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Abstract

The idea of synthesizing bounded length plans by compiling planning problems into a combina-
torial substrate, and solving the resulting encodings has become quite popular in recent years. Most
work to-date has however concentrated on compilation to satisfiability (SAT) theories and integer
linear programming (ILP). In this paper we will show that CSP is a better substrate for the compi-
lation approach, compared to both SAT and ILP. We describe GP-CSP, a system that does planning
by automatically converting Graphplan’s planning graph into a CSP encoding and solving it using
standard CSP solvers. Our comprehensive empirical evaluation of GP-CSP demonstrates that it is
superior to both the Blackbox system, which compiles planning graphs into SAT encodings, and an
ILP-based planner in a wide range of planning domains. Our results show that CSP encodings out-
perform SAT encodings in terms of both space and time requirements in various problems. The space
reduction is particularly important as it makes GP-CSP less susceptible to the memory blow-up asso-
ciated with SAT compilation methods. The paper also discusses various techniques in setting up the
CSP encodings, planning specific improvements to CSP solvers, and strategies for variable and value
selection heuristics for solving the CSP encodings of different types of planning problems. 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

There are currently two dominant methods for solving planning problems. Planners such
as Graphplan [2], SATPLAN [22], CPlan [34], and an ILP-based planner [35] follow the
disjunctive planning approach while state-space planners such as FF [14] and HSP [4]
use the conjunctive planning method. The disjunctive approach involves compiling a plan-
ning problem into a combinatorial substrate. Domain-independent planners working on
the compilations to SAT and ILP (integer linear programming) have been studied in the
literature. However, in this paper, we will argue that CSP is a better substrate than either
SAT or ILP due to its rich structure and the flexibility to represent different types of con-
straints procedurally. Our experiments show that GP-CSP, a system that does planning by
automatically converting Graphplan’s planning graph into a CSP encoding and solving it
using standard CSP solvers, is better than Blackbox, which compiles the planning problem
into SAT, both in terms of running time and memory consumption on various planning
problems. Given the fact that SAT based planners like Blackbox have been doing better
than ILP based planners, we can claim that GP-CSP is the best among the planners using
the compilation approach. Our results suggest that CSP-based approaches may also scale
to planning in more expressive domains (e.g., metric and temporal domains handled by the
NASA EUROPA project [11]).

In this paper, we will consider CSP encodings that are automatically generated from
Graphplan’s planning graph structure. The decision to start with planning graph is due to
the striking similarities between the backward search phase of Graphplan and constraint
satisfaction problems [32] that have been pointed out by several researchers [19,36]. In
most cases however, the detection of similarities has lead to adaptation of CSP techniques
to Graphplan. For example, our own recent work [16,18] has considered the utility of adapt-
ing the explanation-based learning and dependency directed backtracking strategies from
CSP to the backward search phase of Graphplan. More recently, researchers from CSP
have shown interest in applying constraint programming to classical planning. Van Beek
and Chen [34] describe a system called CPLAN that achieves impressive performance by
posing planning as a CSP problem. However, an important characteristic (and limitation)
of CPLAN is that it expects a hand-coded encoding; humans have to setup a domain and
problem encoding independently for each problem and domain.

In this paper, we propose a different route to exploiting the similarities between the
planning graph and CSP problems. We describe an implemented planner called GP-CSP
(http://rakaposhi.eas.asu.edu/gp-csp.html) that extracts a solution from a planning graph
by automatically converting it into CSP encodings. GP-CSP generates implicitly specified
constraints wherever possible, to keep the encoding size small. The encoding is then passed
onto the standard CSP solvers in the CSP library created by van Beek [33]. Our empirical
studies show that GP-CSP is superior to Graphplan and Blackbox, which compiles plan-
ning problems into SAT encodings, as well as ILP-encoding based planners [35]. While
GP-CSP’s dominance over standard Graphplan in several domains is in terms of runtime,
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its advantages over Blackbox’s SAT encodings include improvements in both runtime and
memory consumption. The relative advantages of GP-CSP can be easily explained:

• Unlike the backward search in standard Graphplan, GP-CSP is not constrained by any
directional search, and is able to to exploit all standard CSP search techniques straight
out of the box. This involves non-directional search [28] as well as speedup techniques
such as arc-consistency, dependency directed backtracking, explanation-based learn-
ing and a variety of variable ordering techniques. In practice, GP-CSP is found to be
orders of magnitude faster than standard Graphplan on many benchmark problems.

• Compilation-based planning systems, such as SAT-based systems (Blackbox [21])
as well as an ILP-based system [35], are typically highly susceptible to memory
blow-up. 1 CSP encodings used by GP-CSP are much less susceptible to this prob-
lem for two reasons. Since CSP allows multi-valued variables, while SAT considers
only Boolean variables, the SAT encoding of a problem tends to be larger than the
CSP encodings. Second, GP-CSP is able to use implicitly (procedurally) specified
constraints (cf. [33]). This could keep the size of the encoding down considerably.

• CSP encodings also provide several structural advantages over SAT encodings. Typ-
ically, CSP problems have more structure than SAT problems, and we will argue
that this structure can be exploited in developing search heuristics and learning al-
gorithms that are suitable for planning encodings. Further, much of the knowledge-
based scheduling work in AI is done by posing scheduling problems as CSP [39].
Approaches like GP-CSP may thus provide better substrates for integrating planning
and scheduling. In fact, in related work [31], we discuss how CSP techniques can be
used to tease resource scheduling away from planning. Specifically, GP-CSP has been
used as one of the base planners in the RealPlan system, which integrates planners and
schedulers to efficiently solve planning problems involving resources.

In addition to showing the relation between Graphplan and CSP search and a method for
converting the planning graph into CSP, we also consider several approaches for improving
the size and solvability of the CSP encodings. Specifically, our contributions include:

(1) A compact encoding that exploits the implicit CSP representation and significantly
improves the size and solution time of the CSP encodings in many planning prob-
lems.

(2) Enhancements to the CSP solver by incorporating variations of explanation based
learning (EBL) to improve the solution time of the CSP encodings.

(3) Investigations of different variable orderings to efficiently solve the CSP encodings
of different types of planning problems. We also introduce a novel approach of auto-
matically selecting variable ordering heuristics for solving a CSP encoding instance
based on the analysis of the planning graph structure.

The rest of the paper discusses the design and evaluation of GP-CSP. In Section 2,
we start with a brief review of Graphplan. Section 3 points out the connections between
Graphplan and CSP, and discusses how the planning graph can be automatically encoded
into a (dynamic) CSP problem. In Section 4, we describe the way GP-CSP automatically
converts a planning graph into a CSP encoding in a format that is handled by the

1 Anecdotal evidence suggests that Blackbox’s performance in the AIPS-98 planning competition was
hampered mainly by its excessive memory requirements.
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CSP library developed by van Beek [33]. Section 5 describes experiments that compare the
performance of vanilla GP-CSP with standard Graphplan as well as Blackbox (with two
different SAT solvers). We will consider improvements to the encoding size in Section 6
and in Section 7 we address improvements to the CSP solver, including the incorporation
of EBL and investigation of different heuristics for variable and value orderings. Section 9
discusses the relation to other work and Section 10 summarizes the contributions of the
paper and sketches several directions for future work.

2. Review of the Graphplan algorithm

The Graphplan algorithm [2] can be seen as a “disjunctive” version of forward state
space planners [15,19]. It consists of two interleaved phases—a forward phase, where a
data structure called “planning graph” is incrementally extended, and a backward phase
where the planning graph is searched to extract a valid plan. The planning graph consists
of two alternating structures, called proposition lists and action lists. Fig. 1 shows a par-
tial planning graph structure. We start with the initial state as the zeroth level proposition
list. Given a k level planning graph, the extension of the structure to level k + 1 involves
introducing all actions whose preconditions are present in the kth level proposition list. In
addition to the actions given in the domain model, we consider a set of dummy “persist”
actions, one for each condition in the kth level proposition list. A “persist-C” action has C

as its precondition and C as its effect. Once the actions are introduced, the proposition list
at level k +1 is constructed as just the union of the effects of all the introduced actions. The
planning graph maintains the dependency links between the actions at level k + 1 and their
preconditions in level k proposition list and their effects in level k + 1 proposition list. The
planning graph construction also involves computation and propagation of “mutex” con-
straints. The propagation starts at level 1, by labeling as mutex the actions that are statically
interfering with each other (i.e., their preconditions or effects are inconsistent). Mutexes
are then propagated from this level forward by using two simple rules: two propositions at
level k are marked mutex if all actions at level k that support one proposition are mutex

Fig. 1. A planning graph and the DCSP corresponding to it.
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with all actions that support the second proposition. Two actions at level k + 1 are mutex
if they are statically interfering or if one of the propositions (preconditions) supporting the
first action is mutually exclusive with one of the propositions supporting the second action.

The search phase on a k level planning graph involves checking to see if there is a
sub-graph of the planning graph that corresponds to a valid solution to the problem. This
involves starting with the propositions corresponding to goals at level k (if all the goals
are not present, or if they are present but a pair of them are marked mutually exclusive,
the search is abandoned right away, and the planning graph is extended another level).
For each of the goal propositions, we then select an action from the level k action list
that supports it, such that no two actions selected for supporting two different goals are
mutually exclusive (if they are, we backtrack and try to change the selection of actions). At
this point, we recursively call the same search process on the k − 1 level planning graph,
with the preconditions of the actions selected at level k as the goals for the k − 1 level
search. The search succeeds when we reach level 0 (corresponding to the initial state).

Consider the (partial) planning graph shown on the left in Fig. 1 that Graphplan may
have generated and is about to search for a solution. G1, . . . ,G4 are the top level goals
that we want to satisfy, and A1, . . . ,A4 are the actions that support these goals in the
planning graph. The specific action-precondition dependencies are shown by the straight
line connections. The actions A5, . . . ,A11 at the left-most level support the conditions
P1, . . . ,P6 in the planning graph. Notice that the conditions P2 and P4 at level k − 1 are
supported by two actions each. The x-marked connections between the actions A5, A9,
A6, A8 and A7, A11 denote that those action pairs are mutually exclusive. (Notice
that given these mutually exclusive relations alone, Graphplan cannot derive any mutual
exclusion relations at the proposition level k − 1.)

3. Connections between Graphplan and CSP

Although the deep affinity between Graphplan’s backward search and the process of
solving constraint satisfaction problems has been noted earlier, these relations have hither-
to been primarily used to adapt CSP search techniques into the backward search phase
of Graphplan. Fig. 2 shows how GP-CSP differentiates itself from other frameworks
in making use of the similarity between the backward search of Graphplan and the
CSP search.

The process of searching the planning graph to extract a valid plan from it can be seen
as a dynamic constraint satisfaction problem (DCSP) [27]. The DCSP (also sometimes
called a “conditional CSP” problem) is a generalization of the constraint satisfaction
problem [32], that is specified by a set of variables, activity flags for the variables, the
domains of the variables, and constraints on the legal variable-value combinations. In
a DCSP, initially only a subset of the variables are active, and the objective is to find
assignments for all active variables that are consistent with the constraints among those
variables. In addition, the DCSP specification also contains a set of “activity constraints”.
An activity constraint is of the form: “if variable x takes on the value vx , then the variables
y, z,w, . . . become active”.
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Fig. 2. GP-CSP framework in comparison with other efforts to take advantage of the similarity between
Graphplan’s backward search and the CSP search.

The correspondence between the planning graph and the DCSP should now be clear.
Specifically, the propositions at various levels correspond to the DCSP variables, 2 and
the actions supporting them correspond to the variable domains. There are three types
of constraints: action mutex constraints, fact (proposition) mutex constraints and subgoal
activation constraints.

Since actions are modeled as values rather than variables, action mutex constraints have
to be modeled indirectly as constraints between propositions.

If two actions a1 and a2 are marked mutex with each other in the planning graph, then for
every pair of propositions p11 and p12 where a1 is one of the possible supporting actions
for p11 and a2 is one of the possible supporting actions for p12, we have the constraint:

¬(p11 = a1 ∧ p12 = a2) or p11 = a1 ⇒ p12 	= a2.

Fact mutex constraints are modeled as constraints that prohibit the simultaneous activation
of the corresponding two facts. Specifically, if two propositions p11 and p12 are marked
mutex in the planning graph, we have the constraint:

¬(
Active(p11) ∧ Active(p12)

)
.

Subgoal activation constraints are implicitly specified by action preconditions: support-
ing an active proposition p with an action a makes all the propositions in the previous level
corresponding to the preconditions of a active.

Finally, only the propositions corresponding to the goals of the problem are “active” in
the beginning. Fig. 1 shows the dynamic constraint satisfaction problem corresponding to
the example planning graph that we discussed in previous section.

There are two ways of solving a DCSP problem. The direct approach [27] involves
starting with the initially active variables, and finding a satisfying assignment for them.

2 Note that the same literal appearing in different levels corresponds to different DCSP variables. Thus, strictly
speaking, a literal p in the proposition list at level i is converted into a DCSP variable pi . To keep matters simple,
the example in Fig. 1 contains syntactically different literals in different levels of the graph.
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Variables: G1, . . . ,G4,P1, . . . ,P6 Variables: G1, . . . ,G4,P1, . . . ,P6

Domains: Domains:

G1: {A1},G2: {A2},G3: {A3},G4: {A4} G1: {A1,⊥},G2: {A2,⊥},G3: {A3,⊥},G4: {A4,⊥}
P1: {A5},P2: {A6,A11},P3: {A7} P1: {A5,⊥},P2: {A6,A11,⊥},P3: {A7,⊥},
P4: {A8,A9},P5: {A10},P6: {A10} P4: {A8,A9,⊥},P5: {A10,⊥},P6: {A10,⊥}
Constraints (Mutex): Constraints (Mutex):

P1 = A5 ⇒ P4 	= A9 P1 = A5 ⇒ P4 	= A9

P2 = A6 ⇒ P4 	= A8 P2 = A6 ⇒ P4 	= A8

P2 = A11 ⇒ P3 	= A7 P2 = A11 ⇒ P3 	= A7

Constraints (Activity): Constraints (Activity):

G1 = A1 ⇒ Active{P1,P2,P3} G1 = A1 ⇒ P1 	=⊥ ∧P2 	=⊥ ∧P3 	=⊥
G2 = A2 ⇒ Active{P4} G2 = A2 ⇒ P4 	=⊥
G3 = A3 ⇒ Active{P5} G3 = A3 ⇒ P5 	=⊥
G4 = A4 ⇒ Active{P1,P6} G4 = A4 ⇒ P1 	=⊥ ∧P6 	=⊥
Init state: Active{G1,G2,G3,G4} Init state: G1 	=⊥ ∧G2 	=⊥ ∧G3 	=⊥ ∧G4 	=⊥

Fig. 3. Compiling a DCSP to a standard CSP.

This assignment may activate some new variables, and these newly activated variables
are assigned in the second epoch. This process continues until we reach an epoch where
no more new variables are activated (which implies success), or we are unable to give a
satisfying assignment to the activated variables at a given epoch. In this latter case, we
backtrack to a previous epoch and try to find an alternative satisfying assignment to those
variables. The backward search process used by the Graphplan algorithm [2] can be seen
as solving the DCSP corresponding to the planning graph in this direct fashion.

The second approach for solving a DCSP is to compile it into a standard CSP, and
use the standard CSP algorithms. This compilation process is quite straightforward and is
illustrated in Fig. 3. The main idea is to introduce a new “null” value (denoted by “⊥”)
into the domains of each of the DCSP variables. We then model an inactive DCSP variable
as a CSP variable which takes the value ⊥. The constraint that a particular variable P be
active is modeled as P 	=⊥. Thus, activity constraint of the form

G1 = A1 ⇒ Active{P1,P2,P3}
is compiled to the standard CSP constraint

G1 = A1 ⇒ P1 	=⊥ ∧P2 	=⊥ ∧P3 	=⊥.

It is worth noting here that the activation constraints above are only concerned with
ensuring that propositions that are preconditions of a selected action take on non-⊥ values.



158 M.B. Do, S. Kambhampati / Artificial Intelligence 132 (2001) 151–182

They thus allow for the possibility that propositions can become active (take non-⊥ values)
even though they are strictly not supporting preconditions of any selected action. Although
this can lead to inoptimal plans, the mutex constraints ensure that no unsound plans will
be produced [21]. To avoid unnecessary activation of variables, we need to add constraints
to the effect that unless one of the actions needing that variable as a precondition has
been selected as the value for some variable in the earlier (higher) level, the variable
must have ⊥ value. Such constraints are typically going to have very high arity (as they
wind up mentioning a large number of variables in the previous level), and may thus
be harder to handle during search. Therefore, we do not include those constraints in our
implementation.

Finally, a mutex constraint between two propositions

¬(
Active(p11) ∧ Active(p12)

)

is compiled into

¬(p11 	=⊥ ∧p12 	=⊥).

Since action mutex constraints are already in the standard CSP form, with this
compilation, all the activity constraints are converted into standard constraints and thus
the entire CSP is now a standard CSP. It can now be solved by any of the standard CSP
search techniques [32]. 3

The direct method has the advantage that it closely mirrors the Graphplan’s planning
graph structure and its backward search. Because of this, it is possible to implement
the approach on the planning graph structure without explicitly representing all the
constraints. The compilation to CSP requires that planning graph be first converted into
an extensional CSP. It does however allow the use of standard algorithms, as well as
supporting non-directional search (in that one does not have to follow the epoch-by-epoch
approach in assigning variables). This is the approach taken in GP-CSP. 4

3.1. Size of the CSP encoding

Suppose that we have an average of n actions and m facts in each level of the planning
graph, and the average number of preconditions and effects of each action are p and e,
respectively. Let s indicate the average number of actions supporting each fact (notice that
s is connected to e by the relation ne = ms), and l indicate the length of the planning graph.
For the GP-CSP, we need O(lm) variables, and the following binary constraints:

• O(ln2e2) binary constraints to represent mutex relations in action levels. To see
this note that there are O(ln2) action mutex constraints in the planning graph. If
two actions a1 and a2 are mutex and a1 supports e propositions and a2 supports

3 It is also possible to compile any CSP problem to a propositional satisfiability problem (i.e., a CSP
problem with Boolean variables). This is accomplished by compiling every CSP variable P that has the
domain {v1, v2, . . . , vn} into n Boolean variables of the form P -is-v1, . . . ,P -is-vn . Every constraint of the form
P = vj ∧ · · · ⇒ · · · is compiled to P -is-vj ∧ · · · ⇒ · · ·. This is essentially what is done by the BLACKBOX
system [21].

4 Compilation to CSP is not a strict requirement for doing non-directional search. In [38], we describe a
technique that allows the backward search of Graphplan to be non-directional (see the discussion in Section 10).
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e propositions, then we will wind up having to model this one constraint as O(e2)

constraints on the legal values the propositions supported by a1 and a2 can take
together.

• O(lm2) binary constraints to represent mutex relations in fact levels.
• O(lmsp) binary constraints for activity relations.
In the default SAT encoding of Blackbox [21], we will need O(l(m + n)) variables

(since that encoding models both actions and propositions as Boolean variables), and the
following constraints (clauses):

• O(ln2) binary clauses for action mutex constraints.
• O(lm2) binary constraints to represent mutex relations in fact levels.
• O(lm) clauses of length s to describe the constraints that each fact will require at least

one action to support it.
• O(lnp) binary clauses to indicate that action implies its preconditions.
As the expressions indicate, GP-CSP has only O(lm) variables compared to O(l(n+m))

in Blackbox’s SAT encoding. However, the number of constraints is relatively higher
in GP-CSP. This increase is mostly because there are O(ln2e2) constraints modeling
the action mutexes in GP-CSP, instead of O(ln2) constraints (clauses). 5 The increase is
necessary because in CSP, actions are not variables, and the mutual exclusions between
actions has to be modeled indirectly as constraints on legal variable-value combinations.

The fact that direct translation of the planning graph into CSP leads to a higher number
of constraints doesn’t necessarily mean that GP-CSP will consume more memory than SAT
encodings, however. This is because GP-CSP represents constraints in an implicit fashion,
thus making for a more compact representation. In Section 6, we describe how much of
this increase can be offset by exploiting the implicit nature of constraints in GP-CSP.

4. Implementation details of compiling the planning Graph to CSP

As mentioned in the previous section, GP-CSP uses a CSP encoding of the planning
graph. The basic idea is to let Graphplan build the planning graph representation, and
convert it into a CSP encoding, along the lines illustrated in Fig. 3. Like Blackbox, the
conversion process starts from the first level in which all the goals appear non-mutex
with each other. If the CSP encoding is unsolvable, then we destroy the CSP encoding,
extend the graph one more level and re-generate a new CSP encoding. We use the CSP
library developed by van Beek [33], and thus our constraints are put in a format that is
accepted by their library. Here are some implementation level details of the way encodings
are generated:

(1) We start by removing all irrelevant nodes from the planning graph. This is done by
essentially doing a reachability analysis starting from the goal propositions in the
final level. This step reduces the size of the encoding so it only refers to the part of
the planning graph that is actually relevant to solving the current problem.

5 Notice that all fact mutexes and action mutexes other than the static interference mutexes are redundant. Thus,
they are not necessary to guarantee the correctness of the solution. They correspond to extra binary constraints
that result from doing directional partial 2-consistency in the graph expansion phase.



160 M.B. Do, S. Kambhampati / Artificial Intelligence 132 (2001) 151–182

(2) Each of the propositions in the minimized graph is given a unique CSP variable
number, and the actions in the graph are given unique CSP value numbers.

(3) The domains of individual variables are set to the the set of actions that support
them in the planning graph, plus one distinguished value corresponding to ⊥ for all
propositions in levels other than the goal level. The null value ⊥ is placed as the first
value in the domain of each variable.

(4) Setting up the constraints: van Beek’s CSP library allows for the definition
of implicit constraints. It does this by allowing the definition of schematized
“constraint types” and declaring that a constraint of a particular type holds between
a set of variables. Each constraint type is associated with a function that can check,
given an assignment for the constraint variables, whether or not that constraint
is satisfied by that assignment. In GP-CSP, we define three types of constraints
called respectively activity constraints, fact mutex constraints and action mutex
constraints. The activity constraints just ensure that if the first variable has a non-
null value, then the second variable should also have non-null value. The fact
mutex constraints ensure that both of the variables cannot have non-⊥ values
simultaneously. The action mutex constraints ensure that the values assigned for
any two variables are not a pair of actions that are mutex with each other.

(5) Checking the constraints: The CSP formulation accepted by van Beek’s CSP library
is very general in the sense that it allows us to specify which variables participate
in which constraint, and the type for each constraint, but nothing more. Unlike the
explicit representation, in which the solver will automatically generate the set of
satisfying or failure assignments given a set of constraints in the CSP formulation,
we have to write customized checking functions for each type of constraint in the
implicit representation. To make things easier for checking constraints, we create a
global hashtable when setting up the CSP formulation. The hashtable maps the index
of each individual constraint with the actual actions participating in that constraint.
For the activity constraint, it is an action that when assigned for the fact at the higher
level will cause the fact in the lower level to become active. For the mutex constraint,
it is a pair of actions that are not allowed to be values of variables in that constraint.
Whenever a constraint is checked by the solver, the corresponding checking function
will consult the hashtable to match the current values assigned for its variables with
the values in the hash entry for that constraint, and return the value true or false
accordingly.

5. Results with initial encodings

We have implemented GP-CSP as described above, and have compared its performance
with other Graphplan based planning systems—including the standard Graphplan and
Blackbox [21], which compiles the planning graph into a SAT encoding. Note that all
three systems are based on the same original C implementation of Graphplan. Therefore,
any differences in performance are solely due to their search time and conversion time.
Furthermore, the time to convert the planning graph to CNF form in Blackbox, and to
the CSP encoding in GP-CSP are similar, and are quite small compared with the graph
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expansion, and searching times. For example, in problem log-b, Blackbox spends 0.12 s
for converting a graph, 1.1 s for expanding, and around 16.7 s for searching. For the
same problem, our best GP-CSP implementation takes 0.11 s for conversion, 1.1 s for
expanding the graph, and 2.79 s for solving the CSP encoding. 6 The CSP encodings are
solved with GAC-CBJ, a solver that does generalized arc consistency and conflict-directed
backjumping (DDB). This is the solver that the CPLAN system used [34].

Table 1 compares the performance of these systems on a set of benchmark problems
taken from the literature. The blocksworld, logistics and grids problems are taken from
the AIPS-98 planning competitions (the blocksworld and logistics domains also come
with Blackbox planner’s distribution). The parallel blocksworld domain is from the set of
domains distributed with the HSP planner [4]. The results show that GP-CSP is competitive
with Graphplan as well as Blackbox with two state-of-the-art solvers—SATZ and Relsat. 7

While there is no clear-cut winner for all domains, we can see that Graphplan is better for
serial and parallel blocksworld domains, and worse for the logistics, in which GP-CSP and
the two SAT solvers do better. GP-CSP is quite competitive with the SAT solvers in most
of the problems.

Of particular interest are the columns titled “mem” that give the amount of memory
(swap space) used by the program in solving the problem. We would expect that GP-CSP,
which uses implicit constraint representation, should take much less space than Blackbox
which converts the planning graph into a SAT encoding. Several of the problems do
establish this dominance. For example, most logistics problems take about 6 megabytes
of memory for GP-CSP, while they take up to 80 megabytes of memory for Blackbox’s
SAT encoding. One exception to this memory dominance of GP-CSP is the parallel blocks
world domain taken from the HSP suite [5]. Here, the inefficient way that the initial CSP
encoding represents the mutex constraints seems to increase the memory requirements of
GP-CSP as compared to Blackbox. In this domain, the number of actions that can give the
same fact is quite high, which leads to a higher number of mutex constraints in the GP-
CSP formulation, compared with SAT. Nevertheless, GP-CSP was still able to outperform
both SATZ and Relsat in that domain in terms of time. Perhaps more surprising is the fact
that GP-CSP consumes less memory in 4 problems than Graphplan, despite the fact that
Graphplan extracts the solutions directly from the planning graph while GP-CSP uses an
additional CSP encoding step. The primary reason for this is the memoization strategy
used by standard Graphplan. The memos, while improving speed, also increase space
consumption. The vanilla GAC-CBJ solver used in GP-CSP does not do any memoization
(see Section 7.1 for the effect of adding nogood learning to GP-CSP).

6 Note that we did not mention the time each of the two SAT solvers in Blackbox requires to convert the
CNF form to their own internal structure. This extra time is not needed in our GP-CSP system, because we
convert directly from the planning graph to the structure that the GAC-CBJ solver can use without using an
intermediate form like the CNF formulation in SAT.

7 To make comparisons meaningful, we have run the SATZ and Relsat solvers without the random-restart
strategy, and set the cutoff-limit to 1 000 000 000. This is mainly because random-restart is a technique that is not
unique to SAT solvers; see, for example, [18] for the discussion of how a random-restart strategy can be employed
in Graphplan. However, the running times of SAT solvers are still dependent on the initial random seeds, so we
take an average of 10 runs for each problem.
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Table 1
Comparing direct CSP encoding of GP-CSP with Graphplan, and Blackbox. All problems except hsp-bw-04 were run on a Sun Ultra 5, 256 M RAM machine. Hsp-bw-
04 was run on a Pentium 500 MHz machine running LINUX with 256 MB RAM. Time is in CPU seconds, mem is swap space in megabytes, length is the plan length
of solutions in terms of actions/time-steps

GP–CSP Graphplan Blackbox-Satz solver Blackbox-Relsat solver

Time (s) Mem Length Time (s) Mem Length Time (s) Mem Length Time (s) Mem Length

bw-12steps 7.59 11 M 12/12 0.42 1 M 12/12 8.17 64 M 12/12 3.06 70 M 12/12

bw-large-a 138 45 M 12/12 1.39 3 M 12/12 47.63 88 M 12/12 29.87 87 M 12/12

rocket-a 9.25 5 M 26/7 68 61 M 30/7 8.88 70 M 33/7 8.98 73 M 34/7

rocket-b 19.42 5 M 26/7 130 95 M 26/7 11.74 70 M 27/7 17.86 71 M 26/7

log-a 16.19 5 M 66/11 1771 177 M 54/11 7.05 72 M 73/11 4.40 76 M 74/11

log-b 2898 6 M 54/13 787 80 M 45/13 16.13 79 M 60/13 46.24 80 M 61/13

log-c > 3 hrs – – > 3 hrs – – 1190 84 M 76/13 127.39 89 M 74/13

hsp-bw-02 1.94 5 M 10/4 0.86 1 M 10/4 7.15 68 M 11/4 2.47 66 M 10/4

hsp-bw-03 20.26 90 M 16/5 5.06 24 M 13/5 > 8 hrs – – 194 121 M 17/5

hsp-bw-04∗ 814 262 M 18/6 19.26 83 M 15/6 > 8 hrs – – 1682 154 M 19/6

grid-01 27.40 72 M 13/13 18.06 41 M 13/13 > 3 hrs 112 M – 31.78 118 M 14/13

grid-02 > 3 hrs 101 M – 22.55 62 M 14/14 > 3 hrs 131 M – 66.26 138 M 14/14

grid-03 337 147 M 15/15 27.35 68 M 15/15 > 3 hrs 162 M – 98.40 171 M 16/15
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Table 2
Solving the CSP encoding with different local consistency enforcement techniques. FC,
AC stand for Forward Checking and Arc-Consistency. Running time reported in CPU
seconds

FC AC Only A-Mutex (with FC)

bw-12steps 7.59 33.37 7.54

bw-large-a 138 1162 140

rocket-a 9.25 23.14 8.31

rocket-b 19.42 49.34 19.48

log-a 16.19 32.73 83

hsp-bw-02 1.94 6.81 1.83

hsp-bw-03 20.26 160 21.04

The columns titled “length” in Table 1 give the length of the plans returned by each
solver (both in terms of steps and in terms of actions). These statistics show that the solution
returned by GP-CSP is strictly better or equal to Blackbox using either SATZ or Relsat for
all tested problems in which both systems find a solution. However, for all but one problem,
the standard directional backward search of Graphplan returns shorter solutions in terms
of the number of actions. This can be explained by noting that in the standard backward
search, a proposition will be activated if and only if an action that needs that proposition as
a precondition gets chosen in that search branch. In contrast, as we mentioned in Section 3,
the activation constraints in the GP-CSP encoding only capture the if part, leaving open the
possibility of propositions becoming active even when no action needing that proposition
has been selected. This can thus lead to longer solutions. The loss of quality is kept in
check by the fact that our default value ordering strategy first considers the “⊥” value for
every variable (proposition), as long as it is not forbidden to consider that value.

We also did some preliminary experimentations to figure out the best settings for
the solver, as well as the encoding. In particular, we considered the relative advantages
of doing arc-consistency enforcement vs. forward checking, and the utility of keeping
fact mutexes—which, as mentioned earlier, are derivable from action mutexes. Forward
checking involves doing constraint propagation when all but one of the variables of a
constraint are instantiated. Arc-consistency is more eager and attempts propagation even
if two of the variables in the constraint are un-instantiated (since we only have binary
constraints, propagation is always attempted). Table 2 shows the results of our study. The
column titled “FC” shows the result of applying only forward checking for all 3 types of
constraints, the column titled “AC” shows the result of using arc-consistency for all types
of constraints. The comparison between these columns shows that forward checking is
better in every problem. We thus went with forward checking as the default in all other
experiments (including those reported in Table 1). The last column reports on the effect
of removing the redundant fact mutex constraints from the encoding (assuming we are
doing forward checking). Comparing this column with that titled “FC”, we can see that
while including fact mutex constraints in the encoding does not change the solving time
for most of the tested problems, there is a problem (log-a) in which we can solve it 4 times
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Fig. 4. Illustration of the differences between the Explicit and Implicit representation of mutex constraints.

faster if we include the fact mutex constraints. Because we have not found any problem
in which fact mutex constraint considerably slows down the search or worsens memory
consumption, we retain them in the default GP-CSP encoding.

6. Improving encoding size by exploiting implicit constraint representation

As mentioned earlier, the GP-CSP encoding described above models the mutex
constraints in a way that is less compact than possible. A mutex constraint between
two actions is translated to O(e2) constraints on the proposition-action (variable-value)
combinations—leading to a total of O(ln2e2) action mutex constraints.

We have devised a method that uses implicit constraint representation, and exploits the
Graphplan data structures to reduce the number of constraints needed to model action
and fact mutexes from O(ln2e2) + O(lm2) to O(lm2) (where m and n are, respectively,
the average number of propositions and actions per level, l is the length of the planning
graph, and e is the average number of effects of an action), while still keeping the arity
of constraints binary. Fig. 4 shows one example that demonstrates the differences between
the explicit and implicit encodings of mutex constraints.

In contrast to the normal encoding, in which we start from a mutex relation between a
pair of actions, and set up constraints over every pair of effects of those two actions, we
will start from nodes in the fact levels for the compact encoding. For every pair of relevant
facts in one level, we will check if at least one pair of actions supporting them are mutex.
If there exists at least one such pair, we will set one mutex constraint involving those facts.

Notice that in the normal encoding, we commit to a specific action mutex whenever
we set up a CSP mutex constraint, while we only have very general information about
the relation between supporting actions in the compact encoding. In order to check the
constraint, we will need a data structure that contains, for every pair of propositions, the list
of forbidden action assignments for those propositions. In fact, Graphplan already keeps
such a data structure, which is accessed with the function are_mutex in the standard
implementation. Suppose that we have an action mutex constraint between facts P, and
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Q, and the current values assigned by the CSP solver to P, Q are a1, a2. We will use
the call are_mutex(a1, a2) to check whether or not (a1, a2) are actually mutex for this
particular action assignment. If they are, then we will tell the CSP solver to reject the
current assignment.

Clearly, with this approach, there is only one type of mutex constraint and the number
of constraints needed to model action and fact mutexes is O(lm2), down from O(ln2e2) +
O(lm2). This is because in the worst case, every pair of propositions at each level may be
related by some action mutex.

Experiments with the new encoding show that it can help to reduce the number of
CSP constraints needed for representing Graphplan’s mutex relations from 4 to 140 times.
Table 3 shows the comparison between the two types of encoding. The columns named
“mutex” show that the number of CSP mutex-based constraints diminished by 4 to
140 times in the compact encoding, compared with the normal one. As a result, the memory
consumed by GP-CSP, which is shown in the “mem” columns of Table 3, is reduced by 4
to 6 times for larger problems. 8 More importantly, GP-CSP now consumes less memory in
all cases compared to Blackbox (see Table 1). The new encoding also seems to be easier to
solve in all but one problem. In particular, problems log-b and hsp-bw-04 can be solved 28
and 20 times faster than under the normal encoding. For other problems the new encoding
provides a speedup of up to 4×. The only problem that experiences considerable slowdown
is bw-large-a, which is an easy problem to begin with. There is also not much difference
in the length of the solutions returned. In the 3 problems where a difference occurs, the
solution using the compact encoding is shorter by 2 actions in problem log-a and longer
by 1 action in problems log-b and hsp-bw-02. Overall, the compact encoding is superior to
the direct encoding and we make it our default encoding strategy for later experiments.

7. Improvements to the CSP solver

The CSP solver that we have used for our initial experiments is the GAC-CBJ solver
that comes pre-packaged with the CPLAN constraint library. GAC-CBJ uses forward-
checking in conjunction with conflict directed backjumping. While this solver itself was
quite competitive with Blackbox and Graphplan, we decided to investigate the utility of a
variety of other enhancements commonly used to improve CSP solvers. The enhancements
we investigated include:

(1) explanation based learning (EBL),
(2) level-based variable ordering,
(3) distance based variable and value ordering [20],
(4) automatic heuristics selection,
(5) min-conflict value ordering, and
(6) the use of backward relevance-based mutex constraints [7].

In our experiments to-date, only the first four enhancements have demonstrated improve-
ments in performance. We thus limit our discussion to these four enhancements.

8 Note that the memory listed in Table 3 for GP-CSP includes the amount that is needed to hold the planning
graph structure. The portion needed for the CSP encoding is in fact very small. For example, the memory needed
for the CSP encoding of problems in the logistics domains ranges from 1 to 5 MB.
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Table 3
Utility of encoding mutex constraints compactly. Time is in CPU seconds, mem is megabytes of swap memory, mutex is the number of CSP mutex constraints, and total
is the total number of constraints in the CSP encoding

Normal encoding Compact encoding

Time Mem Length Mutex Total Time Mem Length Mutex Total

bw-12steps 7.59 11 M 12/12 96 607 99 337 1.96 3 M 12/12 6390 9120

bw-large-a 138 45 M 12/12 497 277 503 690 1234 11 M 12/12 26 207 32 620

rocket-a 9.25 5 M 26/7 21 921 23 147 4.01 3 M 26/7 4992 6218

rocket-b 19.42 5 M 26/7 26 559 27 881 6.19 4 M 26/7 5620 6942

log-a 16.19 5 M 66/11 16 463 18 392 3.34 4 M 64/11 4253 6182

log-b 2898 6 M 54/13 24 301 26 540 110 5.5 M 55/13 4149 6388

log-c > 3 hrs – – – – 510 22 M 64/13 7772 3153

hsp-bw-02 1.94 5 M 10/4 78 307 79 947 0.89 4.5 M 11/4 2001 3641

hsp-bw-03 20.26 90 M 16/5 794 670 800 976 4.47 13 M 16/5 8585 14 891

hsp-bw-04∗ 814 262 M 18/6 2 892 732 2 907 293 39.57 64 M 18/6 21 493 36 054

grid-01 27.40 72 M 13/13 160 644 167 623 23.58 62 M 13/13 8892 15 871

grid-02 > 3 hrs 101 M – 278 462 288 135 36.70 82 M 14/14 13 355 23 028

grid-03 337 147 M 15/15 504 635 518 189 128 113 M 15/15 20 467 34 021
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Table 4
Incorporating EBL into GAC-CBJ. Times are in CPU seconds. 3-t represents CPU times with nogoods limited to
size 3 or less. 3-m gives the memory requirements in megabytes for these runs. Similar definitions hold for 5-t,
5-m, 10-t, 10-m, 30-t, and 30-m. All problems were run on a Sun Ultra 5 Unix machine with 256 MB of memory.
To be consistent with other tables, problem hsp-bw04 was run on the Linux machine

Problem Size-based EBL Relevance-based EBL

3-t 3-m 10-t 10-m 30-t 30-m 5-t 5-m 10-t 10-m

bw12steps 1.69 11 M 1.31 11 M 1.50 11 1.40 10 M 1.46 10

bw-large-a 608 24 M 259 24 M 173 26 M 128 24 M 134 26 M

rocket-a 3.69 8 M 2.08 8 M 2.49 8 M 2.59 11 M 2.39 11 M

rocket-b 5.52 9 M 3.55 9 M 4.33 9 M 4.31 10 M 4.00 10 M

log-a 2.67 15 M 2.37 18 M 2.26 18 M 2.60 18 M 2.30 18 M

log-b 59.58 18 M 39.55 19 M 48.22 29 M 36.77 18 M 35.13 19 M

log-c 153 24 M 61 24 M 63 34 M 65 25 M 48.72 25 M

hsp-bw02 1.08 12 M 1.03 12 M 1.14 12 M 1.05 12 M 1.09 12 M

hsp-bw03 5.08 26 M 5.04 26 M 5.19 26 M 5.12 41 M 5.17 41 M

hsp-bw04∗ 40.41 86 M 38.01 86 M 24.07 89 M 26.57 86 M 23.89 86 M

grid-01 23.26 68 M 21.60 68 M 21.46 68 M 22.28 57 M 21.98 62 M

grid-02 36.78 92 M 35.77 92 M 25.93 92 M 25.99 88 M 26.69 92 M

grid-03 124 127 M 108 127 M 58.68 127 M 53.51 128 M 53.68 128 M

7.1. EBL and nogood learning

The most important extension to the solver is the incorporation of EBL, which helps the
solver to explain the failures it has encountered during search, and uses those explanations
to avoid the same failures later [17]. The nogoods are stored as partial variable-value
assignments, with the semantics that any assignment that subsumes a nogood cannot be
refined into a solution. Extending GAC-CBJ to support EBL is reasonably straightforward
as the conflict-directed backtracking already provides most of the required apparatus for
identifying minimal failure explanations. Specifically, our nogood recording process is
similar to the jump-back learning discussed in [12].

Once we know how to identify failure explanations, we have to decide how many
explanations to store for future use. Indiscriminate storage of nogoods is known to increase
both the memory consumption, and the runtime (in terms of the cost incurred in matching
the nogoods to the current partial solution). Two of the best-known solutions for this
problem in CSP are size-based learning [12], and relevance-based learning [1]. A k-degree
size-based learning will not store any nogoods of size greater than k (i.e., any nogood
which names more than k variables and their values). A k-degree relevance-based learning
scheme will not store any no-good that differs from the current partial assignment in more
than k variable-value assignments. Since relevance is defined with respect to the current
partial assignment, relevance of a nogood varies as we backtrack over partial assignments
during search.

Table 4 shows the time and memory requirements in solving problems in blocksworld
(serial and parallel), rocket, and logistics domains for both size-based, and relevance-
based learning schemes. For size-based learning we experimented with size limits of 3, 10,
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Table 5
The ratios of running time in CPU seconds and memory consumption in megabytes of GP-CSP using relevance-
based EBL with nogood size limited to 10 (Rel-10 EBL) compared with naive GP-CSP (no EBL), Graphplan and
Blackbox with two SAT solvers

Problem GP-CSP Graphplan SATZ Relsat

bw12steps 1.34/0.30 0.28/0.1 5.60/6.40 2.10/7.00

bw-large-a 9.21/0.42 0.01/0.12 0.36/3.38 0.22/3.34

rocket-a 1.68/0.27 28.45/5.54 3.72/6.36 3.76/6.63

rocket-b 1.55/0.4 32.5/9.50 2.94/7.00 4.47/7.10

log-a 1.45/0.22 770/9.83 3.07/4.00 1.91/4.22

log-b 3.13/0.29 22.40/4.21 0.46/4.16 1.32/4.21

log-c 10.47/0.88 > 220 24.42/3.36 2.61/3.56

hsp-bw02 0.82/0.37 0.79/0.08 6.56/5.67 2.27/5.50

hsp-bw03 0.86/0.32 0.98/0.59 > 5570 37.52/2.95

hsp-bw04∗ 1.65/0.75 0.81/0.97 > 1205 70.41/1.79

grid-01 1.07/1.00 0.82/0.66 > 491 1.45/1.81

grid-02 1.38/0.89 0.85/0.67 > 405 2.48/1.5

grid-03 2.38/0.88 0.51/0.53 > 201 1.83/1.33

and 30. The results suggest that the nogood size of around 10 gives the best compromise
results between the time and memory requirements for most of the problems. However,
for the two blocksworld domains, the bigger the size of nogoods we learn, the better the
speedup we are able to get. In particular, for the parallel blocksworld domain, significant
speedups only occur with k � 30.

For the relevance-based learning, we experimented with relevance limits of 5 and 10.
In both cases, we also included a size limit of 50 (i.e., no nogood of size greater than 50
is ever stored, notwithstanding its relevance). The 4 columns grouped under the heading
“relevance-based EBL” in Table 4 show the performance of relevance-based learning on
GP-CSP in terms of time and memory consumptions. We see that relevance-based learning
is generally faster than the best size-based learning in larger problems. The memory
requirements for relevance and sized-based learning were similar. We thus made relevance-
10 learning to be the default in GP-CSP. The performance of our default GP-CSP planner
with various improvements will be presented in Section 8.

The four columns in Table 5 show the speedups in time, and the relative memory
consumption of GP-CSP armed with relevance-10 EBL compared with the naive GP-
CSP (with compact-encoding and no EBL), Graphplan, and Blackbox with SATZ and
Relsat For example, the cell in the row named rocket-a, and the column titled Relsat
has value 3.76/6.63. This means that GP-CSP with EBL is 3.76 times faster, and
consumes 6.63 times less memory than Blackbox with Relsat on this problem. The results
show that with EBL, the memory consumption of GP-CSP is increased, but it is still
consistently 2 to 7 times smaller than Blackbox using both SATZ and Relsat solvers. GP-
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CSP with EBL is faster than Blackbox using Relsat (which is a powerful SAT solver, that
basically uses the same search techniques as GP-CSP’s GAC-CBJ-EBL) in all but bw-
large-a problem. It is slower than SATZ on only two problems, bw-large-a and log-b. The
solution length, in terms of number of actions, returned by GP-CSP is also always smaller
or equal to both SATZ and Relsat. 9

7.2. Reusing EBL nogoods across encodings

Since for a given problem, the planning graph of size k + 1 is really a superset of the
planning graph of size k, the CSP encodings corresponding to these two planning graphs
have a considerable overlap. Indeed, Graphplan’s own backtrack search exploits the overlap
between the encodings by reusing the failures (“memos”) encountered in searching a k level
planning graph to improve the search of a k + 1 level planning graph. In contrast, GP-CSP,
as discussed up to this point, does not exploit this overlap, and treats the encodings as
essentially independent. (Blackbox too fails to exploit the overlap between consecutive
SAT encodings.)

Since inter-level memoization is typically quite useful for standard Graphplan, we also
implemented a version of GP-CSP with EBL that exploits the overlap between consecutive
encodings by storing the nogoods learned in a given encodings and reusing it in succeeding
encodings. The main technical difficulty is that a nogood that is sound for the kth level
encoding may not remain sound for the (k + 1)th level encoding. This might sound strange
at first blush since the structure of the planning graph ensures that every variable in the kth
level encoding is also present, with identical domain and inter-variable constraints, in the
(k + 1)th level encoding. This fact should imply that a nogood made up of those variables
must hold in the later encoding too. There is however one change when we go from one
iteration to another; the specific variables that are “active” (i.e., must have non-⊥ values)
change from level to level. Specifically, suppose the problem we are attempting to solve
has a single top level goal G. In the kth level encoding, the variable Gk , corresponding to
the proposition G at level k will be required to have a non-⊥ value. However, when we go
to (k + 1)th level, the non-⊥ value constraint shifts to Gk+1, leaving Gk free to take on
any value from its domain. Now, if there was a nogood N : x1 = v1, . . . , xi = vi at the kth
level that was produced only because Gk was required to have a non-null value, N will no
longer be sound in the (k + 1)th level encoding.

Fortunately, there is a way of producing nogoods such that they will retain their
soundness across successive encodings. It involves explicitly specifying the context under
which the nogood holds. In the example above, if we remember the nogood N as x1 =
v1, . . . , xi = vi ∧ Gk 	=⊥, then the contextualized nogood will be safely applicable across
encodings. Producing such nogoods involves modifying the base-level EBL algorithm
such that it tracks the “flaws” (variables with non-⊥ constraints) whose resolution forced
the search down to specific failures, and conjoins them to the learned nogoods. In [17],

9 The solutions returned by GAC-CBJ-EBL are always the same as the ones returned by GAC-CBJ.
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Kambhampati provides straightforward algorithms for generating such contextualized
nogoods, and we adapted those algorithms for GP-CSP. 10

Although we managed to implement this inter-level nogood usage and verify its
correctness, we found, to our disappointment, that reusing recorded nogoods does not
provide a favorable cost-benefit ratio after all. We found that the use of such inter-level
nogoods leads to consistently poorer performance than using intra-level nogoods alone
in most of the problems. Table 6 compares the results of reusing EBL nogoods between
consecutive encodings, and the default strategy of not reusing them.

There are several possible reasons as to why exploiting nogoods from previous levels
did not lead to the improvements we expected. The most plausible explanation of this
phenomenon is that it is caused by the differences between Graphplan’s memoization
strategy and the standard EBL nogoods (see [18]). In particular, as pointed out in [18],
Graphplan’s memos can be seen as nogoods of the form P1 	=⊥ ∧ · · · ∧ Pj 	=⊥ where Pi

are all propositions from the same level of the planning graph. Such nogoods correspond
to the conjunction of an exponential number of standard CSP nogoods of the form
P1 = a1 ∧ · · · ∧ Pj = al . Due to the allowance of inter-level nogoods, the total number
of nogoods in GP-CSP increases more drastically than in Graphplan as we go to higher
level encodings. As a result, the benefit from reusing nogoods in the previous encodings
decreases, driving down the utility of storing and matching the previous level nogoods.

It is of course possible for us to increase the reusability of nogoods by concentrating
only on the Graphplan-style abstract nogoods in the GP-CSP context. However, using
such nogoods effectively requires that the search in GP-CSP be done level by level (akin
to Graphplan). 11 Unfortunately, as our experiments in the next section show, solving
CSP encodings using a level by level (variable ordering) strategy is rarely the best choice
for GP-CSP.

7.3. Utility of specialized heuristics for variable and value ordering

7.3.1. Level-based variable ordering
Since standard Graphplan seems to do better than GP-CSP in domains like the serial

blocksworld, we wondered if the level by level variable ordering, that is used in Graphplan,
might also help GP-CSP to speed up the search in those domains. Currently, the GAC-CBJ
solver used in GP-CSP uses dynamic variable ordering which prefers variables with
smaller live domains (D), and breaks ties by the most-constrained variable ordering which
prefers variables that take part in more constraints (C), followed by level-based variable
ordering (L) which prefers variables from higher levels of the planning graph. Let us
call this default strategy the DCL strategy. DCL strategy gives tertiary importance to
the planning graph level information. To make variable ordering more Graphplan-like,
we tried two other variable orderings LDC, which gives primary importance to planning

10 A second minor issue was to augment the program that compiles the planning graph into CSP encodings with
some additional book-keeping information so that a proposition p at level l in the planning graph is conceptually
mapped to the same CSP variable in all encodings.

11 If we do not adopt a level by level approach here, the abstract nogood learning process will only terminate
when the CSP search stopped. As a result, we can only learn one big nogood, which can only be used for the
higher level encoding.
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Table 6
Reusing EBL nogoods across levels. The nogood learning strategy used in this experiment is k size-based EBL with k values of 3, 10, and 30. For each experiment, the
two columns show the time in seconds, and memory consumptions in MB

No-reuse (3) No-reuse (10) No-reuse (30) Reuse (3) Reuse (10) Reuse (30)

t (s) mem t (s) m t (s) mem t (s) mem t (s) mem t (s) mem

bw-12steps 1.69 11 MB 1.31 11 MB 1.50 11 MB 2.02 11 MB 1.37 11 MB 1.88 11 MB

bw-large-a 608 24 MB 259 24 MB 173 26 MB 1217 24 MB 400 24 MB 324 49 MB

rocket-a 3.69 8 MB 2.08 8 MB 2.49 8 MB 3.75 8 MB 2.57 8 MB 2.63 8 MB

rocket-b 5.52 9 MB 3.55 9 MB 4.33 9 MB 5.53 9 MB 3.95 9 MB 4.58 9 MB

log-a 2.67 15 MB 2.37 18 MB 2.26 18 MB 2.72 18 MB 2.42 18 MB 2.30 18 MB

log-b 59.58 18 MB 39.55 19 MB 48.22 29 MB 64 21 MB 48.94 22 MB 50.57 29 MB

log-c 153 24 MB 61 24 MB 63 34 MB 190 24 MB 70 24 MB 64 40 MB

hsp-bw-02 1.08 12 MB 1.03 12 MB 1.14 12 MB 1.21 12 MB 1.10 12 MB 1.21 12 MB

hsp-bw-03 5.08 26 MB 5.04 26 MB 5.19 26 MB 5.27 26 MB 5.16 26 MB 6.04 26 MB

hsp-bw-04 82 88 MB 73 88 MB 46.65 91 MB 82 88 MB 74 88 MB 51.32 92 MB

hsp-bw-04∗ 40.41 86 MB 38.01 86 MB 24.07 89 MB 40.68 86 MB 37.96 86 MB 25.06 90 MB
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Table 7
GP-CSP with different variable orderings. The notations for different heuristics are: D: dynamic variable ordering,
C: most (statically) constrained variable ordering, L: late-level first variable ordering, E: with EBL. The EBL used
in this experiment is size-based EBL with maximum nogood size is set to 10. DCL is the default variable ordering
of the CSP solver that we have been using so far. All experiments were run on the Ultra5 Unix machine, except
hsp-bw4, which was run on Linux 500 MHz machine. Running times are in CPU seconds

Prob LDC LDC-E DLC DLC-E DCL DCL-E GP

bw12steps 2.20 1.26 1.59 1.12 1.96 1.46 0.42

bw-large-a 12.90 6.88 13.24 6.58 1234 134 1.39

rocket-a 1240 52.12 4.71 2.29 4.01 2.39 68

rocket-b 629 43.23 118 15.82 6.19 4.00 130

log-a > 1800 > 1800 > 1800 22.93 3.34 2.30 1771

log-b > 1800 727 > 1800 > 1800 110 35.13 787

hsp-bw2 1.03 1.08 1.12 1.05 0.89 1.09 0.86

hsp-bw3 5.21 5.23 5.18 5.12 4.47 5.17 5.06

hsp-bw4∗ 5.76 4.87 19.29 14.64 39.57 23.89 19.26

grid-01 18.70 19.71 22.03 20.24 23.58 21.98 18.06

grid-02 24.02 24.58 25.46 24.63 36.70 26.69 22.55

grid-03 30.51 31.23 38.80 35.10 128 53.68 27.35

graph level, and DLC which gives it secondary importance. The performance of these three
variable ordering strategies are compared in Table 7. As we can easily see, the new variable
orderings significantly speedup GP-CSP in the two blocksworld domains, but slows the
search down in the logistics domain. Even though EBL helps to speedup the LDC variable
ordering by up to more than 20 times in the logistics domain, it is still significantly slower
than the other two options.

7.3.2. HSP-based variable and value ordering
The results of previous section suggest that simple variable ordering schemes such as

DVO are not always effective for CSP encodings of planning problems. Variable and value
ordering heuristics more suited to planning problems in different classes of domains are
thus worth investigating. In this section, we will describe a variation of the variable and
value ordering heuristics 12 used in the Graphplan algorithm that is discussed in [20].
These heuristics are based on the difficulty of achieving propositions in the planning graph,
or alternatively their distance from the initial state, as measured by the number of action
applications needed to achieve them from the initial state. The distance of each fact node in
the graph is approximated by the first level that it appears in the planning graph structure.

12 Because the backward search of Graphplan proceeds backward level by level, and chooses one set of actions
at a time, the heuristics discussed in [20] are based on the values applied to a set of propositions. However, the
search in our planner is done for one variable at a time. Therefore, we have to modify the calculation and usage
of the distance-based heuristics to fit the CSP context.
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Table 8
Using hsp-values for variable and value orderings in CSP search. “Skip” means we skip the nonsolution bearing
levels, and start solving from the first solution-bearing level. “Normal” means we do the CSP search in Graphplan
fashion, by starting from the first level that all the goals appear non-mutex with each other. “Default” is the normal
DCL variable ordering used in the GAC-CBJ solver. No EBL learning is used in the experiments. Running times
are in CPU seconds

Prob MAX SUM Default

Normal Skip Normal Skip Normal Skip

bw-12steps 12.98 4.43 12.79 4.43 1.96 0.66

bw-large-a 21.89 2.37 20.33 2.39 1234 1057

rocket-a 5.78 0.70 5.46 0.69 4.01 1.21

rocket-b 10.74 3.56 28.74 20.30 6.19 1.43

log-log-a 2.08 1.69 2.03 1.61 3.40 3.34

log-log-b > 1800 14.89 > 1800 12.61 110 1.68

log-log-c > 1800 2.95 > 1800 2.90 510 5.55

hsp-bw-02 1.11 1.11 1.19 1.19 0.89 0.89

hsp-bw-03 21.78 21.78 7.73 7.73 5.65 5.65

grid-01 25.67 25.67 24.01 24.01 36.70 36.70

grid-02 20.06 20.06 19.01 19.01 23.58 23.58

The difficulty in achieving a set of propositions is computed in terms of the distances of all
the individual propositions (either by a SUM or MAX operation; see below). We call these
distance estimates “hsp-values” after the terminology in [4,20]. Specifically, we compute
the hsp-values for all fact and action nodes in the graph as follows:

• The hsp-value of each fact is the value of the first level in which it appears in the
planning graph.

• The hsp-value of each action is the maximum value (max-hsp), or the sum (sum-hsp)
of the hsp-values of its preconditions.

The hsp-values of the fact nodes will be used to setup the variable ordering, and the
hsp-values of the action nodes will be used for value ordering in our CSP search. We still
follow CSP’s basic strategy of choosing the most difficult variable (in assigning value) first,
and the least constrained value first. However, the difficulty here is not measured by the
number of remaining values in a variable’s domain (DVO), or the number of constraints
that a variable participates in, but by the approximate distance (number of actions) to the
initial state. More specifically, the search involves:

• Choosing the CSP variable corresponding to the fact node with highest hsp-value.
Ties are broken by the normal most constrained variable ordering heuristic.

• For a given variable, choosing the CSP value in its domain corresponding to the action
with smallest hsp-value.

Table 8 shows the results of using the hsp-values for variable and value orderings on
a set of benchmark problems. The column titled MAX shows the results of the max-
hsp value ordering, and the column SUM shows the results of using the sum-hsp value
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ordering. “Default” is the normal DCL variable ordering used in the GAC-CBJ solver
(refer to Section 7.3.1). As suggested in [20], we tested with two cases for each problem:
normal case, in which we start searching from the level that all the goals first appear non-
mutex with each other, and the skip case, in which we skip the levels that do not contain
the solution and start from the first solution-bearing level. The results show that in most
of the tested problems, the new heuristics do not speed up the search in the normal cases.
However, they do speedup the search in the bw-large-a by 60 times, and slightly improve
the search time in some gridworld problems.

The results for the skip runs, in which we start from the first solution-bearing level,
are more promising. In this case, in addition to the speedup in some gridworld, and
blocksworld problems, we also get improvements in 3 of 5 logistics problems. This result
agrees with the observation in [20]. The contrast between the results of the normal and
skip cases in the logistics problems suggests that while being fairly good in the solution
bearing levels, the hsp-heuristics still spend much time doing exhaustive search in the non-
solution levels, contributing to the high total-searching time in the default case. The other
observation from Table 8 is that there is not much difference in performance of the max
and sum heuristics. Even though there are big differences in two problems rocket-b and
hsp-bw-03, the running times are very close for all remaining problems. This result shows
that the value orderings are not very important compared with the variable ordering, even
when we start at solution-bearing levels or higher.

7.3.3. Automatic selection of heuristics for variable ordering
Table 7 in Section 7.3.1 shows that using different heuristics can lead to performances

that differ by factors of up to 100× or more on some problems. Specifically, we realized
that the level-based variable ordering (LDC) tends to produce better results in the domains
where the solutions are serial like serial blocksworld or grid, while the dynamic variable
ordering (DLC) is better in the parallel domains such as rocket or logistics. The intuition
being that in the serial domains, solutions composed of actions in consecutive levels are
highly dependent on each other in the causal-effect sense. Therefore, it may be better to go
level by level from the goal state. While we know of no efficient approach to detect whether
the problem will have a serial or parallel solution by looking at the domain and problem
specification, we suspected that there might be some approximate means of gaging the
parallelism of any plan produced. Such information would have a direct bearing on the
different heuristics employed. We hypothesized that for serial domains, there will tend to
be more mutex constraints in a given plan graph level, effectively restricting the assignment
of actions in the same level. This will ultimately lead to the lower level of parallelism.

To validate this hypothesis, we analyzed the ratios between the number of mutexes
and nodes in the planning graph for various problems and domains. The eleven domains
that we tested come from the AIPS-98 planning competition [26] and the distributions
of various planners. We sought to test problems that are solvable and fairly represent the
domain. “Fairly” here means that we tested with both small and big problems. In many
domains, the biggest tested problem is one that approached the available memory limit
of the Linux machine that we ran the experiments on. The eleven domains are: serial-
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blocksworld, logistics, bulldozer, 13 and fridge-typed from Blackbox’s example domains;
parallel-blocksworld (hsp-bw), and gripper from the HSP planner distribution; and grid,
mystery, mprime from the AIPS-98 planning competition. There are other domains such
as movie, tire-world, or scheduling (from AIPS-00 competition) that use the PDDL
representation version that our planner and the blackbox-ver3.4 cannot parse. All problems
are tested on a P-III 500 MHz Linux machine with 256 MB RAM and 512 MB swap space.

Table 9 shows the statistics on the number of nodes and mutexes in the tested problems.
The first column provides an indicator as to whether the DLC or LDC heuristic is superior
for each problem. In this column, “–” means there is no clear performance distinction. The
“+” suffix after a heuristic means that performance improves about 10 times over the other,
and “++” means that the difference is about 50× or higher. For example, “ldc” means that
the LDC heuristic is slightly better than DLC, “ldc+” indicates that LDC is about 10 times
faster, and “ldc++” means that it is 50 times or more faster than DLC. The next column
labeled “level” shows the planning graph level in which the solution is extracted. The next
four columns show the total number of facts, actions, fact-mutexes, and action-mutexes in
the planning graph when a solution can be found. The last two columns show two ratios:
the number of fact-mutexes divided by the number of facts (f_ratio), and the number of
action-mutexes divided by the number of actions (a_ratio). The results show that in the
serial and parallel blocksworld, grid, mprime, and mystery domains the higher the f_ratio
and a_ratio are, the better the LDC heuristic performed compared with DLC. Specifically,
for problems with f _ratio > 10 or a_ratio > 100, LDC is generally much better than DLC.
Notable exceptions are the Hanoi and Gripper domains where even though LDC is doing
better, the values of a_ratio and f_ratio are very small. There is no clear explanation for
those two cases, but their common characteristic is that the goals appear non-mutex in a
very early level so that planners based on the building of the planning graph like Graphplan,
GP-CSP, and Blackbox will spend a lot of time searching in many non-solution bearing
levels.

Given the observation above, we employed a strategy of automatically selecting the
preferred heuristic as follows:

• If (a_ratio > 100) or (f _ratio > 10), we classify the problem as a tightly constrained
planning CSP, and we choose LDC over DLC.

• If (f _ratio < 2) or (10f _ratio + a_ratio) < 40, we consider the problem as loosely
constrained, such as the cases of Hanoi and Gripper domains, we also choose LDC.

• For the remaining problems that have f_ratio and a_ratio values in the boundary
region, LDC tends to perform slightly better in a more tightly constrained problem.
We select LDC for the ones with the values (f _ratio > 5) and (a_ratio > 50).

• The rest are solved with the DLC heuristic.
We embedded the heuristic selection strategy described above into the GP-CSP planner

as the default setting. The performance of our final version of GP-CSP with various
techniques described in the previous sections is discussed in the next section.

13 In some distributions, bulldozer domain is called travel.
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Table 9
Qualitative performance comparison for two different CSP heuristics and their relation with mutex statistics in
the planning problems. “Heu”: fastest heuristic; ”+”: 10 times or more faster than the other heuristic; “++”: 50
times or more faster; “–”: no difference; “level”: planning graph solution level; “total_f”, “total_a”, ‘f_mutex”,
“a_mutex”: total numbers of facts, actions, fact mutexes, and action mutexes in the planning graph; “f_ratio”,
“a_ratio”: ratios of f_mutex/total_f and a_mutex/total_a

Prob heu level total_f total_a f_mutex a_mutex f _ratio a_ratio

bw-12steps – 12 502 1100 3411 39 744 6.97 36.13

bw-large-a ldc+ 12 856 2020 9575 133 812 11.18 66.24

bw-large-b ldc++ 18 1996 5034 27 299 505 602 13.68 100.44

rocket-a dlc++ 7 370 1175 943 35 999 2.55 30.64

rocket-b dlc++ 7 386 1235 1123 40 454 2.91 32.76

log-a dlc++ 11 798 2074 2519 39 363 3.16 18.98

log-b dlc++ 13 897 2466 3396 55 735 3.79 22.60

log-c dlc++ 13 1131 3174 4696 83 273 4.15 26.24

log-d dlc++ 14 2180 6442 15 341 275 277 7.04 42.73

hsp-bw-01 – 3 66 144 232 3451 3.52 23.96

hsp-bw-02 – 4 238 1055 1819 147 697 7.64 134.00

hsp-bw-03 – 5 439 2806 4281 788 519 9.75 281.01

hsp-bw-04 ldc 6 1045 10 055 13 903 5 981 802 13.30 594.91

grid-01 ldc 14 3180 7389 26 101 625 399 8.21 84.64

grid-02 ldc 13 2853 5952 18 909 361 840 6.63 60.79

grid-03 ldc+ 15 3527 9191 34 528 1 064 963 9.79 115.87

gripper-02 ldc 7 188 372 303 4085 1.61 10.98

gripper-03 ldc+ 11 406 876 851 14 485 2.10 16.54

hanoi-3 – 7 193 353 223 4318 1.16 12.23

hanoi-4 ldc+ 15 607 1385 938 32 556 1.55 23.51

hanoi-5 ldc++ 31 1728 4663 3350 175 174 1.93 37.57

bulldozer-1 – 9 327 647 518 11 934 1.58 18.45

bulldozer-2 – 9 456 733 1137 14 196 2.49 19.37

bulldozer-3 – 5 171 275 257 3070 1.50 11.16

mprime-01 – 5 443 1407 779 90 396 1.76 6.42

mprime-02 ldc+ 5 1245 6979 7287 1 011 644 5.85 144.96

mprime-04 ldc 7 836 1637 4359 63 692 5.21 38.91

mystery-02 ldc+ 5 1236 6790 7501 1 000 456 6.08 147.34

mystery-03 – 4 638 1500 2442 43 467 3.83 28.98

mystery-11 ldc+ 7 776 1628 4484 84 417 5.78 51.85

mystery-26 ldc 6 1051 3346 3995 186 967 3.80 55.88

mystery-28 ldc+ 7 640 1260 2312 53 760 3.61 42.67

mystery-30 ldc+ 6 1518 6789 7694 901 039 5.07 132.72

fridge-typed-1 – 3 140 275 38 5712 0.27 20.77

fridge-typed-2 dlc 6 287 671 89 17 601 0.31 26.23
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Table 10
Comparison of the final version GP-CSP planner with Graphplan and Blackbox using Satz and Relsat solvers.
Times is in CPU seconds. “heu” is the heuristic automatically selected by GP-CSP (refer to Section 7.3.1). All
experiments run on a P-III 500 MHz Linux machine with 256 MB of RAM

Prob GPCSP Graphplan Satz Relsat Speedup

heu Time (s) Time (s) Time (s) Time (s) Graphplan Satz Relsat

bw-12steps dlc 0.63 0.17 3.96 1.60 0.27 6.29 2.54

bw-large-a ldc 5.40 0.57 27.80 32.30 0.11 5.15 5.98

bw-large-b ldc 661 71 > 8 hrs 901.55 0.11 > 43.57 1.36

rocket-a dlc 1.22 43.13 3.81 5.27 35.35 3.12 4.32

rocket-b dlc 2.33 87 5.91 8.39 37.34 2.54 3.60

log-a dlc 0.95 842 2.88 1.11 886.32 3.03 1.17

log-b dlc 19.10 390 7.73 22.03 20.42 0.40 1.15

log-c dlc 24.27 > 8 hrs 308 77 > 1187 12.69 3.17

log-d dlc 84 > 8 hrs 15.99 199.38 > 382.86 0.19 2.37

hsp-bw-02 ldc 0.34 0.32 3.62 1.21 0.94 10.65 3.56

hsp-bw-03 ldc 1.63 2.14 > 8 hrs 130.77 1.31 > 17669 80.22

hsp-bw-04 ldc 4.87 19.26 > 8 hrs 1682 3.95 > 5914 345.38

grid-01 ldc 7.75 7.21 > 8 hrs 22.75 0.93 > 3716 2.94

grid-02 ldc 6.36 6.30 > 8 hrs 21.45 0.99 > 4528 3.37

grid-03 ldc 9.83 8.77 > 8 hrs 42.68 0.89 > 2930 4.34

gripper-01 ldc 0.01 0.01 0.52 0.09 1.00 52.00 9.00

gripper-02 ldc 0.41 0.05 2.41 0.69 0.12 5.88 1.68

gripper-03 ldc 62 4.28 109.72 155.72 0.07 1.77 2.51

hanoi-tower3 ldc 0.10 0.04 1.96 0.42 0.40 19.60 4.20

hanoi-tower4 ldc 9.87 0.45 12.58 54.68 0.05 1.27 5.54

hanoi-tower5 ldc 990 47.42 > 8 hrs > 8 hrs 0.05 > 29.09 > 29.09

bulldozer-1 ldc 0.10 0.08 0.80 0.19 0.80 8.00 1.90

bulldozer-2 dlc 0.11 0.09 0.61 0.19 0.82 5.55 1.73

bulldozer-3 ldc 0.03 0.03 0.50 0.10 1.00 16.67 3.33

mprime-1 ldc 0.53 0.56 1.22 0.80 1.06 2.30 1.51

mprime-2 ldc 4.07 3.91 6.08 4.90 0.96 1.49 1.20

mprime-16 ldc 3.58 3.17 6.68 4.25 0.89 1.87 1.19

mystery-2 ldc 3.91 3.81 5.35 5.66 0.97 1.37 1.45

mystery-3 dlc 0.39 0.43 0.80 0.41 1.10 2.05 1.05

mystery-26 dlc 1.19 1.09 1.76 1.12 0.92 1.48 0.94

mystery-28 dlc 9.65 0.34 2.78 2.37 0.04 0.29 0.25

mystery-30 ldc 4.81 3.42 > 8 hrs 9.28 0.71 > 5988 1.93

frid-typed-1 dlc 0.12 0.12 0.59 0.19 1.00 4.92 1.58

frid-typed-2 dlc 0.38 0.34 1.34 0.65 0.89 3.53 1.71
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8. Performance of the final GP-CSP planner

In this section, we will discuss the performance of the final GP-CSP planner that
includes all the improvements discussed in Sections 6 and 7. We also compare it with
Graphplan and Blackbox using Satz and Relsat solvers. The final GP-CSP uses the
compact encoding (Section 6), relevance-based EBL (Section 7.1), and the automatic
heuristic selection technique (Section 7.3.3). We tested with 11 well-known domains that
are collected from the planning competitions and the distributions of different planners.
The origin of all domains is described in Section 7.3.3. For each domain, we tried to test
with problems of various sizes, both small and large, within the memory and time limit.
The problems in the grid, mystery, mprime and parallel-blocksworld domains generally
require a large amount of memory. Therefore, the biggest problems for those domains in
this test suite are the largest we can test in terms of our memory limitation. 14 Problems in
the bulldozer (travel) and fridge-typed are rather small, but they are also the biggest of the
collection that we obtained.

Table 10 shows the running time in seconds of GP-CSP, Graphplan, and Blackbox with
the two solvers. The last three columns shows the speedup of GP-CSP compared with the
other three options. Compared with Blackbox running the Satz solver, GP-CSP is better
in 31 of 34 problems with speedups up to 17 669×. While GP-CSP is able to solve all
problems, there are 8 problems that can not be solved by Satz within the time limit of
8 hours. Moreover, for the three problems in which Satz is faster, the highest speedup is
only 5×.

Compared with Blackbox running the Relsat solver, GP-CSP is faster in 32 of
34 problems. In the only problem (mystery-28) that Relsat displays reasonable speedup
over GP-CSP (4×), the automatic-heuristic selection of GP-CSP was choosing the less
effective heuristic. While the speedups of GP-CSP over Relsat are not as radical as they
are over Satz, they still reach up to 345×.

Compared with Graphplan, across 34 problems, GP-CSP is better in 10 problems.
Including the 6 problems of the Rocket and Logistics domains with speedups ranging from
35× to more than 1187×. Graphplan is better in 21 problems. However, among them,
there are 11 problems in which the speedup of Graphplan over GP-CSP is less than 20%.
There are 4 problems in which Graphplan is more than 10× faster than GP-CSP, and the
highest speedup of Graphplan over GP-CSP is about 20× in the two problems in the Hanoi
domain.

It would be interesting to compare GP-CSP with the ILP-based planner [35], which
compiles planning problems into integer linear programming encodings. However, we were
unable to do it because the code was unavailable for downloading. Although we could
not make a direct comparison with this type of compilation, in [35], they compared their
ILP-based planner with Blackbox in the blocksworld and logistics domain. The results
show that Blackbox with Satz solver is always faster than their best ILP encoding by a
factor of up to 30× in all but two of the tested problems, despite the fact that the ILP-based
planner was using CPLEX, a powerful commercial ILP solver from ILOG. For the relative
comparison, in logistic-c problem, Blackbox with Satz is about 17 times faster than the best

14 We skip all problems that are known to be unsolvable in the tested domains.
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ILP encoding, while our planner is about 12 times faster than Satz in the same problem.
Thus, GP-CSP is 17 ∗ 12 = 204× faster than the best ILP encoding in this problem.

9. Related work

Compilation approaches have become quite popular in planning in recent years. Com-
pilation approaches construct a bounded length disjunctive structure whose substructures
subsume all valid solutions of a given length. They then concentrate on identifying a sub-
structure that corresponds to a valid solution. To achieve this extraction, they need to ad-
dress two issues:

(1) Writing down a set of constraints such that any model for those constraints will be
a valid plan.

(2) Compiling those constraints down into a standard combinatorial substrate.
As discussed in [25], the answers to the first question boil down to deciding which

type of proof strategy to use as the basis for checking the correctness of a plan. There are
essentially three standard proof strategies-corresponding to progression, regression and
causal proof. The translation of the planning graph, used by GP-CSP, can be seen as
based on a regression proof [22,25]. Tradeoffs between encodings based on different proof
strategies are investigated in [22,25]—and we believe that these tradeoffs will continue to
hold even when CSP is used as the compilation substrate.

Standard answers to the second question about compilation substrates include propo-
sitional satisfiability, constraint satisfaction and integer linear programming. Compilation
into different types of canonical problems offers different advantages. For example, ILP
encodings can exploit linear programming relaxation, which gives a global view of the
problem, and also can naturally be mixed with Linear Programming to support continu-
ous variables and constraints. SAT encodings can benefit from the developments of fast
SAT solvers. CSP encodings can exploit the rich theory of local consistency enforcement
and implicit constraint representations. Additionally, the fact that most knowledge-based
scheduling work is based on CSP models [39] may make CSP encodings more natural
candidates for scenarios that require close integration of planners and schedulers.

The first successful compilation approach to planning was Kautz and Selman’s
SATPLAN, which used a hand-coded SAT encoding for bounded length planning
problems [22]. Ernst et al. [9] extended this idea by advocating automated construction of
SAT encodings from a STRIPS-type problem specification. They also studied the tradeoffs
among multiple different compilation techniques. Kautz and Selman then developed the
Blackbox system [21] that automatically converts the planning graph into a SAT encoding.
Others, including Bockmayer and Dimopolous [3], as well as Kautz and Walser [23]
considered hand-coded integer programming encodings of planning problems.

Despite the fact that the similarities between Graphplan’s planning graph and CSP as
well as SAT was noticed early on [19,36], van Beek and Chen [34] were the first to
consider compilation of planning problems into CSP encodings. As we mentioned earlier,
their emphasis in CPLAN was on hand-generating tight encodings for individual domains,
and they defend this approach by pointing out that in constraint programming, domain-
modeling is taken seriously. While we appreciate the efficiency advantages of hand-coded
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encodings, we believe that many of the facets that make CPLAN encodings effective are
ones that can be incrementally automated. GP-CSP is a first step in that process, as it
automatically constructs a CSP encoding that is competitive with other direct and compiled
approaches to solving the planning graph. In the future, we expect to improve the encodings
by introducing ideas based on distances [4,20] and symmetry exploitation [10]. Indeed,
Wolfman [37] surveys approaches from the existing literature that could help automatically
discover some of the hand-coded knowledge used in CPLAN’s encodings.

As we have seen in this paper, by using implicit representations and exploiting the richer
structure of the CSP problems, automatically generated CSP encodings can outperform
automatically generated SAT encodings both in terms of memory and in terms of
CPU time. It should be mentioned here that the recent work on lifted SAT solvers [13]
provides a way of improving the memory consumption requirements of SAT encodings.
We believe however that lifting is a transformation that can be adapted to CSP encodings
as well.

10. Conclusion and future directions

We have described a Graphplan variant called GP-CSP that automatically converts
Graphplan’s planning graph into a CSP encoding and solves it using standard CSP solvers.
We have also presented experimental studies comparing GP-CSP to standard Graphplan as
well as the Blackbox family of planners that compile the planning graph into SAT prob-
lems. Our comprehensive empirical studies evaluate the tradeoffs offered by encoding sim-
plification as well as a variety of solver optimization techniques. Notable contributions
include (1) a compact CSP encoding that utilizes the implicit CSP representation to re-
duce memory consumption and speed up solving time, (2) incorporation of EBL into the
CSP solver to reduce searching time, and (3) investigations of different CSP variable order-
ing heuristics and a novel approach for automatic selection of heuristics based on analyz-
ing the planning graph structure. The empirical results clearly establish the advantages of
CSP-compilation approach for planning. As shown in Table 10, GP-CSP with our chosen
default setting is superior to Blackbox (with a variety of solvers) in terms of run time in
various planning problems. In addition, our indirect comparisons with ILP-based planners
lend further support to CSP as the current best substrate among compilation approaches in
classical planning. GP-CSP generally exhibits faster runtimes and is much less suscepti-
ble to the memory blow-up problem that besets systems that compile the planning graph
into SAT encodings (GP-CSP consistently uses much less memory than Blackbox in all
tested planning problems). GP-CSP also runs faster than traditional Graphplan planner in
several planning domains. The URL http://rakaposhi.eas.asu.edu/gp-csp.html contains our
C language implementation of the GP-CSP system.

We are considering two different directions for extending this work—exploring
more general CSP encodings and improving the CSP solvers with planning-related
enhancements. In terms of the first, we plan to investigate the use of temporal CSP (TCSP)
representations [6] as the basis for the encodings in GP-CSP. In a TCSP representation,
both actions and propositions take on time intervals as values. Such encodings not
only offer clear-cut advantages in handling planning problems with metric time [30],
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but also provide significant further reductions in the memory requirements of GP-CSP
even on problems involving non-metric time. Specifically, many efficient Graphplan
implementations use a bi-level planning graph representation [24,29] to keep it compact.
The compilation strategies used in GP-CSP, as well as other SAT-based compilers, such as
Blackbox [21], wind up unfolding the bi-level representation, losing the compression. In
contrast, by using time intervals as values, a TCSP allows us to maintain the compressed
representation even after compilation.

To improve the CSP solvers with planning-specific enhancements, we are considering
incorporation of automatically generated state-invariants (cf. [10]) into the CSP encoding,
as well as automatically identifying variables in the encodings that should be marked
“hidden” (so the CSP solver can handle them after the visible variables are handled). Most
such additions have been found to be useful in CPLAN and it is our intent to essentially
automatically generate the CPLAN encodings.

Finally, since most AI-based scheduling systems use CSP encodings, GP-CSP provides
a promising avenue for attempting a principled integration of planning and scheduling
phases. We are currently exploring this avenue by integrating GP-CSP with a CSP-based
resource scheduler [31]. We model the planning and scheduling phases as two loosely
coupled CSPs that communicate with each other by exchanging failure information in
terms of Graphplan style abstract no-goods [16].
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