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We present different simulations of primary atomization using an adaptive Volume-of-Fluid method
based on octree meshes. The use of accurate numerical schemes for mesh adaptation, Volume-of-Fluid
advection and balanced force surface tension calculation implemented in Gerris, the code used to perform
the simulations included in this work, has made possible to carry out accurate simulations with charac-
teristic scales spreading over several orders of magnitude. The code is validated by comparisons with the
temporal linear theory for moderate density and viscosity ratios, which basically corresponds to atomiza-
tion processes in high pressure chambers. In order to show the potential of the code in different scenarios
related to atomization, preliminary results are shown in relation with the study of the two-dimensional
and 3D temporal and spatial problem, the influence of the injector and the vortex generated inside the
chamber, and the effect of swirling at high Reynolds numbers.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The breakup of liquid masses by high-speed air streams is an
amazingly complex phenomenon that occurs in many natural
and man-made circumstances. For instance, spume formation at
the top of sea-wave crests corresponds to the generation of a com-
plex mixture of droplet spray, bubbles and wavelets induced by the
relative air velocity. In the industrial domain, liquid–fuel combus-
tion in many types of engines or furnaces requires the atomization
of the fluid before evaporation and combustion can occur. This is of
particular interest to the automotive and aerospace industry, as the
quality of the combustion and thus pollutant generation depend on
the characteristics of fuel atomization. In certain medical devices,
drug delivery is assisted by spray formation. Many other domains
are of interest: atomization is also used for painting, is relevant to
‘‘churn” liquid–gas flows in pipes and for powder production out of
liquid metals.

We focus in this paper on injector technology, and particularly
on devices where atomization results from the interplay of classi-
ll rights reserved.
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cal hydrodynamic phenomena, excluding interesting but more
complex effects such as cavitation, electrodynamic forces or com-
pressibility. Several mechanisms may be active in generating
atomization in these injector systems. In certain types of injectors,
such as swirling injectors, thin films are created that get thinner as
they flow downstream. The stretching of the film may also be en-
hanced by various instabilities, but will in any case reach a level
where the film breaks and ligaments are formed. In injectors with-
out swirl two regimes may be observed at high velocity: close to
the injector exit, relatively small ligaments or droplets are seen
to detach from the jet. Further downstream, large scale instabilities
of the jet may be observed, leading to the formation of large
droplets.

The mechanisms leading to ligament and droplet formation are
still the object of active research. At least two competing mecha-
nisms are on offer. The first mechanism amounts to a scenario pro-
posed by Faeth et al. (1995) in which a sufficient level of
turbulence in the liquid phase upstream of the nozzle will deform
the interface and lead to breakup. More precisely, if a turbulent
eddy has sufficient energy it may defeat the stabilizing effect of
surface tension and create a ligament. The second mechanism in-
volves the gas phase in an essential way. The flow in a small region
of the jet’s surface is approximated by a two-phase mixing layer.
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The stability of the corresponding two-phase parallel base flow is
studied, leading to instabilities when the relative velocity of gas
and liquid is sufficiently high compared to surface tension. At the
time of writing, the general understanding of the phenomenon is
not sufficiently advanced to decide what is the interplay between
the influence of turbulence generated upstream and mixing layer
instability.

As for many flow stability problems, the analysis is complex,
and one needs to distinguish between linear and nonlinear effects,
convective and absolute instability, normal-mode and transient
growth, and delicate effects of viscosity and three-dimensionality
even at high Reynolds numbers. The absolute/convective debate
is particularly important: if the instability is convective, the system
is a noise amplifier and the characteristics of background turbu-
lence are essential.

The final droplet size has been the subject of much speculation.
In many theories, only the initial development of a two-dimen-
sional instability is predicted. It then remains to explain how the
resulting two dimensional sheets evolve into three-dimensional
structures that lead to fingers, tubular ligaments and eventually
droplets. A famous scenario assumes that the tip of the sheet
develops a Taylor–Culick rim, which then detaches and breaks
due to Plateau’s and Rayleigh’s jet instability (Dombrowski and
Johns, 1963). Many other mechanisms have been proposed, some
of them involving a secondary instability of the sheet.

Experimental studies can succeed in part to verify the various
theories but only up to a certain point. For atomization with co-
flowing gas and liquid streams, the predictions of inviscid linear
theory yield the experimentally observed exponent for the fre-
quency dependence on velocity (Ben Rayana, 2007) but miss the
exact value of the frequency by a factor of three to ten. The origins
of this discrepancy are hard to analyze. One possible explanation
would be the influence of preexisting modes upstream of the injec-
tor that would provide an initial perturbation of well-defined
frequency.

To further our understanding of these phenomena numerical
simulation offers several advantages. The simulation approximates
the solution of the Navier–Stokes equations in a set-up that is an
idealized model of the real experiments. How idealized the model
is the choice of the investigator. For instance one may wish to
study only two-dimensional flow, or flow without any turbulence
upstream of the injection, or flow with well-defined mean velocity
profiles at the inflow boundary condition. Numerical simulation
then offers the possibility to serve as an intermediate step between
theory and experiment, allowing to verify or falsify assumptions
about the underlying mechanisms of atomization.

Early numerical studies of atomization started from a drastic
simplification of the problem. Rangel and Sirignano (1988) have
studied the dynamics of vortex sheets in inviscid flow, showing
the growth of the Kelvin-Helmholtz instability into the non-linear
regime. Keller et al. (1994) (also reported by Scardovelli and
Zaleski (1999)) using the Volume-of-Fluid method and Tauber
et al. (2002) and Tauber and Tryggvason (2000) using front track-
ing, performed two-dimensional simulations of the Navier–Stokes
equations, also starting from a discontinuous velocity field and
looking at the evolution in time of the instability in a spatially peri-
odic domain, a set-up similar to that used in the temporal instabil-
ity theory. Similar ‘‘temporal” two-dimensional simulations were
reported recently by Boeck and Zaleski (2005) and Boeck et al.
(2007) showing agreement over one to two decades of amplitude
with the viscous linear stability theory and investigating the effect
of boundary layers in the base flow configuration. Three-dimen-
sional temporal simulations were reported by Zaleski et al.
(1997) using the Volume-of-Fluid method and by Tauber (2002)
using Front-Tracking. These studies have shown the formation of
fingers on top of unstable sheets but have not systematically
studied the characteristics of ligament formation because of the
excessive demands on computer time. Much more realistic spatial
simulations are those where the fluid enters the simulation at one
boundary mimicking the injector exit and leaves at the other
boundaries after the instabilities have spatially developed. Such
simulations were reported recently by Bianchi et al. (2005),
De Villiers et al. (2004), Ménard et al. (2007), Gorokhovski and
Herrmann (2008) and Desjardins et al. (2008).

Although detailed 3D simulations are becoming possible, they
are still limited by severe numerical challenges. To understand
why it is useful to review the progress of numerical simulation
methods for flows with liquid gas interfaces. Three main methods
and a number of variants compete. Front-Tracking approximates
the position of the interface using marker particles and interpo-
lates between them in various ways, most typically using a trian-
gular mesh in 3D simulations. This technique is simple in
principle but has some disadvantages: the remeshing of the surface
is necessary as the interface gets deformed, and the intersection of
the surface with the grid and with itself is complex to manage. Fi-
nally, jet or droplet breakup requires a criterion for remeshing with
a different topology at appropriately selected times thin tubular re-
gion or sheet-like regions. Determining the appropriate time and
location of the break is one of the major difficulties. By contrast
the two other methods handle change of topology automatically
when the sheets or tube become as thin as the grid spacing. The
Level-Set method advects a smooth function whose zero level set
corresponds to the interface. Resetting the level set at regular
intervals is necessary and is done by setting the advected function
to be the signed distance function to the interface. The Volume-of-
Fluid method tracks the volume fraction of liquid in each cell. Vol-
ume-of-Fluid methods are in some steps of the algorithm more
complex to program but are typically be more accurate than level
sets. Hybrid methods have also been developed such as marker-le-
vel-set, marker-VOF or level-set VOF. The main motivation for cou-
pling with level-set methods seems to us to be the possibility of
introducing a smoother function that yields the second-order
derivatives needed for the computation of surface tension. How-
ever, using height functions as advocated by Cummins et al.
(2005) and Francois et al. (2006) and by one of us Popinet
(accepted for publication) yields even more accurate results. Most
methods run into difficulties when the density ratios and the rela-
tive strength of surface tension compared to other forces becomes
large, which is the case for air–water systems, which are hence
most of the time treated in the free-surface approximation. For
atomizing systems, however, the role of aerodynamic friction is
essential and this is not a possibility. Thus a robust method for
dealing with air–water systems is of great interest, and while we
have no definitive answer to this question in this paper, we shall
discuss the capabilities of our methods in this respect.

One important feature of the study of atomizers is the need to
study the flow both inside objects with complex geometries such
as injector nozzles, and over a large range of scales, from the small
scale ligaments that form at the nozzle exit to the large scale insta-
bilities of the jet’s core. Thus it is useful to have at one’s disposal
both a method to adjust the mesh size to the scale of the details
being studied and to be able to represent complex objects in the
simulation. The use of adaptive methods for incompressible fluids
have been already successfully implemented and tested by previ-
ous authors (see for example Sussman et al. (1999), Herrmann
(2008) and Losasso et al. (2004)). These capabilities are present
in the Gerris code which uses a cut-cell method to represent the
solid objects and adaptive octree mesh refinement. Gerris is Open
Source and freely available at Popinet (2008).

In this paper we shall give a number of preliminary simulations
of the kind of complex atomizing flows that can be obtained using
that type of code. We start with a description of the method, then
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continue with a comparison of the results of the code with tempo-
ral linear theory. We then show various types of flows relating to
single jet and co-flowing atomizer devices and study how pertur-
bations of the interface grow spatially. Finally, we show some more
complex examples involving complex atomizer shapes and swirl
atomizers.

2. Numerical scheme

The numerical scheme has been described in detail by Popinet
(2003, accepted for publication). The following sections give a
summary of the main techniques used to obtain an accurate adap-
tive solution of the incompressible, variable-density, Navier–
Stokes equations with surface tension.

2.1. Temporal discretisation

The incompressible, variable-density, Navier–Stokes equations
with surface tension can be written

qðotuþ u � $uÞ ¼ �$pþ $ � ð2lDÞ þ rjdsn;
otqþ $ � ðquÞ ¼ 0;
$ � u ¼ 0;

with u ¼ ðu; v;wÞ the fluid velocity, q � qðx; tÞ the fluid density,
l � lðx; tÞ the dynamic viscosity and D the deformation tensor de-
fined as Dij � ðoiuj þ ojuiÞ=2. The Dirac distribution function ds ex-
presses the fact that the surface tension term is concentrated on
the interface; r is the surface tension coefficient, j and n the curva-
ture and normal to the interface.

For two-phase flows we introduce the volume fraction cðx; tÞ of
the first fluid and define the density and viscosity as

qðcÞ � cq1 þ ð1� cÞq2;

lðcÞ � cl1 þ ð1� cÞl2;

with q1;q2 and l1;l2 the densities and viscosities of the first and
second fluids, respectively. The advection equation for the density
can then be replaced with an equivalent advection equation for
the volume fraction

otc þ $ � ðcuÞ ¼ 0:

A staggered in time discretisation of the volume-fraction/den-
sity and pressure leads to the following formally second-order
accurate time discretisation

qnþ1
2

unþ1 � un

Dt
þ unþ1

2
� $unþ1

2

h i
¼ �$pnþ1

2
þ $ � lnþ1

2
ðDn þ Dnþ1Þ

h i
þ ðrjdsnÞnþ1

2
;
cnþ1

2
� cn�1

2

Dt
þ $ � ðcnunÞ ¼ 0;

$ � un ¼ 0

This system is further simplified using a classical time-splitting pro-
jection method (Chorin, 1969)

qnþ1
2

uH � un

Dt
þ unþ1

2
� $unþ1

2

h i
¼ $ � lnþ1

2
ðDn þ DHÞ

h i
þ ðrjdsnÞnþ1

2
;

ð1Þ

cnþ1
2
� cn�1

2

Dt
þ $ � ðcnunÞ ¼ 0; ð2Þ

unþ1 ¼ uH �
Dt

qnþ1
2

$pnþ1
2
; ð3Þ

$ � unþ1 ¼ 0;
which requires the solution of the Poisson equation

$ � Dt
qnþ1

2

$pnþ1
2

" #
¼ $ � uH: ð4Þ

This equation is solved efficiently using the quad/octree-based
multilevel solver described in detail in Popinet (2003).

The discretised momentum equation (1) can be re-organised as

qnþ1
2

Dt
uH � $ � lnþ1

2
DH

h i
¼ $ � lnþ1

2
Dn

h i
þ ðrjdsnÞnþ1

2

þ qnþ1
2

un

Dt
� unþ1

2
� $unþ1

2

h i
ð5Þ

where the right-hand side depends only on values at time n and
n + 1/2. This is an Helmholtz-type equation which can be solved
efficiently using a variant of the multilevel Poisson solver. The
resulting Crank–Nicholson discretisation of the viscous terms is for-
mally second-order accurate and unconditionally stable.

The velocity advection term unþ1
2
� $unþ1

2
is estimated using the

Bell–Colella–Glaz second-order unsplit upwind scheme (Bell
et al., 1989; Popinet, 2003). This scheme is stable for CFL numbers
smaller than one.

2.2. Spatial discretisation

Space is discretised using an octree. We refer the reader to
Popinet (2003, and references cited therein) for a more detailed
presentation of this data structure. All the variables (components
of the momentum, pressure and passive tracers) are collocated at
the centre of each cubic discretisation volume. Consistently with
a finite-volume formulation, the variables are interpreted as the
volume-averaged values for the corresponding discretisation vol-
ume. The choice of a collocated definition of all variables makes
momentum conservation simpler when dealing with mesh adapta-
tion (Popinet, 2003). It is also a necessary choice in order to use the
Godunov momentum advection scheme of Bell et al. (1989), and it
simplifies the implementation of the Crank–Nicholson discretisa-
tion of the viscous terms; however, one has to be careful to avoid
the classic problem of decoupling of the pressure and velocity field.

To do so, an approximate projection method (Almgren et al.,
2000; Popinet, 2003) is used for the spatial discretisation of the
pressure correction equation (3) and the associated divergence in
the Poisson equation. In a first step the auxiliary cell-centred veloc-
ity field uc

H
is computed using Eq. (5). An auxiliary face-centred

velocity field uf
H

is then computed using averaging of the cell-cen-
tred values on all the faces of the Cartesian discretisation volumes.
When faces are at the boundary between different levels of refine-
ment of the quad/octree mesh, averaging is performed so as to
guarantee consistency of the corresponding volume fluxes (see
Popinet (2003) for details).

The divergence of the auxiliary velocity field appearing on the
right-hand side of Eq. (4) is then computed for each control volume
as the finite-volume approximation

$ � uH ¼
1
D

X
f

uf
H
� nf ;

with nf the unit normal vector to the face and D the length scale of
the control volume.

After solving Eq. (4), the pressure correction is applied to the
face-centred auxiliary field

uf
nþ1 ¼ uf

H
� Dt

q cf
nþ1

2

� �$f pnþ1
2
; ð6Þ

where cf
nþ1=2 is obtained by averaging from the cell-centred values

cc
nþ1=2 and $f is a simple face-centred gradient operator (consistent
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at coarse/fine volume boundaries (Popinet, 2003)). The resulting
face-centred velocity field uf

nþ1 is exactly non-divergent by
construction.

The cell-centred velocity field at time nþ 1 is obtained by
applying a cell-centred pressure correction

uc
nþ1 ¼ uc

H
� Dt

q cf
nþ1

2

� �$f pnþ1
2

�������
�������
c

; ð7Þ

where the j jc operator denotes averaging over all the faces delimit-
ing the control volume. The resulting cell-centred velocity field uc

nþ1

is approximately divergence-free.

2.3. Volume-of-fluid advection scheme

To solve the advection equation (2) for the volume fraction we
use a piecewise-linear geometrical Volume-of-Fluid (VOF) scheme
(Scardovelli and Zaleski, 1999) generalised for the quad/octree spa-
tial discretisation. Geometrical VOF schemes classically proceed in
two steps:

1. Interface reconstruction.
2. Geometrical flux computation and interface advection.

Interface reconstruction is performed using a piecewise-planar
interface representation in each cell defined by equation

m � x ¼ a: ð8Þ

Given the interface normal m and the volume fraction c in a gi-
ven cell, a can be determined uniquely using analytical relations
(Gueyffier et al., 1998; Scardovelli and Zaleski, 2001). The interface
normal m can be approximated by considering the volume frac-
tions in a neighborhood of the cell considered. We use the
Mixed-Youngs-Centred (MYC) implementation of Aulisa et al.
(2007) on a 3� 3� 3 stencil generalised for the octree spatial dis-
cretisation (Popinet, accepted for publication).

Once interface reconstruction has been performed, direction-
split geometrical fluxes can be computed easily on regular
Cartesian grids (DeBar, 1974; Noh and Woodward, 1976; Li,
1995). As shown by Popinet (accepted for publication) this is also
true for octree spatial discretisations provided some care is taken
when dealing with fluxes across coarse–fine discretisation bound-
aries.

The resulting advection scheme preserves sharp interfaces and
has been shown to be close to second-order accurate for practical
applications (Aulisa et al., 2007). While this scheme is not strictly
conservative (Rider and Kothe, 1998), total conservation errors
for difficult problems are usually less than 0.01%.

2.4. Balanced-force surface tension calculation

The accurate estimation of the surface tension term ðrjdsnÞnþ1
2

in the discretised momentum equation (1) has proven one of the
most difficult aspects of the application of VOF methods to sur-
face-tension-driven flows. The original Continuum-Surface-Force
(CSF) approach of Brackbill et al. (1992) is known to suffer from
problematic parasitic currents when applied to the case of a sta-
tionary droplet in theoretical equilibrium (Lafaurie et al., 1994;
Popinet and Zaleski, 1999; Harvie et al., 2006). Other methods
based on a phase-field description of the interface suffer from sim-
ilar problems including level-sets and front-tracking with distrib-
uted surface-tension.

Recently Renardy and Renardy (2002) and Francois et al. (2006)
noted that in the case of a stationary droplet parasitic currents are
due to the imbalance between the numerical discretisations of the
surface tension and of the corresponding pressure gradient. They
also showed that this imbalance can be rectified by using compat-
ible discretisations of the pressure and volume fraction gradients
used in the CSF approximation, provided the exact value of the
interface curvature is known.

Computing an accurate estimate of the curvature from the dis-
crete volume fraction values is non-trivial. Renardy and Renardy
showed that accurate estimates can be obtained with their parab-
ola-fitting technique but at great computational cost. Cummins
et al. (2005) showed that the Height-Function (HF) method initially
proposed by Torrey et al. (1985) gives second-order accurate cur-
vature estimates while being much cheaper than parabola-fitting,
however, Francois et al. (2006) concluded that it was still not accu-
rate enough to solve the problem of parasitic currents around a sta-
tionary droplet.

In contrast one of us has shown recently Popinet (accepted for
publication) that the combination of a balanced-force surface ten-
sion discretisation and a Height-Function curvature estimation is
sufficient to solve the problem of parasitic currents, provided the
initial non-equilibrium interface shape is allowed enough time to
relax to its equilibrium shape. This relaxation occurs on a timescale
comparable to the viscous dissipation timescale as expected from
physical considerations. Furthermore, the numerical equilibrium
shape was shown to converge at second-order rate toward the ex-
act equilibrium shape.

The Height-Function technique is relatively simple to extend to
an octree spatial discretisation but may become inconsistent when
the radius of curvature of the interface is less than approximately
five times the grid spacing (Popinet, accepted for publication). In
these cases the paraboloid fitting technique of Popinet (accepted
for publication) is used. The transition between the two curvature
estimation techniques has been shown to be consistent with over-
all second-order accuracy. The increased robustness provided by
this approach is important when dealing with the sprays formed
during jet atomization.

2.5. Mesh adaptation

The overall scheme allows for space and time-varying spatial
resolution. To simplify the implementation the sizes of neighbor-
ing cells cannot vary by more than a factor of two (this is some-
times referred to as restricted octree). While this can limit the
efficiency of adaptation for three-dimensional problems which
have a fractal dimension close to two (Min and Gibou, 2007), this
should not be an issue for most complex fluid dynamics problems,
including atomization.

In contrast to many previous implementations of mesh adapta-
tion for interfacial flows with Eulerian discretisations ((Jeong and
Yang, 1998; Sochnikov and Efrima, 2003; Wang et al., 2004;
Greaves, 2004; Kohno and Tanahashi, 2004; Theodorakakos and
Bergeles, 2004; Zheng et al., 2005; Greaves, 2006; Nikolopoulos
et al., 2007; Min and Gibou, 2007) with the exception of Malik
et al. (2007)) our method is not limited to constant resolution
along the interface. This can dramatically increase the efficiency
of mesh adaptation, particularly when dealing with reconnections
and breakup of interfaces (Popinet, accepted for publication).

One of the advantages of the octree discretisation is that mesh
refinement or coarsening are cheap and can be performed at every
time-step if necessary with a minimal impact on overall perfor-
mance Interpolation of quantities on newly refined or coarsened
cells is also relatively simple and is done conservatively both
for momentum and volume fraction (Popinet, accepted for
publication).

Several refinement criteria can be used simultaneously depend-
ing on the problem. Combinations of the following criteria have
been used in this article:



Fig. 1. Parameters and profiles used for the liquid and gas phases.

Table 1
Simulation parameters. Effective uniform grid resolution: 256� 768.

Reference m r dl=Ll dg=Lg Re�l Re�g We�l We�g

A 0.1 1 1/6 1/6 20 2000 1 1
B 0.1 1 1/6 1/6 20 2000 0.1 10
C 0.99 0.1 1/6 1/6 19,602 2000 1 1
D 0.99 0.1 1/6 1/6 19,602 2000 1 10
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Vorticity

j$� ujD
maxðjujÞ < �;

with D the mesh size and � a user-defined threshold. This criterion
will ensure that a finer resolution is used in areas of high vorticity.
The threshold parameter � can be interpreted as the maximum
angular deviation from a straight path – due to the local vorticity
$� u – of a massless particle travelling at speed maxðjujÞ across a
cell of size D. The threshold � is usually set to a small value, typi-
cally 10�2. For interfacial flows, vorticity generation is often associ-
ated with high interface curvatures. Using this criterion will thus
also ensure that small radii of curvature are properly resolved.

Gradient

j$cjD < �;

with c a field variable. This criterion provides for example a simple
way to create a ‘‘band” of constant high resolution around an inter-
face defined by volume fraction c. With a second-order discretisa-
tion of $c, j$cj will be non-zero only in a band of approximately
three cells around any cell cut by the interface. Setting � to a very
small value and putting an upper bound on the maximum level of
refinement will ensure that the cells cut by the interface and their
immediate neighbours always use the highest level of refinement.
Curvature

jD < �;

with j the curvature of the interface if the cell contains a fragment
of interface, zero otherwise. By construction 1=� is the minimum
number of cells required to discretise a given radius of interface
curvature. It is typically set to 0.2 (i.e. five cells per radius of curva-
ture). In contrast to the gradient criterion, the curvature criterion
will result in a variable resolution along the interface when the
interface curvature varies. This means for example that smooth,
planar interfacial sheets can be resolved using a coarse resolution,
while small, localized ‘‘cusps”, bubbles and droplets use higher res-
olution. As demonstrated in Popinet (accepted for publication) this
can lead to orders-of-magnitude savings in simulation size.
3. Code validation

3.1. Comparison with linear theory

The experimental validation of the numerical solutions ob-
tained for two-phase flows presents several problems. From the
experimental point of view, there is a high uncertainty of the mea-
surements in atomization experiments. On the other hand, various
numerical issues appear when two-phase flows with large density
and viscosity ratios are simulated at high Reynolds numbers.

In this work, the numerical code is validated using the temporal
viscous Linear Theory (LT) applied to two-phase parallel mixing
layers. This theory predicts the temporal growth of the small dis-
turbances induced in the flow and for that reason it is an ideal
framework for measuring the performance of the code for captur-
ing the behavior of the instabilities in real situations.

The Linear Theory predicts the temporal response to a small
perturbation /l;geiaðx�ctÞ imposed on a given base flow. The solution
of the temporal growth rate is given by the Orr–Sommerfield equa-
tions, which derive from the Navier–Stokes equations:

ðUl � cÞðD2 � a2Þ/l � D2Ul/l ¼
1

iaRel
ðD2 � a2Þ2/l; ð9Þ

ðUg � cÞðD2 � a2Þ/g � D2Ug/g ¼
m
r

1
iaRel

ðD2 � a2Þ2/g ; ð10Þ
with r ¼ qg=ql the density ratio and D denotes the derivative with
respect to y.

To solve these equations, some boundary conditions must be
imposed. In particular, a rectangular domain problem is considered
here, where �Ll < y < 0 for the liquid phase and 0 < y < Lg for the
gas phase.

The initial velocities profiles are imposed (Fig. 1)

UlðyÞ ¼ Uint � U�l erfðy=dlÞ; ð11Þ
UgðyÞ ¼ Uint þ U�gerfðy=dgÞ; ð12Þ

where U�l being the liquid velocity, U�g the gas velocity (* denotes the
absolute values far from the interface) and dg and dl are the thickness
of the gas and liquid boundary layer, respectively. Velocities are de-
fined respective to a system of reference moving at the interface
velocity, that is Uint ¼ 0. The velocities far away from the interface
are related through the stress continuity condition:

U�g
U�l
¼ n

m
; ð13Þ

where m ¼ lg=ll is the viscosity ratio and n ¼ dg=dl is the ratio be-
tween the boundary layer thicknesses. Further details about the
method of solution of Eq. (9) can be found in Yecko et al. (2002).

In order to interpret the results it is useful to define the follow-
ing Reynolds and Weber numbers, whose values determine the
type of observed instabilities (Boeck et al., 2007):

Re�l ¼ qlU
�
l dl=ll; Re�g ¼ qgU�gdg=lg ;

We�l ¼ qlðU
�
l Þ

2dl=r; We�g ¼ qgðU
�
gÞ

2dg=r:
ð14Þ

In order to avoid any dependence of the results with this the
height of the domain, L ¼ Ll þ Lg , it should be satisfied that Lg=dg �
1; Ll=dl � 1 and 2p=a� Lg ; Ll.

The parameters of Table 1 are used here for validation of the
code.

Initially, the flow is perturbed using the eigenfunctions
/l and /g obtained from the solution of the Orr–Sommerfield
equations (9) and (10) using Tchebychev polynomials. Thus, the
initial state is defined as

uðt ¼ 0; x; yÞ ¼ UðyÞ þ eðD/rðyÞ cosðaxÞ � D/iðyÞ sinðaxÞÞ; ð15Þ



Table 2
Error percentage for the different cases from Table 1. Mesh sizes: 32 � 32, 64 � 64,
128 � 128 and 256 � 256.

Reference 32 64 128 256

A 21.33 10.74 3.50 1.5
B 7.30 1.28 0.48 1.04
C 1.17 0.24 0.14 0.09
D 1.39 0.76 0.07 0.54

D. Fuster et al. / International Journal of Multiphase Flow 35 (2009) 550–565 555
vðt ¼ 0; x; yÞ ¼ aexð/iðyÞ cosðaxÞ þ /rðyÞ sinðaxÞÞ; ð16Þ

where UðyÞ is the base flow given by Eq. (11), e is the amplitude of
the initial perturbation and /rðyÞ and /iðyÞ are the real and imagi-
nary parts of the eigenfunction /ðyÞ.

In the linear regime the apparent growth rate is constant. Just
when the instability is large enough the regime becomes non-lin-
ear and the apparent growth rate changes. Its measurement is
done by fitting the temporal evolution of the amplitude of the main
mode in the linear regime, which typically lasts until the amplitude
of the perturbation reaches values around 10�2a�1. The position of
the maximum height of the wave has been shown to be enough to
provide a good estimation of the growth rate, although the results
can be slightly improved by fitting the interface position to the
Fourier mode.

The results for cases A and B ðm ¼ 0:1 and r ¼ 1Þ are depicted in
Fig. 2. Good agreement is found between numerical and theoretical
results. The errors obtained from the comparison between the
numerical and theoretical results are always below 5% either with
or without surface tension.

Fig. 3 shows the numerical and theoretical curves when
m ¼ 0:99 and r ¼ 0:1 (cases C and D). In this case, the growth rate
aci predicted by the linear theory perfectly fits the results obtained
numerically, the mean errors being always inferior to 1% with and
without surface tension, respectively.

For all the test cases, the results converge with the mesh size
(Table 2), obtaining error below 5% for meshes bigger than
128 � 128.
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Thus, it can be concluded that the solutions provided by the
numerical code are in a good agreement with the theoretical solu-
tion obtained from the Orr–Sommerfield equation. The results are
especially accurate for viscosity and density ratios near one. Never-
theless, differences are still acceptable when the density ratio is
decreased. As a conclusion it can be considered that, for the range
of conditions used in this work, the code provides reliable solutions
for the analysis of the instabilities in free shear flows.

3.2. 2D Drop in a shear flow

In this section, another test case is presented in order to validate
the code in the context of atomization. A 2D drop in a shear flow is
simulated for the same conditions than those contained in Zheng
et al. (2005) and Sussman and Ohta (2007). A drop of radius
a ¼ 1 is located at the center of a square domain of LxLðL ¼ 64Þ.
The tangential velocity is prescribed at the top and bottom of the
domain, U0 and �U0, respectively, whereas the velocity at the right
and left sides is given by:

Uðx ¼ �L=2; yÞ ¼ Uðx ¼ L=2; yÞ ¼ 2U0y=L; ð17Þ

where the origin of the system is placed at the box center and
U0 ¼ 32. The density and viscosity are 1 and 100, respectively,
and r ¼ 200. The viscosity and density ratio is 1.

Fig. 4 depicts the steady shape reached by the droplet after 16
units of time. For a quantitative comparison, Fig. 5 contains the
temporal evolution of the half length of the major axis for different
levels of refinement. The results converge to a steady value which
displays good agreement with the expected value computed by
Zheng et al. (2005) using the boundary integral method (1.583).

4. Results

4.1. Study of the instabilities produced in primary atomization

After validating the code, the next step is to try to analyze rel-
atively simple problems which can shed some light on the real
Fig. 4. Adaptive mesh, velocity field and steady shape of a drop in a shear flow.
Zoom in a region around the drop at t = 16. Effective fine resolution 2048� 2048.
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physical processes taking place in primary atomization. The simu-
lations included in this part of the paper aim at capturing the real
behavior of the jet during the first stage of the injection, where
instabilities are produced and amplified before the jet is broken
into droplets. The study of the frequencies and wavelengths
encountered in the primary atomization, together with the ampli-
tude of these disturbances should influence the final droplet distri-
bution and other features of the spray. For that reason, it is crucial
to clarify the source of these disturbances and to understand the
physical processes which can influence their amplification.

The influence of the turbulence model on the obtained results,
already studied by Ménard et al. (2005) and Ménard et al. (2007),
have awaken great interest in Direct Numerical Simulations
(DNS). However, the DNS simulation of multiphase flows is not a
simple task. To ensure that all the length scales of the problem
are captured, extremely refined meshes are required. Apart from
the turbulent scales, small structures like thin sheets or very small
droplets can appear, significantly increasing the computational
time usually associated to DNS in single phase flows.

The use of accurate adaptive numerical schemes allows concen-
tration of the computational effort in zones where the small scales
are present. This feature, together with the balanced-force surface
tension calculation implemented in Gerris (Popinet, accepted for
publication), has allowed to significantly reducing the computa-
tional time required for well-resolved simulations. Two criteria
have been used to perform the refinement: The vorticity and the
gradient of the tracer variable (both with � ¼ 2:5� 10�3). The effi-
ciency of the mesh adaptation strongly depends on the considered
problem. For the simulations included in this section the reduction
in terms of number of cells due to AMR is around 61% for the two-
dimensional simulations whereas for the 3D example this value in-
creases up to 95%. These values can be significantly improved as
we enlarge the simulation domain and also the resolution. In more
complex problems where large simulation domains must be simu-
lated with a large resolution just over some localized parts of the
domain, the number of cells required to perform the simulation
with AMR can be several orders of magnitude less than the number
of cells which would be required if an uniform grid were used.

The efficiency of AMR, gAMR, can be defined as

gAMR ¼
tuniform=Sizeuniform

tAMR=SizeAMR
; ð18Þ

where tuniform is the time invested to perform a given number of
steps using an uniform grid, Sizeuniform denotes the number of cells
considered in the domain and the subscript AMR is used to spec-
ify that the values are calculated using AMR. gAMR is 1 when the
percentage of time saved due to AMR is equal to the percentage
of reduction of the number of cells. Again, it is difficult to
define characteristic values of gAMR as they significantly depends
on the problem. Just an example, the efficiencies in two-dimen-
sional and three-dimensional simulations have reached values
around 0.8.

For all problems, the iterative solution procedure is stopped
whenever the maximum relative change in the volume of any dis-
cretization element (due to the remaining divergence of thee
velocity field) is less than 10�4. In any case, long computational
times are still required and the parallelization of these problems
is mandatory. Just as an example, for the two dimensional simula-
tions shown in this section, the computational time is approxi-
mately 48 h on a 4 processor Dual Core AMD Opteron(tm) 265.
For the 3D simulation shown at the end of this section, the run
time is increased up to 5 days on 25 processors.

The level of refinement used in the simulations is large enough
to ensure that the finest scales of the vortices generated in each of
the phases are captured. This considerably restricts the Reynolds
numbers which can be reached but it ensures the reliability of
the results. In any case, it must be clarified that strictly speaking
the term of DNS cannot be applied to these simulations. Even if
all the scales related to the turbulence are well-resolved, likely
some structures such as ligaments and droplets still have a charac-
teristic length smaller than the minimum grid size (as can be ob-
served on the right of Fig. 6). Then, for the study of the
instabilities encountered in the primary atomization zone, it is as-
sumed that structures smaller than the minimum grid spacing
(typically smaller than 1 lm) have no effect on the waves that
appear in this zone.

Finally, certain disturbances have been artificially imposed at
the entrance in order to initiate the growth of instabilities. This
condition is directly linked with the perturbations which are in-
duced in the flow upstream, although other effects like the stress
non-equilibrium at the interface just after the injector or the thick-
ness of the separator plate can also have an influence on the
appearance of instabilities. To capture these effects, the simulation
of the entire injector would provide the characteristic frequencies
of the turbulence generated inside it. However, the introduction of
the injector shape in the problem introduces geometrical variables
which significantly increase the complexity of the analysis of the
results. In most of this work, some ideal case studies are consid-
ered where the flow inside the injector is not considered and the
disturbances are triggered off by means of perturbations at the en-
trance. At high Reynolds and Weber numbers, where the solutions
turn more intricate, the two-dimensional problem is considered.
For low Reynolds, 3D simulations are possible and they have been
used to capture some of the effects related appearing in the pri-
mary atomization zone.

4.1.1. Analysis of the instabilities at high Reynolds numbers
In this section, a high degree of accuracy is obtained using

meshes with a smallest mesh size of about 0.8 lm. Output bound-
ary conditions are applied in all boundaries of the domain except at
the entrance, where the velocity profile is prescribed according to
Eq. (11) with an interface velocity defined by the stress condition
at the interface equation (13). Moreover, a perturbation v 0 is intro-
duced in the vertical velocity, which is a random function applied
either in the liquid or in the gas giving values inside the range
[�0.1U:0.1U]. The rest of conditions required for the simulation
are included in Table 3 and the relevant dimensionless parameters
for these simulations can be found in Table 4. As initial condition
the same base velocity profile (11) is used throughout and the void
fraction is set equal to 0.



Fig. 6. Interface profile along a distance of 400 lm downstream of the injector at t ¼ 50 ls (top). Zoom on the transition between the linear and non-linear regime (bottom).
Minimum mesh size: 0.2 lm.

Table 3
Simulation conditions used for the analysis of the instabilities in the primary atomization zone. Effective uniform grid resolution: 1536� 512.

U (m/s) q (kg/m3) l (Pa s) r (N/m) Domain size (lm) d (lm)

Liquid 20 1000 5� 10�4 0.03 40 11.8
Gas 100 200 1:7� 10�5 60 2.0

Table 4
Representative dimensionless numbers for the conditions given in Table 3.

m r Re�l Re�g We�l We�g M

0.034 0.200 471 2350 157 133 5.00
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Fig. 6 is a representative view of the behavior of the jet for the
conditions indicated above. As can be seen, the simulation is lim-
ited to the zone where the instabilities are induced and propagate
before breaking up into droplets.

Two main zones can be distinguished:

	 In the first zone, the disturbances at the entrance generate small
perturbations which are quickly amplified downstream. Fig. 7
depicts the velocity fluctuations at different positions from the
entrance. In the very early stage of the injection the initial turbu-
lence induced in the liquid is transferred to the zone near the
interface (transition from x=dg ¼ 0 to x=dg ¼ 25). Then, even if
the small disturbances introduced at the entrance are quickly
dissipated in the bulk of the liquid due to viscous effects, they
are strong enough to create some instabilities at the interface.
As the perturbations grow downstream, the level of turbulence
inside the gas and liquid increases, mainly in zones near the
interface. The small perturbation originally induced in the liquid
finally generates a strong turbulence downstream not only in
the liquid, but also in the gas. Remarkably, this phenomenon is
also observed when the instabilities are induced in the gas
(Fig. 8). In this case, the gas momentum is large enough to gen-
erate appreciable perturbations at the interface, which are
finally amplified producing a strong turbulence in both phases.

	 In the second zone the instabilities become non-linear and liga-
ments appear. These ligaments are finally broken into droplets
which interact with the vortex appearing in the gas phase near
the interface. For large Reynolds numbers the flow structures
in the gas vortex generated under the ligaments strongly inter-
act with the drops which have been generated. Therefore, simu-
lation results are extremely sensitive to the mesh size and a DNS
simulation of the jet is required, restricting considerably the
Reynolds numbers which can be reached with a high degree of
accuracy.

To conclude, the turbulence near the inflow boundary in any of
the both phases is promoting the appearance of instabilities at the
interface, whose amplification is responsible for the transition
from the linear to the non-linear regime. This transition is captured
in Fig. 9, where the time-averaged maximum of the interface posi-
tion at different locations is plotted as a function of the distance
from the injector. In the first zone ðx=dg 6 80Þ, a clear exponential
growth is observed. Once the amplitude of the waves is much lar-
ger than the thickness of the boundary layer, the growth rate
saturates.

In the linear regime, the initial growth rate is a function of
parameters such as the Reynolds and Weber numbers or the gas
and viscosity ratios. Some attempts have been made using linear
theory to predict the characteristic frequencies which are ampli-
fied downstream; however, the lack of a full theory for the spatial
problem and the difficulties related with the temporal change of
the base flow makes numerical simulations compulsory in order
to investigate this type of situations. Nevertheless, it is interesting
to compare some of the results obtained from simulations with
those obtained from the linear theory presented in Section 3.1.

Firstly, it is important to emphasize that numerical results are
compared with theoretical results based on the assumption that
the instability is convective. This property is revealed by stopping
the perturbation at the inlet. For the case studied here, the waves
are then propagated downstream and the equilibrium state given
by the input boundary conditions is recovered.

Another effect which should be taken into account is the evolu-
tion of the base flow downstream. The changes in the velocity
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profiles as well as those in the boundary layer thickness can alter
the behavior of the different modes. Fig. 10 depicts different veloc-
ity profiles at different positions downstream of the input bound-
ary condition. Just near to the entrance the velocity profile is
similar to that introduced as an input boundary condition. The
boundary layer then grows due to viscous effects and when the
flow becomes non-linear (for distances larger than x=dg ¼ 80) the
velocity profile is significantly modified due to the turbulence gen-
erated in the mixing boundary layer.

In a first approximation, the results obtained by the temporal
stability analysis with the input velocity profile are compared with
the simulations during the first moments. Fig. 11 depicts the
growth rates predicted by the viscous linear theory. The inviscid
linear theory is also shown as it has been extensively used by some
authors to discuss experimental results (Ben Rayana et al., 2006;
Marmottant and Villermaux, 2004). Although in many cases invis-
cid and viscous predictions differ (Boeck and Zaleski, 2005) in the
present case the predictions are similar. All the wavelengths satis-
fying adg < 2 are expected to be amplified, with an optimum
growth rate for a dimensionless wavelength near 0.5.

The theoretical results are compared with the numerical ones
by means of the analysis of the spatial-temporal signal of the inter-
face position. The signal is analyzed after some time, when the flow
reaches a quasi-steady state and the initial transient effects are
negligible.

The frequencies are obtained applying the Fourier Transform
method (FT) to the signal of the interface position at a given loca-
tion x. The continuous representation of the spectrum power for
every x provides the spectrogram, which gives information about
the evolution of the frequencies along the jet (Fig. 12).

At the entrance, the random perturbation generates a back-
ground noise that excites all the frequencies. Downstream, these
disturbances are amplified at different rates. No resonant frequen-
cies are found and continuous spectra are obtained which seems to
be in agreement with a convective instability. A zoom on the non-
linear regime reveals the predominance of small frequencies which
can be attributed to the vortex pairing in two phase mixing bound-
ary layers.

For a more direct comparison between simulation and theoret-
ical results, four spectra at different locations are plotted in Fig. 13.
The interpretation of the results has to be understood under the
following assumptions:

	 The instability being identified as convective, it is considered
that some convective velocity relates the frequencies measured
in the simulations, f, and the wavelengths predicted by theory
a�1. As a first approximation this velocity is taken as constant
and equal to the velocity of the interface introduced as an input
boundary condition

Uc;LT ¼
f
a
: ð19Þ

	 The initial perturbation amplitude is assumed to be equal for all
the frequencies. Thus, the amplitude at some distance x from the
injector would be proportional to the growth rate ci.

Despite the simplifications done to perform the comparison, a
good agreement are observed between the numerical and theoret-
ical spectra. Results fit especially well for the first spectrum
ðx=dg ¼ 25Þ, where the perturbations are small enough so that lin-
ear stability theory may hold. As explained, the most amplified fre-
quencies tend to decrease downstream which is a consequence of
the growth of the vortices in the two phase mixing boundary layer.
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When the instability is large enough, the vortices generated in the
gas phase predominately excite low frequencies which become
even smaller as the phenomenon of vortex pairing becomes impor-
tant downstream.

The trends obtained from the frequency analysis can also be ex-
tracted from the wavelengths. In this case, we decided to extract
the FT of the spatial signal applied to different domain sizes
(Fig. 14). Again, the most amplified frequency decreases as the flow
evolves downstream.
Fig. 12. Spectrogram of the interface position: amplitude and frequency of the tempor
entrance.
4.1.2. Analysis of the instabilities at low Reynolds numbers
For low Reynolds numbers the flow patterns near the injector

are significantly less complex, allowing to perform 3D simulations
with a degree of accuracy good enough to capture the flow patterns
near the injector. In the examples shown in this section, constant
velocities are imposed as input boundary conditions in both
phases, liquid and gas. Therefore, no boundary layer thickness
can be defined. Instead, the thickness of the separator plate ðeÞ is
introduced as a characteristic distance. The conditions used to per-
form this simulation are included in Table 5 and the characteristic
dimensionless parameters are contained in Table 6.

The flow patterns obtained from the two-dimensional simula-
tion (Fig. 15) are not significantly different from those obtained
from the 3D simulation of the coaxial flow (Fig. 16). Note also that
the instability is still triggered by means of a random perturbation
in the two-dimensional simulation whereas no turbulence at the
entrance is artificially introduced in the 3D simulation. In this case,
the presence of a solid plate and the velocity disequilibrium is en-
ough to promote the apparition of instabilities along the jet. Once
small perturbations of the interface appear, these waves are prop-
agated and amplified downstream. In this region, 3D effects be-
come important and lead to non-axisymmetric behavior.

Thus, the 3D simulation allows to capture the transverse insta-
bilities which cannot be captured by two-dimensional models;
however, in the zone nearest to the injector, no three-dimensional
al interface oscillations at every position. Homogeneous noise is introduced at the
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Table 5
Parameters for the simulations at low Reynolds numbers. Effective uniform grid
resolution: 512� 128� 128 in 3D and 512� 128 in 2D.

U (m/s) q (kg/m3) l (Pa s) r (N/m) Rinj (m) e (lm)

Liquid 20 20 2� 10�3 0.03 4� 10�4 80
Gas 100 2 1� 10�4 6� 10�4 80

Table 6
Representative dimensionless numbers for the conditions given in Table 5.

m r Re�l Re�g We�l We�g M

0.005 0.100 80 145 48.5 19.4 5.00

Fig. 15. Two-dimensional simulation. Interface representation. Some instabilities
are generated an amplified downstream. Due to the low Reynold number, the
amplitude of the waves is smaller than those obtained at higher Reynolds numbers.

Fig. 16. Three-dimensional simulation. Interface representation, liquid fraction and
vorticity profiles in a median plane.
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effects are observed and the two-dimensional simulation seem to
correctly capture the mechanisms controlling wave amplification.

In real situations, the flow inside the injector and the evolution
of the vortices generated inside the injector chamber can also have
a significant influence on the flow patterns observed. The inclusion
of the injector significantly increases the computational resources
required to perform the simulation. Even for relatively simple
situations like those shown in this work, large computational re-
sources are required to perform the simulation of the entire geom-
etry. In Figs. 17 and 18, the results obtained from the two-
dimensional simulation of the injector are depicted. The conditions
are set in order to have the same conditions at the entrance of the
chamber than those of previous simulations (Table 5).



Fig. 17. Two-dimensional simulation of the flow inside the injector and the
injection chamber. Intense and extended gas vortices are generated which interact
with the liquid jet.

Fig. 18. Zoom on the liquid injection zone. The liquid is attached to the external
walls of the separator plates. Relatively large instabilities are encountered in this
zone which quickly grow and become non-linear.
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The inclusion of the injector and the chamber downstream
makes possible the capture of the gas vortices which strongly
interact with the liquid jet (Fig. 17). This phenomenon, together
with the effect of the flow just behind the separator plate
(Fig. 18), produce relatively large disturbances which significantly
alter the flow patterns in comparison with the simplified situations
presented before. Here, the potential of the code to study such
complex phenomena is only illustrated but much larger efforts
should be done in the future in order to understand and character-
ize the flow in real systems. Nevertheless, current simulations re-
sults point out the importance of the thickness of the separator
plate and the physical phenomena taking place close to it, there-
fore, theories related to the wake stability could be helpful for
the analysis of the characteristic frequencies observed in this zone
(Ho and Huerre, 1984; Oertel, 1990; Roshko, 1954).

To sum up, it can be concluded that two-dimensional simula-
tions provide accurate enough information about the behavior of
the jet in the linear regime. In this region, the Reynolds and Weber
number as well as the ratio of physical variables like density and
viscosity strongly influence the type of instabilities observed
(Boeck et al., 2007). Some distance downstream, transverse insta-
bilities appear and 3D simulations have to be used to correctly
predict the jet behavior. These instabilities can appear both in
the linear regime (Yecko and Zaleski, 2005) and in the non-linear
regime. Different theories have been proposed in the literature to
explain the main mechanisms leading to 3D instabilities, however,
little numerical and experimental evidences have been given sup-
porting any of these theories (Ben Rayana et al., 2006; Marmottant
and Villermaux, 2004; Yecko and Zaleski, 1999). As shown in this
paper, the development of the numerical techniques makes possi-
ble the capture of transverse instabilities which should provide in a
near future new insight into the main mechanisms governing the
formation of 3D ligaments and sheets.

Regarding numerical issues, we have found that the mesh size is
critical in order to capture all the droplet sizes and vortex scales of
the flow, significantly restricting the achievable Reynolds numbers.
In the next section, a more detailed analysis is presented to inves-
tigate how sensitive to the mesh size some parameters of the sim-
ulation are.

4.2. Simulation of complex jets

Among the different types of atomizers typically used in com-
bustion chambers, swirl outward-opening jets (also called hol-
low-cone atomizers) are particularly interesting due to their
complex flow features. Usually encountered in injectors designed
for viscous liquids in a steady atmosphere, the main characteristics
of these injectors are the axial and azimuthal velocities transferred
to the jet. At high enough levels of rotational velocity, the breaking
mechanisms in the jet are enhanced and the formation of droplets
is promoted.

The theoretical analysis of these problems turns out to be extre-
mely complicated and it is necessary to resort to numerical simu-
lations for a correct understanding of the jet behavior. In any case,
some authors have addressed the problem of annular sheets for
medium curvature ranges and inviscid flows. Applying stability
theory, it is possible to predict the maximal amplification of sur-
face disturbances through a dispersion relation which links the
wave amplification with the spatial wave number. Some authors
like Senecal et al. (1999) have proposed simplified versions of this
equation for providing upper bound for the estimation of the
wavelengths, but the complexity of the problem impedes the
development of accurate theoretical models able to predict the
spray behavior. Just recently, with the aid of a numerical treat-
ment, the whole swirling annular linearized flow has been
addressed by Jeandel and Dumouchel (1999) and Sekar (2005),
who have solved the fourth-order dispersion equation dependent
on axial and azimuthal wave numbers.

For the particular case of swirl atomizers, linear theory has an
inherent limited framework of validity and when considering the
relatively high complexity of its results concerning swirling flows,
the necessity of accurate simulations of this kind of atomizers be-
comes evident. Thus, in this section, a study of close-to-reality
swirling atomizers is presented as an example of the potential of
the code to tackle complex multiphase problems.

The main parameter controlling the performance of these
equipments is the swirl velocity. The initial dimensionless velocity
profile in the simulations is:

Ux ¼ 1 if y2 þ z2
6 R2

inj; ð20Þ
Ux ¼ 0 if y2 þ z2 > R2

inj; ð21Þ
Uy ¼ a sin½arctanðz=yÞ
; ð22Þ
Uz ¼ a cos½arctanðz=yÞ
; ð23Þ

and the swirl Weber number is

We ¼ f ðqU2
x RinjÞ
r � 103; ð24Þ



Fig. 20. Snapshot of the simulation at t=t0 ¼ 3:5 with a minimum mesh size of
28 lm. In colors, the velocity norm is represented. A first zone is clearly
distinguished where the centrifugal force is responsible for the increase of the
cone diameter. Some instabilities are also observed at the surface which are
amplified before the jet is definitely disintegrated. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this paper.)
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where Rinj being the initial liquid radius (0.2 mm) and f being the
swirl parameter varied from 0 to 1.2. From this range of f, it can
be concluded that the Uy and Uz components of velocity vary from
0 to 1.2 times the axial velocity. The density ratio is approximately
1/30 and the axial Reynolds number, defined as 2RinjqlUx=ll, is fixed
at 104. These full set of parameters is given in Table 7.

In an effort to compare some of the results with experimental
conditions, experiments carried out in our group in conditions
close to simulations are used (Tröger, 2004). Only the density ratio,
700/5 in experiments and 30/1 in simulations, is markedly
different.

Fig. 19 compares two snapshots obtained from experiments
(left) and the numerical simulation (right) for a spray generated
by a swirling jet. Similar flow patterns are observed for direct im-
age comparison, mainly in the zones near the injection where the
characteristic length scales are not smaller than the mesh size
yet. General features of atomization such as the breakup length
are well represented and the presence of an abrupt change of slope
within a small distance downstream seems to be captured. In par-
ticular, the experimental cone angle is recovered when the swirl
factor f has a value of 0.75.

The flow patterns can be clearly seen in Fig. 20. In the first zone,
the cone radius increases due to the rotational velocity introduced
at the entrance. As in the examples shown in the previous section,
some instability appears at the interface which are propagated and
amplified downstream. When the instability becomes of the order
of the liquid-sheet thickness, a quick breakup process is triggered.
Fig. 21 shows the velocity field in a median plane. A strong turbu-
lence is generated inside the conical section. It is a consequence of
the entrainment of the air by the injected liquid. The inner vortices
are responsible for complex droplet motion. Strong vortices are
generated in the gas phase once a disperse gas–liquid mixture is
obtained, producing a significant change of the slope of the zone
occupied by the gas–liquid mixture.

As already explained, when intense turbulence is generated, the
mesh size must be small enough to capture the correct physics. The
sensitivity of the results with the mesh size is reflected not only in
the small structures of the jet (droplets) but also in the large struc-
tures. Features of the atomization process are dependent on mesh
refinement as can be seen in Fig. 22, where different two-dimen-
sional slices from the 3D simulation are shown in a zone close to
Table 7
Parameters for the simulations for the swirl atomizer. Effective uniform grid
resolution: 768 � 256 � 256.

Ux ðm=sÞ q ðkg=m3Þ l ðPa sÞ r ðN=mÞ Rinj ðmÞ

Liquid 20 1000 8� 10�3 0.432 2� 10�4

Gas 0 35.92 2:87� 10�4

Fig. 19. Left: photography of an automotive injection of iso-octane at 10 MPa injection
obtained in Le Moyne et al. (2007). Right: simulation carried out at similar conditions ð

Fig. 21. Volume fraction and velocity vector field in a median plane. Minimum
mesh size 9 lm. An empty liquid cone is generated as a consequence of the induced
jet rotation. When the instabilities generated in the liquid grow, the liquid sheet is
broken and the droplets are dragged along with the turbulent gas phase. At this
point, a significant change of slope is observed.
the injector for three different mesh sizes. As can be seen, both
the break-up length and the spray angle are dependent on
mesh refinement which the importance of the mesh size. For
pressure, 0.1 MPa ambient pressure and hole diameter of approximately 0.3 mm
Re ¼ 104;We ¼ 103Þ.



Fig. 22. View of volume fraction in a median plane for different mesh sizes (from left to right, 56, 28 and 9 lm). The influence of the mesh size on the structures captured in
the simulations can be observed. Using a coarse mesh, unphysical breakup processes are observed which leads to bigger and unresolved drops and a larger expansion angle.
With the finest mesh, the instabilities are captured which leads to a good resolution of the breaking process and a better resolution of the droplets.
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Fig. 23. Temporal evolution of the distribution of droplet diameters obtained from simulations non-dimensioned by the initial liquid diameter d0.
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Fig. 24. Effect of mesh refinement on PDF distribution. Normalized PDF of droplet diameters non-dimensioned by initial liquid diameter at t=t0 ¼ 3:5 using a minimum mesh
size of 9 lm (left) and 28 lm (right).
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under-resolved simulations, the droplets and vortices inside
the cone are not correctly captured and the physical processes
obtained from simulations are unrealistic. In any case, calcula-
tions seem to converge to a situation where the change in the
initial spray angle is produced in a zone close to the breakup and
where the physical mechanisms of the liquid break-up are
captured.

Another parameter which is commonly used in computational
and experimental analysis for the measurement of the atomization
performance is the Probability Density Function (PDF) distribution
of the droplet size. In Fig. 23, the temporal evolution of the PDF is
plotted. The droplet diameter is non-dimensioned using the liquid
initial diameter d0. When mesh refinement is increased, the
dimensionless maxima of the PDF distribution decays towards
smaller sizes (see Fig. 24), resulting for instance in a decrease of
the Sauter Mean Diameter (0:7 � d0 for a mesh of size 56 lm,
0:5 � d0 for a mesh size of 28 lm and 0:1 � d0 for a mesh of size
9 lm).

The experimental PDF obtained in Tröger (2004) (Fig. 25)
fitted by a chi-square distribution of order 15 and maximum
diameter 150 lm, is compared with an order 15 chi-square PDF
distribution resulting from our most highly resolved simulation.
As can be observed, despite of the differences due to the differ-
ent conditions between simulation and experiments, a good
agreement for the PDF is obtained when the mesh size is small
enough.
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5. Conclusions

This paper describes various simulations of primary atomiza-
tion using an adaptive VOF method. The capabilities of Gerris to
perform numerical simulations of two-phase flows have allowed
us to investigate the atomization process.

Simulations with characteristic scales spread over several or-
ders of magnitude have been possible using octree adaptive mesh
refinement techniques. The spatial resolution is concentrated in
places where the solution is more complex, like interfaces and
zones of large vorticity, where small cell sizes are required to cap-
ture all the flow patterns. Small droplets and vortices are generated
and interact strongly. As the Reynolds number increases the flow
patterns become more intricate, restricting the Reynolds numbers
achievable with an acceptable degree of accuracy. Moreover, 3D ef-
fects become more important and the utility of two-dimensional
simulations to extract quantitative and qualitative results is more
questionable.

The influence of mesh refinement has been tested for swirl
atomizers at high Reynolds numbers. For such complex problems
numerical simulation is mandatory to understand the jet behavior.
For low-resolution simulations, breakup processes and droplet
dynamics are unphysical. Using refined meshes the physical mech-
anisms are correctly captured; some instabilities are initially
induced in the jet and are amplified downstream. When the liquid
sheet becomes very thin, the movement of the ligaments and drop-
lets is mainly governed by the gas vortices generated inside the
liquid cone. At this point, an abrupt change of slope is observed
which corresponds with experimental observations in similar con-
ditions (Le Moyne et al., 2007).

Finally, the capabilities of Gerris to handle gas/liquid/solid
interfaces have also allowed us to obtain some preliminary results
about the effect of the injector and chamber geometry on the jet
behavior. The vortices generated in the injection chamber seem
to have a significant influence on the primary atomization process.
Other effects like the wakes generated behind the separator plate
can also play a role on the initial perturbations induced in the flow.
Thus, for a correct understanding of real systems, a simulation of
the entire system seems to be crucial in order to understand the
interaction of the various physical mechanisms leading to liquid
breakup.

As a conclusion, our simulations have illustrated the potential of
adaptive and accurate numerical schemes for two-phase flow sim-
ulations. The code has displayed a good accuracy for simple prob-
lems and seems to correctly capture all the basic mechanisms in
more complex simulations. The necessity of very refined meshes
has been stressed in this work. Adaptive mesh refinement should
be even more useful in the future to obtain numerical results in
a reasonable computational time.
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