


C H A P T E R

5 Initial-Value Problems
for Ordinary Differential Equations

Introduction

The motion of a swinging pendulum under certain simplifying assumptions is described by

the second-order differential equation

d2θ

dt2
+ g

L
sin θ = 0,

L

θ

where L is the length of the pendulum, g ≈ 32.17 ft/s2 is the gravitational constant of the

earth, and θ is the angle the pendulum makes with the vertical. If, in addition, we specify

the position of the pendulum when the motion begins, θ(t0) = θ0, and its velocity at that

point, θ ′(t0) = θ ′
0, we have what is called an initial-value problem.

For small values of θ , the approximation θ ≈ sin θ can be used to simplify this problem

to the linear initial-value problem

d2θ

dt2
+ g

L
θ = 0, θ(t0) = θ0, θ ′(t0) = θ ′

0.

This problem can be solved by a standard differential-equation technique. For larger values

of θ , the assumption that θ = sin θ is not reasonable so approximation methods must be

used. A problem of this type is considered in Exercise 8 of Section 5.9.

Any textbook on ordinary differential equations details a number of methods for ex-

plicitly finding solutions to first-order initial-value problems. In practice, however, few of

the problems originating from the study of physical phenomena can be solved exactly.
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260 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

The first part of this chapter is concerned with approximating the solution y(t) to a

problem of the form

dy

dt
= f (t, y), for a ≤ t ≤ b,

subject to an initial condition y(a) = α. Later in the chapter we deal with the extension of

these methods to a system of first-order differential equations in the form

dy1

dt
= f1(t, y1, y2, . . . , yn),

dy2

dt
= f2(t, y1, y2, . . . , yn),

...

dyn

dt
= fn(t, y1, y2, . . . , yn),

for a ≤ t ≤ b, subject to the initial conditions

y1(a) = α1, y2(a) = α2, . . . , yn(a) = αn.

We also examine the relationship of a system of this type to the general nth-order initial-

value problem of the form

y(n) = f (t, y, y′, y′′, . . . , y(n−1)),

for a ≤ t ≤ b, subject to the initial conditions

y(a) = α1, y′(a) = α2, . . . , yn−1(a) = αn.

5.1 The Elementary Theory of Initial-Value Problems

Differential equations are used to model problems in science and engineering that involve

the change of some variable with respect to another. Most of these problems require the

solution of an initial-value problem, that is, the solution to a differential equation that

satisfies a given initial condition.

In common real-life situations, the differential equation that models the problem is too

complicated to solve exactly, and one of two approaches is taken to approximate the solution.

The first approach is to modify the problem by simplifying the differential equation to one

that can be solved exactly and then use the solution of the simplified equation to approximate

the solution to the original problem. The other approach, which we will examine in this

chapter, uses methods for approximating the solution of the original problem. This is the

approach that is most commonly taken because the approximation methods give more

accurate results and realistic error information.

The methods that we consider in this chapter do not produce a continuous approxima-

tion to the solution of the initial-value problem. Rather, approximations are found at certain

specified, and often equally spaced, points. Some method of interpolation, commonly Her-

mite, is used if intermediate values are needed.

We need some definitions and results from the theory of ordinary differential equations

before considering methods for approximating the solutions to initial-value problems.
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5.1 The Elementary Theory of Initial-Value Problems 261

Definition 5.1 A function f (t, y) is said to satisfy a Lipschitz condition in the variable y on a set D ⊂ R
2

if a constant L > 0 exists with

|f (t, y1) − f (t, y2, )| ≤ L| y1 − y2|,

whenever (t, y1) and (t, y2) are in D. The constant L is called a Lipschitz constant for f .

Example 1 Show that f (t, y) = t| y| satisfies a Lipschitz condition on the interval D = {(t, y) | 1 ≤
t ≤ 2 and − 3 ≤ y ≤ 4}.
Solution For each pair of points (t, y1) and (t, y2) in D we have

|f (t, y1) − f (t, y2)| = |t| y1| − t| y2‖ = |t|‖ y1| − | y2‖ ≤ 2| y1 − y2|.

Thus f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant 2. The

smallest value possible for the Lipschitz constant for this problem is L = 2, because, for

example,

|f (2, 1) − f (2, 0)| = |2 − 0| = 2|1 − 0|.

Definition 5.2 A set D ⊂ R
2 is said to be convex if whenever (t1, y1) and (t2, y2) belong to D, then

((1 − λ)t1 + λt2, (1 − λ)y1 + λy2) also belongs to D for every λ in [0, 1].

In geometric terms, Definition 5.2 states that a set is convex provided that whenever

two points belong to the set, the entire straight-line segment between the points also belongs

to the set. (See Figure 5.1.) The sets we consider in this chapter are generally of the form

D = {(t, y) | a ≤ t ≤ b and −∞ < y < ∞} for some constants a and b. It is easy to verify

(see Exercise 7) that these sets are convex.

Figure 5.1

(t1, y1)

(t1, y1)(t2, y 2)

(t2, y 2)

Convex Not convex

Theorem 5.3 Suppose f (t, y) is defined on a convex set D ⊂ R
2. If a constant L > 0 exists with

∣

∣

∣

∣

∂f

∂y
(t, y)

∣

∣

∣

∣

≤ L, for all (t, y) ∈ D, (5.1)

then f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L.

The proof of Theorem 5.3 is discussed in Exercise 6; it is similar to the proof of the

corresponding result for functions of one variable discussed in Exercise 27 of Section 1.1.

Rudolf Lipschitz (1832–1903)

worked in many branches of

mathematics, including number

theory, Fourier series, differential

equations, analytical mechanics,

and potential theory. He is best

known for this generalization of

the work of Augustin-Louis

Cauchy (1789–1857) and

Guiseppe Peano (1856–1932).

As the next theorem will show, it is often of significant interest to determine whether

the function involved in an initial-value problem satisfies a Lipschitz condition in its second
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262 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

variable, and condition (5.1) is generally easier to apply than the definition. We should

note, however, that Theorem 5.3 gives only sufficient conditions for a Lipschitz condition

to hold. The function in Example 1, for instance, satisfies a Lipschitz condition, but the

partial derivative with respect to y does not exist when y = 0.

The following theorem is a version of the fundamental existence and uniqueness the-

orem for first-order ordinary differential equations. Although the theorem can be proved

with the hypothesis reduced somewhat, this form of the theorem is sufficient for our pur-

poses. (The proof of the theorem, in approximately this form, can be found in [BiR],

pp. 142–155.)

Theorem 5.4 Suppose that D = {(t, y) | a ≤ t ≤ b and −∞ < y < ∞} and that f (t, y) is continuous on

D. If f satisfies a Lipschitz condition on D in the variable y, then the initial-value problem

y′(t) = f (t, y), a ≤ t ≤ b, y(a) = α,

has a unique solution y(t) for a ≤ t ≤ b.

Example 2 Use Theorem 5.4 to show that there is a unique solution to the initial-value problem

y′ = 1 + t sin(ty), 0 ≤ t ≤ 2, y(0) = 0.

Solution Holding t constant and applying the Mean Value Theorem to the function

f (t, y) = 1 + t sin(ty),

we find that when y1 < y2, a number ξ in (y1, y2) exists with

f (t, y2) − f (t, y1)

y2 − y1

= ∂

∂y
f (t, ξ) = t2 cos(ξ t).

Thus

|f (t, y2) − f (t, y1)| = | y2 − y1||t2 cos(ξ t)| ≤ 4|y2 − y1|,

and f satisfies a Lipschitz condition in the variable y with Lipschitz constant L = 4.

Additionally, f (t, y) is continuous when 0 ≤ t ≤ 2 and −∞ < y < ∞, so Theorem 5.4

implies that a unique solution exists to this initial-value problem.

If you have completed a course in differential equations you might try to find the exact

solution to this problem.

Well-Posed Problems

Now that we have, to some extent, taken care of the question of when initial-value prob-

lems have unique solutions, we can move to the second important consideration when

approximating the solution to an initial-value problem. Initial-value problems obtained by

observing physical phenomena generally only approximate the true situation, so we need

to know whether small changes in the statement of the problem introduce correspondingly

small changes in the solution. This is also important because of the introduction of round-off

error when numerical methods are used. That is,

• Question: How do we determine whether a particular problem has the property that small

changes, or perturbations, in the statement of the problem introduce correspondingly

small changes in the solution?

As usual, we first need to give a workable definition to express this concept.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.1 The Elementary Theory of Initial-Value Problems 263

Definition 5.5 The initial-value problem

dy

dt
= f (t, y), a ≤ t ≤ b, y(a) = α, (5.2)

is said to be a well-posed problem if:

• A unique solution, y(t), to the problem exists, and

• There exist constants ε0 > 0 and k > 0 such that for any ε, with ε0 > ε > 0,

whenever δ(t) is continuous with |δ(t)| < ε for all t in [a, b], and when |δ0| < ε, the

initial-value problem

dz

dt
= f (t, z) + δ(t), a ≤ t ≤ b, z(a) = α + δ0, (5.3)

has a unique solution z(t) that satisfies

|z(t) − y(t)| < kε for all t in [a, b].

The problem specified by (5.3) is called a perturbed problem associated with the

original problem (5.2). It assumes the possibility of an error being introduced in the statement

of the differential equation, as well as an error δ0 being present in the initial condition.

Numerical methods will always be concerned with solving a perturbed problem because

any round-off error introduced in the representation perturbs the original problem. Unless

the original problem is well-posed, there is little reason to expect that the numerical solution

to a perturbed problem will accurately approximate the solution to the original problem.

The following theorem specifies conditions that ensure that an initial-value problem is

well-posed. The proof of this theorem can be found in [BiR], pp. 142–147.

Theorem 5.6 Suppose D = {(t, y) | a ≤ t ≤ b and −∞ < y < ∞}. If f is continuous and satisfies a

Lipschitz condition in the variable y on the set D, then the initial-value problem

dy

dt
= f (t, y), a ≤ t ≤ b, y(a) = α

is well-posed.

Example 3 Show that the initial-value problem

dy

dt
= y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5. (5.4)

is well posed on D = {(t, y) | 0 ≤ t ≤ 2 and − ∞ < y < ∞}.
Solution Because

∣

∣

∣

∣

∂(y − t2 + 1)

∂y

∣

∣

∣

∣

= |1| = 1,

Theorem 5.3 implies that f (t, y) = y − t2 + 1 satisfies a Lipschitz condition in y on D with

Lipschitz constant 1. Since f is continuous on D, Theorem 5.6 implies that the problem is

well-posed.

As an illustration, consider the solution to the perturbed problem

dz

dt
= z − t2 + 1 + δ, 0 ≤ t ≤ 2, z(0) = 0.5 + δ0, (5.5)
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264 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

where δ and δ0 are constants. The solutions to Eqs. (5.4) and (5.5) are

y(t) = (t + 1)2 − 0.5et and z(t) = (t + 1)2 + (δ + δ0 − 0.5)et − δ,

respectively.

Suppose that ε is a positive number. If |δ| < ε and |δ0| < ε, then

|y(t) − z(t)| = |(δ + δ0)e
t − δ| ≤ |δ + δ0|e2 + |δ| ≤ (2e2 + 1)ε,

for all t. This implies that problem (5.4) is well-posed with k(ε) = 2e2 + 1 for all ε > 0.

Maple can be used to solve many initial-value problems. Consider the problem

dy

dt
= y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

To define the differential equation and initial condition, enter

deq := D(y)(t) = y(t) − t2 + 1; init := y(0) = 0.5

Maple reserves the letter D to

represent differentiation.

The names deq and init have been chosen by the user. The command to solve the initial-value

problems is

deqsol := dsolve ({deq, init}, y(t))

and Maple responds with

y(t) = 1 + t2 + 2t − 1

2
et

To use the solution to obtain a specific value, such as y(1.5), we enter

q := rhs(deqsol) : evalf(subs(t = 1.5, q))

which gives

4.009155465

The function rhs (for right hand side) is used to assign the solution of the initial-value

problem to the function q, which we then evaluate at t = 1.5.

The function dsolve can fail if an explicit solution to the initial-value problem cannot

be found. For example, for the initial-value problem given in Example 2, the command

deqsol2 := dsolve ({D(y)(t) = 1 + t · sin(t · y(t)), y(0) = 0}, y(t))

does not succeed because an explicit solution cannot be found. In this case a numerical

method must be used.

E X E R C I S E S E T 5.1

1. Use Theorem 5.4 to show that each of the following initial-value problems has a unique solution, and

find the solution.

a. y′ = y cos t, 0 ≤ t ≤ 1, y(0) = 1.

b. y′ = 2

t
y + t2et , 1 ≤ t ≤ 2, y(1) = 0.

c. y′ = −2

t
y + t2et , 1 ≤ t ≤ 2, y(1) =

√
2e.

d. y′ = 4t3y

1 + t4
, 0 ≤ t ≤ 1, y(0) = 1.
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5.1 The Elementary Theory of Initial-Value Problems 265

2. Show that each of the following initial-value problems has a unique solution and find the solution.

Can Theorem 5.4 be applied in each case?

a. y′ = et−y, 0 ≤ t ≤ 1, y(0) = 1.

b. y′ = t−2(sin 2t − 2ty), 1 ≤ t ≤ 2, y(1) = 2.

c. y′ = −y + ty1/2, 2 ≤ t ≤ 3, y(2) = 2.

d. y′ = ty + y

ty + t
, 2 ≤ t ≤ 4, y(2) = 4.

3. For each choice of f (t, y) given in parts (a)–(d):

i. Does f satisfy a Lipschitz condition on D = {(t, y) | 0 ≤ t ≤ 1, −∞ < y < ∞}?
ii. Can Theorem 5.6 be used to show that the initial-value problem

y′ = f (t, y), 0 ≤ t ≤ 1, y(0) = 1,

is well-posed?

a. f (t, y) = t2y + 1 b. f (t, y) = ty c. f (t, y) = 1 − y d. f (t, y) = −ty + 4t

y
4. For each choice of f (t, y) given in parts (a)–(d):

i. Does f satisfy a Lipschitz condition on D = {(t, y) | 0 ≤ t ≤ 1, −∞ < y < ∞}?
ii. Can Theorem 5.6 be used to show that the initial-value problem

y′ = f (t, y), 0 ≤ t ≤ 1, y(0) = 1,

is well-posed?

a. f (t, y) = et−y b. f (t, y) = 1 + y

1 + t
c. f (t, y) = cos(yt) d. f (t, y) = y2

1 + t

5. For the following initial-value problems, show that the given equation implicitly defines a solution.

Approximate y(2) using Newton’s method.

a. y′ = − y3 + y

(3y2 + 1)t
, 1 ≤ t ≤ 2, y(1) = 1; y3t + yt = 2

b. y′ = − y cos t + 2tey

sin t + t2ey + 2
, 1 ≤ t ≤ 2, y(1) = 0; y sin t + t2ey + 2y = 1

6. Prove Theorem 5.3 by applying the Mean Value Theorem 1,8 to f (t, y), holding t fixed.

7. Show that, for any constants a and b, the set D = {(t, y) | a ≤ t ≤ b, −∞ < y < ∞} is convex.

8. Suppose the perturbation δ(t) is proportional to t, that is, δ(t) = δt for some constant δ. Show directly

that the following initial-value problems are well-posed.

a. y′ = 1 − y, 0 ≤ t ≤ 2, y(0) = 0

b. y′ = t + y, 0 ≤ t ≤ 2, y(0) = −1

c. y′ = 2

t
y + t2et , 1 ≤ t ≤ 2, y(1) = 0

d. y′ = −2

t
y + t2et , 1 ≤ t ≤ 2, y(1) =

√
2e

9. Picard’s method for solving the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

is described as follows: Let y0(t) = α for each t in [a, b]. Define a sequence {yk(t)} of functions by

yk(t) = α +
∫ t

a

f (τ , yk−1(τ )) dτ , k = 1, 2, . . . .

a. Integrate y′ = f (t, y(t)), and use the initial condition to derive Picard’s method.

b. Generate y0(t), y1(t), y2(t), and y3(t) for the initial-value problem

y′ = −y + t + 1, 0 ≤ t ≤ 1, y(0) = 1.

c. Compare the result in part (b) to the Maclaurin series of the actual solution y(t) = t + e−t .
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266 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

5.2 Euler’s Method

Euler’s method is the most elementary approximation technique for solving initial-value

problems. Although it is seldom used in practice, the simplicity of its derivation can be

used to illustrate the techniques involved in the construction of some of the more advanced

techniques, without the cumbersome algebra that accompanies these constructions.

The object of Euler’s method is to obtain approximations to the well-posed initial-value

problem

dy

dt
= f (t, y), a ≤ t ≤ b, y(a) = α. (5.6)

A continuous approximation to the solution y(t) will not be obtained; instead, approx-

imations to y will be generated at various values, called mesh points, in the interval [a, b].
Once the approximate solution is obtained at the points, the approximate solution at other

points in the interval can be found by interpolation.

We first make the stipulation that the mesh points are equally distributed throughout

the interval [a, b]. This condition is ensured by choosing a positive integer N and selecting

the mesh points

ti = a + ih, for each i = 0, 1, 2, . . . , N .

The common distance between the points h = (b − a)/N = ti+1 − ti is called the step size.

The use of elementary difference

methods to approximate the

solution to differential equations

was one of the numerous

mathematical topics that was first

presented to the mathematical

public by the most prolific of

mathematicians, Leonhard Euler

(1707–1783).

We will use Taylor’s Theorem to derive Euler’s method. Suppose that y(t), the unique

solution to (5.6), has two continuous derivatives on [a, b], so that for each i = 0, 1, 2, . . . ,

N − 1,

y(ti+1) = y(ti) + (ti+1 − ti)y
′(ti) + (ti+1 − ti)

2

2
y′′(ξi),

for some number ξi in (ti, ti+1). Because h = ti+1 − ti, we have

y(ti+1) = y(ti) + hy′(ti) + h2

2
y′′(ξi),

and, because y(t) satisfies the differential equation (5.6),

y(ti+1) = y(ti) + hf (ti, y(ti)) + h2

2
y′′(ξi). (5.7)

Euler’s method constructs wi ≈ y(ti), for each i = 1, 2, . . . , N , by deleting the remain-

der term. Thus Euler’s method is

w0 = α,

wi+1 = wi + hf (ti, wi), for each i = 0, 1, . . . , N − 1. (5.8)

Illustration In Example 1 we will use an algorithm for Euler’s method to approximate the solution to

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5,

at t = 2. Here we will simply illustrate the steps in the technique when we have h = 0.5.
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5.2 Euler’s Method 267

For this problem f (t, y) = y − t2 + 1, so

w0 = y(0) = 0.5;

w1 = w0 + 0.5
(

w0 − (0.0)2 + 1
)

= 0.5 + 0.5(1.5) = 1.25;

w2 = w1 + 0.5
(

w1 − (0.5)2 + 1
)

= 1.25 + 0.5(2.0) = 2.25;

w3 = w2 + 0.5
(

w2 − (1.0)2 + 1
)

= 2.25 + 0.5(2.25) = 3.375;

and

y(2) ≈ w4 = w3 + 0.5
(

w3 − (1.5)2 + 1
)

= 3.375 + 0.5(2.125) = 4.4375. �

Equation (5.8) is called the difference equation associated with Euler’s method. As

we will see later in this chapter, the theory and solution of difference equations parallel,

in many ways, the theory and solution of differential equations. Algorithm 5.1 implements

Euler’s method.

ALGORITHM

5.1
Euler’s

To approximate the solution of the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; integer N ; initial condition α.

OUTPUT approximation w to y at the (N + 1) values of t.

Step 1 Set h = (b − a)/N ;

t = a;

w = α;

OUTPUT (t, w).

Step 2 For i = 1, 2, . . . , N do Steps 3, 4.

Step 3 Set w = w + hf (t, w); (Compute wi.)

t = a + ih. (Compute ti.)

Step 4 OUTPUT (t, w).

Step 5 STOP.

To interpret Euler’s method geometrically, note that when wi is a close approximation

to y(ti), the assumption that the problem is well-posed implies that

f (ti, wi) ≈ y′(ti) = f (ti, y(ti)).
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268 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

The graph of the function highlighting y(ti) is shown in Figure 5.2. One step in Euler’s

method appears in Figure 5.3, and a series of steps appears in Figure 5.4.

Figure 5.2

t

y

y(tN) � y(b) y� � f (t, y),
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y(t2)

y(t1)
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t0 � a t1 t2 tN  � b. . .

. 
. 
.

Figure 5.3

w1

Slope y�(a) � f (a, α)

y

t
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t0 � a t1 t2 tN � b. . .

Figure 5.4

w1

y

t

α

t 0 � a t1 t2 tN � b

y(b)

w2

wN

y� � f (t, y),

y(a) � α

. . .

Example 1 Euler’s method was used in the first illustration with h = 0.5 to approximate the solution

to the initial-value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Use Algorithm 5.1 with N = 10 to determine approximations, and compare these with the

exact values given by y(t) = (t + 1)2 − 0.5et .

Solution With N = 10 we have h = 0.2, ti = 0.2i, w0 = 0.5, and

wi+1 = wi + h(wi − t2
i + 1) = wi + 0.2[wi − 0.04i2 + 1] = 1.2wi − 0.008i2 + 0.2,

for i = 0, 1, . . . , 9. So

w1 = 1.2(0.5) − 0.008(0)2 + 0.2 = 0.8; w2 = 1.2(0.8) − 0.008(1)2 + 0.2 = 1.152;

and so on. Table 5.1 shows the comparison between the approximate values at ti and the

actual values.
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Table 5.1 ti wi yi = y(ti) |yi − wi|

0.0 0.5000000 0.5000000 0.0000000

0.2 0.8000000 0.8292986 0.0292986

0.4 1.1520000 1.2140877 0.0620877

0.6 1.5504000 1.6489406 0.0985406

0.8 1.9884800 2.1272295 0.1387495

1.0 2.4581760 2.6408591 0.1826831

1.2 2.9498112 3.1799415 0.2301303

1.4 3.4517734 3.7324000 0.2806266

1.6 3.9501281 4.2834838 0.3333557

1.8 4.4281538 4.8151763 0.3870225

2.0 4.8657845 5.3054720 0.4396874

Note that the error grows slightly as the value of t increases. This controlled error

growth is a consequence of the stability of Euler’s method, which implies that the error is

expected to grow in no worse than a linear manner.

Maple has implemented Euler’s method as an option with the command Initial-

ValueProblem within the NumericalAnalysis subpackage of the Student package. To use

it for the problem in Example 1 first load the package and the differential equation.

with(Student[NumericalAnalysis]): deq := diff(y(t), t) = y(t) − t2 + 1

Then issue the command

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = euler, numsteps = 10,

output = information, digits = 8)

Maple produces









1 . . 12 × 1 . . 4 Array

Data Type: anything

Storage: rectangular

Order: Fortran_order









Double clicking on the output brings up a table that gives the values of ti, actual solution

values y(ti), the Euler approximations wi, and the absolute errors | y(ti) − wi|. These agree

with the values in Table 5.1.

To print the Maple table we can issue the commands

for k from 1 to 12 do

print(C[k, 1], C[k, 2], C[k, 3], C[k, 4])
end do

The options within the InitialValueProblem command are the specification of the first order

differential equation to be solved, the initial condition, the final value of the independent

variable, the choice of method, the number of steps used to determine that h = (2 − 0)/

(numsteps), the specification of form of the output, and the number of digits of rounding

to be used in the computations. Other output options can specify a particular value of t or

a plot of the solution.

Error Bounds for Euler’s Method

Although Euler’s method is not accurate enough to warrant its use in practice, it is sufficiently

elementary to analyze the error that is produced from its application. The error analysis for
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the more accurate methods that we consider in subsequent sections follows the same pattern

but is more complicated.

To derive an error bound for Euler’s method, we need two computational lemmas.

Lemma 5.7 For all x ≥ −1 and any positive m, we have 0 ≤ (1 + x)m ≤ emx.

Proof Applying Taylor’s Theorem with f (x) = ex, x0 = 0, and n = 1 gives

ex = 1 + x + 1

2
x2eξ ,

where ξ is between x and zero. Thus

0 ≤ 1 + x ≤ 1 + x + 1

2
x2eξ = ex,

and, because 1 + x ≥ 0, we have

0 ≤ (1 + x)m ≤ (ex)m = emx.

Lemma 5.8 If s and t are positive real numbers, {ai}k
i=0 is a sequence satisfying a0 ≥ −t/s, and

ai+1 ≤ (1 + s)ai + t, for each i = 0, 1, 2, . . . , k − 1, (5.9)

then

ai+1 ≤ e(i+1)s

(

a0 + t

s

)

− t

s
.

Proof For a fixed integer i, Inequality (5.9) implies that

ai+1 ≤ (1 + s)ai + t

≤ (1 + s)[(1 + s)ai−1 + t] + t = (1 + s)2ai−1 + [1 + (1 + s)]t
≤ (1 + s)3ai−2 +

[

1 + (1 + s) + (1 + s)2
]

t

...

≤ (1 + s)i+1a0 +
[

1 + (1 + s) + (1 + s)2 + · · · + (1 + s)i
]

t.

But

1 + (1 + s) + (1 + s)2 + · · · + (1 + s)i =
i

∑

j=0

(1 + s)j

is a geometric series with ratio (1 + s) that sums to

1 − (1 + s)i+1

1 − (1 + s)
= 1

s
[(1 + s)i+1 − 1].

Thus

ai+1 ≤ (1 + s)i+1a0 + (1 + s)i+1 − 1

s
t = (1 + s)i+1

(

a0 + t

s

)

− t

s
,

and using Lemma 5.7 with x = 1 + s gives

ai+1 ≤ e(i+1)s

(

a0 + t

s

)

− t

s
.
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Theorem 5.9 Suppose f is continuous and satisfies a Lipschitz condition with constant L on

D = {(t, y) | a ≤ t ≤ b and − ∞ < y < ∞}

and that a constant M exists with

| y′′(t)| ≤ M, for all t ∈ [a, b],

where y(t) denotes the unique solution to the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α.

Let w0, w1, . . . , wN be the approximations generated by Euler’s method for some positive

integer N . Then, for each i = 0, 1, 2, . . . , N ,

| y(ti) − wi| ≤ hM

2L

[

eL(ti−a) − 1
]

. (5.10)

Proof When i = 0 the result is clearly true, since y(t0) = w0 = α.

From Eq. (5.7), we have

y(ti+1) = y(ti) + hf (ti, y(ti)) + h2

2
y′′(ξi),

for i = 0, 1, . . . , N − 1, and from the equations in (5.8),

wi+1 = wi + hf (ti, wi).

Using the notation yi = y(ti) and yi+1 = y(ti+1), we subtract these two equations to obtain

yi+1 − wi+1 = yi − wi + h[f (ti, yi) − f (ti, wi)] + h2

2
y′′(ξi)

Hence

| yi+1 − wi+1| ≤ | yi − wi| + h|f (ti, yi) − f (ti, wi)| + h2

2
| y′′(ξi)|.

Now f satisfies a Lipschitz condition in the second variable with constant L, and

| y′′(t)| ≤ M, so

| yi+1 − wi+1| ≤ (1 + hL)| yi − wi| + h2M

2
.

Referring to Lemma 5.8 and letting s = hL, t = h2M/2, and aj = | yj − wj|, for each

j = 0, 1, . . . , N , we see that

| yi+1 − wi+1| ≤ e(i+1)hL

(

| y0 − w0| + h2M

2hL

)

− h2M

2hL
.

Because | y0 − w0| = 0 and (i + 1)h = ti+1 − t0 = ti+1 − a, this implies that

| yi+1 − wi+1| ≤ hM

2L
(e(ti+1−a)L − 1),

for each i = 0, 1, . . . , N − 1.
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The weakness of Theorem 5.9 lies in the requirement that a bound be known for the

second derivative of the solution. Although this condition often prohibits us from obtaining

a realistic error bound, it should be noted that if ∂f/∂t and ∂f/∂y both exist, the chain rule

for partial differentiation implies that

y′′(t) = dy′

dt
(t) = df

dt
(t, y(t)) = ∂f

∂t
(t, y(t)) + ∂f

∂y
(t, y(t)) · f (t, y(t)).

So it is at times possible to obtain an error bound for y′′(t) without explicitly knowing y(t).

Example 2 The solution to the initial-value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5,

was approximated in Example 1 using Euler’s method with h = 0.2. Use the inequality in

Theorem 5.9 to find a bounds for the approximation errors and compare these to the actual

errors.

Solution Because f (t, y) = y − t2 + 1, we have ∂f (t, y)/∂y = 1 for all y, so L = 1. For

this problem, the exact solution is y(t) = (t + 1)2 − 0.5et , so y′′(t) = 2 − 0.5et and

| y′′(t)| ≤ 0.5e2 − 2, for all t ∈ [0, 2].

Using the inequality in the error bound for Euler’s method with h = 0.2, L = 1, and

M = 0.5e2 − 2 gives

| yi − wi| ≤ 0.1(0.5e2 − 2)(eti − 1).

Hence

| y(0.2) − w1| ≤0.1(0.5e2 − 2)(e0.2 − 1) = 0.03752;

| y(0.4) − w2| ≤0.1(0.5e2 − 2)(e0.4 − 1) = 0.08334;

and so on. Table 5.2 lists the actual error found in Example 1, together with this error

bound. Note that even though the true bound for the second derivative of the solution was

used, the error bound is considerably larger than the actual error, especially for increasing

values of t.

Table 5.2

ti 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Actual Error 0.02930 0.06209 0.09854 0.13875 0.18268 0.23013 0.28063 0.33336 0.38702 0.43969

Error Bound 0.03752 0.08334 0.13931 0.20767 0.29117 0.39315 0.51771 0.66985 0.85568 1.08264

The principal importance of the error-bound formula given in Theorem 5.9 is that the

bound depends linearly on the step size h. Consequently, diminishing the step size should

give correspondingly greater accuracy to the approximations.

Neglected in the result of Theorem 5.9 is the effect that round-off error plays in the

choice of step size. As h becomes smaller, more calculations are necessary and more round-

off error is expected. In actuality then, the difference-equation form

w0 = α,

wi+1 = wi + hf (ti, wi), for each i = 0, 1, . . . , N − 1,
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is not used to calculate the approximation to the solution yi at a mesh point ti. We use instead

an equation of the form

u0 = α + δ0,

ui+1 = ui + hf (ti, ui) + δi+1, for each i = 0, 1, . . . , N − 1, (5.11)

where δi denotes the round-off error associated with ui. Using methods similar to those in

the proof of Theorem 5.9, we can produce an error bound for the finite-digit approximations

to yi given by Euler’s method.

Theorem 5.10 Let y(t) denote the unique solution to the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α (5.12)

and u0, u1, . . . , uN be the approximations obtained using (5.11). If |δi| < δ for each

i = 0, 1, . . . , N and the hypotheses of Theorem 5.9 hold for (5.12), then

| y(ti) − ui| ≤ 1

L

(

hM

2
+ δ

h

)

[eL(ti−a) − 1] + |δ0|eL(ti−a), (5.13)

for each i = 0, 1, . . . , N .

The error bound (5.13) is no longer linear in h. In fact, since

lim
h→0

(

hM

2
+ δ

h

)

= ∞,

the error would be expected to become large for sufficiently small values of h. Calculus can

be used to determine a lower bound for the step size h. Letting E(h) = (hM/2) + (δ/h)

implies that E′(h) = (M/2) − (δ/h2).

If h <
√

2δ/M, then E′(h) < 0 and E(h) is decreasing.

If h >
√

2δ/M, then E′(h) > 0 and E(h) is increasing.

The minimal value of E(h) occurs when

h =
√

2δ

M
. (5.14)

Decreasing h beyond this value tends to increase the total error in the approximation.

Normally, however, the value of δ is sufficiently small that this lower bound for h does not

affect the operation of Euler’s method.

E X E R C I S E S E T 5.2

1. Use Euler’s method to approximate the solutions for each of the following initial-value problems.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5

b. y′ = 1 + (t − y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.5

c. y′ = 1 + y/t, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.25
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2. Use Euler’s method to approximate the solutions for each of the following initial-value problems.

a. y′ = et−y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.5

b. y′ = 1 + t

1 + y
, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.5

c. y′ = −y + ty1/2, 2 ≤ t ≤ 3, y(2) = 2, with h = 0.25

d. y′ = t−2(sin 2t − 2ty), 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25

3. The actual solutions to the initial-value problems in Exercise 1 are given here. Compare the actual

error at each step to the error bound.

a. y(t) = 1

5
te3t − 1

25
e3t + 1

25
e−2t b. y(t) = t + 1

1 − t

c. y(t) = t ln t + 2t d. y(t) = 1

2
sin 2t − 1

3
cos 3t + 4

3

4. The actual solutions to the initial-value problems in Exercise 2 are given here. Compute the actual

error and compare this to the error bound if Theorem 5.9 can be applied.

a. y(t) = ln(et + e − 1) b. y(t) =
√

t2 + 2t + 6 − 1

c. y(t) =
(

t − 2 +
√

2ee−t/2
)2

d. y(t) = 4 + cos 2 − cos 2t

2t2

5. Use Euler’s method to approximate the solutions for each of the following initial-value problems.

a. y′ = y/t − (y/t)2 , 1 ≤ t ≤ 2, y(1) = 1, with h = 0.1

b. y′ = 1 + y/t + (y/t)2 , 1 ≤ t ≤ 3, y(1) = 0, with h = 0.2

c. y′ = −(y + 1)(y + 3), 0 ≤ t ≤ 2, y(0) = −2, with h = 0.2

d. y′ = −5y + 5t2 + 2t, 0 ≤ t ≤ 1, y(0) = 1

3
, with h = 0.1

6. Use Euler’s method to approximate the solutions for each of the following initial-value problems.

a. y′ = 2 − 2ty

t2 + 1
, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1

b. y′ = y2

1 + t
, 1 ≤ t ≤ 2, y(1) = −(ln 2)−1, with h = 0.1

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.2

d. y′ = −ty + 4ty−1, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1

7. The actual solutions to the initial-value problems in Exercise 5 are given here. Compute the actual

error in the approximations of Exercise 5.

a. y(t) = t

1 + ln t
b. y(t) = t tan(ln t)

c. y(t) = −3 + 2

1 + e−2t
d. y(t) = t2 + 1

3
e−5t

8. The actual solutions to the initial-value problems in Exercise 6 are given here. Compute the actual

error in the approximations of Exercise 6.

a. y(t) = 2t + 1

t2 + 1
b. y(t) = −1

ln(t + 1)

c. y(t) = 2t

1 − 2t
d. y(t) =

√

4 − 3e−t2

9. Given the initial-value problem

y′ = 2

t
y + t2et , 1 ≤ t ≤ 2, y(1) = 0,

with exact solution y(t) = t2(et − e) :

a. Use Euler’s method with h = 0.1 to approximate the solution, and compare it with the actual

values of y.
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b. Use the answers generated in part (a) and linear interpolation to approximate the following values

of y, and compare them to the actual values.

i. y(1.04) ii. y(1.55) iii. y(1.97)

c. Compute the value of h necessary for | y(ti) − wi| ≤ 0.1, using Eq. (5.10).

10. Given the initial-value problem

y′ = 1

t2
− y

t
− y2, 1 ≤ t ≤ 2, y(1) = −1,

with exact solution y(t) = −1/t:

a. Use Euler’s method with h = 0.05 to approximate the solution, and compare it with the actual

values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate the following values

of y, and compare them to the actual values.

i. y(1.052) ii. y(1.555) iii. y(1.978)

c. Compute the value of h necessary for | y(ti) − wi| ≤ 0.05 using Eq. (5.10).

11. Given the initial-value problem

y′ = −y + t + 1, 0 ≤ t ≤ 5, y(0) = 1,

with exact solution y(t) = e−t + t:

a. Approximate y(5) using Euler’s method with h = 0.2, h = 0.1, and h = 0.05.

b. Determine the optimal value of h to use in computing y(5), assuming δ = 10−6 and that Eq. (5.14)

is valid.

12. Consider the initial-value problem

y′ = −10y, 0 ≤ t ≤ 2, y(0) = 1,

which has solution y(t) = e−10t . What happens when Euler’s method is applied to this problem with

h = 0.1? Does this behavior violate Theorem 5.9?

13. Use the results of Exercise 5 and linear interpolation to approximate the following values of y(t).

Compare the approximations obtained to the actual values obtained using the functions given in

Exercise 7.

a. y(1.25) and y(1.93) b. y(2.1) and y(2.75)

c. y(1.3) and y(1.93) d. y(0.54) and y(0.94)

14. Use the results of Exercise 6 and linear interpolation to approximate the following values of y(t).

Compare the approximations obtained to the actual values obtained using the functions given in

Exercise 8.

a. y(0.25) and y(0.93) b. y(1.25) and y(1.93)

c. y(2.10) and y(2.75) d. y(0.54) and y(0.94)

15. Let E(h) = hM

2
+ δ

h
.

a. For the initial-value problem

y′ = −y + 1, 0 ≤ t ≤ 1, y(0) = 0,

compute the value of h to minimize E(h). Assume δ = 5 × 10−(n+1) if you will be using n-digit

arithmetic in part (c).

b. For the optimal h computed in part (a), use Eq. (5.13) to compute the minimal error obtainable.

c. Compare the actual error obtained using h = 0.1 and h = 0.01 to the minimal error in part (b).

Can you explain the results?

16. In a circuit with impressed voltage E having resistance R, inductance L, and capacitance C in parallel,

the current i satisfies the differential equation

di

dt
= C

d2E

dt2
+ 1

R

dE

dt
+ 1

L
E .
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Suppose C = 0.3 farads, R = 1.4 ohms, L = 1.7 henries, and the voltage is given by

E(t) = e−0.06π t sin(2t − π).

If i(0) = 0, find the current i for the values t = 0.1 j, where j = 0, 1, . . . , 100.

17. In a book entitled Looking at History Through Mathematics, Rashevsky [Ra], pp. 103–110, considers

a model for a problem involving the production of nonconformists in society. Suppose that a society

has a population of x(t) individuals at time t, in years, and that all nonconformists who mate with

other nonconformists have offspring who are also nonconformists, while a fixed proportion r of all

other offspring are also nonconformist. If the birth and death rates for all individuals are assumed to

be the constants b and d, respectively, and if conformists and nonconformists mate at random, the

problem can be expressed by the differential equations

dx(t)

dt
= (b − d)x(t) and

dxn(t)

dt
= (b − d)xn(t) + rb(x(t) − xn(t)),

where xn(t) denotes the number of nonconformists in the population at time t.

a. Suppose the variable p(t) = xn(t)/x(t) is introduced to represent the proportion of noncon-

formists in the society at time t. Show that these equations can be combined and simplified to

the single differential equation

dp(t)

dt
= rb(1 − p(t)).

b. Assuming that p(0) = 0.01, b = 0.02, d = 0.015, and r = 0.1, approximate the solution p(t)

from t = 0 to t = 50 when the step size is h = 1 year.

c. Solve the differential equation for p(t) exactly, and compare your result in part (b) when t = 50

with the exact value at that time.

5.3 Higher-Order Taylor Methods

Since the object of a numerical techniques is to determine accurate approximations with

minimal effort, we need a means for comparing the efficiency of various approximation

methods. The first device we consider is called the local truncation error of the method.

The local truncation error at a specified step measures the amount by which the exact

solution to the differential equation fails to satisfy the difference equation being used for

the approximation at that step. This might seem like an unlikely way to compare the error

of various methods. We really want to know how well the approximations generated by the

methods satisfy the differential equation, not the other way around. However, we don’t know

the exact solution so we cannot generally determine this, and the local truncation will serve

quite well to determine not only the local error of a method but the actual approximation

error.

Consider the initial value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α.

Definition 5.11 The difference method

w0 = α

wi+1 = wi + hφ(ti, wi), for each i = 0, 1, . . . , N − 1,

has local truncation error

τi+1(h) = yi+1 − (yi + hφ(ti, yi))

h
= yi+1 − yi

h
− φ(ti, yi),
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for each i = 0, 1, . . . , N − 1, where yi and yi+1 denote the solution at ti and ti+1,

respectively.

For example, Euler’s method has local truncation error at the ith step

τi+1(h) = yi+1 − yi

h
− f (ti, yi), for each i = 0, 1, . . . , N − 1.

This error is a local error because it measures the accuracy of the method at a specific

step, assuming that the method was exact at the previous step. As such, it depends on the

differential equation, the step size, and the particular step in the approximation.

By considering Eq. (5.7) in the previous section, we see that Euler’s method has

τi+1(h) = h

2
y′′(ξi), for some ξi in (ti, ti+1).

When y′′(t) is known to be bounded by a constant M on [a, b], this implies

|τi+1(h)| ≤ h

2
M,

so the local truncation error in Euler’s method is O(h).

One way to select difference-equation methods for solving ordinary differential equa-

tions is in such a manner that their local truncation errors are O(hp) for as large a value

of p as possible, while keeping the number and complexity of calculations of the methods

within a reasonable bound.

Since Euler’s method was derived by using Taylor’s Theorem with n = 1 to approximate

the solution of the differential equation, our first attempt to find methods for improving the

convergence properties of difference methods is to extend this technique of derivation to

larger values of n.

The methods in this section use

Taylor polynomials and the

knowledge of the derivative at a

node to approximate the value of

the function at a new node.

Suppose the solution y(t) to the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

has (n+1) continuous derivatives. If we expand the solution, y(t), in terms of its nth Taylor

polynomial about ti and evaluate at ti+1, we obtain

y(ti+1) = y(ti) + hy′(ti) + h2

2
y′′(ti) + · · · + hn

n! y(n)(ti) + hn+1

(n + 1)!y(n+1)(ξi), (5.15)

for some ξi in (ti, ti+1).

Successive differentiation of the solution, y(t), gives

y′(t) = f (t, y(t)), y′′(t) = f ′(t, y(t)), and, generally, y(k)(t) = f (k−1)(t, y(t)).

Substituting these results into Eq. (5.15) gives

y(ti+1) = y(ti) + hf (ti, y(ti)) + h2

2
f ′(ti, y(ti)) + · · · (5.16)

+ hn

n! f
(n−1)(ti, y(ti)) + hn+1

(n + 1)!f
(n)(ξi, y(ξi)).

The difference-equation method corresponding to Eq. (5.16) is obtained by deleting

the remainder term involving ξi.
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278 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

Taylor method of order n

w0 = α,

wi+1 = wi + hT (n)(ti, wi), for each i = 0, 1, . . . , N − 1, (5.17)

where

T (n)(ti, wi) = f (ti, wi) + h

2
f ′(ti, wi) + · · · + hn−1

n! f (n−1)(ti, wi).

Euler’s method is Taylor’s method of order one.

Example 1 Apply Taylor’s method of orders (a) two and (b) four with N = 10 to the initial-value

problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution (a) For the method of order two we need the first derivative of f (t, y(t)) =
y(t) − t2 + 1 with respect to the variable t. Because y′ = y − t2 + 1 we have

f ′(t, y(t)) = d

dt
(y − t2 + 1) = y′ − 2t = y − t2 + 1 − 2t,

so

T (2)(ti, wi) = f (ti, wi) + h

2
f ′(ti, wi) = wi − t2

i + 1 + h

2
(wi − t2

i + 1 − 2ti)

=
(

1 + h

2

)

(wi − t2
i + 1) − hti

Because N = 10 we have h = 0.2, and ti = 0.2i for each i = 1, 2, . . . , 10. Thus the

second-order method becomes

w0 = 0.5,

wi+1 = wi + h

[(

1 + h

2

)

(

wi − t2
i + 1

)

− hti

]

= wi + 0.2

[(

1 + 0.2

2

)

(wi − 0.04i2 + 1) − 0.04i

]

= 1.22wi − 0.0088i2 − 0.008i + 0.22.

The first two steps give the approximations

y(0.2) ≈ w1 = 1.22(0.5) − 0.0088(0)2 − 0.008(0) + 0.22 = 0.83;

y(0.4) ≈ w2 = 1.22(0.83) − 0.0088(0.2)2 − 0.008(0.2) + 0.22 = 1.2158

All the approximations and their errors are shown in Table 5.3

Table 5.3

Taylor

Order 2 Error

ti wi |y(ti) − wi|

0.0 0.500000 0

0.2 0.830000 0.000701

0.4 1.215800 0.001712

0.6 1.652076 0.003135

0.8 2.132333 0.005103

1.0 2.648646 0.007787

1.2 3.191348 0.011407

1.4 3.748645 0.016245

1.6 4.306146 0.022663

1.8 4.846299 0.031122

2.0 5.347684 0.042212

(b) For Taylor’s method of order four we need the first three derivatives of f (t, y(t))

with respect to t. Again using y′ = y − t2 + 1 we have

f ′(t, y(t)) = y − t2 + 1 − 2t,

f ′′(t, y(t)) = d

dt
(y − t2 + 1 − 2t) = y′ − 2t − 2

= y − t2 + 1 − 2t − 2 = y − t2 − 2t − 1,
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5.3 Higher-Order Taylor Methods 279

and

f ′′′(t, y(t)) = d

dt
(y − t2 − 2t − 1) = y′ − 2t − 2 = y − t2 − 2t − 1,

so

T (4)(ti, wi) = f (ti, wi) + h

2
f ′(ti, wi) + h2

6
f ′′(ti, wi) + h3

24
f ′′′(ti, wi)

= wi − t2
i + 1 + h

2
(wi − t2

i + 1 − 2ti) + h2

6
(wi − t2

i − 2ti − 1)

+ h3

24
(wi − t2

i − 2ti − 1)

=
(

1 + h

2
+ h2

6
+ h3

24

)

(wi − t2
i ) −

(

1 + h

3
+ h2

12

)

(hti)

+ 1 + h

2
− h2

6
− h3

24
.

Hence Taylor’s method of order four is

w0 = 0.5,

wi+1 = wi + h

[ (

1 + h

2
+ h2

6
+ h3

24

)

(wi − t2
i ) −

(

1 + h

3
+ h2

12

)

hti

+ 1 + h

2
− h2

6
− h3

24

]

,

for i = 0, 1, . . . , N − 1.

Because N = 10 and h = 0.2 the method becomes

wi+1 = wi + 0.2

[ (

1 + 0.2

2
+ 0.04

6
+ 0.008

24

)

(wi − 0.04i2)

−
(

1 + 0.2

3
+ 0.04

12

)

(0.04i) + 1 + 0.2

2
− 0.04

6
− 0.008

24

]

= 1.2214wi − 0.008856i2 − 0.00856i + 0.2186,

for each i = 0, 1, . . . , 9. The first two steps give the approximations

y(0.2) ≈ w1 = 1.2214(0.5) − 0.008856(0)2 − 0.00856(0) + 0.2186 = 0.8293;

y(0.4) ≈ w2 = 1.2214(0.8293) − 0.008856(0.2)2 − 0.00856(0.2) + 0.2186 = 1.214091

All the approximations and their errors are shown in Table 5.4.

Table 5.4

Taylor

Order 4 Error

ti wi |y(ti) − wi|

0.0 0.500000 0

0.2 0.829300 0.000001

0.4 1.214091 0.000003

0.6 1.648947 0.000006

0.8 2.127240 0.000010

1.0 2.640874 0.000015

1.2 3.179964 0.000023

1.4 3.732432 0.000032

1.6 4.283529 0.000045

1.8 4.815238 0.000062

2.0 5.305555 0.000083

Compare these results with those of Taylor’s method of order 2 in Table 5.4 and you

will see that the fourth-order results are vastly superior.

The results from Table 5.4 indicate the Taylor’s method of order 4 results are quite

accurate at the nodes 0.2, 0.4, etc. But suppose we need to determine an approximation to

an intermediate point in the table, for example, at t = 1.25. If we use linear interpolation

on the Taylor method of order four approximations at t = 1.2 and t = 1.4, we have

y(1.25) ≈
(

1.25 − 1.4

1.2 − 1.4

)

3.1799640 +
(

1.25 − 1.2

1.4 − 1.2

)

3.7324321 = 3.3180810.
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280 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

The true value is y(1.25) = 3.3173285, so this approximation has an error of 0.0007525,

which is nearly 30 times the average of the approximation errors at 1.2 and 1.4.

We can significantly improve the approximation by using cubic Hermite interpolation.

To determine this approximation for y(1.25) requires approximations to y′(1.2) and y′(1.4)

as well as approximations to y(1.2) and y(1.4). However, the approximations for y(1.2) and

y(1.4) are in the table, and the derivative approximations are available from the differential

equation, because y′(t) = f (t, y(t)). In our example y′(t) = y(t) − t2 + 1, so

y′(1.2) = y(1.2) − (1.2)2 + 1 ≈ 3.1799640 − 1.44 + 1 = 2.7399640

and

y′(1.4) = y(1.4) − (1.4)2 + 1 ≈ 3.7324327 − 1.96 + 1 = 2.7724321.

Hermite interpolation requires

both the value of the function and

its derivative at each node. This

makes it a natural interpolation

method for approximating

differential equations since these

data are all available.

The divided-difference procedure in Section 3.4 gives the information in Table 5.5.

The underlined entries come from the data, and the other entries use the divided-difference

formulas.

Table 5.5 1.2 3.1799640

2.7399640

1.2 3.1799640 0.1118825

2.7623405 −0.3071225

1.4 3.7324321 0.0504580

2.7724321

1.4 3.7324321

The cubic Hermite polynomial is

y(t) ≈ 3.1799640 + (t − 1.2)2.7399640 + (t − 1.2)20.1118825

+ (t − 1.2)2(t − 1.4)(−0.3071225),

so

y(1.25) ≈ 3.1799640 + 0.1369982 + 0.0002797 + 0.0001152 = 3.3173571,

a result that is accurate to within 0.0000286. This is about the average of the errors at 1.2

and at 1.4, and only 4% of the error obtained using linear interpolation. This improvement

in accuracy certainly justifies the added computation required for the Hermite method.

Theorem 5.12 If Taylor’s method of order n is used to approximate the solution to

y′(t) = f (t, y(t)), a ≤ t ≤ b, y(a) = α,

with step size h and if y ∈ Cn+1[a, b], then the local truncation error is O(hn).

Proof Note that Eq. (5.16) on page 277 can be rewritten

yi+1 − yi − hf (ti, yi) − h2

2
f ′(ti, yi) − · · · − hn

n! f
(n−1)(ti, yi) = hn+1

(n + 1)!f
(n)(ξi, y(ξi)),

for some ξi in (ti, ti+1). So the local truncation error is

τi+1(h) = yi+1 − yi

h
− T (n)(ti, yi) = hn

(n + 1)!f
(n)(ξi, y(ξi)),

for each i = 0, 1, . . . , N −1. Since y ∈ Cn+1[a, b], we have y(n+1)(t) = f (n)(t, y(t)) bounded

on [a, b] and τi(h) = O(hn), for each i = 1, 2, . . . , N .
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5.3 Higher-Order Taylor Methods 281

Taylor’s methods are options within the Maple command InitialValueProblem. The

form and output for Taylor’s methods are the same as available under Euler’s method, as

discussed in Section 5.1. To obtain Taylor’s method of order 2 for the problem in Example 1,

first load the package and the differential equation.

with(Student[NumericalAnalysis]) : deq := diff(y(t), t) = y(t) − t2 + 1

Then issue

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = taylor, order = 2,

numsteps = 10, output = information, digits = 8)

Maple responds with an array of data similar to that produced with Euler’s method. Double

clicking on the output will bring up a table that gives the values of ti, actual solution values

y(ti), the Taylor approximations wi, and the absolute errors | y(ti) − wi|. These agree with

the values in Table 5.3.

To print the table issue the commands

for k from 1 to 12 do

print(C[k, 1], C[k, 2], C[k, 3], C[k, 4])
end do

E X E R C I S E S E T 5.3

1. Use Taylor’s method of order two to approximate the solutions for each of the following initial-value

problems.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5

b. y′ = 1 + (t − y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.5

c. y′ = 1 + y/t, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.25

2. Use Taylor’s method of order two to approximate the solutions for each of the following initial-value

problems.

a. y′ = et−y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.5

b. y′ = 1 + t

1 + y
, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.5

c. y′ = −y + ty1/2, 2 ≤ t ≤ 3, y(2) = 2, with h = 0.25

d. y′ = t−2(sin 2t − 2ty), 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25

3. Repeat Exercise 1 using Taylor’s method of order four.

4. Repeat Exercise 2 using Taylor’s method of order four.

5. Use Taylor’s method of order two to approximate the solution for each of the following initial-value

problems.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 1.2, y(1) = 1, with h = 0.1

b. y′ = sin t + e−t , 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.5

d. y′ = −ty + 4ty−1, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.25

6. Use Taylor’s method of order two to approximate the solution for each of the following initial-value

problems.

a. y′ = 2 − 2ty

t2 + 1
, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1

b. y′ = y2

1 + t
, 1 ≤ t ≤ 2, y(1) = −(ln 2)−1, with h = 0.1
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282 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.2

d. y′ = −ty + 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1

7. Repeat Exercise 5 using Taylor’s method of order four.

8. Repeat Exercise 6 using Taylor’s method of order four.

9. Given the initial-value problem

y′ = 2

t
y + t2et , 1 ≤ t ≤ 2, y(1) = 0,

with exact solution y(t) = t2(et − e):

a. Use Taylor’s method of order two with h = 0.1 to approximate the solution, and compare it with

the actual values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate y at the following

values, and compare them to the actual values of y.

i. y(1.04) ii. y(1.55) iii. y(1.97)

c. Use Taylor’s method of order four with h = 0.1 to approximate the solution, and compare it

with the actual values of y.

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to approximate

y at the following values, and compare them to the actual values of y.

i. y(1.04) ii. y(1.55) iii. y(1.97)

10. Given the initial-value problem

y′ = 1

t2
− y

t
− y2, 1 ≤ t ≤ 2, y(1) = −1,

with exact solution y(t) = −1/t:

a. Use Taylor’s method of order two with h = 0.05 to approximate the solution, and compare it

with the actual values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate the following values

of y, and compare them to the actual values.

i. y(1.052) ii. y(1.555) iii. y(1.978)

c. Use Taylor’s method of order four with h = 0.05 to approximate the solution, and compare it

with the actual values of y.

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to approximate

the following values of y, and compare them to the actual values.

i. y(1.052) ii. y(1.555) iii. y(1.978)

11. A projectile of mass m = 0.11 kg shot vertically upward with initial velocity v(0) = 8 m/s is slowed

due to the force of gravity, Fg = −mg, and due to air resistance, Fr = −kv|v|, where g = 9.8 m/s2

and k = 0.002 kg/m. The differential equation for the velocity v is given by

mv′ = −mg − kv|v|.

a. Find the velocity after 0.1, 0.2, . . . , 1.0 s.

b. To the nearest tenth of a second, determine when the projectile reaches its maximum height and

begins falling.

12. Use the Taylor method of order two with h = 0.1 to approximate the solution to

y′ = 1 + t sin(ty), 0 ≤ t ≤ 2, y(0) = 0.

5.4 Runge-Kutta Methods

The Taylor methods outlined in the previous section have the desirable property of high-

order local truncation error, but the disadvantage of requiring the computation and evaluation

of the derivatives of f (t, y). This is a complicated and time-consuming procedure for most

problems, so the Taylor methods are seldom used in practice.
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5.4 Runge-Kutta Methods 283

Runge-Kutta methods have the high-order local truncation error of the Taylor methods

but eliminate the need to compute and evaluate the derivatives of f (t, y). Before presenting

the ideas behind their derivation, we need to consider Taylor’s Theorem in two variables.

The proof of this result can be found in any standard book on advanced calculus (see, for

example, [Fu], p. 331).

In the later 1800s, Carl Runge

(1856–1927) used methods

similar to those in this section to

derive numerous formulas for

approximating the solution to

initial-value problems.

In 1901, Martin Wilhelm Kutta

(1867–1944) generalized the

methods that Runge developed in

1895 to incorporate systems of

first-order differential equations.

These techniques differ slightly

from those we currently call

Runge-Kutta methods.

Theorem 5.13 Suppose that f (t, y) and all its partial derivatives of order less than or equal to n + 1 are

continuous on D = {(t, y) | a ≤ t ≤ b, c ≤ y ≤ d}, and let (t0, y0) ∈ D. For every

(t, y) ∈ D, there exists ξ between t and t0 and µ between y and y0 with

f (t, y) = Pn(t, y) + Rn(t, y),

where

Pn(t, y) = f (t0, y0) +
[

(t − t0)
∂f

∂t
(t0, y0) + (y − y0)

∂f

∂y
(t0, y0)

]

+
[

(t − t0)
2

2

∂2f

∂t2
(t0, y0) + (t − t0)(y − y0)

∂2f

∂t∂y
(t0, y0)

+ (y − y0)
2

2

∂2f

∂y2
(t0, y0)

]

+ · · ·

+





1

n!

n
∑

j=0

(

n

j

)

(t − t0)
n−j(y − y0)

j ∂nf

∂tn−j∂y j
(t0, y0)





and

Rn(t, y) = 1

(n + 1)!

n+1
∑

j=0

(

n + 1

j

)

(t − t0)
n+1−j(y − y0)

j ∂n+1f

∂tn+1−j∂y j
(ξ , µ).

The function Pn(t, y) is called the nth Taylor polynomial in two variables for the

function f about (t0, y0), and Rn(t, y) is the remainder term associated with Pn(t, y).

Example 1 Use Maple to determine P2(t, y), the second Taylor polynomial about (2, 3) for the function

f (t, y) = exp

[

− (t − 2)2

4
− (y − 3)2

4

]

cos(2t + y − 7)

Solution To determine P2(t, y) we need the values of f and its first and second partial

derivatives at (2, 3). The evaluation of the function is easy

f (2, 3) = e

(

−02/4−02/4
)

cos(4 + 3 − 7) = 1,

but the computations involved with the partial derivatives are quite tedious. However, higher

dimensional Taylor polynomials are available in the MultivariateCalculus subpackage of

the Student package, which is accessed with the command

with(Student[MultivariateCalculus])
The first option of the TaylorApproximation command is the function, the second specifies

the point (t0, y0) where the polynomial is centered, and the third specifies the degree of the

polynomial. So we issue the command
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TaylorApproximation

(

e− (t−2)2

4
− (y−3)2

4 cos(2t + y − 7), [t, y] = [2, 3], 2

)

The response from this Maple command is the polynomial

1 − 9

4
(t − 2)2 − 2(t − 2)(y − 3) − 3

4
(y − 3)2

A plot option is also available by adding a fourth option to the TaylorApproximation

command in the form output = plot. The plot in the default form is quite crude, however,

because not many points are plotted for the function and the polynomial. A better illustration

is seen in Figure 5.5.

Figure 5.5

y

f (t, y)
t

f(t, y) � exp {�(t � 2)2/4 � (y � 3)2/4} cos (2t � y � 7)

P2(t, y) � 1�     (t � 2)2 � 2(t � 2)(y � 3) �     (y � 3)29
4

3
4

The final parameter in this command indicates that we want the second multivariate

Taylor polynomial, that is, the quadratic polynomial. If this parameter is 2, we get the

quadratic polynomial, and if it is 0 or 1, we get the constant polynomial 1, because there are

no linear terms. When this parameter is omitted, it defaults to 6 and gives the sixth Taylor

polynomial.

Runge-Kutta Methods of OrderTwo

The first step in deriving a Runge-Kutta method is to determine values for a1, α1, and β1

with the property that a1f (t + α1, y + β1) approximates

T (2)(t, y) = f (t, y) + h

2
f ′(t, y),

with error no greater than O(h2), which is same as the order of the local truncation error for

the Taylor method of order two. Since

f ′(t, y) = df

dt
(t, y) = ∂f

∂t
(t, y) + ∂f

∂y
(t, y) · y′(t) and y′(t) = f (t, y),
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we have

T (2)(t, y) = f (t, y) + h

2

∂f

∂t
(t, y) + h

2

∂f

∂y
(t, y) · f (t, y). (5.18)

Expanding f (t + α1, y + β1) in its Taylor polynomial of degree one about (t, y) gives

a1f (t + α1, y + β1) = a1f (t, y) + a1α1

∂f

∂t
(t, y)

+ a1β1

∂f

∂y
(t, y) + a1 · R1(t + α1, y + β1), (5.19)

where

R1(t + α1, y + β1) = α2
1

2

∂2f

∂t2
(ξ , µ) + α1β1

∂2f

∂t∂y
(ξ , µ) + β2

1

2

∂2f

∂y2
(ξ , µ), (5.20)

for some ξ between t and t + α1 and µ between y and y + β1.

Matching the coefficients of f and its derivatives in Eqs. (5.18) and (5.19) gives the

three equations

f (t, y) : a1 = 1;
∂f

∂t
(t, y) : a1α1 = h

2
; and

∂f

∂y
(t, y) : a1β1 = h

2
f (t, y).

The parameters a1, α1, and β1 are therefore

a1 = 1, α1 = h

2
, and β1 = h

2
f (t, y),

so

T (2)(t, y) = f

(

t + h

2
, y + h

2
f (t, y)

)

− R1

(

t + h

2
, y + h

2
f (t, y)

)

,

and from Eq. (5.20),

R1

(

t + h

2
, y + h

2
f (t, y)

)

= h2

8

∂2f

∂t2
(ξ , µ) + h2

4
f (t, y)

∂2f

∂t∂y
(ξ , µ)

+ h2

8
(f (t, y))2 ∂2f

∂y2
(ξ , µ).

If all the second-order partial derivatives of f are bounded, then

R1

(

t + h

2
, y + h

2
f (t, y)

)

is O(h2). As a consequence:

• The order of error for this new method is the same as that of the Taylor method of order

two.

The difference-equation method resulting from replacing T (2)(t, y) in Taylor’s method

of order two by f (t + (h/2), y + (h/2)f (t, y)) is a specific Runge-Kutta method known as

the Midpoint method.
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Midpoint Method

w0 = α,

wi+1 = wi + hf

(

ti + h

2
, wi + h

2
f (ti, wi)

)

, for i = 0, 1, . . . , N − 1.

Only three parameters are present in a1f (t + α1, y + β1) and all are needed in the

match of T (2). So a more complicated form is required to satisfy the conditions for any of

the higher-order Taylor methods.

The most appropriate four-parameter form for approximating

T (3)(t, y) = f (t, y) + h

2
f ′(t, y) + h2

6
f ′′(t, y)

is

a1f (t, y) + a2f (t + α2, y + δ2f (t, y)); (5.21)

and even with this, there is insufficient flexibility to match the term

h2

6

[

∂f

∂y
(t, y)

]2

f (t, y),

resulting from the expansion of (h2/6)f ′′(t, y). Consequently, the best that can be obtained

from using (5.21) are methods with O(h2) local truncation error.

The fact that (5.21) has four parameters, however, gives a flexibility in their choice,

so a number of O(h2) methods can be derived. One of the most important is the Modified

Euler method, which corresponds to choosing a1 = a2 = 1
2

and α2 = δ2 = h. It has the

following difference-equation form.

Modified Euler Method

w0 = α,

wi+1 = wi + h

2
[f (ti, wi) + f (ti+1, wi + hf (ti, wi))], for i = 0, 1, . . . , N − 1.

Example 2 Use the Midpoint method and the Modified Euler method with N = 10, h = 0.2, ti = 0.2i,

and w0 = 0.5 to approximate the solution to our usual example,

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution The difference equations produced from the various formulas are

Midpoint method: wi+1 = 1.22wi − 0.0088i2 − 0.008i + 0.218;

Modified Euler method: wi+1 = 1.22wi − 0.0088i2 − 0.008i + 0.216,

for each i = 0, 1, . . . , 9. The first two steps of these methods give

Midpoint method: w1 = 1.22(0.5) − 0.0088(0)2 − 0.008(0) + 0.218 = 0.828;

Modified Euler method: w1 = 1.22(0.5) − 0.0088(0)2 − 0.008(0) + 0.216 = 0.826,
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and

Midpoint method: w2 = 1.22(0.828) − 0.0088(0.2)2 − 0.008(0.2) + 0.218

= 1.21136;

Modified Euler method: w2 = 1.22(0.826) − 0.0088(0.2)2 − 0.008(0.2) + 0.216

= 1.20692,

Table 5.6 lists all the results of the calculations. For this problem, the Midpoint method

is superior to the Modified Euler method.

Table 5.6 Midpoint Modified Euler

ti y(ti) Method Error Method Error

0.0 0.5000000 0.5000000 0 0.5000000 0

0.2 0.8292986 0.8280000 0.0012986 0.8260000 0.0032986

0.4 1.2140877 1.2113600 0.0027277 1.2069200 0.0071677

0.6 1.6489406 1.6446592 0.0042814 1.6372424 0.0116982

0.8 2.1272295 2.1212842 0.0059453 2.1102357 0.0169938

1.0 2.6408591 2.6331668 0.0076923 2.6176876 0.0231715

1.2 3.1799415 3.1704634 0.0094781 3.1495789 0.0303627

1.4 3.7324000 3.7211654 0.0112346 3.6936862 0.0387138

1.6 4.2834838 4.2706218 0.0128620 4.2350972 0.0483866

1.8 4.8151763 4.8009586 0.0142177 4.7556185 0.0595577

2.0 5.3054720 5.2903695 0.0151025 5.2330546 0.0724173

Runge-Kutta methods are also options within the Maple command InitialValueProblem.

The form and output for Runge-Kutta methods are the same as available under the Euler’s

and Taylor’s methods, as discussed in Sections 5.1 and 5.2.

Higher-Order Runge-Kutta Methods

The term T (3)(t, y) can be approximated with error O(h3) by an expression of the form

f (t + α1, y + δ1f (t + α2, y + δ2f (t, y))),

involving four parameters, the algebra involved in the determination of α1, δ1, α2, and δ2 is

quite involved. The most common O(h3) is Heun’s method, given by

w0 = α

wi+1 = wi + h
4

(

f (ti, wi) + 3f
(

ti + 2h
3

, wi + 2h
3
f

(

ti + h
3
, wi + h

3
f (ti, wi)

)))

,

for i = 0, 1, . . . , N − 1.

Karl Heun (1859–1929) was a

professor at the Technical

University of Karlsruhe. He

introduced this technique in a

paper published in 1900. [Heu]

Illustration Applying Heun’s method with N = 10, h = 0.2, ti = 0.2i, and w0 = 0.5 to approximate

the solution to our usual example,

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.
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288 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

gives the values in Table 5.7. Note the decreased error throughout the range over the Midpoint

and Modified Euler approximations. �

Table 5.7 Heun’s

ti y(ti) Method Error

0.0 0.5000000 0.5000000 0

0.2 0.8292986 0.8292444 0.0000542

0.4 1.2140877 1.2139750 0.0001127

0.6 1.6489406 1.6487659 0.0001747

0.8 2.1272295 2.1269905 0.0002390

1.0 2.6408591 2.6405555 0.0003035

1.2 3.1799415 3.1795763 0.0003653

1.4 3.7324000 3.7319803 0.0004197

1.6 4.2834838 4.2830230 0.0004608

1.8 4.8151763 4.8146966 0.0004797

2.0 5.3054720 5.3050072 0.0004648

Runge-Kutta methods of order three are not generally used. The most common Runge-

Kutta method in use is of order four in difference-equation form, is given by the following.

Runge-Kutta Order Four

w0 = α,

k1 = hf (ti, wi),

k2 = hf

(

ti + h

2
, wi + 1

2
k1

)

,

k3 = hf

(

ti + h

2
, wi + 1

2
k2

)

,

k4 = hf (ti+1, wi + k3),

wi+1 = wi + 1

6
(k1 + 2k2 + 2k3 + k4),

for each i = 0, 1, . . . , N − 1. This method has local truncation error O(h4), provided the

solution y(t) has five continuous derivatives. We introduce the notation k1, k2, k3, k4 into

the method is to eliminate the need for successive nesting in the second variable of f (t, y).

Exercise 32 shows how complicated this nesting becomes.

Algorithm 5.2 implements the Runge-Kutta method of order four.

ALGORITHM

5.2
Runge-Kutta (Order Four)

To approximate the solution of the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; integer N ; initial condition α.

OUTPUT approximation w to y at the (N + 1) values of t.
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Step 1 Set h = (b − a)/N ;

t = a;

w = α;

OUTPUT (t, w).

Step 2 For i = 1, 2, . . . , N do Steps 3–5.

Step 3 Set K1 = hf (t, w);

K2 = hf (t + h/2, w + K1/2);

K3 = hf (t + h/2, w + K2/2);

K4 = hf (t + h, w + K3).

Step 4 Set w = w + (K1 + 2K2 + 2K3 + K4)/6; (Compute wi.)

t = a + ih. (Compute ti.)

Step 5 OUTPUT (t, w).

Step 6 STOP.

Example 3 Use the Runge-Kutta method of order four with h = 0.2, N = 10, and ti = 0.2i to obtain

approximations to the solution of the initial-value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution The approximation to y(0.2) is obtained by

w0 = 0.5

k1 = 0.2f (0, 0.5) = 0.2(1.5) = 0.3

k2 = 0.2f (0.1, 0.65) = 0.328

k3 = 0.2f (0.1, 0.664) = 0.3308

k4 = 0.2f (0.2, 0.8308) = 0.35816

w1 = 0.5 + 1

6
(0.3 + 2(0.328) + 2(0.3308) + 0.35816) = 0.8292933.

The remaining results and their errors are listed in Table 5.8.

Table 5.8 Runge-Kutta

Exact Order Four Error

ti yi = y(ti) wi |yi − wi|

0.0 0.5000000 0.5000000 0

0.2 0.8292986 0.8292933 0.0000053

0.4 1.2140877 1.2140762 0.0000114

0.6 1.6489406 1.6489220 0.0000186

0.8 2.1272295 2.1272027 0.0000269

1.0 2.6408591 2.6408227 0.0000364

1.2 3.1799415 3.1798942 0.0000474

1.4 3.7324000 3.7323401 0.0000599

1.6 4.2834838 4.2834095 0.0000743

1.8 4.8151763 4.8150857 0.0000906

2.0 5.3054720 5.3053630 0.0001089
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290 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

To obtain Runge-Kutta order 4 method results with InitialValueProblem use the option

method = rungekutta, submethod = rk4. The results produced from the following call for

out standard example problem agree with those in Table 5.6.

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = rungekutta, submethod =
rk4, numsteps = 10, output = information, digits = 8)

Computational Comparisons

The main computational effort in applying the Runge-Kutta methods is the evaluation of f .

In the second-order methods, the local truncation error is O(h2), and the cost is two function

evaluations per step. The Runge-Kutta method of order four requires 4 evaluations per step,

and the local truncation error is O(h4). Butcher (see [But] for a summary) has established the

relationship between the number of evaluations per step and the order of the local truncation

error shown in Table 5.9. This table indicates why the methods of order less than five with

smaller step size are used in preference to the higher-order methods using a larger step size.

Table 5.9 Evaluations per step 2 3 4 5 ≤ n ≤ 7 8 ≤ n ≤ 9 10 ≤ n

Best possible local

truncation error
O(h2) O(h3) O(h4) O(hn−1) O(hn−2) O(hn−3)

One measure of comparing the lower-order Runge-Kutta methods is described as

follows:

• The Runge-Kutta method of order four requires four evaluations per step, whereas Euler’s

method requires only one evaluation. Hence if the Runge-Kutta method of order four is

to be superior it should give more accurate answers than Euler’s method with one-fourth

the step size. Similarly, if the Runge-Kutta method of order four is to be superior to the

second-order Runge-Kutta methods, which require two evaluations per step, it should

give more accuracy with step size h than a second-order method with step size h/2.

The following illustrates the superiority of the Runge-Kutta fourth-order method by

this measure for the initial-value problem that we have been considering.

Illustration For the problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5,

Euler’s method with h = 0.025, the Midpoint method with h = 0.05, and the Runge-

Kutta fourth-order method with h = 0.1 are compared at the common mesh points of these

methods 0.1, 0.2, 0.3, 0.4, and 0.5. Each of these techniques requires 20 function evaluations

to determine the values listed in Table 5.10 to approximate y(0.5). In this example, the

fourth-order method is clearly superior. �
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Table 5.10 Modified Runge-Kutta

Euler Euler Order Four

ti Exact h = 0.025 h = 0.05 h = 0.1

0.0 0.5000000 0.5000000 0.5000000 0.5000000

0.1 0.6574145 0.6554982 0.6573085 0.6574144

0.2 0.8292986 0.8253385 0.8290778 0.8292983

0.3 1.0150706 1.0089334 1.0147254 1.0150701

0.4 1.2140877 1.2056345 1.2136079 1.2140869

0.5 1.4256394 1.4147264 1.4250141 1.4256384

E X E R C I S E S E T 5.4

1. Use the Modified Euler method to approximate the solutions to each of the following initial-value

problems, and compare the results to the actual values.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5; actual solution y(t) = 1

5
te3t − 1

25
e3t +

1

25
e−2t .

b. y′ = 1 + (t − y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.5; actual solution y(t) = t + 1

1−t
.

c. y′ = 1 + y/t, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25; actual solution y(t) = t ln t + 2t.

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.25; actual solution y(t) =
1

2
sin 2t − 1

3
cos 3t + 4

3
.

2. Use the Modified Euler method to approximate the solutions to each of the following initial-value

problems, and compare the results to the actual values.

a. y′ = et−y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.5; actual solution y(t) = ln(et + e − 1).

b. y′ = 1 + t

1 + y
, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.5; actual solution y(t) =

√
t2 + 2t + 6 − 1.

c. y′ = −y + ty1/2, 2 ≤ t ≤ 3, y(2) = 2, with h = 0.25; actual solution y(t) =
(

t − 2 +
√

2ee−t/2
)2

.

d. y′ = t−2(sin 2t − 2ty), 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25; actual solution y(t) =
1

2
t−2(4 + cos 2 − cos 2t).

3. Use the Modified Euler method to approximate the solutions to each of the following initial-value

problems, and compare the results to the actual values.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 2, y(1) = 1, with h = 0.1; actual solution y(t) = t/(1 + ln t).

b. y′ = 1 + y/t + (y/t)2, 1 ≤ t ≤ 3, y(1) = 0, with h = 0.2; actual solution y(t) = t tan(ln t).

c. y′ = −(y + 1)(y + 3), 0 ≤ t ≤ 2, y(0) = −2, with h = 0.2; actual solution y(t) =
−3 + 2(1 + e−2t)−1.

d. y′ = −5y+5t2 +2t, 0 ≤ t ≤ 1, y(0) = 1

3
, with h = 0.1; actual solution y(t) = t2 + 1

3
e−5t .

4. Use the Modified Euler method to approximate the solutions to each of the following initial-value

problems, and compare the results to the actual values.

a. y′ = 2 − 2ty

t2 + 1
, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1; actual solution y(t) = 2t + 1

t2 + 1
.

b. y′ = y2

1 + t
, 1 ≤ t ≤ 2, y(1) = −(ln 2)−1, with h = 0.1; actual solution y(t) = −1

ln(t + 1)
.

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.2; actual solution y(t) = 2t

1 − 2t
.

d. y′ = −ty + 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1; actual solution y(t) =
√

4 − 3e−t2
.
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5. Repeat Exercise 1 using the Midpoint method.

6. Repeat Exercise 2 using the Midpoint method.

7. Repeat Exercise 3 using the Midpoint method.

8. Repeat Exercise 4 using the Midpoint method.

9. Repeat Exercise 1 using Heun’s method.

10. Repeat Exercise 2 using Heun’s method.

11. Repeat Exercise 3 using Heun’s method.

12. Repeat Exercise 4 using Heun’s method.

13. Repeat Exercise 1 using the Runge-Kutta method of order four.

14. Repeat Exercise 2 using the Runge-Kutta method of order four.

15. Repeat Exercise 3 using the Runge-Kutta method of order four.

16. Repeat Exercise 4 using the Runge-Kutta method of order four.

17. Use the results of Exercise 3 and linear interpolation to approximate values of y(t), and compare the

results to the actual values.

a. y(1.25) and y(1.93) b. y(2.1) and y(2.75)

c. y(1.3) and y(1.93) d. y(0.54) and y(0.94)

18. Use the results of Exercise 4 and linear interpolation to approximate values of y(t), and compare the

results to the actual values.

a. y(0.54) and y(0.94) b. y(1.25) and y(1.93)

c. y(1.3) and y(2.93) d. y(0.54) and y(0.94)

19. Repeat Exercise 17 using the results of Exercise 7.

20. Repeat Exercise 18 using the results of Exercise 8.

21. Repeat Exercise 17 using the results of Exercise 11.

22. Repeat Exercise 18 using the results of Exercise 12.

23. Repeat Exercise 17 using the results of Exercise 15.

24. Repeat Exercise 18 using the results of Exercise 16.

25. Use the results of Exercise 15 and Cubic Hermite interpolation to approximate values of y(t), and

compare the approximations to the actual values.

a. y(1.25) and y(1.93) b. y(2.1) and y(2.75)

c. y(1.3) and y(1.93) d. y(0.54) and y(0.94)

26. Use the results of Exercise 16 and Cubic Hermite interpolation to approximate values of y(t), and

compare the approximations to the actual values.

a. y(0.54) and y(0.94) b. y(1.25) and y(1.93)

c. y(1.3) and y(2.93) d. y(0.54) and y(0.94)

27. Show that the Midpoint method and the Modified Euler method give the same approximations to the

initial-value problem

y′ = −y + t + 1, 0 ≤ t ≤ 1, y(0) = 1,

for any choice of h. Why is this true?

28. Water flows from an inverted conical tank with circular orifice at the rate

dx

dt
= −0.6πr2

√

2g

√
x

A(x)
,

where r is the radius of the orifice, x is the height of the liquid level from the vertex of the cone,

and A(x) is the area of the cross section of the tank x units above the orifice. Suppose r = 0.1 ft,

g = 32.1 ft/s2, and the tank has an initial water level of 8 ft and initial volume of 512(π/3) ft3. Use

the Runge-Kutta method of order four to find the following.

a. The water level after 10 min with h = 20 s

b. When the tank will be empty, to within 1 min.
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29. The irreversible chemical reaction in which two molecules of solid potassium dichromate (K2Cr2O7),

two molecules of water (H2O), and three atoms of solid sulfur (S) combine to yield three molecules of

the gas sulfur dioxide (SO2), four molecules of solid potassium hydroxide (KOH), and two molecules

of solid chromic oxide (Cr2O3) can be represented symbolically by the stoichiometric equation:

2K2Cr2O7 + 2H2O + 3S −→ 4KOH + 2Cr2O3 + 3SO2.

If n1 molecules of K2Cr2O7, n2 molecules of H2O, and n3 molecules of S are originally available, the

following differential equation describes the amount x(t) of KOH after time t:

dx

dt
= k

(

n1 − x

2

)2 (

n2 − x

2

)2 (

n3 − 3x

4

)3

,

where k is the velocity constant of the reaction. If k = 6.22 × 10−19, n1 = n2 = 2 × 103, and

n3 = 3 × 103, use the Runge-Kutta method of order four to determine how many units of potassium

hydroxide will have been formed after 0.2 s?

30. Show that the difference method

w0 = α,

wi+1 = wi + a1f (ti, wi) + a2f (ti + α2, w1 + δ2f (ti, wi)),

for each i = 0, 1, . . . , N − 1, cannot have local truncation error O(h3) for any choice of constants

a1, a2, α2, and δ2.

31. Show that Heun’s method can be expressed in difference form, similar to that of the Runge-Kutta

method of order four, as

w0 = α,

k1 = hf (ti, wi),

k2 = hf

(

ti + h

3
, wi + 1

3
k1

)

,

k3 = hf

(

ti + 2h

3
, wi + 2

3
k2

)

,

wi+1 = wi + 1

4
(k1 + 3k3),

for each i = 0, 1, . . . , N − 1.

32. The Runge-Kutta method of order four can be written in the form

w0 = α,

wi+1 = wi + h

6
f (ti, wi) + h

3
f (ti + α1h, wi + δ1hf (ti, wi))

+ h

3
f (ti + α2h, wi + δ2hf (ti + γ2h, wi + γ3hf (ti, wi)))

+ h

6
f (ti + α3h, wi + δ3hf (ti + γ4h, wi + γ5hf (ti + γ6h, wi + γ7hf (ti, wi)))).

Find the values of the constants

α1, α2, α3, δ1, δ2, δ3, γ2, γ3, γ4, γ5, γ6, and γ7.

5.5 Error Control and the Runge-Kutta-Fehlberg Method

In Section 4.6 we saw that the appropriate use of varying step sizes for integral approxima-

tions produced efficient methods. In itself, this might not be sufficient to favor these methods

due to the increased complication of applying them. However, they have another feature
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294 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

that makes them worthwhile. They incorporate in the step-size procedure an estimate of

the truncation error that does not require the approximation of the higher derivatives of the

function. These methods are called adaptive because they adapt the number and position

of the nodes used in the approximation to ensure that the truncation error is kept within a

specified bound.

You might like to review the

Adaptive Quadrature material in

Section 4.6 before considering

this material.

There is a close connection between the problem of approximating the value of a

definite integral and that of approximating the solution to an initial-value problem. It is

not surprising, then, that there are adaptive methods for approximating the solutions to

initial-value problems and that these methods are not only efficient, but also incorporate the

control of error.

Any one-step method for approximating the solution, y(t), of the initial-value problem

y′ = f (t, y), for a ≤ t ≤ b, with y(a) = α

can be expressed in the form

wi+1 = wi + hiφ(ti, wi, hi), for i = 0, 1, . . . , N − 1,

for some function φ.

An ideal difference-equation method

wi+1 = wi + hiφ(ti, wi, hi), i = 0, 1, . . . , N − 1,

for approximating the solution, y(t), to the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

would have the property that, given a tolerance ε > 0, a minimal number of mesh points

could be used to ensure that the global error, | y(ti) − wi|, did not exceed ε for any i =
0, 1, . . . , N . Having a minimal number of mesh points and also controlling the global error

of a difference method is, not surprisingly, inconsistent with the points being equally spaced

in the interval. In this section we examine techniques used to control the error of a difference-

equation method in an efficient manner by the appropriate choice of mesh points.

Although we cannot generally determine the global error of a method, we will see

in Section 5.10 that there is a close connection between the local truncation error and the

global error. By using methods of differing order we can predict the local truncation error

and, using this prediction, choose a step size that will keep it and the global error in check.

To illustrate the technique, suppose that we have two approximation techniques. The

first is obtained from an nth-order Taylor method of the form

y(ti+1) = y(ti) + hφ(ti, y(ti), h) + O(hn+1),

and produces approximations with local truncation error τi+1(h) = O(hn). It is given by

w0 = α

wi+1 = wi + hφ(ti, wi, h), for i > 0.

In general, the method is generated by applying a Runge-Kutta modification to the Taylor

method, but the specific derivation is unimportant.

The second method is similar but one order higher; it comes from an (n + 1)st-order

Taylor method of the form

y(ti+1) = y(ti) + hφ̃(ti, y(ti), h) + O(hn+2),
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5.5 Error Control and the Runge-Kutta-Fehlberg Method 295

and produces approximations with local truncation error τ̃i+1(h) = O(hn+1). It is given by

w̃0 = α

w̃i+1 = w̃i + hφ̃(ti, w̃i, h), for i > 0.

We first make the assumption that wi ≈ y(ti) ≈ w̃i and choose a fixed step size h to

generate the approximations wi+1 and w̃i+1 to y(ti+1). Then

τi+1(h) = y(ti+1) − y(ti)

h
− φ(ti, y(ti), h)

= y(ti+1) − wi

h
− φ(ti, wi, h)

= y(ti+1) − [wi + hφ(ti, wi, h)]
h

= 1

h
(y(ti+1) − wi+1).

In a similar manner, we have

τ̃i+1(h) = 1

h
(y(ti+1) − w̃i+1).

As a consequence, we have

τi+1(h) = 1

h
(y(ti+1) − wi+1)

= 1

h
[(y(ti+1) − w̃i+1) + (w̃i+1 − wi+1)]

= τ̃i+1(h) + 1

h
(w̃i+1 − wi+1).

But τi+1(h) is O(hn) and τ̃i+1(h) is O(hn+1), so the significant portion of τi+1(h) must come

from

1

h
(w̃i+1 − wi+1) .

This gives us an easily computed approximation for the local truncation error of the O(hn)

method:

τi+1(h) ≈ 1

h
(w̃i+1 − wi+1) .

The object, however, is not simply to estimate the local truncation error but to adjust

the step size to keep it within a specified bound. To do this we now assume that since τi+1(h)

is O(hn), a number K , independent of h, exists with

τi+1(h) ≈ Khn.

Then the local truncation error produced by applying the nth-order method with a new step

size qh can be estimated using the original approximations wi+1 and w̃i+1:

τi+1(qh) ≈ K(qh)n = qn(Khn) ≈ qnτi+1(h) ≈ qn

h
(w̃i+1 − wi+1).

To bound τi+1(qh) by ε, we choose q so that

qn

h
|w̃i+1 − wi+1| ≈ |τi+1(qh)| ≤ ε;
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296 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

that is, so that

q ≤
(

εh

|w̃i+1 − wi+1|

)1/n

. (5.22)

Erwin Fehlberg developed this

and other error control techniques

while working for the NASA

facility in Huntsville, Alabama

during the 1960s. He received

the Exceptional Scientific

Achievement Medal from NASA

in 1969.

Runge-Kutta-Fehlberg Method

One popular technique that uses Inequality (5.22) for error control is the Runge-Kutta-

Fehlberg method. (See [Fe].) This technique uses a Runge-Kutta method with local trun-

cation error of order five,

w̃i+1 = wi + 16

135
k1 + 6656

12825
k3 + 28561

56430
k4 − 9

50
k5 + 2

55
k6,

to estimate the local error in a Runge-Kutta method of order four given by

wi+1 = wi + 25

216
k1 + 1408

2565
k3 + 2197

4104
k4 − 1

5
k5,

where the coefficient equations are

k1 = hf (ti, wi),

k2 = hf

(

ti + h

4
, wi + 1

4
k1

)

,

k3 = hf

(

ti + 3h

8
, wi + 3

32
k1 + 9

32
k2

)

,

k4 = hf

(

ti + 12h

13
, wi + 1932

2197
k1 − 7200

2197
k2 + 7296

2197
k3

)

,

k5 = hf

(

ti + h, wi + 439

216
k1 − 8k2 + 3680

513
k3 − 845

4104
k4

)

,

k6 = hf

(

ti + h

2
, wi − 8

27
k1 + 2k2 − 3544

2565
k3 + 1859

4104
k4 − 11

40
k5

)

.

An advantage to this method is that only six evaluations of f are required per step. Arbitrary

Runge-Kutta methods of orders four and five used together (see Table 5.9 on page 290)

require at least four evaluations of f for the fourth-order method and an additional six for

the fifth-order method, for a total of at least ten function evaluations. So the Runge-Kutta-

Fehlberg method has at least a 40% decrease in the number of function evaluations over the

use of a pair of arbitrary fourth- and fifth-order methods.

In the error-control theory, an initial value of h at the ith step is used to find the first values

of wi+1 and w̃i+1, which leads to the determination of q for that step, and then the calculations

were repeated. This procedure requires twice the number of function evaluations per step

as without the error control. In practice, the value of q to be used is chosen somewhat

differently in order to make the increased function-evaluation cost worthwhile. The value

of q determined at the ith step is used for two purposes:

• When q < 1: to reject the initial choice of h at the ith step and repeat the calculations

using qh, and

• When q ≥ 1: to accept the computed value at the ith step using the step size h, but change

the step size to qh for the (i + 1)st step.
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5.5 Error Control and the Runge-Kutta-Fehlberg Method 297

Because of the penalty in terms of function evaluations that must be paid if the steps are

repeated, q tends to be chosen conservatively. In fact, for the Runge-Kutta-Fehlberg method

with n = 4, a common choice is

q =
(

εh

2|w̃i+1 − wi+1|

)1/4

= 0.84

(

εh

|w̃i+1 − wi+1|

)1/4

.

In Algorithm 5.3 for the Runge-Kutta-Fehlberg method, Step 9 is added to eliminate

large modifications in step size. This is done to avoid spending too much time with small step

sizes in regions with irregularities in the derivatives of y, and to avoid large step sizes, which

can result in skipping sensitive regions between the steps. The step-size increase procedure

could be omitted completely from the algorithm, and the step-size decrease procedure used

only when needed to bring the error under control.

ALGORITHM

5.3
Runge-Kutta-Fehlberg

To approximate the solution of the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

with local truncation error within a given tolerance:

INPUT endpoints a, b; initial condition α; tolerance TOL; maximum step size hmax;

minimum step size hmin.

OUTPUT t, w, h where w approximates y(t) and the step size h was used, or a message

that the minimum step size was exceeded.

Step 1 Set t = a;

w = α;

h = hmax;

FLAG = 1;

OUTPUT (t, w).

Step 2 While (FLAG = 1) do Steps 3–11.

Step 3 Set K1 = hf (t, w);

K2 = hf
(

t + 1
4
h, w + 1

4
K1

)

;

K3 = hf
(

t + 3
8
h, w + 3

32
K1 + 9

32
K2

)

;

K4 = hf
(

t + 12
13

h, w + 1932
2197

K1 − 7200
2197

K2 + 7296
2197

K3

)

;

K5 = hf
(

t + h, w + 439
216

K1 − 8K2 + 3680
513

K3 − 845
4104

K4

)

;

K6 = hf
(

t + 1
2
h, w − 8

27
K1 + 2K2 − 3544

2565
K3 + 1859

4104
K4 − 11

40
K5

)

.

Step 4 Set R = 1
h
| 1

360
K1 − 128

4275
K3 − 2197

75240
K4 + 1

50
K5 + 2

55
K6|.

(Note: R = 1
h
|w̃i+1 − wi+1|.)

Step 5 If R ≤ TOL then do Steps 6 and 7.

Step 6 Set t = t + h; (Approximation accepted.)

w = w + 25
216

K1 + 1408
2565

K3 + 2197
4104

K4 − 1
5
K5.
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Step 7 OUTPUT (t, w, h).

Step 8 Set δ = 0.84(TOL/R)1/4.

Step 9 If δ ≤ 0.1 then set h = 0.1h

else if δ ≥ 4 then set h = 4h

else set h = δh. (Calculate new h.)

Step 10 If h > hmax then set h = hmax.

Step 11 If t ≥ b then set FLAG = 0

else if t + h > b then set h = b − t

else if h < hmin then

set FLAG = 0;

OUTPUT (‘minimum h exceeded’).

(Procedure completed unsuccessfully.)

Step 12 (The procedure is complete.)

STOP.

Example 1 Use the Runge-Kutta-Fehlberg method with a tolerance TOL = 10−5, a maximum step size

hmax = 0.25, and a minimum step size hmin = 0.01 to approximate the solution to the

initial-value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5,

and compare the results with the exact solution y(t) = (t + 1)2 − 0.5et .

Solution We will work through the first step of the calculations and then apply Algorithm

5.3 to determine the remaining results. The initial condition gives t0 = 0 and w0 = 0.5. To

determine w1 using h = 0.25, the maximum allowable stepsize, we compute

k1 = hf (t0, w0) = 0.25
(

0.5 − 02 + 1
)

= 0.375;

k2 = hf

(

t0 + 1

4
h, w0 + 1

4
k1

)

= 0.25

(

1

4
0.25, 0.5 + 1

4
0.375

)

= 0.3974609;

k3 = hf

(

t0 + 3

8
h, w0 + 3

32
k1 + 9

32
k2

)

= 0.25

(

0.09375, 0.5 + 3

32
0.375 + 9

32
0.3974609

)

= 0.4095383;

k4 = hf

(

t0 + 12

13
h, w0 + 1932

2197
k1 − 7200

2197
k2 + 7296

2197
k3

)

= 0.25

(

0.2307692, 0.5 + 1932

2197
0.375 − 7200

2197
0.3974609 + 7296

2197
0.4095383

)

= 0.4584971;

k5 = hf

(

t0 + h, w0 + 439

216
k1 − 8k2 + 3680

513
k3 − 845

4104
k4

)

= 0.25

(

0.25, 0.5 + 439

216
0.375 − 8(0.3974609) + 3680

513
0.4095383 − 845

4104
0.4584971

)

= 0.4658452;
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k6 = hf

(

t0 + 1

2
h, w0 − 8

27
k1 + 2k2 − 3544

2565
k3 + 1859

4104
k4 − 11

40
k5

)

= 0.25

(

0.125, 0.5 − 8

27
0.375 + 2(0.3974609) − 3544

2565
0.4095383

+ 1859

4104
0.4584971 − 11

40
0.4658452

)

= 0.4204789.

The two approximations to y(0.25) are then found to be

w̃1 = w0 + 16

135
k1 + 6656

12825
k3 + 28561

56430
k4 − 9

50
k5 + 2

55
k6

= 0.5 + 16

135
0.375 + 6656

12825
0.4095383 + 28561

56430
0.4584971 − 9

50
0.4658452

+ 2

55
0.4204789

= 0.9204870,

and

w1 = w0 + 25

216
k1 + 1408

2565
k3 + 2197

4104
k4 − 1

5
k5

= 0.5 + 25

216
0.375 + 1408

2565
0.4095383 + 2197

4104
0.4584971 − 1

5
0.4658452

= 0.9204886.

This also implies that

R = 1

0.25

∣

∣

∣

∣

1

360
k1 − 128

4275
k3 − 2197

75240
k4 + 1

50
k5 + 2

55
k6

∣

∣

∣

∣

= 4

∣

∣

∣

∣

1

360
0.375 − 128

4275
0.4095383 − 2197

75240
0.4584971 + 1

50
0.4658452 + 2

55
0.4204789

∣

∣

∣

∣

= 0.00000621388,

and

q = 0.84
( ε

R

)1/4

= 0.84

(

0.00001

0.00000621388

)1/4

= 0.9461033291.

Since q < 1 we can accept the approximation 0.9204886 for y(0.25) but we should adjust

the step size for the next iteration to h = 0.9461033291(0.25) ≈ 0.2365258. However,

only the leading 5 digits of this result would be expected to be accurate because R has only

about 5 digits of accuracy. Because we are effectively subtracting the nearly equal numbers

wi and w̃i when we compute R, there is a good likelihood of round-off error. This is an

additional reason for being conservative when computing q.

The results from the algorithm are shown in Table 5.11. Increased accuracy has been

used to ensure that the calculations are accurate to all listed places. The last two columns

in Table 5.11 show the results of the fifth-order method. For small values of t, the error is

less than the error in the fourth-order method, but the error exceeds that of the fourth-order

method when t increases.
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300 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

Table 5.11

RKF-4 RKF-5

ti yi = y(ti) wi hi Ri |yi − wi| ŵi |yi − ŵi|

0 0.5 0.5 0.5

0.2500000 0.9204873 0.9204886 0.2500000 6.2 × 10−6 1.3 × 10−6 0.9204870 2.424 × 10−7

0.4865522 1.3964884 1.3964910 0.2365522 4.5 × 10−6 2.6 × 10−6 1.3964900 1.510 × 10−6

0.7293332 1.9537446 1.9537488 0.2427810 4.3 × 10−6 4.2 × 10−6 1.9537477 3.136 × 10−6

0.9793332 2.5864198 2.5864260 0.2500000 3.8 × 10−6 6.2 × 10−6 2.5864251 5.242 × 10−6

1.2293332 3.2604520 3.2604605 0.2500000 2.4 × 10−6 8.5 × 10−6 3.2604599 7.895 × 10−6

1.4793332 3.9520844 3.9520955 0.2500000 7 × 10−7 1.11 × 10−5 3.9520954 1.096 × 10−5

1.7293332 4.6308127 4.6308268 0.2500000 1.5 × 10−6 1.41 × 10−5 4.6308272 1.446 × 10−5

1.9793332 5.2574687 5.2574861 0.2500000 4.3 × 10−6 1.73 × 10−5 5.2574871 1.839 × 10−5

2.0000000 5.3054720 5.3054896 0.0206668 1.77 × 10−5 5.3054896 1.768 × 10−5

An implementation of the Runge-Kutta-Fehlberg method is also available in Maple

using the InitialValueProblem command. However, it differs from our presentation because

it does not require the specification of a tolerance for the solution. For our example problem

it is called with

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = rungekutta, submethod =
rkf, numsteps = 10, output = information, digits = 8)

As usual, the information is placed in a table that is accessed by double clicking on the

output. The results can be printed in the method outlined in precious sections.

E X E R C I S E S E T 5.5

1. Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10−4, hmax = 0.25, and hmin = 0.05

to approximate the solutions to the following initial-value problems. Compare the results to the actual

values.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0; actual solution y(t) = 1

5
te3t − 1

25
e3t + 1

25
e−2t .

b. y′ = 1 + (t − y)2, 2 ≤ t ≤ 3, y(2) = 1; actual solution y(t) = t + 1/(1 − t).

c. y′ = 1 + y/t, 1 ≤ t ≤ 2, y(1) = 2; actual solution y(t) = t ln t + 2t.

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1; actual solution y(t) = 1

2
sin 2t − 1

3
cos 3t + 4

3
.

2. Use the Runge-Kutta Fehlberg Algorithm with tolerance TOL = 10−4 to approximate the solution to

the following initial-value problems.

a. y′ = (y/t)2 + y/t, 1 ≤ t ≤ 1.2, y(1) = 1, with hmax = 0.05 and hmin = 0.02.

b. y′ = sin t + e−t , 0 ≤ t ≤ 1, y(0) = 0, with hmax = 0.25 and hmin = 0.02.

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with hmax = 0.5 and hmin = 0.02.

d. y′ = t2, 0 ≤ t ≤ 2, y(0) = 0, with hmax = 0.5 and hmin = 0.02.

3. Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10−6, hmax = 0.5, and hmin = 0.05 to

approximate the solutions to the following initial-value problems. Compare the results to the actual

values.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 4, y(1) = 1; actual solution y(t) = t/(1 + ln t).

b. y′ = 1 + y/t + (y/t)2, 1 ≤ t ≤ 3, y(1) = 0; actual solution y(t) = t tan(ln t).

c. y′ = −(y + 1)(y + 3), 0 ≤ t ≤ 3, y(0) = −2; actual solution y(t) = −3 + 2(1 + e−2t)−1.

d. y′ = (t + 2t3)y3 − ty, 0 ≤ t ≤ 2, y(0) = 1

3
; actual solution y(t) = (3 + 2t2 + 6et2

)−1/2.
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4. The Runge-Kutta-Verner method (see [Ve]) is based on the formulas

wi+1 = wi + 13

160
k1 + 2375

5984
k3 + 5

16
k4 + 12

85
k5 + 3

44
k6 and

w̃i+1 = wi + 3

40
k1 + 875

2244
k3 + 23

72
k4 + 264

1955
k5 + 125

11592
k7 + 43

616
k8,

where

k1 = hf (ti, wi),

k2 = hf

(

ti + h

6
, wi + 1

6
k1

)

,

k3 = hf

(

ti + 4h

15
, wi + 4

75
k1 + 16

75
k2

)

,

k4 = hf

(

ti + 2h

3
, wi + 5

6
k1 − 8

3
k2 + 5

2
k3

)

,

k5 = hf

(

ti + 5h

6
, wi − 165

64
k1 + 55

6
k2 − 425

64
k3 + 85

96
k4

)

,

k6 = hf

(

ti + h, wi + 12

5
k1 − 8k2 + 4015

612
k3 − 11

36
k4 + 88

255
k5

)

,

k7 = hf

(

ti + h

15
, wi − 8263

15000
k1 + 124

75
k2 − 643

680
k3 − 81

250
k4 + 2484

10625
k5

)

,

k8 = hf

(

ti + h, wi + 3501

1720
k1 − 300

43
k2 + 297275

52632
k3 − 319

2322
k4 + 24068

84065
k5 + 3850

26703
k7

)

.

The sixth-order method w̃i+1 is used to estimate the error in the fifth-order method wi+1. Construct

an algorithm similar to the Runge-Kutta-Fehlberg Algorithm, and repeat Exercise 3 using this new

method.

5. In the theory of the spread of contagious disease (see [Ba1] or [Ba2]), a relatively elementary dif-

ferential equation can be used to predict the number of infective individuals in the population at any

time, provided appropriate simplification assumptions are made. In particular, let us assume that all

individuals in a fixed population have an equally likely chance of being infected and once infected

remain in that state. Suppose x(t) denotes the number of susceptible individuals at time t and y(t)

denotes the number of infectives. It is reasonable to assume that the rate at which the number of

infectives changes is proportional to the product of x(t) and y(t) because the rate depends on both the

number of infectives and the number of susceptibles present at that time. If the population is large

enough to assume that x(t) and y(t) are continuous variables, the problem can be expressed

y′(t) = kx(t)y(t),

where k is a constant and x(t) + y(t) = m, the total population. This equation can be rewritten

involving only y(t) as

y′(t) = k(m − y(t))y(t).

a. Assuming that m = 100,000, y(0) = 1000, k = 2 × 10−6, and that time is measured in days,

find an approximation to the number of infective individuals at the end of 30 days.

b. The differential equation in part (a) is called a Bernoulli equation and it can be transformed into

a linear differential equation in u(t) = (y(t))−1. Use this technique to find the exact solution to

the equation, under the same assumptions as in part (a), and compare the true value of y(t) to

the approximation given there. What is limt→∞ y(t) ? Does this agree with your intuition?

6. In the previous exercise, all infected individuals remained in the population to spread the disease.

A more realistic proposal is to introduce a third variable z(t) to represent the number of individuals
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302 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

who are removed from the affected population at a given time t by isolation, recovery and consequent

immunity, or death. This quite naturally complicates the problem, but it can be shown (see [Ba2]) that

an approximate solution can be given in the form

x(t) = x(0)e−(k1/k2)z(t) and y(t) = m − x(t) − z(t),

where k1 is the infective rate, k2 is the removal rate, and z(t) is determined from the differential

equation

z′(t) = k2

(

m − z(t) − x(0)e−(k1/k2)z(t)
)

.

The authors are not aware of any technique for solving this problem directly, so a numerical procedure

must be applied. Find an approximation to z(30), y(30), and x(30), assuming that m = 100,000,

x(0) = 99,000, k1 = 2 × 10−6, and k2 = 10−4.

5.6 Multistep Methods

The methods discussed to this point in the chapter are called one-step methods because the

approximation for the mesh point ti+1 involves information from only one of the previous

mesh points, ti. Although these methods might use function evaluation information at points

between ti and ti+1, they do not retain that information for direct use in future approximations.

All the information used by these methods is obtained within the subinterval over which

the solution is being approximated.

The approximate solution is available at each of the mesh points t0, t1, . . . , ti before the

approximation at ti+1 is obtained, and because the error |wj − y(tj)| tends to increase with j,

so it seems reasonable to develop methods that use these more accurate previous data when

approximating the solution at ti+1.

Methods using the approximation at more than one previous mesh point to determine

the approximation at the next point are called multistep methods. The precise definition of

these methods follows, together with the definition of the two types of multistep methods.

Definition 5.14 An m-step multistep method for solving the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α, (5.23)

has a difference equation for finding the approximation wi+1 at the mesh point ti+1 repre-

sented by the following equation, where m is an integer greater than 1:

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m

+ h[bmf (ti+1, wi+1) + bm−1f (ti, wi)

+ · · · + b0f (ti+1−m, wi+1−m)], (5.24)

for i = m − 1, m, . . . , N − 1, where h = (b − a)/N , the a0, a1, . . . , am−1 and b0, b1, . . . , bm

are constants, and the starting values

w0 = α, w1 = α1, w2 = α2, . . . , wm−1 = αm−1

are specified.

When bm = 0 the method is called explicit, or open, because Eq. (5.24) then gives

wi+1 explicitly in terms of previously determined values. When bm �= 0 the method is called
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implicit, or closed, because wi+1 occurs on both sides of Eq. (5.243), so wi+1 is specified

only implicitly.

For example, the equations

w0 = α, w1 = α1, w2 = α2, w3 = α3,

wi+1 = wi + h

24
[55f (ti, wi) − 59f (ti−1, wi−1) + 37f (ti−2, wi−2) − 9f (ti−3, wi−3)],

(5.25)

for each i = 3, 4, . . . , N −1, define an explicit four-step method known as the fourth-order

Adams-Bashforth technique. The equations

The Adams-Bashforth techniques

are due to John Couch Adams

(1819–1892), who did significant

work in mathematics and

astronomy. He developed these

numerical techniques to

approximate the solution of a

fluid-flow problem posed by

Bashforth. w0 = α, w1 = α1, w2 = α2,

wi+1 = wi + h

24
[9f (ti+1, wi+1) + 19f (ti, wi) − 5f (ti−1, wi−1) + f (ti−2, wi−2)], (5.26)

for each i = 2, 3, . . . , N−1, define an implicit three-step method known as the fourth-order

Adams-Moulton technique.Forest Ray Moulton (1872–1952)

was in charge of ballistics at the

Aberdeen Proving Grounds in

Maryland during World War I.

He was a prolific author, writing

numerous books in mathematics

and astronomy, and developed

improved multistep methods for

solving ballistic equations.

The starting values in either (5.25) or (5.26) must be specified, generally by assuming

w0 = α and generating the remaining values by either a Runge-Kutta or Taylor method. We

will see that the implicit methods are generally more accurate then the explicit methods,

but to apply an implicit method such as (5.25) directly, we must solve the implicit equation

for wi+1. This is not always possible,and even when it can be done the solution for wi+1

may not be unique.

Example 1 In Example 3 of Section 5.4 (see Table 5.8 on page 289) we used the Runge-Kutta method

of order four with h = 0.2 to approximate the solutions to the initial value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

The first four approximations were found to be y(0) = w0 = 0.5, y(0.2) ≈ w1 =
0.8292933, y(0.4) ≈ w2 = 1.2140762, and y(0.6) ≈ w3 = 1.6489220. Use these as

starting values for the fourth-order Adams-Bashforth method to compute new approxima-

tions for y(0.8) and y(1.0), and compare these new approximations to those produced by

the Runge-Kutta method of order four.

Solution For the fourth-order Adams-Bashforth we have

y(0.8) ≈ w4 = w3 + 0.2

24
(55f (0.6, w3) − 59f (0.4, w2) + 37f (0.2, w1) − 9f (0, w0))

= 1.6489220 + 0.2

24
(55f (0.6, 1.6489220) − 59f (0.4, 1.2140762)

+ 37f (0.2, 0.8292933) − 9f (0, 0.5))

= 1.6489220 + 0.0083333(55(2.2889220) − 59(2.0540762)

+ 37(1.7892933) − 9(1.5))

= 2.1272892,
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and

y(1.0) ≈ w5 = w4 + 0.2

24
(55f (0.8, w4) − 59f (0.6, w3) + 37f (0.4, w2) − 9f (0.2, w1))

= 2.1272892 + 0.2

24
(55f (0.8, 2.1272892) − 59f (0.6, 1.6489220)

+ 37f (0.4, 1.2140762) − 9f (0.2, 0.8292933))

= 2.1272892 + 0.0083333(55(2.4872892) − 59(2.2889220)

+ 37(2.0540762) − 9(1.7892933))

= 2.6410533,

The error for these approximations at t = 0.8 and t = 1.0 are, respectively

|2.1272295 − 2.1272892| = 5.97 × 10−5 and |2.6410533 − 2.6408591| = 1.94 × 10−4.

The corresponding Runge-Kutta approximations had errors

|2.1272027 − 2.1272892| = 2.69 × 10−5 and |2.6408227 − 2.6408591| = 3.64 × 10−5.

Adams was particularly

interested in the using his ability

for accurate numerical

calculations to investigate the

orbits of the planets. He predicted

the existence of Neptune by

analyzing the irregularities in the

planet Uranus, and developed

various numerical integration

techniques to assist in the

approximation of the solution of

differential equations.

To begin the derivation of a multistep method, note that the solution to the initial-value

problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

if integrated over the interval [ti, ti+1], has the property that

y(ti+1) − y(ti) =
∫ ti+1

ti

y′(t) dt =
∫ ti+1

ti

f (t, y(t)) dt.

Consequently,

y(ti+1) = y(ti) +
∫ ti+1

ti

f (t, y(t)) dt. (5.27)

However we cannot integrate f (t, y(t)) without knowing y(t), the solution to the prob-

lem, so we instead integrate an interpolating polynomial P(t) to f (t, y(t)), one that is

determined by some of the previously obtained data points (t0, w0), (t1, w1), . . . , (ti, wi).

When we assume, in addition, that y(ti) ≈ wi, Eq. (5.27) becomes

y(ti+1) ≈ wi +
∫ ti+1

ti

P(t) dt. (5.28)

Although any form of the interpolating polynomial can be used for the derivation, it is most

convenient to use the Newton backward-difference formula, because this form more easily

incorporates the most recently calculated data.

To derive an Adams-Bashforth explicit m-step technique, we form the backward-

difference polynomial Pm−1(t) through

(ti, f (ti, y(ti))), (ti−1, f (ti−1, y(ti−1))), . . . , (ti+1−m, f (ti+1−m, y(ti+1−m))).

Since Pm−1(t) is an interpolatory polynomial of degree m−1, some number ξi in (ti+1−m, ti)

exists with

f (t, y(t)) = Pm−1(t) + f (m)(ξi, y(ξi))

m! (t − ti)(t − ti−1) · · · (t − ti+1−m).
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Introducing the variable substitution t = ti + sh, with dt = h ds, into Pm−1(t) and the error

term implies that

∫ ti+1

ti

f (t, y(t)) dt =
∫ ti+1

ti

m−1
∑

k=0

(−1)k

(−s

k

)

∇kf (ti, y(ti)) dt

+
∫ ti+1

ti

f (m)(ξi, y(ξi))

m! (t − ti)(t − ti−1) · · · (t − ti+1−m) dt

=
m−1
∑

k=0

∇kf (ti, y(ti))h(−1)k

∫ 1

0

(−s

k

)

ds

+ hm+1

m!

∫ 1

0

s(s + 1) · · · (s + m − 1)f (m)(ξi, y(ξi)) ds.

The integrals (−1)k
∫ 1

0

(−s

k

)

ds for various values of k are easily evaluated and are listed in

Table 5.12. For example, when k = 3,

(−1)3

∫ 1

0

(−s

3

)

ds = −
∫ 1

0

(−s)(−s − 1)(−s − 2)

1 · 2 · 3
ds

= 1

6

∫ 1

0

(s3 + 3s2 + 2s) ds

= 1

6

[

s4

4
+ s3 + s2

]1

0

= 1

6

(

9

4

)

= 3

8
.

As a consequence,
∫ ti+1

ti

f (t, y(t)) dt = h

[

f (ti, y(ti)) + 1

2
∇f (ti, y(ti)) + 5

12
∇2f (ti, y(ti)) + · · ·

]

+ hm+1

m!

∫ 1

0

s(s + 1) · · · (s + m − 1)f (m)(ξi, y(ξi)) ds. (5.29)

Table 5.12

k

∫ 1

0

(−s

k

)

ds

0 1

1
1

2

2
5

12

3
3

8

4
251

720

5
95

288

Because s(s + 1) · · · (s + m − 1) does not change sign on [0, 1], the Weighted Mean

Value Theorem for Integrals can be used to deduce that for some number µi, where ti+1−m <

µi < ti+1, the error term in Eq. (5.29) becomes

hm+1

m!

∫ 1

0

s(s + 1) · · · (s + m − 1)f (m)(ξi, y(ξi)) ds

= hm+1f (m)(µi, y(µi))

m!

∫ 1

0

s(s + 1) · · · (s + m − 1) ds.

Hence the error in (5.29) simplifies to

hm+1f (m)(µi, y(µi))(−1)m

∫ 1

0

(−s

m

)

ds. (5.30)

But y(ti+1) − y(ti) =
∫ ti+1

ti
f (t, y(t)) dt, so Eq. (5.27) can be written as

y(ti+1) = y(ti) + h

[

f (ti, y(ti)) + 1

2
∇f (ti, y(ti)) + 5

12
∇2f (ti, y(ti)) + · · ·

]

+ hm+1f (m)(µi, y(µi))(−1)m

∫ 1

0

(−s

m

)

ds. (5.31)
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Example 2 Use Eq. (5.31) with m = 3 to derive the three-step Adams-Bashforth technique.

Solution We have

y(ti+1) ≈ y(ti) + h

[

f (ti, y(ti)) + 1

2
∇f (ti, y(ti)) + 5

12
∇2f (ti, y(ti))

]

= y(ti) + h

{

f (ti, y(ti)) + 1

2
[f (ti, y(ti)) − f (ti−1, y(ti−1))]

+ 5

12
[f (ti, y(ti)) − 2f (ti−1, y(ti−1)) + f (ti−2, y(ti−2))]

}

= y(ti) + h

12
[23f (ti, y(ti)) − 16f (ti−1, y(ti−1)) + 5f (ti−2, y(ti−2))].

The three-step Adams-Bashforth method is, consequently,

w0 = α, w1 = α1, w2 = α2,

wi+1 = wi + h

12
[23f (ti, wi) − 16f (ti−1, wi−1)] + 5f (ti−2, wi−2)],

for i = 2, 3, . . . , N − 1.

Multistep methods can also be derived using Taylor series. An example of the proce-

dure involved is considered in Exercise 12. A derivation using a Lagrange interpolating

polynomial is discussed in Exercise 11.

The local truncation error for multistep methods is defined analogously to that of

one-step methods. As in the case of one-step methods, the local truncation error provides a

measure of how the solution to the differential equation fails to solve the difference equation.

Definition 5.15 If y(t) is the solution to the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

and

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m

+ h[bmf (ti+1, wi+1) + bm−1f (ti, wi) + · · · + b0f (ti+1−m, wi+1−m)]

is the (i + 1)st step in a multistep method, the local truncation error at this step is

τi+1(h) = y(ti+1) − am−1y(ti) − · · · − a0y(ti+1−m)

h
(5.32)

− [bmf (ti+1, y(ti+1)) + · · · + b0f (ti+1−m, y(ti+1−m))],

for each i = m − 1, m, . . . , N − 1.

Example 3 Determine the local truncation error for the three-step Adams-Bashforth method derived in

Example 2.

Solution Considering the form of the error given in Eq. (5.30) and the appropriate entry in

Table 5.12 gives

h4f (3)(µi, y(µi))(−1)3

∫ 1

0

(−s

3

)

ds = 3h4

8
f (3)(µi, y(µi)).
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Using the fact that f (3)(µi, y(µi)) = y(4)(µi) and the difference equation derived in Example

2, we have

τi+1(h) = y(ti+1) − y(ti)

h
− 1

12
[23f (ti, y(ti)) − 16f (ti−1, y(ti−1)) + 5f (ti−2, y(ti−2))]

= 1

h

[

3h4

8
f (3)(µi, y(µi))

]

= 3h3

8
y(4)(µi), for some µi ∈ (ti−2, ti+1).

Adams-Bashforth Explicit Methods

Some of the explicit multistep methods together with their required starting values and

local truncation errors are as follows. The derivation of these techniques is similar to the

procedure in Examples 2 and 3.

Adams-Bashforth Two-Step Explicit Method

w0 = α, w1 = α1,

wi+1 = wi + h

2
[3f (ti, wi) − f (ti−1, wi−1)], (5.33)

where i = 1, 2, . . . , N − 1. The local truncation error is τi+1(h) = 5
12

y′′′(µi)h
2, for some

µi ∈ (ti−1, ti+1).

Adams-Bashforth Three-Step Explicit Method

w0 = α, w1 = α1, w2 = α2,

wi+1 = wi + h

12
[23f (ti, wi) − 16f (ti−1, wi−1) + 5f (ti−2, wi−2)], (5.34)

where i = 2, 3, . . . , N − 1. The local truncation error is τi+1(h) = 3
8
y(4)(µi)h

3, for some

µi ∈ (ti−2, ti+1).

Adams-Bashforth Four-Step Explicit Method

w0 = α, w1 = α1, w2 = α2, w3 = α3, (5.35)

wi+1 = wi + h

24
[55f (ti, wi) − 59f (ti−1, wi−1) + 37f (ti−2, wi−2) − 9f (ti−3, wi−3)],

where i = 3, 4, . . . , N − 1. The local truncation error is τi+1(h) = 251
720

y(5)(µi)h
4, for some

µi ∈ (ti−3, ti+1).

Adams-Bashforth Five-Step Explicit Method

w0 = α, w1 = α1, w2 = α2, w3 = α3, w4 = α4,

wi+1 = wi + h

720
[1901f (ti, wi) − 2774f (ti−1, wi−1) (5.36)

+ 2616f (ti−2, wi−2) − 1274f (ti−3, wi−3) + 251f (ti−4, wi−4)],

where i = 4, 5, . . . , N − 1. The local truncation error is τi+1(h) = 95
288

y(6)(µi)h
5, for some

µi ∈ (ti−4, ti+1).
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Adams-Moulton Implicit Methods

Implicit methods are derived by using (ti+1, f (ti+1, y(ti+1))) as an additional interpolation

node in the approximation of the integral

∫ ti+1

ti

f (t, y(t)) dt.

Some of the more common implicit methods are as follows.

Adams-Moulton Two-Step Implicit Method

w0 = α, w1 = α1,

wi+1 = wi + h

12
[5f (ti+1, wi+1) + 8f (ti, wi) − f (ti−1, wi−1)], (5.37)

where i = 1, 2, . . . , N − 1. The local truncation error is τi+1(h) = − 1
24

y(4)(µi)h
3, for some

µi ∈ (ti−1, ti+1).

Adams-Moulton Three-Step Implicit Method

w0 = α, w1 = α1, w2 = α2, (5.38)

wi+1 = wi + h

24
[9f (ti+1, wi+1) + 19f (ti, wi) − 5f (ti−1, wi−1) + f (ti−2, wi−2)],

where i = 2, 3, . . . , N −1. The local truncation error is τi+1(h) = − 19
720

y(5)(µi)h
4, for some

µi ∈ (ti−2, ti+1).

Adams-Moulton Four-Step Implicit Method

w0 = α, w1 = α1, w2 = α2, w3 = α3,

wi+1 = wi + h

720
[251f (ti+1, wi+1) + 646f (ti, wi) (5.39)

− 264f (ti−1, wi−1) + 106f (ti−2, wi−2) − 19f (ti−3, wi−3)],

where i = 3, 4, . . . , N −1. The local truncation error is τi+1(h) = − 3
160

y(6)(µi)h
5, for some

µi ∈ (ti−3, ti+1).

It is interesting to compare an m-step Adams-Bashforth explicit method with an (m−1)-

step Adams-Moulton implicit method. Both involve m evaluations of f per step, and both

have the terms y(m+1)(µi)h
m in their local truncation errors. In general, the coefficients of

the terms involving f in the local truncation error are smaller for the implicit methods than

for the explicit methods. This leads to greater stability and smaller round-off errors for the

implicit methods.

Example 4 Consider the initial-value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Use the exact values given from y(t) = (t + 1)2 − 0.5et as starting values and h = 0.2 to

compare the approximations from (a) by the explicit Adams-Bashforth four-step method

and (b) the implicit Adams-Moulton three-step method.
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Solution (a) The Adams-Bashforth method has the difference equation

wi+1 = wi + h

24
[55f (ti, wi) − 59f (ti−1, wi−1) + 37f (ti−2, wi−2) − 9f (ti−3, wi−3)],

for i = 3, 4, . . . , 9. When simplified using f (t, y) = y − t2 + 1, h = 0.2, and ti = 0.2i, it

becomes

wi+1 = 1

24
[35wi − 11.8wi−1 + 7.4wi−2 − 1.8wi−3 − 0.192i2 − 0.192i + 4.736].

(b) The Adams-Moulton method has the difference equation

wi+1 = wi + h

24
[9f (ti+1, wi+1) + 19f (ti, wi) − 5f (ti−1, wi−1) + f (ti−2, wi−2)],

for i = 2, 3, . . . , 9. This reduces to

wi+1 = 1

24
[1.8wi+1 + 27.8wi − wi−1 + 0.2wi−2 − 0.192i2 − 0.192i + 4.736].

To use this method explicitly, we meed to solve the equation explicitly solve for wi+1.

This gives

wi+1 = 1

22.2
[27.8wi − wi−1 + 0.2wi−2 − 0.192i2 − 0.192i + 4.736],

for i = 2, 3, . . . , 9.

The results in Table 5.13 were obtained using the exact values from y(t) = (t + 1)2 −
0.5et for α, α1, α2, and α3 in the explicit Adams-Bashforth case and for α, α1, and α2 in

the implicit Adams-Moulton case. Note that the implicit Adams-Moulton method gives

consistently better results.

Table 5.13 Adams- Adams-

Bashforth Moulton

ti Exact wi Error wi Error

0.0 0.5000000

0.2 0.8292986

0.4 1.2140877

0.6 1.6489406 1.6489341 0.0000065

0.8 2.1272295 2.1273124 0.0000828 2.1272136 0.0000160

1.0 2.6408591 2.6410810 0.0002219 2.6408298 0.0000293

1.2 3.1799415 3.1803480 0.0004065 3.1798937 0.0000478

1.4 3.7324000 3.7330601 0.0006601 3.7323270 0.0000731

1.6 4.2834838 4.2844931 0.0010093 4.2833767 0.0001071

1.8 4.8151763 4.8166575 0.0014812 4.8150236 0.0001527

2.0 5.3054720 5.3075838 0.0021119 5.3052587 0.0002132

Multistep methods are available as options of the InitialValueProblem command, in a

manner similar to that of the one step methods. The command for the Adam Bashforth Four

Step method applied to our usual example has the form

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = adamsbashforth,

submethod = step4, numsteps = 10, output = information, digits = 8)

The output from this method is similar to the results in Table 5.13 except that the exact

values were used in Table 5.13 and approximations were used as starting values for the

Maple approximations.

To apply the Adams-Mouton Three Step method to this problem, the options would be

changed to method = adamsmoulton, submethod = step3.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



310 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

Predictor-Corrector Methods

In Example 4 the implicit Adams-Moulton method gave better results than the explicit

Adams-Bashforth method of the same order. Although this is generally the case, the implicit

methods have the inherent weakness of first having to convert the method algebraically to

an explicit representation for wi+1. This procedure is not always possible, as can be seen

by considering the elementary initial-value problem

y′ = ey, 0 ≤ t ≤ 0.25, y(0) = 1.

Because f (t, y) = ey, the three-step Adams-Moulton method has

wi+1 = wi + h

24
[9ewi+1 + 19ewi − 5ewi−1 + ewi−2 ]

as its difference equation, and this equation cannot be algebraically solved for wi+1.

We could use Newton’s method or the secant method to approximate wi+1, but this

complicates the procedure considerably. In practice, implicit multistep methods are not used

as described above. Rather, they are used to improve approximations obtained by explicit

methods. The combination of an explicit method to predict and an implicit to improve the

prediction is called a predictor-corrector method.

Consider the following fourth-order method for solving an initial-value problem. The

first step is to calculate the starting values w0, w1, w2, and w3 for the four-step explicit

Adams-Bashforth method. To do this, we use a fourth-order one-step method, the Runge-

Kutta method of order four. The next step is to calculate an approximation, w4p, to y(t4)

using the explicit Adams-Bashforth method as predictor:

w4p = w3 + h

24
[55f (t3, w3) − 59f (t2, w2) + 37f (t1, w1) − 9f (t0, w0)].

This approximation is improved by inserting w4p in the right side of the three-step implicit

Adams-Moulton method and using that method as a corrector. This gives

w4 = w3 + h

24
[9f (t4, w4p) + 19f (t3, w3) − 5f (t2, w2) + f (t1, w1)].

The only new function evaluation required in this procedure is f (t4, w4p) in the corrector

equation; all the other values of f have been calculated for earlier approximations.

The value w4 is then used as the approximation to y(t4), and the technique of using the

Adams-Bashforth method as a predictor and the Adams-Moulton method as a corrector is

repeated to find w5p and w5, the initial and final approximations to y(t5). This process is

continued until we obtain an approximation wc to y(tN ) = y(b).

Improved approximations to y(ti+1) might be obtained by iterating the Adams-Moulton

formula, but these converge to the approximation given by the implicit formula rather than

to the solution y(ti+1). Hence it is usually more efficient to use a reduction in the step size

if improved accuracy is needed.

Algorithm 5.4 is based on the fourth-order Adams-Bashforth method as predictor and

one iteration of the Adams-Moulton method as corrector, with the starting values obtained

from the fourth-order Runge-Kutta method.
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ALGORITHM

5.4
Adams Fourth-Order Predictor-Corrector

To approximate the solution of the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; integer N ; initial condition α.

OUTPUT approximation w to y at the (N + 1) values of t.

Step 1 Set h = (b − a)/N ;

t0 = a;

w0 = α;

OUTPUT (t0, w0).

Step 2 For i = 1, 2, 3, do Steps 3–5.

(Compute starting values using Runge-Kutta method.)

Step 3 Set K1 = hf (ti−1, wi−1);

K2 = hf (ti−1 + h/2, wi−1 + K1/2);

K3 = hf (ti−1 + h/2, wi−1 + K2/2);

K4 = hf (ti−1 + h, wi−1 + K3).

Step 4 Set wi = wi−1 + (K1 + 2K2 + 2K3 + K4)/6;

ti = a + ih.

Step 5 OUTPUT (ti, wi).

Step 6 For i = 4, . . . , N do Steps 7–10.

Step 7 Set t = a + ih;

w = w3 + h[55f (t3, w3) − 59f (t2, w2) + 37f (t1, w1)

− 9f (t0, w0)]/24; (Predict wi.)

w = w3 + h[9f (t, w) + 19f (t3, w3) − 5f (t2, w2)

+ f (t1, w1)]/24. (Correct wi.)

Step 8 OUTPUT (t, w).

Step 9 For j = 0, 1, 2

set tj = tj+1; (Prepare for next iteration.)

wj = wj+1.

Step 10 Set t3 = t;

w3 = w.

Step 11 STOP.

Example 5 Apply the Adams fourth-order predictor-corrector method with h = 0.2 and starting values

from the Runge-Kutta fourth order method to the initial-value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution This is continuation and modification of the problem considered in Example 1

at the beginning of the section. In that example we found that the starting approximations

from Runge-Kutta are
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y(0) = w0 = 0.5, y(0.2) ≈ w1 = 0.8292933, y(0.4) ≈ w2 = 1.2140762, and

y(0.6) ≈ w3 = 1.6489220.

and the fourth-order Adams-Bashforth method gave

y(0.8) ≈ w4p = w3 + 0.2

24
(55f (0.6, w3) − 59f (0.4, w2) + 37f (0.2, w1) − 9f (0, w0))

= 1.6489220 + 0.2

24
(55f (0.6, 1.6489220) − 59f (0.4, 1.2140762)

+ 37f (0.2, 0.8292933) − 9f (0, 0.5))

= 1.6489220 + 0.0083333(55(2.2889220) − 59(2.0540762)

+ 37(1.7892933) − 9(1.5))

= 2.1272892.

We will now use w4p as the predictor of the approximation to y(0.8) and determine the

corrected value w4, from the implicit Adams-Moulton method. This gives

y(0.8) ≈ w4 = w3 + 0.2

24

(

9f (0.8, w4p) + 19f (0.6, w3) − 5f (0.4, w2) + f (0.2, w1)
)

= 1.6489220 + 0.2

24
(9f (0.8, 2.1272892) + 19f (0.6, 1.6489220)

− 5f (0.4, 1.2140762) + f (0.2, 0.8292933))

= 1.6489220 + 0.0083333(9(2.4872892) + 19(2.2889220) − 5(2.0540762)

+ (1.7892933))

= 2.1272056.

Now we use this approximation to determine the predictor, w5p, for y(1.0) as

y(1.0)≈w5p =w4 + 0.2

24
(55f (0.8, w4) − 59f (0.6, w3) + 37f (0.4, w2) − 9f (0.2, w1))

=2.1272056 + 0.2

24
(55f (0.8, 2.1272056) − 59f (0.6, 1.6489220)

+ 37f (0.4, 1.2140762) − 9f (0.2, 0.8292933))

=2.1272056+0.0083333(55(2.4872056)−59(2.2889220)+37(2.0540762)

− 9(1.7892933))

=2.6409314,

and correct this with

y(1.0) ≈ w5 = w4 + 0.2

24

(

9f (1.0, w5p) + 19f (0.8, w4) − 5f (0.6, w3) + f (0.4, w2)
)

= 2.1272056 + 0.2

24
(9f (1.0, 2.6409314) + 19f (0.8, 2.1272892)

− 5f (0.6, 1.6489220) + f (0.4, 1.2140762))
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= 2.1272056 + 0.0083333(9(2.6409314) + 19(2.4872056) − 5(2.2889220)

+ (2.0540762))

= 2.6408286.

In Example 1 we found that using the explicit Adams-Bashforth method alone produced

results that were inferior to those of Runge-Kutta. However, these approximations to y(0.8)

and y(1.0) are accurate to within

|2.1272295 − 2.1272056| = 2.39 × 10−5 and |2.6408286 − 2.6408591| = 3.05 × 10−5.

respectively, compared to those of Runge-Kutta, which were accurate, respectively, to within

|2.1272027 − 2.1272892| = 2.69 × 10−5 and |2.6408227 − 2.6408591| = 3.64 × 10−5.

The remaining predictor-corrector approximations were generated using Algorithm 5.4 and

are shown in Table 5.14.

Table 5.14 Error

ti yi = y(ti) wi |yi − wi|

0.0 0.5000000 0.5000000 0

0.2 0.8292986 0.8292933 0.0000053

0.4 1.2140877 1.2140762 0.0000114

0.6 1.6489406 1.6489220 0.0000186

0.8 2.1272295 2.1272056 0.0000239

1.0 2.6408591 2.6408286 0.0000305

1.2 3.1799415 3.1799026 0.0000389

1.4 3.7324000 3.7323505 0.0000495

1.6 4.2834838 4.2834208 0.0000630

1.8 4.8151763 4.8150964 0.0000799

2.0 5.3054720 5.3053707 0.0001013

Adams Fourth Order Predictor-Corrector method is implemented in Maple for the

example problem with

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = adamsbashforthmoulton,

submethod = step4, numsteps = 10, output = information, digits = 8)

and generates the same values as in Table 5.14.

Other multistep methods can be derived using integration of interpolating polynomials

over intervals of the form [tj, ti+1], for j ≤ i−1, to obtain an approximation to y(ti+1). When

an interpolating polynomial is integrated over [ti−3, ti+1], the result is the explicit Milne’s

method:

wi+1 = wi−3 + 4h

3
[2f (ti, wi) − f (ti−1, wi−1) + 2f (ti−2, wi−2)],

which has local truncation error 14
45

h4y(5)(ξi), for some ξi ∈ (ti−3, ti+1).

Edward Arthur Milne

(1896–1950) worked in ballistic

research during World War I, and

then for the Solar Physics

Observatory at Cambridge. In

1929 he was appointed the

W. W. Rouse Ball chair at

Wadham College in Oxford.

Milne’s method is occasionally used as a predictor for the implicit Simpson’s method,

wi+1 = wi−1 + h

3
[f (ti+1, wi+1) + 4f (ti, wi) + f (ti−1, wi−1)],

which has local truncation error −(h4/90)y(5)(ξi), for some ξi ∈ (ti−1, ti+1), and is obtained

by integrating an interpolating polynomial over [ti−1, ti+1].

Simpson’s name is associated

with this technique because it is

based on Simpson’s rule for

integration.
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The local truncation error involved with a predictor-corrector method of the Milne-

Simpson type is generally smaller than that of the Adams-Bashforth-Moulton method. But

the technique has limited use because of round-off error problems, which do not occur with

the Adams procedure. Elaboration on this difficulty is given in Section 5.10.

E X E R C I S E S E T 5.6

1. Use all the Adams-Bashforth methods to approximate the solutions to the following initial-value

problems. In each case use exact starting values, and compare the results to the actual values.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0, with h = 0.2; actual solution y(t) = 1

5
te3t − 1

25
e3t +

1

25
e−2t .

b. y′ = 1 + (t − y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.2; actual solution y(t) = t + 1

1−t
.

c. y′ = 1 + y/t, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.2; actual solution y(t) = t ln t + 2t.

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.2; actual solution y(t) =
1

2
sin 2t − 1

3
cos 3t + 4

3
.

2. Use each of the Adams-Bashforth methods to approximate the solutions to the following initial-value

problems. In each case use starting values obtained from the Runge-Kutta method of order four.

Compare the results to the actual values.

a. y′ = 2 − 2ty

t2 + 1
, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1 actual solution y(t) = 2t + 1

t2 + 2
.

b. y′ = y2

1 + t
, 1 ≤ t ≤ 2, y(1) = −(ln 2)−1, with h = 0.1 actual solution y(t) = −1

ln(t + 1)
.

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.2 actual solution y(t) = 2t

1 − t
.

d. y′ = −ty + 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1 actual solution y(t) =
√

4 − 3e−t2
.

3. Use each of the Adams-Bashforth methods to approximate the solutions to the following initial-value

problems. In each case use starting values obtained from the Runge-Kutta method of order four.

Compare the results to the actual values.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 2, y(1) = 1, with h = 0.1; actual solution y(t) = t

1 + ln t
.

b. y′ = 1+y/t + (y/t)2, 1 ≤ t ≤ 3, y(1) = 0, with h = 0.2; actual solution y(t) = t tan(ln t).

c. y′ = −(y + 1)(y + 3), 0 ≤ t ≤ 2, y(0) = −2, with h = 0.1; actual solution y(t) =
−3 + 2/(1 + e−2t).

d. y′ = −5y+5t2+2t, 0 ≤ t ≤ 1, y(0) = 1/3, with h = 0.1; actual solution y(t) = t2+ 1

3
e−5t .

4. Use all the Adams-Moulton methods to approximate the solutions to the Exercises 1(a), 1(c), and

1(d). In each case use exact starting values, and explicitly solve for wi+1. Compare the results to the

actual values.

5. Use Algorithm 5.4 to approximate the solutions to the initial-value problems in Exercise 1.

6. Use Algorithm 5.4 to approximate the solutions to the initial-value problems in Exercise 2.

7. Use Algorithm 5.4 to approximate the solutions to the initial-value problems in Exercise 3.

8. Change Algorithm 5.4 so that the corrector can be iterated for a given number p iterations. Repeat

Exercise 7 with p = 2, 3, and 4 iterations. Which choice of p gives the best answer for each initial-value

problem?

9. The initial-value problem

y′ = ey, 0 ≤ t ≤ 0.20, y(0) = 1

has solution

y(t) = 1 − ln(1 − et).
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Applying the three-step Adams-Moulton method to this problem is equivalent to finding the fixed

point wi+1 of

g(w) = wi + h

24
(9ew + 19ewi − 5ewi−1 + ewi−2 ) .

a. With h = 0.01, obtain wi+1 by functional iteration for i = 2, . . . , 19 using exact starting values

w0, w1, and w2. At each step use wi to initially approximate wi+1.

b. Will Newton’s method speed the convergence over functional iteration?

10. Use the Milne-Simpson Predictor-Corrector method to approximate the solutions to the initial-value

problems in Exercise 3.

11. a. Derive the Adams-Bashforth Two-Step method by using the Lagrange form of the interpolating

polynomial.

b. Derive the Adams-Bashforth Four-Step method by using Newton’s backward-difference form

of the interpolating polynomial.

12. Derive the Adams-Bashforth Three-Step method by the following method. Set

y(ti+1) = y(ti) + ahf (ti, y(ti)) + bhf (ti−1, y(ti−1)) + chf (ti−2, y(ti−2)).

Expand y(ti+1), f (ti−2, y(ti−2)), and f (ti−1, y(ti−1)) in Taylor series about (ti, y(ti)), and equate the

coefficients of h, h2 and h3 to obtain a, b, and c.

13. Derive the Adams-Moulton Two-Step method and its local truncation error by using an appropriate

form of an interpolating polynomial.

14. Derive Simpson’s method by applying Simpson’s rule to the integral

y(ti+1) − y(ti−1) =
∫ ti+1

ti−1

f (t, y(t)) dt.

15. Derive Milne’s method by applying the open Newton-Cotes formula (4.29) to the integral

y(ti+1) − y(ti−3) =
∫ ti+1

ti−3

f (t, y(t)) dt.

16. Verify the entries in Table 5.12 on page 305.

5.7 Variable Step-Size Multistep Methods

The Runge-Kutta-Fehlberg method is used for error control because at each step it provides,

at little additional cost, two approximations that can be compared and related to the local

truncation error. Predictor-corrector techniques always generate two approximations at each

step, so they are natural candidates for error-control adaptation.

To demonstrate the error-control procedure, we construct a variable step-size predictor-

corrector method using the four-step explicit Adams-Bashforth method as predictor and the

three-step implicit Adams-Moulton method as corrector.

The Adams-Bashforth four-step method comes from the relation

y(ti+1) = y(ti) + h

24
[55f (ti, y(ti)) − 59f (ti−1, y(ti−1))

+ 37f (ti−2, y(ti−2)) − 9f (ti−3, y(ti−3))] + 251

720
y(5)(µ̂i)h

5,

for some µ̂i ∈ (ti−3, ti+1). The assumption that the approximations w0, w1, . . . , wi are all

exact implies that the Adams-Bashforth local truncation error is

y(ti+1) − wi+1,p

h
= 251

720
y(5)(µ̂i)h

4. (5.40)
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A similar analysis of the Adams-Moulton three-step method, which comes from

y(ti+1) = y(ti) + h

24
[9f (ti+1, y(ti+1)) + 19f (ti, y(ti)) − 5f (ti−1, y(ti−1))

+ f (ti−2, y(ti−2))] − 19

720
y(5)(µ̃i)h

5,

for some µ̃i ∈ (ti−2, ti+1), leads to the local truncation error

y(ti+1) − wi+1

h
= − 19

720
y(5)(µ̃i)h

4. (5.41)

To proceed further, we must make the assumption that for small values of h, we have

y(5)(µ̂i) ≈ y(5)(µ̃i).

The effectiveness of the error-control technique depends directly on this assumption.

If we subtract Eq. (5.40) from Eq. (5.39), we have

wi+1 − wi+1,p

h
= h4

720
[251y(5)(µ̂i) + 19y(5)(µ̃i)] ≈ 3

8
h4y(5)(µ̃i),

so

y(5)(µ̃i) ≈ 8

3h5
(wi+1 − wi+1,p). (5.42)

Using this result to eliminate the term involving y(5)(µ̃i)h
4 from Eq. (5.41) gives the

approximation to the Adams-Moulton local truncation error

|τi+1(h)| = | y(ti+1) − wi+1|
h

≈ 19h4

720
· 8

3h5
|wi+1 − wi+1,p| = 19|wi+1 − wi+1,p|

270h
.

Suppose we now reconsider (Eq. 5.41) with a new step size qh generating new approx-

imations ŵi+1,p and ŵi+1. The object is to choose q so that the local truncation error given

in Eq. (5.41) is bounded by a prescribed tolerance ε. If we assume that the value y(5)(µ) in

Eq. (5.41) associated with qh is also approximated using Eq. (5.42), then

| y(ti + qh) − ŵi+1|
qh

= 19q4h4

720
| y(5)(µ)| ≈ 19q4h4

720

[

8

3h5
|wi+1 − wi+1,p|

]

= 19q4

270

|wi+1 − wi+1,p|
h

,

and we need to choose q so that

| y(ti + qh) − ŵi+1|
qh

≈ 19q4

270

|wi+1 − wi+1,p|
h

< ε.

That is, choose q so that

q <

(

270

19

hε

|wi+1 − wi+1,p|

)1/4

≈ 2

(

hε

|wi+1 − wi+1,p|

)1/4

.
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5.7 Variable Step-Size Multistep Methods 317

A number of approximation assumptions have been made in this development, so in

practice q is chosen conservatively, often as

q = 1.5

(

hε

|wi+1 − wi+1,p|

)1/4

.

A change in step size for a multistep method is more costly in terms of function

evaluations than for a one-step method, because new equally-spaced starting values must

be computed. As a consequence, it is common practice to ignore the step-size change

whenever the local truncation error is between ε/10 and ε, that is, when

ε

10
< |τi+1(h)| = | y(ti+1) − wi+1|

h
≈ 19|wi+1 − wi+1,p|

270h
< ε.

In addition, q is given an upper bound to ensure that a single unusually accurate approx-

imation does not result in too large a step size. Algorithm 5.5 incorporates this safeguard

with an upper bound of 4.

Remember that the multistep methods require equal step sizes for the starting values.

So any change in step size necessitates recalculating new starting values at that point. In

Steps 3, 16, and 19 of Algorithm 5.5 this is done by calling a Runge-Kutta subalgorithm

(Algorithm 5.2), which has been set up in Step 1.

ALGORITHM

5.5
Adams Variable Step-Size Predictor-Corrector

To approximate the solution of the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α

with local truncation error within a given tolerance:

INPUT endpoints a, b; initial condition α; tolerance TOL; maximum step size hmax;

minimum step size hmin.

OUTPUT i, ti, wi, h where at the ith step wi approximates y(ti) and the step size h was

used, or a message that the minimum step size was exceeded.

Step 1 Set up a subalgorithm for the Runge-Kutta fourth-order method to be called

RK4(h, v0, x0, v1, x1, v2, x2, v3, x3) that accepts as input a step size h and

starting values v0 ≈ y(x0) and returns {(xj, vj) | j = 1, 2, 3} defined by the

following:

for j = 1, 2, 3

set K1 = hf (xj−1, vj−1);

K2 = hf (xj−1 + h/2, vj−1 + K1/2)

K3 = hf (xj−1 + h/2, vj−1 + K2/2)

K4 = hf (xj−1 + h, vj−1 + K3)

vj = vj−1 + (K1 + 2K2 + 2K3 + K4)/6;

xj = x0 + jh.

Step 2 Set t0 = a;

w0 = α;

h = hmax;

FLAG = 1; (FLAG will be used to exit the loop in Step 4.)

LAST = 0; (LAST will indicate when the last value is calculated.)

OUTPUT (t0, w0).
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318 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

Step 3 Call RK4(h, w0, t0, w1, t1, w2, t2, w3, t3);

Set NFLAG = 1; (Indicates computation from RK4.)

i = 4;

t = t3 + h.

Step 4 While (FLAG = 1) do Steps 5–20.

Step 5 Set WP = wi−1 + h

24
[55f (ti−1, wi−1) − 59f (ti−2, wi−2)

+ 37f (ti−3, wi−3) − 9f (ti−4, wi−4)]; (Predict wi.)

WC = wi−1 + h

24
[9f (t, WP) + 19f (ti−1, wi−1)

− 5f (ti−2, wi−2) + f (ti−3, wi−3)]; (Correct wi.)

σ = 19|WC − WP|/(270h).

Step 6 If σ ≤ TOL then do Steps 7–16 (Result accepted.)

else do Steps 17–19. (Result rejected.)

Step 7 Set wi = WC; (Result accepted.)

ti = t.

Step 8 If NFLAG = 1 then for j = i − 3, i − 2, i − 1, i

OUTPUT (j, tj, wj, h);

(Previous results also accepted.)

else OUTPUT (i, ti, wi, h).

(Previous results already accepted.)

Step 9 If LAST = 1 then set FLAG = 0 (Next step is 20.)

else do Steps 10–16.

Step 10 Set i = i + 1;

NFLAG = 0.

Step 11 If σ ≤ 0.1 TOL or ti−1 + h > b then do Steps 12–16.

(Increase h if it is more accurate than required or decrease

h to include b as a mesh point.)

Step 12 Set q = (TOL/(2σ))1/4.

Step 13 If q > 4 then set h = 4h

else set h = qh.

Step 14 If h > hmax then set h = hmax.

Step 15 If ti−1 + 4h > b then

set h = (b − ti−1)/4;

LAST = 1.

Step 16 Call RK4(h, wi−1, ti−1, wi, ti, wi+1, ti+1, wi+2, ti+2);

Set NFLAG = 1;

i = i + 3. (True branch completed. Next step is 20.)

Step 17 Set q = (TOL/(2σ))1/4. (False branch from Step 6: Result rejected.)

Step 18 If q < 0.1 then set h = 0.1h

else set h = qh.
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Step 19 If h < hmin then set FLAG = 0;

OUTPUT (‘hmin exceeded’)

else

if NFLAG = 1 then set i = i − 3;

(Previous results also rejected.)

Call RK4(h, wi−1, ti−1, wi, ti, wi+1, ti+1, wi+2, ti+2);

set i = i + 3;

NFLAG = 1.

Step 20 Set t = ti−1 + h.

Step 21 STOP.

Example 1 Use Adams variable step-size predictor-corrector method with maximum step size hmax =
0.2, minimum step size hmin = 0.01, and tolerance TOL = 10−5 to approximate the

solution of the initial-value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution We begin with h = hmax = 0.2, and obtain w0, w1, w2 and w3 using Runge-

Kutta, then find wp4 and wc4 by applying the predictor-corrector method. These calculations

were done in Example 5 of Section 5.6 where it was determined that the Runge-Kutta

approximations are

y(0) = w0 = 0.5, y(0.2) ≈ w1 = 0.8292933, y(0.4) ≈ w2 = 1.2140762, and

y(0.6) ≈ w3 = 1.6489220.

The predictor and corrector gave

y(0) = w0 = 0.5, y(0.2) ≈ w1 = 0.8292933, y(0.4) ≈ w2 = 1.2140762, and

y(0.6) ≈ w3 = 1.6489220.

y(0.8) ≈ w4p = w3 + 0.2

24
(55f (0.6, w3) − 59f (0.4, w2) + 37f (0.2, w1) − 9f (0, w0))

= 2.1272892,

and

y(0.8) ≈ w4 = w3 + 0.2

24

(

9f (0.8, w4p) + 19f (0.6, w3) − 5f (0.42, w2) + f (0.2, w1)
)

= 2.1272056.

We now need to determine if these approximations are sufficiently accurate or if there needs

to be a change in the step size. First we find

δ = 19

270h
|w4 − w4p| = 19

270(0.2)
|2.1272056 − 2.1272892| = 2.941 × 10−5.

Because this exceeds the tolerance of 10−5 a new step size is needed and the new step size is

qh =
(

10−5

2δ

)1/4

=
(

10−5

2(2.941 × 10−5)

)1/4

(0.2) = 0.642(0.2) ≈ 0.128.
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As a consequence, we need to begin the procedure again computing the Runge-Kutta values

with this step size, and then use the predictor-corrector method with this same step size to

compute the new values of w4p and w4. We then need to run the accuracy check on these

approximations to see that we have been successful. Table 5.15 shows that this second run

is successful and lists the all results obtained using Algorithm 5.5.

Table 5.15 ti y(ti) wi hi σi |y(ti) − wi|

0 0.5 0.5

0.1257017 0.7002323 0.7002318 0.1257017 4.051 × 10−6 0.0000005

0.2514033 0.9230960 0.9230949 0.1257017 4.051 × 10−6 0.0000011

0.3771050 1.1673894 1.1673877 0.1257017 4.051 × 10−6 0.0000017

0.5028066 1.4317502 1.4317480 0.1257017 4.051 × 10−6 0.0000022

0.6285083 1.7146334 1.7146306 0.1257017 4.610 × 10−6 0.0000028

0.7542100 2.0142869 2.0142834 0.1257017 5.210 × 10−6 0.0000035

0.8799116 2.3287244 2.3287200 0.1257017 5.913 × 10−6 0.0000043

1.0056133 2.6556930 2.6556877 0.1257017 6.706 × 10−6 0.0000054

1.1313149 2.9926385 2.9926319 0.1257017 7.604 × 10−6 0.0000066

1.2570166 3.3366642 3.3366562 0.1257017 8.622 × 10−6 0.0000080

1.3827183 3.6844857 3.6844761 0.1257017 9.777 × 10−6 0.0000097

1.4857283 3.9697541 3.9697433 0.1030100 7.029 × 10−6 0.0000108

1.5887383 4.2527830 4.2527711 0.1030100 7.029 × 10−6 0.0000120

1.6917483 4.5310269 4.5310137 0.1030100 7.029 × 10−6 0.0000133

1.7947583 4.8016639 4.8016488 0.1030100 7.029 × 10−6 0.0000151

1.8977683 5.0615660 5.0615488 0.1030100 7.760 × 10−6 0.0000172

1.9233262 5.1239941 5.1239764 0.0255579 3.918 × 10−8 0.0000177

1.9488841 5.1854932 5.1854751 0.0255579 3.918 × 10−8 0.0000181

1.9744421 5.2460056 5.2459870 0.0255579 3.918 × 10−8 0.0000186

2.0000000 5.3054720 5.3054529 0.0255579 3.918 × 10−8 0.0000191

E X E R C I S E S E T 5.7

1. Use the Adams Variable Step-Size Predictor-Corrector Algorithm with tolerance TOL = 10−4,

hmax = 0.25, and hmin = 0.025 to approximate the solutions to the given initial-value problems.

Compare the results to the actual values.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0; actual solution y(t) = 1

5
te3t − 1

25
e3t + 1

25
e−2t .

b. y′ = 1 + (t − y)2, 2 ≤ t ≤ 3, y(2) = 1; actual solution y(t) = t + 1/(1 − t).

c. y′ = 1 + y/t, 1 ≤ t ≤ 2, y(1) = 2; actual solution y(t) = t ln t + 2t.

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1; actual solution y(t) = 1

2
sin 2t − 1

3
cos 3t + 4

3
.

2. Use the Adams Variable Step-Size Predictor-Corrector Algorithm with TOL = 10−4 to approximate

the solutions to the following initial-value problems:

a. y′ = (y/t)2 + y/t, 1 ≤ t ≤ 1.2, y(1) = 1, with hmax = 0.05 and hmin = 0.01.

b. y′ = sin t + e−t , 0 ≤ t ≤ 1, y(0) = 0, with hmax = 0.2 and hmin = 0.01.

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with hmax = 0.4 and hmin = 0.01.

d. y′ = −ty + 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with hmax = 0.2 and hmin = 0.01.

3. Use the Adams Variable Step-Size Predictor-Corrector Algorithm with tolerance TOL = 10−6,

hmax = 0.5, and hmin = 0.02 to approximate the solutions to the given initial-value problems.

Compare the results to the actual values.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 4, y(1) = 1; actual solution y(t) = t/(1 + ln t).

b. y′ = 1 + y/t + (y/t)2, 1 ≤ t ≤ 3, y(1) = 0; actual solution y(t) = t tan(ln t).
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c. y′ = −(y + 1)(y + 3), 0 ≤ t ≤ 3, y(0) = −2; actual solution y(t) = −3 + 2(1 + e−2t)−1.

d. y′ = (t + 2t3)y3 − ty, 0 ≤ t ≤ 2, y(0) = 1

3
; actual solution y(t) = (3 + 2t2 + 6et2

)−1/2.

4. Construct an Adams Variable Step-Size Predictor-Corrector Algorithm based on the Adams-Bashforth

five-step method and the Adams-Moulton four-step method. Repeat Exercise 3 using this new method.

5. An electrical circuit consists of a capacitor of constant capacitance C = 1.1 farads in series with a

resistor of constant resistance R0 = 2.1 ohms. A voltage E(t) = 110 sin t is applied at time t = 0.

When the resistor heats up, the resistance becomes a function of the current i,

R(t) = R0 + ki, where k = 0.9,

and the differential equation for i(t) becomes

(

1 + 2k

R0

i

)

di

dt
+ 1

R0C
i = 1

R0C

dE

dt
.

Find i(2), assuming that i(0) = 0.

5.8 Extrapolation Methods

Extrapolation was used in Section 4.5 for the approximation of definite integrals, where we

found that by correctly averaging relatively inaccurate trapezoidal approximations exceed-

ingly accurate new approximations were produced. In this section we will apply extrapo-

lation to increase the accuracy of approximations to the solution of initial-value problems.

As we have previously seen, the original approximations must have an error expansion of

a specific form for the procedure to be successful.

To apply extrapolation to solve initial-value problems, we use a technique based on the

Midpoint method:

wi+1 = wi−1 + 2hf (ti, wi), for i ≥ 1. (5.43)

This technique requires two starting values since both w0 and w1 are needed before the first

midpoint approximation, w2, can be determined. One starting value is the initial condition

for w0 = y(a) = α. To determine the second starting value, w1, we apply Euler’s method.

Subsequent approximations are obtained from (5.43). After a series of approximations of

this type are generated ending at a value t, an endpoint correction is performed that involves

the final two midpoint approximations. This produces an approximation w(t, h) to y(t) that

has the form

y(t) = w(t, h) +
∞

∑

k=1

δkh2k , (5.44)

where the δk are constants related to the derivatives of the solution y(t). The important point

is that the δk do not depend on the step size h. The details of this procedure can be found in

the paper by Gragg [Gr].

To illustrate the extrapolation technique for solving

y′(t) = f (t, y), a ≤ t ≤ b, y(a) = α,

assume that we have a fixed step size h. We wish to approximate y(t1) = y(a + h).

For the first extrapolation step we let h0 = h/2 and use Euler’s method with w0 = α

to approximate y(a + h0) = y(a + h/2) as

w1 = w0 + h0f (a, w0).
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We then apply the Midpoint method with ti−1 = a and ti = a + h0 = a + h/2 to produce a

first approximation to y(a + h) = y(a + 2h0),

w2 = w0 + 2h0f (a + h0, w1).

The endpoint correction is applied to obtain the final approximation to y(a + h) for the step

size h0. This results in the O(h2
0) approximation to y(t1)

y1,1 = 1

2
[w2 + w1 + h0f (a + 2h0, w2)].

We save the approximation y1,1 and discard the intermediate results w1 and w2.

To obtain the next approximation, y2,1, to y(t1), we let h1 = h/4 and use Euler’s method

with w0 = α to obtain an approximation to y(a + h1) = y(a + h/4) which we will call w1:

w1 = w0 + h1f (a, w0).

Next we approximate y(a + 2h1) = y(a + h/2) with w2, y(a + 3h1) = y(a + 3h/4)

with w3, and w4 to y(a + 4h1) = y(t1) using the Midpoint method.

w2 = w0 + 2h1f (a + h1, w1),

w3 = w1 + 2h1f (a + 2h1, w2),

w4 = w2 + 2h1f (a + 3h1, w3).

The endpoint correction is now applied to w3 and w4 to produce the improved O(h2
1)

approximation to y(t1),

y2,1 = 1

2
[w4 + w3 + h1f (a + 4h1, w4)].

Because of the form of the error given in (5.44), the two approximations to y(a + h)

have the property that

y(a + h) = y1,1 + δ1

(

h

2

)2

+ δ2

(

h

2

)4

+ · · · = y1,1 + δ1

h2

4
+ δ2

h4

16
+ · · · ,

and

y(a + h) = y2,1 + δ1

(

h

4

)2

+ δ2

(

h

4

)4

+ · · · = y2,1 + δ1

h2

16
+ δ2

h4

256
+ · · · .

We can eliminate the O(h2) portion of this truncation error by averaging the two formulas

appropriately. Specifically, if we subtract the first formula from 4 times the second and

divide the result by 3, we have

y(a + h) = y2,1 + 1

3
(y2,1 − y1,1) − δ2

h4

64
+ · · · .

So the approximation to y(t1) given by

y2,2 = y2,1 + 1

3
(y2,1 − y1,1)

has error of order O(h4).
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We next let h2 = h/6 and apply Euler’s method once followed by the Midpoint method

five times. Then we use the endpoint correction to determine the h2 approximation, y3,1, to

y(a + h) = y(t1). This approximation can be averaged with y2,1 to produce a second O(h4)

approximation that we denote y3,2. Then y3,2 and y2,2 are averaged to eliminate the O(h4)

error terms and produce an approximation with error of order O(h6). Higher-order formulas

are generated by continuing the process.

The only significant difference between the extrapolation performed here and that

used for Romberg integration in Section 4.5 results from the way the subdivisions are

chosen. In Romberg integration there is a convenient formula for representing the Composite

Trapezoidal rule approximations that uses consecutive divisions of the step size by the

integers 1, 2, 4, 8, 16, 32, 64, . . . This procedure permits the averaging process to proceed in

an easily followed manner.

We do not have a means for easily producing refined approximations for initial-value

problems, so the divisions for the extrapolation technique are chosen to minimize the num-

ber of required function evaluations. The averaging procedure arising from this choice of

subdivision, shown in Table 5.16, is not as elementary, but, other than that, the process is

the same as that used for Romberg integration.

Table 5.16 y1,1 = w(t, h0)

y2,1 = w(t, h1) y2,2 = y2,1 + h2
1

h2
0 − h2

1

(y2,1 − y1,1)

y3,1 = w(t, h2) y3,2 = y3,1 + h2
2

h2
1 − h2

2

(y3,1 − y2,1) y3,3 = y3,2 + h2
2

h2
0 − h2

2

(y3,2 − y2,2)

Algorithm 5.6 uses the extrapolation technique with the sequence of integers

q0 = 2, q1 = 4, q2 = 6, q3 = 8, q4 = 12, q5 = 16, q6 = 24, and q7 = 32.

A basic step size h is selected, and the method progresses by using hi = h/qi, for each i =
0, . . . , 7, to approximate y(t+h). The error is controlled by requiring that the approximations

y1,1, y2,2, . . . be computed until | yi,i − yi−1,i−1| is less than a given tolerance. If the tolerance

is not achieved by i = 8, then h is reduced, and the process is reapplied.

Algorithm 5.6 uses nodes of the

form 2n and 2n · 3. Other choices

can be used.

Minimum and maximum values of h, hmin, and hmax, respectively, are specified to

ensure control of the method. If yi,i is found to be acceptable, then w1 is set to yi,i and

computations begin again to determine w2, which will approximate y(t2) = y(a + 2h). The

process is repeated until the approximation wN to y(b) is determined.

ALGORITHM

5.6
Extrapolation

To approximate the solution of the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

with local truncation error within a given tolerance:

INPUT endpoints a, b; initial condition α; tolerance TOL; maximum step size hmax;

minimum step size hmin.

OUTPUT T , W , h where W approximates y(t) and step size h was used, or a message

that minimum step size was exceeded.
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Step 1 Initialize the array NK = (2, 4, 6, 8, 12, 16, 24, 32).

Step 2 Set TO = a;

WO = α;

h = hmax;

FLAG = 1. (FLAG is used to exit the loop in Step 4.)

Step 3 For i = 1, 2, . . . , 7

for j = 1, . . . , i

set Qi,j = (NKi+1/NKj)
2. (Note: Qi,j = h2

j /h2
i+1.)

Step 4 While (FLAG = 1) do Steps 5–20.

Step 5 Set k = 1;

NFLAG = 0. (When desired accuracy is achieved, NFLAG is

set to 1.)

Step 6 While (k ≤ 8 and NFLAG = 0) do Steps 7–14.

Step 7 Set HK = h/NKk;

T = TO;

W2 = WO;

W3 = W2 + HK · f (T , W2); (Euler’s first step.)

T = TO + HK .

Step 8 For j = 1, . . . , NKk − 1

set W1 = W2;

W2 = W3;

W3 = W1 + 2HK · f (T , W2); (Midpoint method.)

T = TO + (j + 1) · HK .

Step 9 Set yk = [W3 + W2 + HK · f (T , W3)]/2.

(Endpoint correction to compute yk,1.)

Step 10 If k ≥ 2 then do Steps 11–13.

(Note: yk−1 ≡ yk−1,1, yk−2 ≡ yk−2,2, . . . , y1 ≡ yk−1,k−1 since only

the previous row of the table is saved.)

Step 11 Set j = k;

v = y1. (Save yk−1,k−1.)

Step 12 While (j ≥ 2) do

set yj−1 = yj + yj − yj−1

Qk−1,j−1 − 1
;

(Extrapolation to compute yj−1 ≡ yk,k−j+2.)

(

Note: yj−1 =
h2

j−1yj − h2
kyj−1

h2
j−1 − h2

k

.

)

j = j − 1.

Step 13 If |y1 − v| ≤ TOL then set NFLAG = 1.

(y1 is accepted as the new w.)

Step 14 Set k = k + 1.
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Step 15 Set k = k − 1.

Step 16 If NFLAG = 0 then do Steps 17 and 18 (Result rejected.)

else do Steps 19 and 20. (Result accepted.)

Step 17 Set h = h/2. (New value for w rejected, decrease h.)

Step 18 If h < hmin then

OUTPUT (‘hmin exceeded’);

Set FLAG = 0.

(True branch completed, next step is back to Step 4.)

Step 19 Set WO = y1; (New value for w accepted.)

TO = TO + h;

OUTPUT (TO, WO, h).

Step 20 If TO ≥ b then set FLAG = 0

(Procedure completed successfully.)

else if TO + h > b then set h = b − TO

(Terminate at t = b.)

else if (k ≤ 3 and h < 0.5(hmax) then set h = 2h.

(Increase step size if possible.)

Step 21 STOP.

Example 1 Use the extrapolation method with maximum step size hmax = 0.2, minimum step size

hmin = 0.01, and tolerance TOL = 10−9 to approximate the solution of the initial-value

problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution For the first step of the extrapolation method we let w0 = 0.5, t0 = 0 and h = 0.2.

Then we compute

h0 = h/2 = 0.1;

w1 = w0 + h0f (t0, w0) = 0.5 + 0.1(1.5) = 0.65;

w2 = w0 + 2h0f (t0 + h0, w1) = 0.5 + 0.2(1.64) = 0.828;

and the first approximation to y(0.2) is

y11 = 1

2
(w2 + w1 + h0f (t0 + 2h0, w2)) = 1

2
(0.828 + 0.65 + 0.1f (0.2, 0.828)) = 0.8284.

For the second approximation to y(0.2) we compute

h1 = h/4 = 0.05;

w1 = w0 + h1f (t0, w0) = 0.5 + 0.05(1.5) = 0.575;

w2 = w0 + 2h1f (t0 + h1, w1) = 0.5 + 0.1(1.5725) = 0.65725;

w3 = w1 + 2h1f (t0 + 2h1, w2) = 0.575 + 0.1(1.64725) = 0.739725;

w4 = w2 + 2h1f (t0 + 3h1, w3) = 0.65725 + 0.1(1.717225) = 0.8289725.
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Then the endpoint correction approximation is

y21 = 1

2
(w4 + w3 + h1f (t0 + 4h1, w4))

= 1

2
(0.8289725 + 0.739725 + 0.05f (0.2, 0.8289725)) = 0.8290730625.

This gives the first extrapolation approximation

y22 = y21 +
(

(1/4)2

(1/2)2 − (1/4)2

)

(y21 − y11) = 0.8292974167.

The third approximation is found by computing

h2 = h/6 = 0.03;

w1 = w0 + h2f (t0, w0) = 0.55;

w2 = w0 + 2h2f (t0 + h2, w1) = 0.6032592593;

w3 = w1 + 2h2f (t0 + 2h2, w2) = 0.6565876543;

w4 = w2 + 2h2f (t0 + 3h2, w3) = 0.7130317696;

w5 = w3 + 2h2f (t0 + 4h2, w4) = 0.7696045871;

w6 = w4 + 2h2f (t0 + 5h2, w4) = 0.8291535569;

then the end-point correction approximation

y31 = 1

2
(w6 + w5 + h2f (t0 + 6h2, w6) = 0.8291982979.

We can now find two extrapolated approximations,

y32 = y31 +
(

(1/6)2

(1/4)2 − (1/6)2

)

(y31 − y21) = 0.8292984862,

and

y33 = y32 +
(

(1/6)2

(1/2)2 − (1/6)2

)

(y32 − y22) = 0.8292986199.

Because

| y33 − y22| = 1.2 × 10−6

does not satisfy the tolerance, we need to compute at least one more row of the extrapo-

lation table. We use h3 = h/8 = 0.025 and calculate w1 by Euler’s method, w2, · · · , w8

by the moidpoint method and apply the endpoint correction. This will give us the new

approximation y41 which permits us to compute the new extrapolation row

y41 = 0.8292421745 y42 = 0.8292985873 y43 = 0.8292986210 y44 = 0.8292986211

Comparing | y44−y33| = 1.2×10−9 we find that the accuracy tolerance has not been reached.

To obtain the entries in the next row, we use h4 = h/12 = 0.06. First calculate w1 by Euler’s

method, then w2 through w12 by the Midpoint method. Finally use the endpoint correction

to obtain y51. The remaining entries in the fifth row are obtained using extrapolation, and are

shown in Table 5.17. Because y55 = 0.8292986213 is within 10−9 of y44 it is accepted as the

approximation to y(0.2). The procedure begins anew to approximate y(0.4). The complete

set of approximations accurate to the places listed is given in Table 5.18.
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Table 5.17

y1,1 = 0.8284000000

y2,1 = 0.8290730625 y2,2 = 0.8292974167

y3,1 = 0.8291982979 y3,2 = 0.8292984862 y3,3 = 0.8292986199

y4,1 = 0.8292421745 y4,2 = 0.8292985873 y4,3 = 0.8292986210 y4,4 = 0.8292986211

y5,1 = 0.8292735291 y5,2 = 0.8292986128 y5,3 = 0.8292986213 y5,4 = 0.8292986213 y5,5 = 0.8292986213

Table 5.18 ti yi = y(ti) wi hi k

0.200 0.8292986210 0.8292986213 0.200 5

0.400 1.2140876512 1.2140876510 0.200 4

0.600 1.6489405998 1.6489406000 0.200 4

0.700 1.8831236462 1.8831236460 0.100 5

0.800 2.1272295358 2.1272295360 0.100 4

0.900 2.3801984444 2.3801984450 0.100 7

0.925 2.4446908698 2.4446908710 0.025 8

0.950 2.5096451704 2.5096451700 0.025 3

1.000 2.6408590858 2.6408590860 0.050 3

1.100 2.9079169880 2.9079169880 0.100 7

1.200 3.1799415386 3.1799415380 0.100 6

1.300 3.4553516662 3.4553516610 0.100 8

1.400 3.7324000166 3.7324000100 0.100 5

1.450 3.8709427424 3.8709427340 0.050 7

1.475 3.9401071136 3.9401071050 0.025 3

1.525 4.0780532154 4.0780532060 0.050 4

1.575 4.2152541820 4.2152541820 0.050 3

1.675 4.4862274254 4.4862274160 0.100 4

1.775 4.7504844318 4.7504844210 0.100 4

1.825 4.8792274904 4.8792274790 0.050 3

1.875 5.0052154398 5.0052154290 0.050 3

1.925 5.1280506670 5.1280506570 0.050 4

1.975 5.2473151731 5.2473151660 0.050 8

2.000 5.3054719506 5.3054719440 0.025 3

The proof that the method presented in Algorithm 5.6 converges involves results from

summability theory; it can be found in the original paper of Gragg [Gr]. A number of other

extrapolation procedures are available, some of which use the variable step-size techniques.

For additional procedures based on the extrapolation process, see the Bulirsch and Stoer

papers [BS1], [BS2], [BS3] or the text by Stetter [Stet]. The methods used by Bulirsch and

Stoer involve interpolation with rational functions instead of the polynomial interpolation

used in the Gragg procedure.

E X E R C I S E S E T 5.8

1. Use the Extrapolation Algorithm with tolerance TOL = 10−4, hmax = 0.25, and hmin = 0.05 to

approximate the solutions to the following initial-value problems. Compare the results to the actual

values.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0; actual solution y(t) = 1

5
te3t − 1

25
e3t + 1

25
e−2t .

b. y′ = 1 + (t − y)2, 2 ≤ t ≤ 3, y(2) = 1; actual solution y(t) = t + 1/(1 − t).
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c. y′ = 1 + y/t, 1 ≤ t ≤ 2, y(1) = 2; actual solution y(t) = t ln t + 2t.

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1; actual solution y(t) = 1

2
sin 2t − 1

3
cos 3t + 4

3
.

2. Use the Extrapolation Algorithm with TOL = 10−4 to approximate the solutions to the following

initial-value problems:

a. y′ = (y/t)2 + y/t, 1 ≤ t ≤ 1.2, y(1) = 1, with hmax = 0.05 and hmin = 0.02.

b. y′ = sin t + e−t , 0 ≤ t ≤ 1, y(0) = 0, with hmax = 0.25 and hmin = 0.02.

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with hmax = 0.5 and hmin = 0.02.

d. y′ = −ty + 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with hmax = 0.25 and hmin = 0.02.

3. Use the Extrapolation Algorithm with tolerance TOL = 10−6, hmax = 0.5, and hmin = 0.05 to

approximate the solutions to the following initial-value problems. Compare the results to the actual

values.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 4, y(1) = 1; actual solution y(t) = t/(1 + ln t).

b. y′ = 1 + y/t + (y/t)2, 1 ≤ t ≤ 3, y(1) = 0; actual solution y(t) = t tan(ln t).

c. y′ = −(y + 1)(y + 3), 0 ≤ t ≤ 3, y(0) = −2; actual solution y(t) = −3 + 2(1 + e−2t)−1.

d. y′ = (t + 2t3)y3 − ty, 0 ≤ t ≤ 2, y(0) = 1

3
; actual solution y(t) = (3 + 2t2 + 6et2

)−1/2.

4. Let P(t) be the number of individuals in a population at time t, measured in years. If the average birth

rate b is constant and the average death rate d is proportional to the size of the population (due to

overcrowding), then the growth rate of the population is given by the logistic equation

dP(t)

dt
= bP(t) − k[P(t)]2,

where d = kP(t). Suppose P(0) = 50, 976, b = 2.9 × 10−2, and k = 1.4 × 10−7. Find the population

after 5 years.

5.9 Higher-Order Equations and Systems of Differential Equations

This section contains an introduction to the numerical solution of higher-order initial-value

problems. The techniques discussed are limited to those that transform a higher-order equa-

tion into a system of first-order differential equations. Before discussing the transformation

procedure, some remarks are needed concerning systems that involve first-order differential

equations.

An mth-order system of first-order initial-value problems has the form

du1

dt
= f1(t, u1, u2, . . . , um),

du2

dt
= f2(t, u1, u2, . . . , um),

...

dum

dt
= fm(t, u1, u2, . . . , um), (5.45)

for a ≤ t ≤ b, with the initial conditions

u1(a) = α1, u2(a) = α2, . . . , um(a) = αm. (5.46)

The object is to find m functions u1(t), u2(t), . . . , um(t) that satisfy each of the differential

equations together with all the initial conditions.

To discuss existence and uniqueness of solutions to systems of equations, we need to

extend the definition of the Lipschitz condition to functions of several variables.
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Definition 5.16 The function f (t, y1, . . . , ym), defined on the set

D = {(t, u1, . . . , um) | a ≤ t ≤ b and − ∞ < ui < ∞, for each i = 1, 2, . . . , m}

is said to satisfy a Lipschitz condition on D in the variables u1, u2, . . . , um if a constant

L > 0 exists with

|f (t, u1, . . . , um) − f (t, z1, . . . , zm)| ≤ L

m
∑

j=1

|uj − zj|, (5.47)

for all (t, u1, . . . , um) and (t, z1, . . . , zm) in D.

By using the Mean Value Theorem, it can be shown that if f and its first partial

derivatives are continuous on D and if

∣

∣

∣

∣

∂f (t, u1, . . . , um)

∂ui

∣

∣

∣

∣

≤ L,

for each i = 1, 2, . . . , m and all (t, u1, . . . , um) in D, then f satisfies a Lipschitz condition on

D with Lipschitz constant L (see [BiR], p. 141). A basic existence and uniqueness theorem

follows. Its proof can be found in [BiR], pp. 152–154.

Theorem 5.17 Suppose that

D = {(t, u1, u2, . . . , um) | a ≤ t ≤ b and − ∞ < ui < ∞, for each i = 1, 2, . . . , m},

and let fi(t, u1, . . . , um), for each i = 1, 2, . . . , m, be continuous and satisfy a Lipschitz

condition on D. The system of first-order differential equations (5.45), subject to the initial

conditions (5.46), has a unique solution u1(t), . . . , um(t), for a ≤ t ≤ b.

Methods to solve systems of first-order differential equations are generalizations of the

methods for a single first-order equation presented earlier in this chapter. For example, the

classical Runge-Kutta method of order four given by

w0 = α,

k1 = hf (ti, wi),

k2 = hf

(

ti + h

2
, wi + 1

2
k1

)

,

k3 = hf

(

ti + h

2
, wi + 1

2
k2

)

,

k4 = hf (ti+1, wi + k3),

wi+1 = wi + 1

6
(k1 + 2k2 + 2k3 + k4), for each i = 0, 1, . . . , N − 1,

used to solve the first-order initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

is generalized as follows.
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Let an integer N > 0 be chosen and set h = (b − a)/N . Partition the interval [a, b] into

N subintervals with the mesh points

tj = a + jh, for each j = 0, 1, . . . , N .

Use the notation wij, for each j = 0, 1, . . . , N and i = 1, 2, . . . , m, to denote an approx-

imation to ui(tj). That is, wij approximates the ith solution ui(t) of (5.45) at the jth mesh

point tj. For the initial conditions, set (see Figure 5.6)

w1,0 = α1, w2,0 = α2, . . . , wm,0 = αm. (5.48)

Figure 5.6

y

t
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w12
w13

y

t
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w22

w21

a � t0 t1 t2 t3 a � t0 t1 t2 t3
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u2(a) � α2

u2(t)

u1(t)

y

t

wm3
wm2

wm1

a � t0 t1 t2 t3

um(t)

um(a) � αm

Suppose that the values w1, j, w2, j, . . . , wm, j have been computed. We obtain w1, j+1,

w2, j+1, . . . , wm, j+1 by first calculating

k1,i = hfi(tj, w1, j, w2, j, . . . , wm, j), for each i = 1, 2, . . . , m; (5.49)

k2,i = hfi

(

tj + h

2
, w1, j + 1

2
k1,1, w2, j + 1

2
k1,2, . . . , wm, j + 1

2
k1,m

)

, (5.50)

for each i = 1, 2, . . . , m;

k3,i = hfi

(

tj + h

2
, w1, j + 1

2
k2,1, w2, j + 1

2
k2,2, . . . , wm, j + 1

2
k2,m

)

, (5.51)

for each i = 1, 2, . . . , m;

k4,i = hfi(tj + h, w1, j + k3,1, w2, j + k3,2, . . . , wm, j + k3,m), (5.52)

for each i = 1, 2, . . . , m; and then

wi, j+1 = wi, j + 1

6
(k1,i + 2k2,i + 2k3,i + k4,i), (5.53)

for each i = 1, 2, . . . , m. Note that all the values k1,1, k1,2, . . . , k1,m must be computed before

any of the terms of the form k2,i can be determined. In general, each kl,1, kl,2, . . . , kl,m must be

computed before any of the expressions kl+1,i. Algorithm 5.7 implements the Runge-Kutta

fourth-order method for systems of initial-value problems.
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ALGORITHM

5.7
Runge-Kutta Method for Systems of Differential Equations

To approximate the solution of the mth-order system of first-order initial-value problems

u′
j = fj(t, u1, u2, . . . , um), a ≤ t ≤ b, with uj(a) = αj,

for j = 1, 2, . . . , m at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; number of equations m; integer N ; initial conditions α1, . . . , αm.

OUTPUT approximations wj to uj(t) at the (N + 1) values of t.

Step 1 Set h = (b − a)/N ;

t = a.

Step 2 For j = 1, 2, . . . , m set wj = αj.

Step 3 OUTPUT (t, w1, w2, . . . , wm).

Step 4 For i = 1, 2, . . . , N do steps 5–11.

Step 5 For j = 1, 2, . . . , m set

k1,j = hfj(t, w1, w2, . . . , wm).

Step 6 For j = 1, 2, . . . , m set

k2,j = hfj

(

t + h
2
, w1 + 1

2
k1,1, w2 + 1

2
k1,2, . . . , wm + 1

2
k1,m

)

.

Step 7 For j = 1, 2, . . . , m set

k3,j = hfj

(

t + h
2
, w1 + 1

2
k2,1, w2 + 1

2
k2,2, . . . , wm + 1

2
k2,m

)

.

Step 8 For j = 1, 2, . . . , m set

k4,j = hfj(t + h, w1 + k3,1, w2 + k3,2, . . . , wm + k3,m).

Step 9 For j = 1, 2, . . . , m set

wj = wj + (k1,j + 2k2,j + 2k3,j + k4,j)/6.

Step 10 Set t = a + ih.

Step 11 OUTPUT (t, w1, w2, . . . , wm).

Step 12 STOP.

Illustration Kirchhoff’s Law states that the sum of all instantaneous voltage changes around a closed

circuit is zero. This law implies that the current I(t) in a closed circuit containing a resistance

of R ohms, a capacitance of C farads, an inductance of L henries, and a voltage source of

E(t) volts satisfies the equation

LI ′(t) + RI(t) + 1

C

∫

I(t) dt = E(t).

The currents I1(t) and I2(t) in the left and right loops, respectively, of the circuit shown in

Figure 5.7 are the solutions to the system of equations

2I1(t) + 6[I1(t) − I2(t)] + 2I ′
1(t) = 12,

1

0.5

∫

I2(t) dt + 4I2(t) + 6[I2(t) − I1(t)] = 0.
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Figure 5.7
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If the switch in the circuit is closed at time t = 0, we have the initial conditions I1(0) = 0

and I2(0) = 0. Solve for I ′
1(t) in the first equation, differentiate the second equation, and

substitute for I ′
1(t) to get

I ′
1 = f1(t, I1, I2) = −4I1 + 3I2 + 6, I1(0) = 0,

I ′
2 = f2(t, I1, I2) = 0.6I ′

1 − 0.2I2 = −2.4I1 + 1.6I2 + 3.6, I2(0) = 0.

The exact solution to this system is

I1(t) = −3.375e−2t + 1.875e−0.4t + 1.5,

I2(t) = −2.25e−2t + 2.25e−0.4t .

We will apply the Runge-Kutta method of order four to this system with h = 0.1. Since

w1,0 = I1(0) = 0 and w2,0 = I2(0) = 0,

k1,1 = hf1(t0, w1,0, w2,0) = 0.1 f1(0, 0, 0) = 0.1 (−4(0) + 3(0) + 6) = 0.6,

k1,2 = hf2(t0, w1,0, w2,0) = 0.1 f2(0, 0, 0) = 0.1 (−2.4(0) + 1.6(0) + 3.6) = 0.36,

k2,1 = hf1

(

t0 + 1

2
h, w1,0 + 1

2
k1,1, w2,0 + 1

2
k1,2

)

= 0.1 f1(0.05, 0.3, 0.18)

= 0.1 (−4(0.3) + 3(0.18) + 6) = 0.534,

k2,2 = hf2

(

t0 + 1

2
h, w1,0 + 1

2
k1,1, w2,0 + 1

2
k1,2

)

= 0.1 f2(0.05, 0.3, 0.18)

= 0.1 (−2.4(0.3) + 1.6(0.18) + 3.6) = 0.3168.

Generating the remaining entries in a similar manner produces

k3,1 = (0.1)f1(0.05, 0.267, 0.1584) = 0.54072,

k3,2 = (0.1)f2(0.05, 0.267, 0.1584) = 0.321264,

k4,1 = (0.1)f1(0.1, 0.54072, 0.321264) = 0.4800912,

k4,2 = (0.1)f2(0.1, 0.54072, 0.321264) = 0.28162944.
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As a consequence,

I1(0.1) ≈ w1,1 = w1,0 + 1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1)

= 0 + 1

6
(0.6 + 2(0.534) + 2(0.54072) + 0.4800912) = 0.5382552

and

I2(0.1) ≈ w2,1 = w2,0 + 1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) = 0.3196263.

The remaining entries in Table 5.19 are generated in a similar manner. �

Table 5.19 tj w1,j w2,j |I1(tj) − w1,j| |I2(tj) − w2,j|

0.0 0 0 0 0

0.1 0.5382550 0.3196263 0.8285 × 10−5 0.5803 × 10−5

0.2 0.9684983 0.5687817 0.1514 × 10−4 0.9596 × 10−5

0.3 1.310717 0.7607328 0.1907 × 10−4 0.1216 × 10−4

0.4 1.581263 0.9063208 0.2098 × 10−4 0.1311 × 10−4

0.5 1.793505 1.014402 0.2193 × 10−4 0.1240 × 10−4

Recall that Maple reserves the

letter D to represent

differentiation.

Maple’s NumericalAnalysis package does not currently approximate the solution to

systems of initial value problems, but systems of first-order differential equations can by

solved using dsolve. The system in the Illustration is defined with

sys 2 := D(u1)(t) = −4u1(t) + 3u2(t) + 6, D(u2)(t) = −2.4u1(t) + 1.6u2(t) + 3.6

and the initial conditions with

init 2 := u1(0) = 0, u2(0) = 0

The system is solved with the command

sol 2 := dsolve({sys 2, init 2}, {u1(t), u2(t)})

and Maple responds with

{

u1(t) = −27

8
e−2t + 15

8
e
− 5

2
t + 3

2
, u2(t) = −9

4
e−2t + 9

4
e
− 5

2
t

}

To isolate the individual functions we use

r1 := rhs(sol 2[1]); r2 := rhs(sol 2[2])

producing

−27

8
e−2t+15

8
e
− 5

2
t + 3

2

−9

4
e−2t+9

4
e
− 5

2
t

and to determine the value of the functions at t = 0.5 we use

evalf (subs(t = 0.5, r1)); evalf (subs(t = 0.5, r2))
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giving, in agreement with Table 5.19,

1.793527048

1.014415451

The command dsolve will fail if an explicit solution cannot be found. In that case we

can use the numeric option in dsolve, which applies the Runge-Kutta-Fehlberg technique.

This technique can also be used, of course, when the exact solution can be determined with

dsolve. For example, with the system defined previously,

g := dsolve({sys 2, init 2}, {u1(t), u2(t)}, numeric)

returns

proc(x_ rkf 45) . . . end proc

To approximate the solutions at t = 0.5, enter

g(0.5)

which gives approximations in the form

[t = 0.5, u2(t) = 1.014415563, u1(t) = 1.793527215]

Higher-Order Differential Equations

Many important physical problems—for example, electrical circuits and vibrating systems—

involve initial-value problems whose equations have orders higher than one. New techniques

are not required for solving these problems. By relabeling the variables, we can reduce

a higher-order differential equation into a system of first-order differential equations and

then apply one of the methods we have already discussed.

A general mth-order initial-value problem

y(m)(t) = f (t, y, y′, . . . , y(m−1)), a ≤ t ≤ b,

with initial conditions y(a) = α1, y′(a) = α2, . . . , y(m−1)(a) = αm can be converted into a

system of equations in the form (5.45) and (5.46).

Let u1(t) = y(t), u2(t) = y′(t), . . . , and um(t) = y(m−1)(t). This produces the first-order

system

du1

dt
=dy

dt
= u2,

du2

dt
= dy′

dt
= u3, · · · ,

dum−1

dt
= dy(m−2)

dt
= um,

and

dum

dt
=dy(m−1)

dt
= y(m) = f (t, y, y′, . . . , y(m−1)) = f (t, u1, u2, . . . , um),

with initial conditions

u1(a) = y(a) = α1, u2(a) = y′(a) = α2, . . . , um(a) = y(m−1)(a) = αm.

Example 1 Transform the the second-order initial-value problem

y′′ − 2y′ + 2y = e2t sin t, for 0 ≤ t ≤ 1, with y(0) = −0.4, y′(0) = −0.6

into a system of first order initial-value problems, and use the Runge-Kutta method with

h = 0.1 to approximate the solution.
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Solution Let u1(t) = y(t) and u2(t) = y′(t). This transforms the second-order equation

into the system

u′
1(t) = u2(t),

u′
2(t) = e2t sin t − 2u1(t) + 2u2(t),

with initial conditions u1(0) = −0.4, u2(0) = −0.6.

The initial conditions give w1,0 = −0.4 and w2,0 = −0.6. The Runge-Kutta Eqs. (5.49)

through (5.52) on page 330 with j = 0 give

k1,1 = hf1(t0, w1,0, w2,0) = hw2,0 = −0.06,

k1,2 = hf2(t0, w1,0, w2,0) = h
[

e2t0 sin t0 − 2w1,0 + 2w2,0

]

= −0.04,

k2,1 = hf1

(

t0 + h

2
, w1,0 + 1

2
k1,1, w2,0 + 1

2
k1,2

)

= h

[

w2,0 + 1

2
k1,2

]

= −0.062,

k2,2 = hf2

(

t0 + h

2
, w1,0 + 1

2
k1,1, w2,0 + 1

2
k1,2

)

= h

[

e2(t0+0.05) sin(t0 + 0.05) − 2

(

w1,0 + 1

2
k1,1

)

+ 2

(

w2,0 + 1

2
k1,2

)]

= −0.03247644757,

k3,1 = h

[

w2,0 + 1

2
k2,2

]

= −0.06162832238,

k3,2 = h

[

e2(t0+0.05) sin(t0 + 0.05) − 2

(

w1,0 + 1

2
k2,1

)

+ 2

(

w2,0 + 1

2
k2,2

)]

= −0.03152409237,

k4,1 = h
[

w2,0 + k3,2

]

= −0.06315240924,

and

k4,2 = h
[

e2(t0+0.1) sin(t0 + 0.1) − 2(w1,0 + k3,1) + 2(w2,0 + k3,2)
]

= −0.02178637298.

So

w1,1 = w1,0 + 1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) = −0.4617333423

and

w2,1 = w2,0 + 1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) = −0.6316312421.

The value w1,1 approximates u1(0.1) = y(0.1) = 0.2e2(0.1)(sin 0.1 − 2 cos 0.1), and

w2,1 approximates u2(0.1) = y′(0.1) = 0.2e2(0.1)(4 sin 0.1 − 3 cos 0.1).

The set of values w1,j and w2,j, for j = 0, 1, . . . , 10, are presented in Table 5.20 and

are compared to the actual values of u1(t) = 0.2e2t(sin t − 2 cos t) and u2(t) = u′
1(t) =

0.2e2t(4 sin t − 3 cos t).
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Table 5.20

tj y(tj) = u1(tj) w1,j y′(tj) = u2(tj) w2,j |y(tj) − w1,j| |y′(tj) − w2,j|

0.0 −0.40000000 −0.40000000 −0.6000000 −0.60000000 0 0

0.1 −0.46173297 −0.46173334 −0.6316304 −0.63163124 3.7 × 10−7 7.75 × 10−7

0.2 −0.52555905 −0.52555988 −0.6401478 −0.64014895 8.3 × 10−7 1.01 × 10−6

0.3 −0.58860005 −0.58860144 −0.6136630 −0.61366381 1.39 × 10−6 8.34 × 10−7

0.4 −0.64661028 −0.64661231 −0.5365821 −0.53658203 2.03 × 10−6 1.79 × 10−7

0.5 −0.69356395 −0.69356666 −0.3887395 −0.38873810 2.71 × 10−6 5.96 × 10−7

0.6 −0.72114849 −0.72115190 −0.1443834 −0.14438087 3.41 × 10−6 7.75 × 10−7

0.7 −0.71814890 −0.71815295 0.2289917 0.22899702 4.05 × 10−6 2.03 × 10−6

0.8 −0.66970677 −0.66971133 0.7719815 0.77199180 4.56 × 10−6 5.30 × 10−6

0.9 −0.55643814 −0.55644290 1.534764 1.5347815 4.76 × 10−6 9.54 × 10−6

1.0 −0.35339436 −0.35339886 2.578741 2.5787663 4.50 × 10−6 1.34 × 10−5

In Maple the nth derivative y(n)(t)

is specified by (D@@n)(y)(t).

We can also use dsolve from Maple on higher-order equations. To define the differential

equation in Example 1, use

def 2 := (D@@2)(y)(t) − 2D(y)(t) + 2y(t) = e2t sin(t)

and to specify the initial conditions use

init 2 := y(0) = −0.4, D(y)(0) = −0.6

The solution is obtained with the command

sol 2 := dsolve({def 2, init 2}, y(t))

to obtain

y(t) = 1

5
e2t(sin(t) − 2 cos(t))

We isolate the solution in function form using

g := rhs(sol 2)

To obtain y(1.0) = g(1.0), enter

evalf (subs(t = 1.0, g))

which gives −0.3533943574.

Runge-Kutta-Fehlberg is also available for higher-order equations via the dsolve com-

mand with the numeric option. It is employed in the same manner as illustrated for systems

of equations.

The other one-step methods can be extended to systems in a similar way. When error

control methods like the Runge-Kutta-Fehlberg method are extended, each component of

the numerical solution (w1j, w2j, . . . , wmj) must be examined for accuracy. If any of the

components fail to be sufficiently accurate, the entire numerical solution (w1j, w2j, . . . , wmj)

must be recomputed.

The multistep methods and predictor-corrector techniques can also be extended to

systems. Again, if error control is used, each component must be accurate. The extension

of the extrapolation technique to systems can also be done, but the notation becomes quite

involved. If this topic is of interest, see [HNW1].

Convergence theorems and error estimates for systems are similar to those considered

in Section 5.10 for the single equations, except that the bounds are given in terms of vector

norms, a topic considered in Chapter 7. (A good reference for these theorems is [Ge1],

pp. 45–72.)
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5.9 Higher-Order Equations and Systems of Differential Equations 337

E X E R C I S E S E T 5.9

1. Use the Runge-Kutta method for systems to approximate the solutions of the following systems of

first-order differential equations, and compare the results to the actual solutions.

a. u′
1 = 3u1 + 2u2 − (2t2 + 1)e2t , u1(0) = 1;

u′
2 = 4u1 + u2 + (t2 + 2t − 4)e2t , u2(0) = 1; 0 ≤ t ≤ 1; h = 0.2;

actual solutions u1(t) = 1

3
e5t − 1

3
e−t + e2t and u2(t) = 1

3
e5t + 2

3
e−t + t2e2t .

b. u′
1 = −4u1 − 2u2 + cos t + 4 sin t, u1(0) = 0;

u′
2 = 3u1 + u2 − 3 sin t, u2(0) = −1; 0 ≤ t ≤ 2; h = 0.1;

actual solutions u1(t) = 2e−t − 2e−2t + sin t and u2(t) = −3e−t + 2e−2t .

c. u′
1 = u2, u1(0) = 1;

u′
2 = −u1 − 2et + 1, u2(0) = 0;

u′
3 = −u1 − et + 1, u3(0) = 1; 0 ≤ t ≤ 2; h = 0.5;

actual solutions u1(t) = cos t + sin t − et + 1, u2(t) = − sin t + cos t − et , and u3(t) =
− sin t + cos t.

d. u′
1 = u2 − u3 + t, u1(0) = 1;

u′
2 = 3t2, u2(0) = 1;

u′
3 = u2 + e−t , u3(0) = −1; 0 ≤ t ≤ 1; h = 0.1;

actual solutions u1(t) = −0.05t5 + 0.25t4 + t + 2 − e−t , u2(t) = t3 + 1, and u3(t) =
0.25t4 + t − e−t .

2. Use the Runge-Kutta method for systems to approximate the solutions of the following systems of

first-order differential equations, and compare the results to the actual solutions.

a. u′
1 = u1 − u2 + 2, u1(0) = −1;

u′
2 = −u1 + u2 + 4t, u2(0) = 0; 0 ≤ t ≤ 1; h = 0.1;

actual solutions u1(t) = −1

2
e2t + t2 + 2t − 1

2
and u2(t) = 1

2
e2t + t2 − 1

2
.

b. u′
1 = 1

9
u1 − 2

3
u2 − 1

9
t2 + 2

3
, u1(0) = −3;

u′
2 = u2 + 3t − 4, u2(0) = 5; 0 ≤ t ≤ 2; h = 0.2;

actual solutions u1(t) = −3et + t2 and u2(t) = 4et − 3t + 1.

c. u′
1 = u1 + 2u2 − 2u3 + e−t , u1(0) = 3;

u′
2 = u2 + u3 − 2e−t , u2(0) = −1;

u′
3 = u1 + 2u2 + e−t , u3(0) = 1; 0 ≤ t ≤ 1; h = 0.1;

actual solutions u1(t) = −3e−t − 3 sin t + 6 cos t, u2(t) = 3

2
e−t + 3

10
sin t − 21

10
cos t − 2

5
e2t ,

and u3(t) = −e−t + 12

5
cos t + 9

5
sin t − 2

5
e2t .

d. u′
1 = 3u1 + 2u2 − u3 − 1 − 3t − 2 sin t, u1(0) = 5;

u′
2 = u1 − 2u2 + 3u3 + 6 − t + 2 sin t + cos t, u2(0) = −9;

u′
3 = 2u1 + 4u3 + 8 − 2t, u3(0) = −5; 0 ≤ t ≤ 2; h = 0.2;

actual solutions u1(t) = 2e3t + 3e−2t + 1, u2(t) = −8e−2t + e4t − 2e3t + sin t, and u3(t) =
2e4t − 4e3t − e−2t − 2.

3. Use the Runge-Kutta for Systems Algorithm to approximate the solutions of the following higher-

order differential equations, and compare the results to the actual solutions.

a. y′′ − 2y′ + y = tet − t, 0 ≤ t ≤ 1, y(0) = y′(0) = 0, with h = 0.1;

actual solution y(t) = 1

6
t3et − tet + 2et − t − 2.

b. t2y′′ − 2ty′ + 2y = t3 ln t, 1 ≤ t ≤ 2, y(1) = 1, y′(1) = 0, with h = 0.1;

actual solution y(t) = 7

4
t + 1

2
t3 ln t − 3

4
t3.

c. y′′′ + 2y′′ − y′ − 2y = et , 0 ≤ t ≤ 3, y(0) = 1, y′(0) = 2, y′′(0) = 0, with h = 0.2;

actual solution y(t) = 43

36
et + 1

4
e−t − 4

9
e−2t + 1

6
tet .

d. t3y′′′ − t2y′′ + 3ty′ − 4y = 5t3 ln t + 9t3, 1 ≤ t ≤ 2, y(1) = 0, y′(1) = 1, y′′(1) = 3,

with h = 0.1; actual solution y(t) = −t2 + t cos(ln t) + t sin(ln t) + t3 ln t.
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4. Use the Runge-Kutta for Systems Algorithm to approximate the solutions of the following higher-

order differential equations, and compare the results to the actual solutions.

a. y′′ − 3y′ + 2y = 6e−t , 0 ≤ t ≤ 1, y(0) = y′(0) = 2, with h = 0.1;

actual solution y(t) = 2e2t − et + e−t .

b. t2y′′ + ty′ − 4y = −3t, 1 ≤ t ≤ 3, y(1) = 4, y′(1) = 3, with h = 0.2;

actual solution y(t) = 2t2 + t + t−2.

c. y′′′ + y′′ − 4y′ − 4y = 0, 0 ≤ t ≤ 2, y(0) = 3, y′(0) = −1, y′′(0) = 9, with h = 0.2;

actual solution y(t) = e−t + e2t + e−2t .

d. t3y′′′ + t2y′′ − 2ty′ + 2y = 8t3 − 2, 1 ≤ t ≤ 2, y(1) = 2, y′(1) = 8, y′′(1) = 6, with

h = 0.1; actual solution y(t) = 2t − t−1 + t2 + t3 − 1.

5. Change the Adams Fourth-Order Predictor-Corrector Algorithm to obtain approximate solutions to

systems of first-order equations.

6. Repeat Exercise 2 using the algorithm developed in Exercise 5.

7. Repeat Exercise 1 using the algorithm developed in Exercise 5.

8. Suppose the swinging pendulum described in the lead example of this chapter is 2 ft long and that

g = 32.17 ft/s2. With h = 0.1 s, compare the angle θ obtained for the following two initial-value

problems at t = 0, 1, and 2 s.

a.
d2θ

dt2
+ g

L
sin θ = 0, θ(0) = π

6
, θ ′(0) = 0,

b.
d2θ

dt2
+ g

L
θ = 0, θ(0) = π

6
, θ ′(0) = 0,

9. The study of mathematical models for predicting the population dynamics of competing species has

its origin in independent works published in the early part of the 20th century by A. J. Lotka and

V. Volterra (see, for example, [Lo1], [Lo2], and [Vo]).

Consider the problem of predicting the population of two species, one of which is a predator,

whose population at time t is x2(t), feeding on the other, which is the prey, whose population is x1(t).

We will assume that the prey always has an adequate food supply and that its birth rate at any time

is proportional to the number of prey alive at that time; that is, birth rate (prey) is k1x1(t). The death

rate of the prey depends on both the number of prey and predators alive at that time. For simplicity,

we assume death rate (prey) = k2x1(t)x2(t). The birth rate of the predator, on the other hand, depends

on its food supply, x1(t), as well as on the number of predators available for reproduction purposes.

For this reason, we assume that the birth rate (predator) is k3x1(t)x2(t). The death rate of the predator

will be taken as simply proportional to the number of predators alive at the time; that is, death rate

(predator) = k4x2(t).

Since x′
1(t) and x′

2(t) represent the change in the prey and predator populations, respectively,

with respect to time, the problem is expressed by the system of nonlinear differential equations

x′
1(t) = k1x1(t) − k2x1(t)x2(t) and x′

2(t) = k3x1(t)x2(t) − k4x2(t).

Solve this system for 0 ≤ t ≤ 4, assuming that the initial population of the prey is 1000 and of the

predators is 500 and that the constants are k1 = 3, k2 = 0.002, k3 = 0.0006, and k4 = 0.5. Sketch a

graph of the solutions to this problem, plotting both populations with time, and describe the physical

phenomena represented. Is there a stable solution to this population model? If so, for what values x1

and x2 is the solution stable?

10. In Exercise 9 we considered the problem of predicting the population in a predator-prey model.

Another problem of this type is concerned with two species competing for the same food supply. If

the numbers of species alive at time t are denoted by x1(t) and x2(t), it is often assumed that, although

the birth rate of each of the species is simply proportional to the number of species alive at that time,

the death rate of each species depends on the population of both species. We will assume that the

population of a particular pair of species is described by the equations

dx1(t)

dt
= x1(t)[4 − 0.0003x1(t) − 0.0004x2(t)] and

dx2(t)

dt
= x2(t)[2 − 0.0002x1(t) − 0.0001x2(t)].
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If it is known that the initial population of each species is 10,000, find the solution to this system for

0 ≤ t ≤ 4. Is there a stable solution to this population model? If so, for what values of x1 and x2 is

the solution stable?

5.10 Stability

A number of methods have been presented in this chapter for approximating the solution

to an initial-value problem. Although numerous other techniques are available, we have

chosen the methods described here because they generally satisfied three criteria:

• Their development is clear enough so that you can understand how and why they work.

• One or more of the methods will give satisfactory results for most of the problems that

are encountered by students in science and engineering.

• Most of the more advanced and complex techniques are based on one or a combination

of the procedures described here.

One-Step Methods

In this section, we discuss why these methods are expected to give satisfactory results when

some similar methods do not. Before we begin this discussion, we need to present two

definitions concerned with the convergence of one-step difference-equation methods to the

solution of the differential equation as the step size decreases.

Definition 5.18 A one-step difference-equation method with local truncation error τi(h) at the ith step is

said to be consistent with the differential equation it approximates if

lim
h→0

max
1≤i≤N

|τi(h)| = 0.

A one-step method is consistent

if the difference equation for the

method approaches the

differential equation as the step

size goes to zero.

Note that this definition is a local definition since, for each of the values τi(h), we

are assuming that the approximation wi−1 and the exact solution y(ti−1) are the same. A

more realistic means of analyzing the effects of making h small is to determine the global

effect of the method. This is the maximum error of the method over the entire range of the

approximation, assuming only that the method gives the exact result at the initial value.

Definition 5.19 A one-step difference-equation method is said to be convergent with respect to the differ-

ential equation it approximates if

lim
h→0

max
1≤i≤N

|wi − y(ti)| = 0,

where y(ti) denotes the exact value of the solution of the differential equation and wi is the

approximation obtained from the difference method at the ith step.

A method is convergent if the

solution to the difference

equation approaches the solution

to the differential equation as the

step size goes to zero.

Example 1 Show that Euler’s method is convergent.

Solution Examining Inequality (5.10) on page 271, in the error-bound formula for Euler’s

method, we see that under the hypotheses of Theorem 5.9,

max
1≤i≤N

|wi − y(ti)| ≤ Mh

2L
|eL(b−a) − 1|.
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However, M, L, a, and b are all constants and

lim
h→0

max
1≤i≤N

|wi − y(ti)| ≤ lim
h→0

Mh

2L

∣

∣eL(b−a) − 1
∣

∣ = 0.

So Euler’s method is convergent with respect to a differential equation satisfying the con-

ditions of this definition. The rate of convergence is O(h).

A consistent one-step method has the property that the difference equation for the

method approaches the differential equation when the step size goes to zero. So the local

truncation error of a consistent method approaches zero as the step size approaches zero.

The other error-bound type of problem that exists when using difference methods to

approximate solutions to differential equations is a consequence of not using exact results.

In practice, neither the initial conditions nor the arithmetic that is subsequently performed

is represented exactly because of the round-off error associated with finite-digit arithmetic.

In Section 5.2 we saw that this consideration can lead to difficulties even for the convergent

Euler’s method.

To analyze this situation, at least partially, we will try to determine which methods are

stable, in the sense that small changes or perturbations in the initial conditions produce

correspondingly small changes in the subsequent approximations.

A method is stable when the

results depend continuously on

the initial data.

The concept of stability of a one-step difference equation is somewhat analogous to

the condition of a differential equation being well-posed, so it is not surprising that the

Lipschitz condition appears here, as it did in the corresponding theorem for differential

equations, Theorem 5.6 in Section 5.1.

Part (i) of the following theorem concerns the stability of a one-step method. The

proof of this result is not difficult and is considered in Exercise 1. Part (ii) of Theorem 5.20

concerns sufficient conditions for a consistent method to be convergent. Part (iii) justifies the

remark made in Section 5.5 about controlling the global error of a method by controlling

its local truncation error and implies that when the local truncation error has the rate of

convergence O(hn), the global error will have the same rate of convergence. The proofs of

parts (ii) and (iii) are more difficult than that of part (i), and can be found within the material

presented in [Ge1], pp. 57–58.

Theorem 5.20 Suppose the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

is approximated by a one-step difference method in the form

w0 = α,

wi+1 = wi + hφ(ti, wi, h).

Suppose also that a number h0 > 0 exists and that φ(t, w, h) is continuous and satisfies a

Lipschitz condition in the variable w with Lipschitz constant L on the set

D = {(t, w, h) | a ≤ t ≤ b and − ∞ < w < ∞, 0 ≤ h ≤ h0}.

Then

(i) The method is stable;

(ii) The difference method is convergent if and only if it is consistent, which is

equivalent to

φ(t, y, 0) = f (t, y), for all a ≤ t ≤ b;
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(iii) If a function τ exists and, for each i = 1, 2, . . . , N , the local truncation error

τi(h) satisfies |τi(h)| ≤ τ(h) whenever 0 ≤ h ≤ h0, then

|y(ti) − wi| ≤ τ(h)

L
eL(ti−a).

Example 2 The Modified Euler method is given by w0 = α,

wi+1 = wi + h

2

[

f (ti, wi) + f (ti+1, wi + hf (ti, wi))
]

, for i = 0, 1, . . . , N − 1.

Verify that this method is stable by showing that it satisfies the hypothesis of Theorem 5.20.

Solution For this method,

φ(t, w, h) = 1

2
f (t, w) + 1

2
f (t + h, w + hf (t, w)).

If f satisfies a Lipschitz condition on {(t, w) | a ≤ t ≤ b and − ∞ < w < ∞} in the

variable w with constant L, then, since

φ(t, w, h) − φ(t, w, h) = 1

2
f (t, w) + 1

2
f (t + h, w + hf (t, w))

− 1

2
f (t, w) − 1

2
f (t + h, w + hf (t, w)),

the Lipschitz condition on f leads to

|φ(t, w, h) − φ(t, w, h)| ≤ 1

2
L|w − w| + 1

2
L |w + hf (t, w) − w − hf (t, w)|

≤ L|w − w| + 1

2
L |hf (t, w) − hf (t, w)|

≤ L|w − w| + 1

2
hL2|w − w|

=
(

L + 1

2
hL2

)

|w − w|.

Therefore, φ satisfies a Lipschitz condition in w on the set

{(t, w, h) | a ≤ t ≤ b, −∞ < w < ∞, and 0 ≤ h ≤ h0},

for any h0 > 0 with constant

L′ = L + 1

2
h0L2.

Finally, if f is continuous on {(t, w) | a ≤ t ≤ b, −∞ < w < ∞}, then φ is

continuous on

{(t, w, h) | a ≤ t ≤ b, −∞ < w < ∞, and 0 ≤ h ≤ h0};

so Theorem 5.20 implies that the Modified Euler method is stable. Letting h = 0, we have

φ(t, w, 0) = 1

2
f (t, w) + 1

2
f (t + 0, w + 0 · f (t, w)) = f (t, w),

so the consistency condition expressed in Theorem 5.20, part (ii), holds. Thus, the method

is convergent. Moreover, we have seen that for this method the local truncation error is

O(h2), so the convergence of the Modified Euler method is also O(h2).
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Multistep Methods

For multistep methods, the problems involved with consistency, convergence, and stability

are compounded because of the number of approximations involved at each step. In the one-

step methods, the approximation wi+1 depends directly only on the previous approximation

wi, whereas the multistep methods use at least two of the previous approximations, and the

usual methods that are employed involve more.

The general multistep method for approximating the solution to the initial-value

problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α, (5.54)

has the form

w0 = α, w1 = α1, . . . , wm−1 = αm−1,

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m + hF(ti, h, wi+1, wi, . . . , wi+1−m),

(5.55)

for each i = m − 1, m, . . . , N − 1, where a0, a1, . . . , am+1 are constants and, as usual,

h = (b − a)/N and ti = a + ih.

The local truncation error for a multistep method expressed in this form is

τi+1(h) = y(ti+1) − am−1y(ti) − · · · − a0y(ti+1−m)

h

− F(ti, h, y(ti+1), y(ti), . . . , y(ti+1−m)),

for each i = m − 1, m, . . . , N − 1. As in the one-step methods, the local truncation er-

ror measures how the solution y to the differential equation fails to satisfy the difference

equation.

For the four-step Adams-Bashforth method, we have seen that

τi+1(h) = 251

720
y(5)(µi)h

4, for some µi ∈ (ti−3, ti+1),

whereas the three-step Adams-Moulton method has

τi+1(h) = − 19

720
y(5)(µi)h

4, for some µi ∈ (ti−2, ti+1),

provided, of course, that y ∈ C5[a, b].
Throughout the analysis, two assumptions will be made concerning the function F:

• If f ≡ 0 (that is, if the differential equation is homogeneous), then F ≡ 0 also.

• F satisfies a Lipschitz condition with respect to {wj}, in the sense that a constant L exists

and, for every pair of sequences {vj}N
j=0 and {ṽj}N

j=0 and for i = m − 1, m, . . ., N − 1, we

have

|F(ti, h, vi+1, . . . , vi+1−m) − F(ti, h, ṽi+1, . . . , ṽi+1−m)| ≤ L

m
∑

j=0

|vi+1−j − ṽi+1−j|.

The explicit Adams-Bashforth and implicit Adams-Moulton methods satisfy both of

these conditions, provided f satisfies a Lipschitz condition. (See Exercise 2.)

The concept of convergence for multistep methods is the same as that for one-step

methods.
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• A multistep method is convergent if the solution to the difference equation approaches

the solution to the differential equation as the step size approaches zero. This means that

limh→0 max0≤i≤N | wi − y(ti)| = 0.

For consistency, however, a slightly different situation occurs. Again, we want a multi-

step method to be consistent provided that the difference equation approaches the differential

equation as the step size approaches zero; that is, the local truncation error approaches zero

at each step as the step size approaches zero. The additional condition occurs because of

the number of starting values required for multistep methods. Since usually only the first

starting value, w0 = α, is exact, we need to require that the errors in all the starting values

{αi} approach zero as the step size approaches zero. So

lim
h→0

|τi(h)| = 0, for all i = m, m + 1, . . . , N and (5.56)

lim
h→0

|αi − y(ti)| = 0, for all i = 1, 2, . . . , m − 1, (5.57)

must be true for a multistep method in the form (5.55) to be consistent. Note that (5.57)

implies that a multistep method will not be consistent unless the one-step method generating

the starting values is also consistent.

The following theorem for multistep methods is similar to Theorem 5.20, part (iii),

and gives a relationship between the local truncation error and global error of a multistep

method. It provides the theoretical justification for attempting to control global error by

controlling local truncation error. The proof of a slightly more general form of this theorem

can be found in [IK], pp. 387–388.

Theorem 5.21 Suppose the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

is approximated by an explicit Adams predictor-corrector method with an m-step Adams-

Bashforth predictor equation

wi+1 = wi + h[bm−1f (ti, wi) + · · · + b0f (ti+1−m, wi+1−m)],

with local truncation error τi+1(h), and an (m − 1)-step implicit Adams-Moulton corrector

equation

wi+1 = wi + h
[

b̃m−1f (ti, wi+1) + b̃m−2f (ti, wi) + · · · + b̃0f (ti+2−m, wi+2−m)
]

,

with local truncation error τ̃i+1(h). In addition, suppose that f (t, y) and fy(t, y) are contin-

uous on D = {(t, y) | a ≤ t ≤ b and −∞ < y < ∞} and that fy is bounded. Then the local

truncation error σi+1(h) of the predictor-corrector method is

σi+1(h) = τ̃i+1(h) + τi+1(h)b̃m−1

∂f

∂y
(ti+1, θi+1),

where θi+1 is a number between zero and hτi+1(h).

Moreover, there exist constants k1 and k2 such that

|wi − y(ti)| ≤
[

max
0≤j≤m−1

∣

∣wj − y(tj)
∣

∣ + k1σ(h)

]

ek2(ti−a),

where σ(h) = maxm≤j≤N |σj(h)|.
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Before discussing connections between consistency, convergence, and stability for mul-

tistep methods, we need to consider in more detail the difference equation for a multistep

method. In doing so, we will discover the reason for choosing the Adams methods as our

standard multistep methods.

Associated with the difference equation (5.55) given at the beginning of this discussion,

w0 = α, w1 = α1, . . . , wm−1 = αm−1,

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m + hF(ti, h, wi+1, wi, . . . , wi+1−m),

is a polynomial, called the characteristic polynomial of the method, given by

P(λ) = λm − am−1λ
m−1 − am−2λ

m−2 − · · · − a1λ − a0. (5.58)

The stability of a multistep method with respect to round-off error is dictated the by

magnitudes of the zeros of the characteristic polynomial. To see this, consider applying the

standard multistep method (5.55) to the trivial initial-value problem

y′ ≡ 0, y(a) = α, where α �= 0. (5.59)

This problem has exact solution y(t) ≡ α. By examining Eqs. (5.27) and (5.28) in Section

5.6 (see page 304), we can see that any multistep method will, in theory, produce the exact

solution wn = α for all n. The only deviation from the exact solution is due to the round-off

error of the method.

The right side of the differential equation in (5.59) has f (t, y) ≡ 0, so by assumption

(1), we have F(ti, h, wi+1, wi+2, . . . , wi+1−m) = 0 in the difference equation (5.55). As a

consequence, the standard form of the difference equation becomes

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m. (5.60)

Suppose λ is one of the zeros of the characteristic polynomial associated with (5.55).

Then wn = λn for each n is a solution to (5.59) since

λi+1 − am−1λ
i − am−2λ

i−1 − · · · − a0λ
i+1−m = λi+1−m[λm − am−1λ

m−1 − · · · − a0] = 0.

In fact, if λ1, λ2, . . . , λm are distinct zeros of the characteristic polynomial for (5.55), it can

be shown that every solution to (5.60) can be expressed in the form

wn =
m

∑

i=1

ciλ
n
i , (5.61)

for some unique collection of constants c1, c2, . . . , cm.

Since the exact solution to (5.59) is y(t) = α, the choice wn = α, for all n, is a solution

to (5.60). Using this fact in (5.60) gives

0 = α − αam−1 − αam−2 − · · · − αa0 = α[1 − am−1 − am−2 − · · · − a0].

This implies that λ = 1 is one of the zeros of the characteristic polynomial (5.58). We will

assume that in the representation (5.61) this solution is described by λ1 = 1 and c1 = α, so

all solutions to (5.59) are expressed as

wn = α +
m

∑

i=2

ciλ
n
i . (5.62)

If all the calculations were exact, all the constants c2, c3, . . . , cm would be zero. In practice,

the constants c2, c3, . . . , cm are not zero due to round-off error. In fact, the round-off error
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grows exponentially unless |λi| ≤ 1 for each of the roots λ2, λ3, . . . , λm. The smaller the

magnitude of these roots, the more stable the method with respect to the growth of round-off

error.

In deriving (5.62), we made the simplifying assumption that the zeros of the char-

acteristic polynomial are distinct. The situation is similar when multiple zeros occur. For

example, if λk = λk+1 = · · · = λk+p for some k and p, it simply requires replacing the sum

ckλ
n
k + ck+1λ

n
k+1 + · · · + ck+pλ

n
k+p

in (5.62) with

ckλ
n
k + ck+1nλn−1

k + ck+2n(n − 1)λn−2
k + · · · + ck+p[n(n − 1) · · · (n − p + 1)]λn−p

k .

(5.63)

(See [He2], pp. 119–145.) Although the form of the solution is modified, the round-off error

if |λk| > 1 still grows exponentially.

Although we have considered only the special case of approximating initial-value

problems of the form (5.59), the stability characteristics for this equation determine the

stability for the situation when f (t, y) is not identically zero. This is because the solution to

the homogeneous equation (5.59) is embedded in the solution to any equation. The following

definitions are motivated by this discussion.

Definition 5.22 Let λ1, λ2, . . . , λm denote the (not necessarily distinct) roots of the characteristic equation

P(λ) = λm − am−1λ
m−1 − · · · − a1λ − a0 = 0

associated with the multistep difference method

w0 = α, w1 = α1, . . . , wm−1 = αm−1

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m + hF(ti, h, wi+1, wi, . . . , wi+1−m).

If |λi| ≤ 1, for each i = 1, 2, . . . , m, and all roots with absolute value 1 are simple roots,

then the difference method is said to satisfy the root condition.

Definition 5.23 (i) Methods that satisfy the root condition and have λ = 1 as the only root of the

characteristic equation with magnitude one are called strongly stable.

(ii) Methods that satisfy the root condition and have more than one distinct root with

magnitude one are called weakly stable.

(iii) Methods that do not satisfy the root condition are called unstable.

Consistency and convergence of a multistep method are closely related to the round-off

stability of the method. The next theorem details these connections. For the proof of this

result and the theory on which it is based, see [IK], pp. 410–417.

Theorem 5.24 A multistep method of the form

w0 = α, w1 = α1, . . . , wm−1 = αm−1,

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m + hF(ti, h, wi+1, wi, . . . , wi+1−m)

is stable if and only if it satisfies the root condition. Moreover, if the difference method

is consistent with the differential equation, then the method is stable if and only if it is

convergent.
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Example 3 The fourth-order Adams-Bashforth method can be expressed as

wi+1 = wi + hF(ti, h, wi+1, wi, . . . , wi−3),

where

F(ti, h, wi+1, , . . . , wi−3) = h

24
[55f (ti, wi) − 59f (ti−1, wi−1)

+ 37f (ti−2, wi−2) − 9f (ti−3, wi−3)];

Show that this method is strongly stable.

Solution In this case we have m = 4, a0 = 0, a1 = 0, a2 = 0, and a3 = 1, so the

characteristic equation for this Adams-Bashforth method is

0 = P(λ) = λ4 − λ3 = λ3(λ − 1).

This polynomial has roots λ1 = 1, λ2 = 0, λ3 = 0, and λ4 = 0. Hence it satisfies the root

condition and is strongly stable.

The Adams-Moulton method has a similar characteristic polynomial, P(λ) = λ3 − λ2,

with zeros λ1 = 1, λ2 = 0, and λ3 = 0, and is also strongly stable.

Example 4 Show that the fourth-order Milne’s method, the explicit multistep method given by

wi+1 = wi−3 + 4h

3

[

2f (ti, wi) − f (ti−1, wi−1) + 2f (ti−2, wi−2)
]

satisfies the root condition, but it is only weakly stable.

Solution The characteristic equation for this method, 0 = P(λ) = λ4 − 1, has four roots

with magnitude one: λ1 = 1, λ2 = −1, λ3 = i, and λ4 = −i. Because all the roots have

magnitude 1, the method satisfies the root condition. However, there are multiple roots with

magnitude 1, so the method is only weakly stable.

Example 5 Apply the strongly stable fourth-order Adams-Bashforth method and the weakly stable

Milne’s method with h = 0.1 to the initial-value problem

y′ = −6y + 6, 0 ≤ t ≤ 1, y(0) = 2,

which has the exact solution y(t) = 1 + e−6t .

Solution The results in Table 5.21 show the effects of a weakly stable method versus a

strongly stable method for this problem.

Table 5.21 Adams-Bashforth Milne’s

Exact Method Error Method Error

ti y(ti) wi |yi − wi| wi |yi − wi|

0.10000000 1.5488116 1.5488116

0.20000000 1.3011942 1.3011942

0.30000000 1.1652989 1.1652989

0.40000000 1.0907180 1.0996236 8.906 × 10−3 1.0983785 7.661 × 10−3

0.50000000 1.0497871 1.0513350 1.548 × 10−3 1.0417344 8.053 × 10−3

0.60000000 1.0273237 1.0425614 1.524 × 10−2 1.0486438 2.132 × 10−2

0.70000000 1.0149956 1.0047990 1.020 × 10−2 0.9634506 5.154 × 10−2

0.80000000 1.0082297 1.0359090 2.768 × 10−2 1.1289977 1.208 × 10−1

0.90000000 1.0045166 0.9657936 3.872 × 10−2 0.7282684 2.762 × 10−1

1.00000000 1.0024788 1.0709304 6.845 × 10−2 1.6450917 6.426 × 10−1
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The reason for choosing the Adams-Bashforth-Moulton as our standard fourth-order

predictor-corrector technique in Section 5.6 over the Milne-Simpson method of the same

order is that both the Adams-Bashforth and Adams-Moulton methods are strongly stable.

They are more likely to give accurate approximations to a wider class of problems than

is the predictor-corrector based on the Milne and Simpson techniques, both of which are

weakly stable.

E X E R C I S E S E T 5.10

1. To prove Theorem 5.20, part (i), show that the hypotheses imply that there exists a constant K > 0

such that

|ui − vi| ≤ K|u0 − v0|, for each 1 ≤ i ≤ N ,

whenever {ui}N
i=1 and {vi}N

i=1 satisfy the difference equation wi+1 = wi + hφ(ti, wi, h).

2. For the Adams-Bashforth and Adams-Moulton methods of order four,

a. Show that if f = 0, then

F(ti, h, wi+1, . . . , wi+1−m) = 0.

b. Show that if f satisfies a Lipschitz condition with constant L, then a constant C exists with

|F(ti, h, wi+1, . . . , wi+1−m) − F(ti, h, vi+1, . . . , vi+1−m)| ≤ C

m
∑

j=0

|wi+1−j − vi+1−j|.

3. Use the results of Exercise 32 in Section 5.4 to show that the Runge-Kutta method of order four is

consistent.

4. Consider the differential equation

y′ = f (t, y), a ≤ t ≤ b, y(a) = α.

a. Show that

y′(ti) = −3y(ti) + 4y(ti+1) − y(ti+2)

2h
+ h2

3
y′′′(ξ1),

for some ξ , where ti < ξi < ti+2.

b. Part (a) suggests the difference method

wi+2 = 4wi+1 − 3wi − 2hf (ti, wi), for i = 0, 1, . . . , N − 2.

Use this method to solve

y′ = 1 − y, 0 ≤ t ≤ 1, y(0) = 0,

with h = 0.1. Use the starting values w0 = 0 and w1 = y(t1) = 1 − e−0.1.

c. Repeat part (b) with h = 0.01 and w1 = 1 − e−0.01.

d. Analyze this method for consistency, stability, and convergence.

5. Given the multistep method

wi+1 = −3

2
wi + 3wi−1 − 1

2
wi−2 + 3hf (ti, wi), for i = 2, . . . , N − 1,

with starting values w0, w1, w2:

a. Find the local truncation error.

b. Comment on consistency, stability, and convergence.
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348 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

6. Obtain an approximate solution to the differential equation

y′ = −y, 0 ≤ t ≤ 10, y(0) = 1

using Milne’s method with h = 0.1 and then h = 0.01, with starting values w0 = 1 and w1 = e−h in

both cases. How does decreasing h from h = 0.1 to h = 0.01 affect the number of correct digits in

the approximate solutions at t = 1 and t = 10?

7. Investigate stability for the difference method

wi+1 = −4wi + 5wi−1 + 2h[f (ti, wi) + 2hf (ti−1, wi−1)],

for i = 1, 2, . . . , N − 1, with starting values w0, w1.

8. Consider the problem y′ = 0, 0 ≤ t ≤ 10, y(0) = 0, which has the solution y ≡ 0. If the difference

method of Exercise 4 is applied to the problem, then

wi+1 = 4wi − 3wi−1, for i = 1, 2, . . . , N − 1,

w0 = 0, and w1 = α1.

Suppose w1 = α1 = ε, where ε is a small rounding error. Compute wi exactly for i = 2, 3, . . . , 6 to

find how the error ε is propagated.

5.11 Stiff Differential Equations

All the methods for approximating the solution to initial-value problems have error terms that

involve a higher derivative of the solution of the equation. If the derivative can be reasonably

bounded, then the method will have a predictable error bound that can be used to estimate the

accuracy of the approximation. Even if the derivative grows as the steps increase, the error

can be kept in relative control, provided that the solution also grows in magnitude. Problems

frequently arise, however, when the magnitude of the derivative increases but the solution

does not. In this situation, the error can grow so large that it dominates the calculations.

Initial-value problems for which this is likely to occur are called stiff equations and are

quite common, particularly in the study of vibrations, chemical reactions, and electrical

circuits.
Stiff systems derive their name

from the motion of spring and

mass systems that have large

spring constants.

Stiff differential equations are characterized as those whose exact solution has a term

of the form e−ct , where c is a large positive constant. This is usually only a part of the

solution, called the transient solution. The more important portion of the solution is called

the steady-state solution. The transient portion of a stiff equation will rapidly decay to zero

as t increases, but since the nth derivative of this term has magnitude cne−ct , the derivative

does not decay as quickly. In fact, since the derivative in the error term is evaluated not

at t, but at a number between zero and t, the derivative terms can increase as t increases–

and very rapidly indeed. Fortunately, stiff equations generally can be predicted from the

physical problem from which the equation is derived and, with care, the error can be kept

under control. The manner in which this is done is considered in this section.

Illustration The system of initial-value problems

u′
1 = 9u1 + 24u2 + 5 cos t − 1

3
sin t, u1(0) = 4

3

u′
2 = −24u1 − 51u2 − 9 cos t + 1

3
sin t, u2(0) = 2

3
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5.11 Stiff Differential Equations 349

has the unique solution

u1(t) = 2e−3t − e−39t + 1

3
cos t, u2(t) = −e−3t + 2e−39t − 1

3
cos t.

The transient term e−39t in the solution causes this system to be stiff. Applying Algorithm

5.7, the Runge-Kutta Fourth-Order Method for Systems, gives results listed in Table 5.22.

When h = 0.05, stability results and the approximations are accurate. Increasing the step

size to h = 0.1, however, leads to the disastrous results shown in the table. �

Table 5.22 w1(t) w1(t) w2(t) w2(t)

t u1(t) h = 0.05 h = 0.1 u2(t) h = 0.05 h = 0.1

0.1 1.793061 1.712219 −2.645169 −1.032001 −0.8703152 7.844527

0.2 1.423901 1.414070 −18.45158 −0.8746809 −0.8550148 38.87631

0.3 1.131575 1.130523 −87.47221 −0.7249984 −0.7228910 176.4828

0.4 0.9094086 0.9092763 −934.0722 −0.6082141 −0.6079475 789.3540

0.5 0.7387877 9.7387506 −1760.016 −0.5156575 −0.5155810 3520.00

0.6 0.6057094 0.6056833 −7848.550 −0.4404108 −0.4403558 15697.84

0.7 0.4998603 0.4998361 −34989.63 −0.3774038 −0.3773540 69979.87

0.8 0.4136714 0.4136490 −155979.4 −0.3229535 −0.3229078 311959.5

0.9 0.3416143 0.3415939 −695332.0 −0.2744088 −0.2743673 1390664.

1.0 0.2796748 0.2796568 −3099671. −0.2298877 −0.2298511 6199352.

Although stiffness is usually associated with systems of differential equations, the

approximation characteristics of a particular numerical method applied to a stiff system can

be predicted by examining the error produced when the method is applied to a simple test

equation,

y′ = λy, y(0) = α, where λ < 0. (5.64)

The solution to this equation is y(t) = αeλt , which contains the transient solution eλt . The

steady-state solution is zero, so the approximation characteristics of a method are easy to

determine. (A more complete discussion of the round-off error associated with stiff systems

requires examining the test equation when λ is a complex number with negative real part;

see [Ge1], p. 222.)

First consider Euler’s method applied to the test equation. Letting h = (b − a)/N and

tj = jh, for j = 0, 1, 2, . . . , N , Eq. (5.8) on page 266 implies that

w0 = α, and wj+1 = wj + h(λwj) = (1 + hλ)wj,

so

wj+1 = (1 + hλ)j+1w0 = (1 + hλ)j+1α, for j = 0, 1, . . . , N − 1. (5.65)

Since the exact solution is y(t) = αeλt , the absolute error is

| y(tj) − wj| =
∣

∣ejhλ − (1 + hλ) j
∣

∣ |α| =
∣

∣(ehλ) j − (1 + hλ) j
∣

∣ |α|,

and the accuracy is determined by how well the term 1+hλ approximates ehλ. When λ < 0,

the exact solution (ehλ) j decays to zero as j increases, but by Eq.(5.65), the approximation
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350 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

will have this property only if |1 + hλ| < 1 , which implies that −2 < hλ < 0. This

effectively restricts the step size h for Euler’s method to satisfy h < 2/|λ|.
Suppose now that a round-off error δ0 is introduced in the initial condition for Euler’s

method,

w0 = α + δ0.

At the jth step the round-off error is

δj = (1 + hλ) jδ0.

Since λ < 0, the condition for the control of the growth of round-off error is the same as

the condition for controlling the absolute error, |1 + hλ| < 1, which implies that h < 2/|λ|.
So

• Euler’s method is expected to be stable for

y′ = λy, y(0) = α, where λ < 0,

only if the step size h is less than 2/|λ|.

The situation is similar for other one-step methods. In general, a function Q exists with

the property that the difference method, when applied to the test equation, gives

wi+1 = Q(hλ)wi. (5.66)

The accuracy of the method depends upon how well Q(hλ) approximates ehλ, and the error

will grow without bound if |Q(hλ)| > 1. An nth-order Taylor method, for example, will

have stability with regard to both the growth of round-off error and absolute error, provided

h is chosen to satisfy
∣

∣

∣

∣

1 + hλ + 1

2
h2λ2 + · · · + 1

n!hnλn

∣

∣

∣

∣

< 1.

Exercise 10 examines the specific case when the method is the classical fourth-order Runge-

Kutta method,which is essentially a Taylor method of order four.

When a multistep method of the form (5.54) is applied to the test equation, the result is

wj+1 = am−1wj + · · · + a0wj+1−m + hλ(bmwj+1 + bm−1wj + · · · + b0wj+1−m),

for j = m − 1, . . . , N − 1, or

(1 − hλbm)wj+1 − (am−1 + hλbm−1)wj − · · · − (a0 + hλb0)wj+1−m = 0.

Associated with this homogeneous difference equation is a characteristic polynomial

Q(z, hλ) = (1 − hλbm)zm − (am−1 + hλbm−1)z
m−1 − · · · − (a0 + hλb0).

This polynomial is similar to the characteristic polynomial (5.58), but it also incorporates

the test equation. The theory here parallels the stability discussion in Section 5.10.

Suppose w0, . . . , wm−1 are given, and, for fixed hλ, let β1, . . . , βm be the zeros of the

polynomial Q(z, hλ). If β1, . . . , βm are distinct, then c1, . . . , cm exist with

wj =
m

∑

k=1

ck(βk)
j, for j = 0, . . . , N . (5.67)

If Q(z, hλ) has multiple zeros, wj is similarly defined. (See Eq. (5.63) in Section 5.10.) If wj

is to accurately approximate y(tj) = ejhλ = (ehλ) j, then all zeros βk must satisfy |βk| < 1;
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otherwise, certain choices of α will result in ck �= 0, and the term ck(βk)
j will not decay to

zero.

Illustration The test differential equation

y′ = −30y, 0 ≤ t ≤ 1.5, y(0) = 1

3

has exact solution y = 1
3
e−30t . Using h = 0.1 for Euler’s Algorithm 5.1, Runge-Kutta

Fourth-Order Algorithm 5.2, and the Adams Predictor-Corrector Algorithm 5.4, gives the

results at t = 1.5 in Table 5.23. �

Table 5.23 Exact solution 9.54173 × 10−21

Euler’s method −1.09225 × 104

Runge-Kutta method 3.95730 × 101

Predictor-corrector method 8.03840 × 105

The inaccuracies in the Illustration are due to the fact that |Q(hλ)| > 1 for Euler’s

method and the Runge-Kutta method and that Q(z, hλ) has zeros with modulus exceeding

1 for the predictor-corrector method. To apply these methods to this problem, the step

size must be reduced. The following definition is used to describe the amount of step-size

reduction that is required.

Definition 5.25 The region R of absolute stability for a one-step method is R = {hλ ∈ C | |Q(hλ)| < 1},
and for a multistep method, it is R = {hλ ∈ C | |βk| < 1, for all zeros βk of Q(z, hλ)}.

Equations (5.66) and (5.67) imply that a method can be applied effectively to a stiff

equation only if hλ is in the region of absolute stability of the method, which for a given

problem places a restriction on the size of h. Even though the exponential term in the exact

solution decays quickly to zero, λh must remain within the region of absolute stability

throughout the interval of t values for the approximation to decay to zero and the growth of

error to be under control. This means that, although h could normally be increased because

of truncation error considerations, the absolute stability criterion forces h to remain small.

Variable step-size methods are especially vulnerable to this problem because an examination

of the local truncation error might indicate that the step size could increase. This could

inadvertently result in λh being outside the region of absolute stability.

The region of absolute stability of a method is generally the critical factor in producing

accurate approximations for stiff systems, so numerical methods are sought with as large

a region of absolute stability as possible. A numerical method is said to be A-stable if its

region R of absolute stability contains the entire left half-plane.

The Implicit Trapezoidal method, given byThis method is implicit because it

involves wj+1 on both sides of the

equation. w0 = α, (5.68)

wj+1 = wj + h

2

[

f (tj+1, wj+1) + f (tj, wj)
]

, 0 ≤ j ≤ N − 1,

is an A-stable method (see Exercise 15) and is the only A-stable multistep method. Although

the Trapezoidal method does not give accurate approximations for large step sizes, its error

will not grow exponentially.
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The techniques commonly used for stiff systems are implicit multistep methods. Gen-

erally wi+1 is obtained by solving a nonlinear equation or nonlinear system iteratively, often

by Newton’s method. Consider, for example, the Implicit Trapezoidal method

wj+1 = wj + h

2
[f (tj+1, wj+1) + f (tj, wj)].

Having computed tj, tj+1, and wj, we need to determine wj+1, the solution to

F(w) = w − wj − h

2
[f (tj+1, w) + f (tj, wj)] = 0. (5.69)

To approximate this solution, select w
(0)

j+1, usually as wj, and generate w
(k)

j+1 by applying

Newton’s method to (5.69),

w
(k)

j+1 = w
(k−1)

j+1 −
F(w

(k−1)

j+1 )

F ′(w(k−1)

j+1 )

= w
(k−1)

j+1 −
w

(k−1)

j+1 − wj − h
2
[f (tj, wj) + f (tj+1, w

(k−1)

j+1 )]
1 − h

2
fy(tj+1, w

(k−1)

j+1 )

until |w(k)

j+1 − w
(k−1)

j+1 | is sufficiently small. This is the procedure that is used in Algorithm

5.8. Normally only three or four iterations per step are required, because of the quadratic

convergence of Newton’s mehod.

The Secant method can be used as an alternative to Newton’s method in Eq. (5.69),

but then two distinct initial approximations to wj+1 are required. To employ the Secant

method, the usual practice is to let w
(0)

j+1 = wj and obtain w
(1)

j+1 from some explicit multistep

method. When a system of stiff equations is involved, a generalization is required for either

Newton’s or the Secant method. These topics are considered in Chapter 10.

ALGORITHM

5.8
Trapezoidal with Newton Iteration

To approximate the solution of the initial-value problem

y′ = f (t, y), for a ≤ t ≤ b, with y(a) = α

at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; integer N ; initial condition α; tolerance TOL; maximum number

of iterations M at any one step.

OUTPUT approximation w to y at the (N + 1) values of t or a message of failure.

Step 1 Set h = (b − a)/N ;

t = a;

w = α;

OUTPUT (t, w).

Step 2 For i = 1, 2, . . . , N do Steps 3–7.

Step 3 Set k1 = w + h
2
f (t, w);

w0 = k1;

j = 1;

FLAG = 0.
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5.11 Stiff Differential Equations 353

Step 4 While FLAG = 0 do Steps 5–6.

Step 5 Set w = w0 −
w0 − h

2
f (t + h, w0) − k1

1 − h

2
fy(t + h, w0)

.

Step 6 If |w − w0| < TOL then set FLAG = 1

else set j = j + 1;

w0 = w;

if j > M then

OUTPUT (‘The maximum number of

iterations exceeded’);

STOP.

Step 7 Set t = a + ih;

OUTPUT (t, w).

Step 8 STOP.

Illustration The stiff initial-value problem

y′ = 5e5t(y − t)2 + 1, 0 ≤ t ≤ 1, y(0) = −1

has solution y(t) = t−e−5t . To show the effects of stiffness, the Implicit Trapezoidal method

and the Runge-Kutta fourth-order method are applied both with N = 4, giving h = 0.25,

and with N = 5, giving h = 0.20.

The Trapezoidal method performs well in both cases using M = 10 and TOL = 10−6,

as does Runge-Kutta with h = 0.2. However, h = 0.25 is outside the region of absolute

stability of the Runge-Kutta method, which is evident from the results in Table 5.24. �

Table 5.24 Runge–Kutta Method Trapezoidal Method

h = 0.2 h = 0.2

ti wi |y(ti) − wi| wi |y(ti) − wi|

0.0 −1.0000000 0 −1.0000000 0

0.2 −0.1488521 1.9027 × 10−2 −0.1414969 2.6383 × 10−2

0.4 0.2684884 3.8237 × 10−3 0.2748614 1.0197 × 10−2

0.6 0.5519927 1.7798 × 10−3 0.5539828 3.7700 × 10−3

0.8 0.7822857 6.0131 × 10−4 0.7830720 1.3876 × 10−3

1.0 0.9934905 2.2845 × 10−4 0.9937726 5.1050 × 10−4

h = 0.25 h = 0.25

ti wi |y(ti) − wi| wi |y(ti) − wi|

0.0 −1.0000000 0 −1.0000000 0

0.25 0.4014315 4.37936 × 10−1 0.0054557 4.1961 × 10−2

0.5 3.4374753 3.01956 × 100 0.4267572 8.8422 × 10−3

0.75 1.44639 × 1023 1.44639 × 1023 0.7291528 2.6706 × 10−3

1.0 Overflow 0.9940199 7.5790 × 10−4

We have presented here only brief introduction to what the reader frequently encoun-

tering stiff differential equations should know. For further details, consult [Ge2], [Lam], or

[SGe].
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E X E R C I S E S E T 5.11

1. Solve the following stiff initial-value problems using Euler’s method, and compare the results with

the actual solution.

a. y′ = −9y, 0 ≤ t ≤ 1, y(0) = e, with h = 0.1; actual solution y(t) = e1−9t .

b. y′ = −20(y−t2)+2t, 0 ≤ t ≤ 1, y(0) = 1

3
, with h = 0.1; actual solution y(t) = t2+ 1

3
e−20t .

c. y′ = −20y + 20 sin t + cos t, 0 ≤ t ≤ 2, y(0) = 1, with h = 0.25; actual solution

y(t) = sin t + e−20t .

d. y′ = 50/y−50y, 0 ≤ t ≤ 1, y(0) =
√

2, with h = 0.1; actual solution y(t) = (1+e−100t)1/2.

2. Solve the following stiff initial-value problems using Euler’s method, and compare the results with

the actual solution.

a. y′ = −5y + 6et , 0 ≤ t ≤ 1, y(0) = 2, with h = 0.1; actual solution y(t) = e−5t + et .

b. y′ = −10y+10t +1, 0 ≤ t ≤ 1, y(0) = e, with h = 0.1; actual solution y(t) = e−10t+1 + t.

c. y′ = −15(y − t−3) − 3/t4, 1 ≤ t ≤ 3, y(1) = 0, with h = 0.25; actual solution

y(t) = −e−15t + t−3.

d. y′ = −20y + 20 cos t − sin t, 0 ≤ t ≤ 2, y(0) = 0, with h = 0.25; actual solution

y(t) = −e−20t + cos t.

3. Repeat Exercise 1 using the Runge-Kutta fourth-order method.

4. Repeat Exercise 2 using the Runge-Kutta fourth-order method.

5. Repeat Exercise 1 using the Adams fourth-order predictor-corrector method.

6. Repeat Exercise 2 using the Adams fourth-order predictor-corrector method.

7. Repeat Exercise 1 using the Trapezoidal Algorithm with TOL = 10−5.

8. Repeat Exercise 2 using the Trapezoidal Algorithm with TOL = 10−5.

9. Solve the following stiff initial-value problem using the Runge-Kutta fourth-order method with (a)

h = 0.1 and (b) h = 0.025.

u′
1 = 32u1 + 66u2 + 2

3
t + 2

3
, 0 ≤ t ≤ 0.5, u1(0) = 1

3
;

u′
2 = −66u1 − 133u2 − 1

3
t − 1

3
, 0 ≤ t ≤ 0.5, u2(0) = 1

3
.

Compare the results to the actual solution,

u1(t) = 2

3
t + 2

3
e−t − 1

3
e−100t and u2(t) = −1

3
t − 1

3
e−t + 2

3
e−100t .

10. Show that the fourth-order Runge-Kutta method,

k1 = hf (ti, wi),

k2 = hf (ti + h/2, wi + k1/2),

k3 = hf (ti + h/2, wi + k2/2),

k4 = hf (ti + h, wi + k3),

wi+1 = wi + 1

6
(k1 + 2k2 + 2k3 + k4),

when applied to the differential equation y′ = λy, can be written in the form

wi+1 =
(

1 + hλ + 1

2
(hλ)2 + 1

6
(hλ)3 + 1

24
(hλ)4

)

wi.

11. Discuss consistency, stability, and convergence for the Implicit Trapezoidal method

wi+1 = wi + h

2
(f (ti+1, wi+1) + f (ti, wi)) , for i = 0, 1, . . . , N − 1,
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with w0 = α applied to the differential equation

y′ = f (t, y), a ≤ t ≤ b, y(a) = α.

12. The Backward Euler one-step method is defined by

wi+1 = wi + hf (ti+1, wi+1), for i = 0, . . . , N − 1.

Show that Q(hλ) = 1/(1 − hλ) for the Backward Euler method.

13. Apply the Backward Euler method to the differential equations given in Exercise 1. Use Newton’s

method to solve for wi+1.

14. Apply the Backward Euler method to the differential equations given in Exercise 2. Use Newton’s

method to solve for wi+1.

15. a. Show that the Implicit Trapezoidal method is A-stable.

b. Show that the Backward Euler method described in Exercise 12 is A-stable.

5.12 Survey of Methods and Software

In this chapter we have considered methods to approximate the solutions to initial-value

problems for ordinary differential equations. We began with a discussion of the most elemen-

tary numerical technique, Euler’s method. This procedure is not sufficiently accurate to be

of use in applications, but it illustrates the general behavior of the more powerful techniques,

without the accompanying algebraic difficulties. The Taylor methods were then considered

as generalizations of Euler’s method. They were found to be accurate but cumbersome

because of the need to determine extensive partial derivatives of the defining function of

the differential equation. The Runge-Kutta formulas simplified the Taylor methods, without

increasing the order of the error. To this point we had considered only one-step methods,

techniques that use only data at the most recently computed point.

Multistep methods are discussed in Section 5.6, where explicit methods of Adams-

Bashforth type and implicit methods of Adams-Moulton type were considered. These cul-

minate in predictor-corrector methods, which use an explicit method, such as an Adams-

Bashforth, to predict the solution and then apply a corresponding implicit method, like an

Adams-Moulton, to correct the approximation.

Section 5.9 illustrated how these techniques can be used to solve higher-order initial-

value problems and systems of initial-value problems.

The more accurate adaptive methods are based on the relatively uncomplicated one-step

and multistep techniques. In particular, we saw in Section 5.5 that the Runge-Kutta-Fehlberg

method is a one-step procedure that seeks to select mesh spacing to keep the local error

of the approximation under control. The Variable Step-Size Predictor-Corrector method

presented in Section 5.7 is based on the four-step Adams-Bashforth method and three-step

Adams-Moulton method. It also changes the step size to keep the local error within a given

tolerance. The Extrapolation method discussed in Section 5.8 is based on a modification

of the Midpoint method and incorporates extrapolation to maintain a desired accuracy of

approximation.

The final topic in the chapter concerned the difficulty that is inherent in the approxima-

tion of the solution to a stiff equation, a differential equation whose exact solution contains

a portion of the form e−λt , where λ is a positive constant. Special caution must be taken

with problems of this type, or the results can be overwhelmed by round-off error.

Methods of the Runge-Kutta-Fehlberg type are generally sufficient for nonstiff prob-

lems when moderate accuracy is required. The extrapolation procedures are recommended
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for nonstiff problems where high accuracy is required. Extensions of the Implicit Trape-

zoidal method to variable-order and variable step-size implicit Adams-type methods are

used for stiff initial-value problems.

The IMSL Library includes two subroutines for approximating the solutions of initial-

value problems. Each of the methods solves a system of m first-order equations in m vari-

ables. The equations are of the form

dui

dt
= fi(t, u1, u2, . . . , um), for i = 1, 2, . . . , m,

where ui(t0) is given for each i. A variable step-size subroutine is based on the Runge-Kutta-

Verner fifth- and sixth-order methods described in Exercise 4 of Section 5.5. A subroutine of

Adams type is also available to be used for stiff equations based on a method of C. William

Gear. This method uses implicit multistep methods of order up to 12 and backward differ-

entiation formulas of order up to 5.

Runge-Kutta-type procedures contained in the NAG Library are based on the Merson

form of the Runge-Kutta method. A variable-order and variable step-size Adams method

is also in the library, as well as a variable-order, variable step-size backward-difference

method for stiff systems. Other routines incorporate the same methods but iterate until a

component of the solution attains a given value or until a function of the solution is zero.

The netlib library includes several subroutines for approximating the solutions of initial-

value problems in the package ODE. One subroutine is based on the Runge-Kutta-Verner

fifth- and sixth-order methods, another on the Runge-Kutta-Fehlberg fourth- and fifth-order

methods as described on page 297 of Section 5.5. A subroutine for stiff ordinary differential

equation initial-value problems, is based on a variable coefficient backward differentiation

formula.

Many books specialize in the numerical solution of initial-value problems. Two classics

are by Henrici [He1] and Gear [Ge1]. Other books that survey the field are by Botha

and Pinder [BP], Ortega and Poole [OP], Golub and Ortega [GO], Shampine [Sh], and

Dormand [Do].

Two books by Hairer, Nörsett, and Warner provide comprehensive discussions on non-

stiff [HNW1] and stiff [HNW2] problems. The book by Burrage [Bur] describes parallel

and sequential methods for solving systems of initial-value problems.
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