ is in regridding operations. In [5℄, initializing new�ne-level solutions after regridding is performed entirely by interpolation of oarse-level data. In thiswork, we perform a series of level advanes and ellipti solves. Also, the Rihardson extrapolationerror estimator involves an ellipti solve. So, in most ases, we would tend to regrid less often, andbu�er tagged ells more to ompensate.
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Chapter 7Software Implementation

Implementing adaptive methods an be diÆult, requiring the use of fairly ompliateddata strutures and dynami memory management to manage omputations on the hanging gridstruture. The use of objet-oriented programming tehniques, along with the use of a pre-existingsoftware infrastruture made this task manageable.The algorithms desribed in this work were implemented in a hybrid of C++ [63℄ andFORTRAN77 [23℄. C++, with its advaned dynami memory-management and objet-orientedapabilities, was used to onstrut lasses whih manage the omputation. On the other hand,oating-point intensive operations were performed in FORTRAN, to take advantage of the greateroptimization of FORTRAN for oating-point operations. The ode used in this work, whih alsorepresented a sizeable amount of shared infrastruture whih was also used by Propp [51℄ andBettenourt [22℄, onsisted of 27,300 lines of C++ ode and 14,500 lines of FORTRAN ode. Theheader �les for this ode represented another 8200 lines of ode. These numbers do not inlude theode assoiated with BoxLib, an infrastruture library used as a base for the ode.



CHAPTER 7. SOFTWARE IMPLEMENTATION 1987.1 BoxLibBoxLib [52℄, a library of C++ lasses developed by the Center for Computational Sieneand Engineering (CCSE) at the Lawrene Berkeley National Laboratory, was an instrumental part ofthe implementation of this work. BoxLib was developed to failitate management of omputationson unions of logially retangular grids, and provided an infrastruture whih greatly simpli�eddevelopment of this algorithm.For a single-grid omputation, BoxLib provides muh of the infrastruture needed to easilyimplement a projetion method. The IntVet lass provides a onvenient way to store and operateon spatial indies. The Box lass provides funtionality for managing logially retangular regionsin spae. To store data, the FArrayBox lass was used. The FArrayBox lass is a ontainer lassfor oating point data whih provides a onvenient way of interfaing FORTRAN and C++. It alsoontains funtionality for operating on oating-point data diretly.While it provides a onvenient infrastruture for implementing single-grid algorithms, formanaging adaptive omputations on a dynamially hanging hierarhy of grids, BoxLib provedindispensable. The BoxArray lass, whih is an array of Box's, proved useful for desribing theunion of retangles whih make up a re�ned level. Additionally, the MultiFab lass, an array ofFArrayBoxs with many additional features, was quite useful for organizing and operating on dataon the unions of logially retangular grids whih make up a level.7.2 Managing the AMR hierarhyIn many ways, the basi struture of this ode borrowed heavily from the adaptive imple-mentation of Almgren et al. [5℄. In general, our strategy has been to use a single parent AMR lass



CHAPTER 7. SOFTWARE IMPLEMENTATION 199
AMR

Physics-based 
Amr Level Class

Generic Amr Level

Figure 7.1: Basi lass struture for AMR omputations. Solid arrows indiate membership, while dashedlines indiate derivation. In this �gure, the AMR lass ontains a generi AMR Level lass (atually, anarray of them), and the physis-dependent lass is derived from the generi Amr Level lass.to manage the hierarhy of levels. This parent lass ontains an array of AMR level lasses, whihmanage the solution on individual levels of re�nement. Sine muh of the funtionality needed bylevel lasses is generially appliable to a broad lass of adaptive algorithms, while other funtionalityand implementation details are spei� to a given problem being solved, broad use was made of theinheritane features of C++ by de�ning a generi level-based lass whih ontained the basi fun-tionality for managing a solution on an AMR re�nement level and then deriving problem-spei�physis-based lasses from the general AMR level lass. See Figure 7.1. For more on the use ofderivation in the design of AMR lasses, see Cruth�eld and Welome [32℄.We also extensively use the onept of level-operator lasses. A level-operator will ontainall the funtionality and auxiliary data strutures neessary to apply an operator on a level. Forthe Euler equations, examples of level operator lasses would be lasses whih manage the advetion



CHAPTER 7. SOFTWARE IMPLEMENTATION 200and projetion operations done during the advane on a level.7.2.1 Ellipti SolverDesign of the ellipti solvers was ompliated by the desire to have a solver whih ould beused both as a stand-alone ellipti solver (used for Poisson's equation in [47℄ and for the steady-statedrift-di�usion equations in [22℄) and as a solver whih ould be inluded in a time-dependent AMRode (whih was used in this work, and for the solution of porous media ow in a trikle-bed reatorin [51℄). This dual objetive was realized through the use of derivation.First, a set of lasses was developed to provide ellipti solver apability for a generi AMRsystem. The lass AMRSolvermanages the hierarhy of levels and provided an interfae to the elliptisolver. The AMRSolver lass ontains an array of LevelSolver lasses, whih manage the solutionon eah AMR level. In the time dependent ase, the AMRSolver is a statially de�ned objet whihexists parallel to the time-dependent AMR hierarhy. The AMRSolver lass ontains all interfaefuntionality neessary to perform single-level or multi-level solves with `base � 0 (see Chapter 3),and to modify the solver's grid hierarhy as it hanges during the time-dependent solution evolution.For a stand-alone ellipti solver, some apability had to be added to extend the elliptisolver lasses for use in this ontext. For example, while the LevelSolver lasses manage thesolution on individual levels, they do not atually \own" the memory for the solution or right-hand-side, for eÆieny reasons. So, to onstrut a stand-alone solver, an AMRPoisson lass was derivedfrom the AMRSolver lass, and a LevelPoisson lass was derived from the LevelSolver lass (seeFigure 7.2). This greatly simpli�ed ode-development and re-use, beause the same base lasseswere used for both the time-dependent and stand-alone solvers.
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AmrSolver LevelSolver

AmrPoisson LevelPoissonFigure 7.2: Class struture for ellipti solver lasses. Solid arrows indiate membership, while dashedarrows indiate derivation.7.2.2 Euler Equation CodeAs was mentioned earlier, a great deal of the funtionality neessary for managing time-dependent AMR omputations is ommon aross spei� physial problem implementations. Forexample, the funtionality used to regrid, or to subyle in time, is ommon to all implementationswhih follow the basi AMR model that we use. On the other hand, many operations, suh asadvaning on a level, are spei� to the set of equations being solved. For this reason, the derivationand virtual funtion features of C++ were exploited heavily in the implementation of the algorithmsin this work. The Amr and AmrLevel lasses used as a starting point for the implementation of thiswork were modi�ed versions of lasses originally developed by CCSE for solving time-dependentproblems using AMR [5, 50℄. A shemati of the lass struture used in the implementation of thisalgorithm is shown in Figure 7.3.The Amr lass, whih is very similar to the lass used by [5℄, manages the entire AMRhierarhy and the global time-stepping. For the Euler equations, the Amr lass also alloates thestatially de�ned AmrSolver lass, whih will manage all ellipti solves. The Amr lass ontains anarray of AmrLevel lasses, whih ontain the basi funtionality to manage the solution on an AMR
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Amr AmrSolver

CCProjector VelocityAdvector

Euler

AmrLevel LevelSolver

Figure 7.3: Class struture for time-dependent inompressible Euler lasses. Solid arrows indiate mem-bership, while dashed arrows indiate derivation.level. From the parent AmrLevel lass is derived an Euler lass, whih ontains the funtionalityneessary to implement the spei� algorithm being implemented, in this ase, the ell-enteredprojetion method desribed in Chapter 4. The Euler lass alloates several level-operator lasses asneessary, inluding the CCProjetor and VeloityAdvetor lasses, whih manage the projetionand advetion parts of the algorithm, respetively. This design allows for greater modularity of thedi�erent omponents of the algorithm, and made it easier to share ode with other developers (forexample, the ode used to implement the algorithm desribed in this work, that of Bettenourt [22℄,and that of Propp [51℄ shared muh of the basi infrastruture).



CHAPTER 7. SOFTWARE IMPLEMENTATION 2037.3 VisualizationFor ode-development and examination of the results of AMR omputations, good datavisualization is indispensable. We used two di�erent visualization tools. AmrVis [14℄ was developedby CCSE for the purpose of presenting results of AMR omputations, and proved to be quite usefulfor examining the results of �nished omputations. All olor pitures of AMR results in this workwere generated using AmrVis.For examining data during runs (for example, while debugging the ode), the VIGL graphislibrary [33℄, as extended by Hans Johansen for use with BoxLib, also proved quite useful.
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Chapter 8
Conlusions
8.1 SummaryThis thesis presents an adaptive ell-entered projetion method for the inompressibleEuler equations in two dimensions. We use blok-strutured loal re�nement in spae and time toredue the amount of omputational resoures needed to ompute numerial solutions with adequateresolution.First, a single-grid algorithm was presented, whih uses the projetion formulation of Bell,Colella, and Glaz [16℄ to onstrut a seond-order projetion method whih uses the approximateprojetion disretization of Lai. Results were presented whih indiated that the method is seond-order aurate.Then, a multilevel algorithm for solving Poisson's equation on a multilevel hierarhy ofloally re�ned grids using multigrid-aelerated point relaxation was presented. We introdued thenotions of omposite operators, whih operate on variables de�ned on the multilevel hierarhy ofgrids, and level operators, whih operate on variables de�ned on single re�ned levels. It was desribed



CHAPTER 8. CONCLUSIONS 205how the use of omposite operators will enable solutions to Poisson's equation to attain the inreasedauray expeted from a loally-re�ned solution. Results of a test omputation were presented todemonstrate the bene�ts of loal re�nement on CPU time and memory usage. Also, an alternatealgorithm was presented whih demonstrated the bene�ts of multilevel solution approah for elliptiequations, rather than solving the equations using level operators and then omputing orretionsto ensure that the solution satis�es the equations based on omposite operators.The single-grid projetion algorithm was then extended to the solution of the inompressibleEuler equations on a multilevel hierarhy of grids. Like the algorithm of Almgren et al. [5℄, thesolution on �ner grids is advaned at a �ner timestep than that on oarser grids, and then issynhronized with oarser levels when oarse and �ne solutions reah the same time. The algorithmdesribed in this thesis di�ers from that of Almgren et al. in three major respets. For the projetionmethod desribed in this work, the synhronization step involves a synhronization projetion basedon ell-entered omposite operators to ensure that the omposite solution satis�es the divergeneonstraint based on omposite operators. Also, to orret for errors in advetion due to the preseneof oarse-�ne interfaes, we employ a volume-disrepany orretion based on the sheme presentedby Propp [51℄ for porous media ows to ompute a lagged orretion whih approximately orretsfor errors in advetion. Finally, all ellipti solves performed during synhronization operations areonstruted as multilevel solves over all levels whih have reahed the same time. Beause all elliptisolves are based on ell-entered disretizations, it is expeted that extension of this algorithm tomore ompliated problems should be simpli�ed.Then, strategies for identifying regions whih ould bene�t from loal re�nement are pre-sented. Re�ned grids an be plaed in user-de�ned loations, or re�nements an be adaptively



CHAPTER 8. CONCLUSIONS 206plaed using user-de�ned riteria (usually based on solution features) or an estimate of loal trun-ation error based on Rihardson extrapolation. Computation of estimates of the loal trunationerror for Poisson's equation involves omparing the Laplaian operator applied to the solution witha oarsened Laplaian operator applied to a oarsened solution. For time-dependent problems, weompute oarse and �ne approximations to the disrete update equation, and then ompare them.It was noted that using Rihardson extrapolation to estimate error, rather than using solution-basedestimators, allows the soures of solution error to be loalized, whih should improve the e�etivenessof loal re�nement.The adaptive algorithm desribed in this work was applied to a series of test problems todemonstrate its e�etiveness. It was shown that solution features are not orrupted as the rossoarse-�ne interfaes. Also, it was shown that the O(h) advetion errors due to oarse-�ne mis-mathes in advetion veloities an be redued to O(h2) by using the volume-disrepany orretionsheme used in this work. Finally, it was demonstrated that using loal re�nements an enablesolution auray omparable to the equivalent uniform �ne-grid solutions. Solution errors due toloal re�nement are presented as well. These errors, while enough to prevent the L1 norm of theerrors in loally re�ned solutions from ompletely mathing single-grid errors, are still uniformlysmall, ompared to other feature-based solution errors.8.2 Conlusions and Future WorkWe have shown that the method presented in this work is e�etive at modeling the simpletest ases presented in this work. In partiular, we have demonstrated that the error aused by theaddition of adaptivity is small in relation to other solution errors for the problems examined, and



CHAPTER 8. CONCLUSIONS 207that the volume-disrepany orretion is useful in reduing advetion errors to approximately theerrors resulting from one unorreted timestep.The adaptive algorithm presented in this work is intended as the �rst step in a seriesof extensions. The �rst, most obvious step is the extension to the inompressible Navier-Stokesequations by adding visosity. In a similar vein, di�usion proesses should be added to the advetedsalar evolution equations. Also, extending this work to solve the equations of variable-densityinompressible ow would allow many more physial situations to be modeled.Extension of this work to more realisti geometries would be useful. Addition of embedded-boundary Cartesian grid tehniques, like the ones employed in [50℄, would allow modeling of owsin more ompliated geometries. It is expeted that extension of this algorithm to the embeddedboundary ase will be simpli�ed by the fat that there is only one set of (ell-entered) solvers whihneed be extended. Also, along the lines of more realisti geometries would be the extension of thisalgorithm to three-dimensions, whih should be straightforward.The oarse-�ne errors seen in the omputations indiate the need for better error-estimationtehniques, ones whih will aount for the presene of errors due to oarse-�ne interfaes. Forexample, the ux-based Rihardson extrapolation error estimation tehnique presented in Propp[51℄, whih inludes the surfae-to-volume ratio of grids in its error-estimation sheme, ould proveuseful. Finally, there is the issue of regridding. In this work, a solution is reated on new �ne-levelgrids by simply interpolating the existing oarse-level solution to the �ne-level resolution. There isevidene that the �ne-level solution produed in this way is not smooth enough, and that a better wayof initializing new grids with a smooth solution is needed. It is expeted that this will beome more



CHAPTER 8. CONCLUSIONS 208important when solving visous ows, sine while the interpolated solution is somewhat smooth, theseond derivatives of the interpolated solutions is not.
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