
ATUALIZAÇÃO DE MODELOS BASEADA EM AÇÕES

Mestranda: Maria Viviane de Menezes

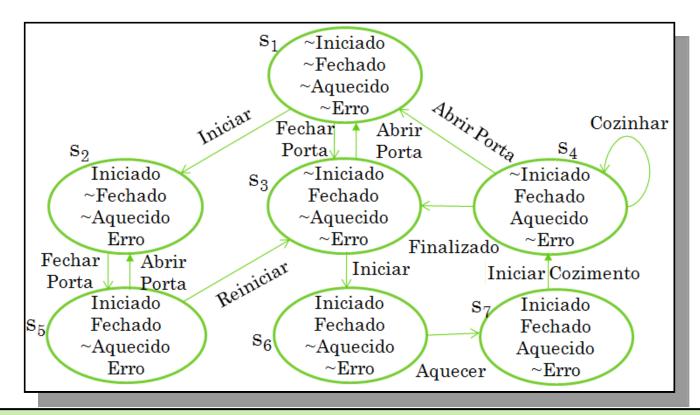
Orientadora: Profa. Dra. Leliane Nunes Barros

AGENDA

- Motivação
- Objetivos
- Fundamentação
 - Verificação de Modelos e a lógica CTL
 - Atualização de Modelos
 - Trabalhos Correlatos
- Contribuições
- Publicações
- Cronograma
- Bibliografia

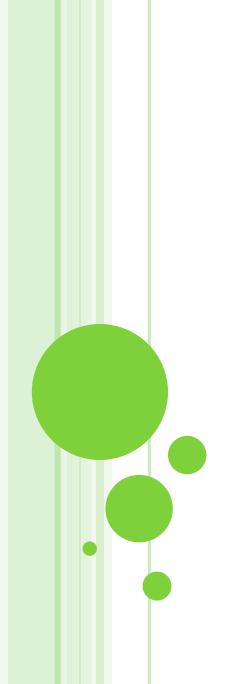
- Erros são comuns durante o desenvolvimento de sistemas de software e hardware.
- Quanto antes os erros forem detectados, menos custosa será a sua correção.
- Atualmente, são utilizados modelos formais para representação de sistemas e verificadores de modelos para realizar a detecção de propriedades indesejadas.

Ações: Ligar, Desligar, Abrir Porta, Fechar Porta, Aquecer, Cozinhar, *Reset*


Propriedades: Ligado, Fechado, Aquecido, Mensagem de Erro

 Propriedade indesejada: Uma vez que o microondas seja ligado, o alimento não seja aquecido.

$$\phi = \neg EF(Ligado \land EG \neg Aquecido)$$

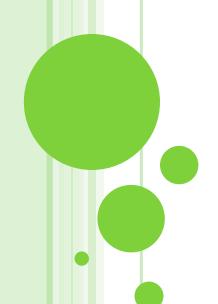

$$\phi = AG(\neg (Ligado \land EG \neg Aquecido))$$

Verificação de Modelos (*Model Checking*): detecta propriedades indesejáveis no modelo

Atualização de Modelos (*Model Update*): Realiza automaticamente modificações minimais que corrigem o modelo

- As propostas de Atualização de Modelos encontradas na literatura não levam em conta as ações que rotulam as transições de estados (Computation Tree Logic – CTL).
- Em [Pereira, S.L., 2007] foi proposto um sistema de planejamento baseado em Verificação de Modelos, chamado Planejador α-CTL (PACTL)
 - $^{\rm o}$ Propôs uma nova lógica chamada $\alpha\text{-CTL}$ cuja semântica é definida sobre ações
 - Implementou um Verificador de Modelos baseado em α-CTL (VACTL), que verifica modelos levando em conta ações nas transições de estados

OBJETIVOS


OBJETIVOS

- Implementar uma versão mais eficiente do Verificador de Modelos baseado em α-CTL (VACTL), utilizando Binary Decision Diagrams (BDDs). (Obrigatório)
- O Desenvolver um sistema de Atualização de Modelos baseado na linguagem α -CTL, que seja capaz de sugerir modificações num modelo incorreto do tipo eliminação de uma ação. (Obrigatório)

OBJETIVOS

- Implementar o Planejador PACTL. (Desejável)
- Modificar este Planejador para realizar Atualização de Modelos. (Desejável)
- Comparar o desempenho do Atualizador de Modelos baseado em planejamento com o desempenho dos Atualizadores de Modelos baseado em outras técnicas, por exemplo, Revisão de Crenças. (Trabalhos Futuros)

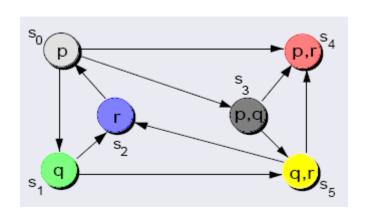
FUNDAMENTAÇÃO TEÓRICA

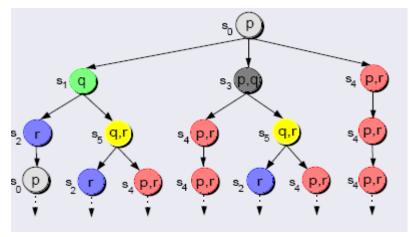
VERIFICAÇÃO DE MODELOS

 Verificação de Modelos (Model Checking) é uma técnica bastante aplicada para verificar a corretude de sistemas de hardware e software.

 Grandes companhias tais como Intel, Motorola, AT&T utilizam verificadores de modelos para garantir a corretude de seus circuitos e protocolos.

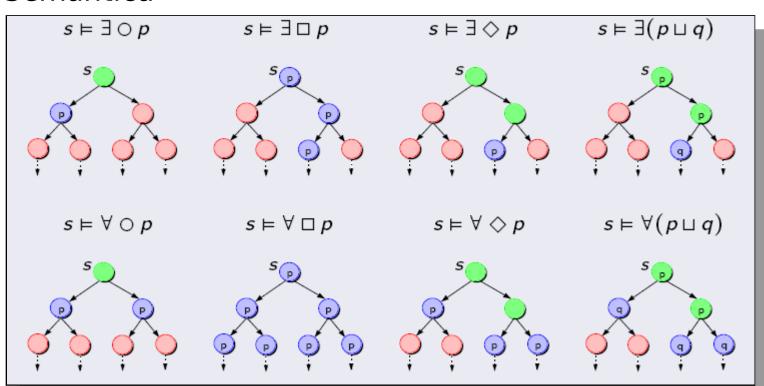
VERIFICAÇÃO DE MODELOS


- Consiste em decidir se $K \mid = \phi$:
 - K é um modelo formal do sistema
 - ullet $oldsymbol{\phi}$ é uma descrição da propriedade a ser verificada

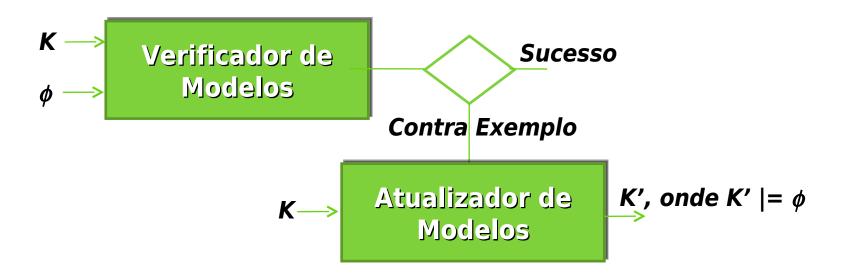

- O modelo do sistema é uma estrutura de Kripke
- A propriedade é especificada em lógica temporal

ESTRUTURA DE KRIPKE

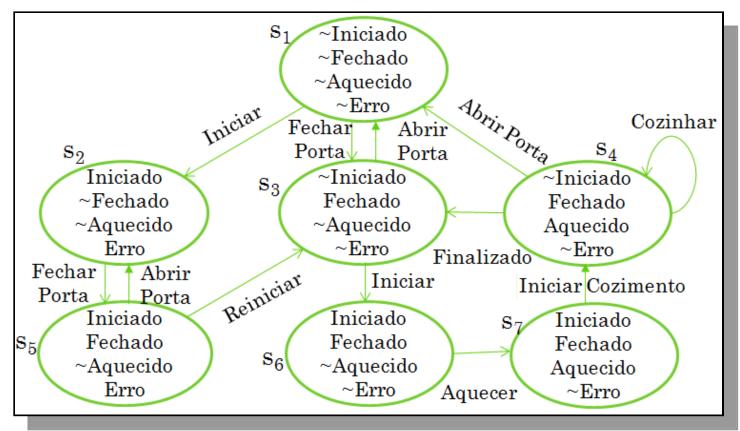
- Estrutura de Kripke sobre um conjunto de proposições é uma tupla K = <S, T, L> onde:
 - **S** é um conjunto finito de estados.
 - **T** é uma função de transição de estados
 - L é uma função de interpretação de estados


Estrutura de Kripke

Árvore de Computação


LÓGICA TEMPORAL CTL

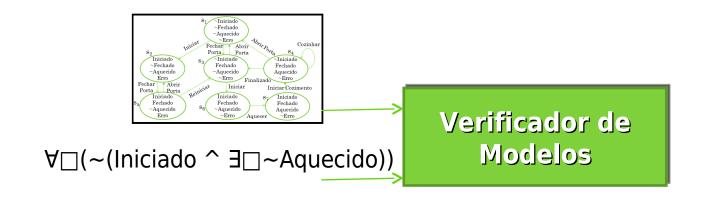
- Sintaxe:
 - Operadores: ∃○, ∃□, ∃◊, ∀○, ∀□, ∀◊, ∀u
- Semântica


ATUALIZAÇÃO DE MODELOS

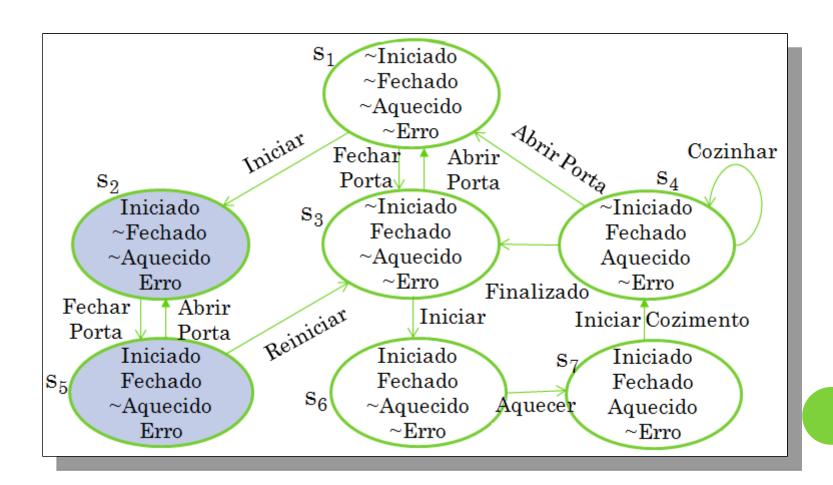
 Atualização de Modelos é uma técnica utilizada para reparar erros em um modelo, caso ele não satisfaça uma dada propriedade.

TRABALHOS CORRELATOS

- Buccafurri, et al. (1999), integra as técnicas de verificação de modelos e teoria abdutiva para construir um reparador de sistemas.
- Harris & Ryan (2003) realizaram um estudo sobre as propriedades teóricas de atualização de sistemas.
- Zhang, Y. & Ding, Y. (2008) integraram a técnica de atualização do conhecimento com um verificador de modelos CTL e desenvolveram um atualizador de modelos.



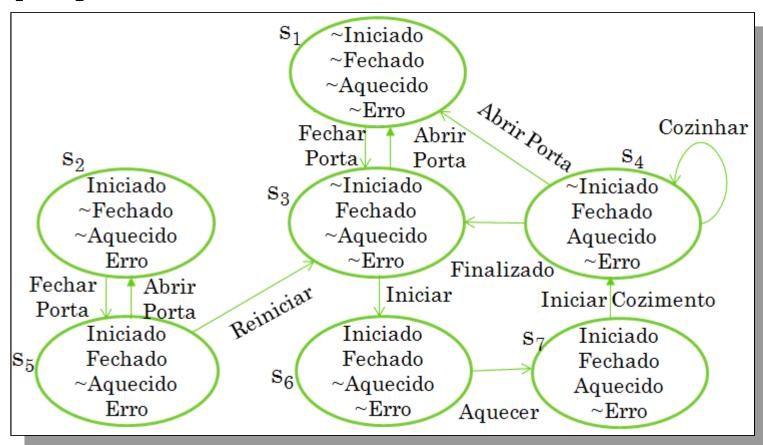
 Deseja-se verificar se: Uma vez que o microondas é iniciado, a comida que está dentro dele sempre será aquecida.


- Primeiro Passo: Escrever a propriedade que se quer verificar em CTL.

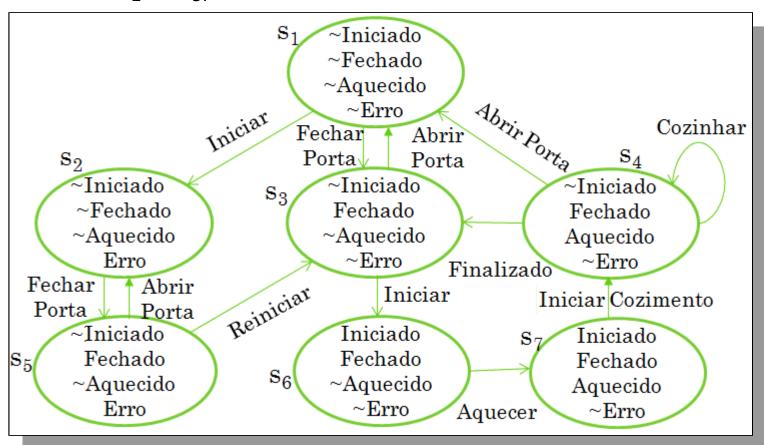
 - Então desejamos verificar se:
 - Para TODOS os caminhos NÃO é verdade que as propriedade *Iniciado* e ∃□~Aquecido são válidas.

 Segundo passo: Introduzir a fórmula e o modelo no Verificador de Modelos.

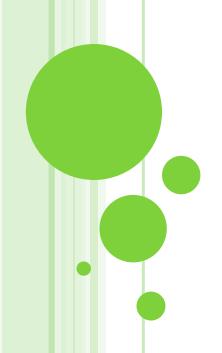
• Terceiro Passo: Analisar a saída do Verificador de Modelos.



- Quarto Passo: Realizar a Atualização do Modelo nos estados s₂ e s₅.
- A atualização pode ser feita de duas maneiras
 - Caso 1: Remover a relação existente entre os estados s_1 e s_2 .


 Isolar a possibilidade de a partir do estado inicial ser possível alcançar (s_2 e s_5) os estados nos quais a propriedade não é válida
 - Caso 2: Modificar o valor de alguma propriedade nos estados s₂ e s₅.

Fazendo desta forma com que a propriedade seja satisfeita.


 Caso 1: Remover a relação existente entre os estados s₁ e s₂.

Caso 2: Modificar o valor da propriedade *Iniciado* nos estados s₂ e s₅.

CONTRIBUIÇÕES

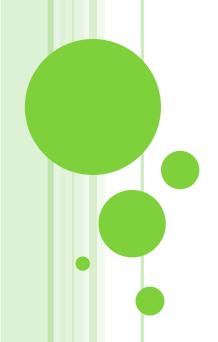
RELEMBRANDO OS OBJETIVOS

- Implementar uma versão eficiente do Verificador de Modelos baseado em α -CTL (VACTL), utilizando *Binary Decision Diagrams* (BDDs).
- O Desenvolver um sistema de Atualização de Modelos baseado na linguagem α -CTL, que seja capaz de sugerir modificações num modelo incorreto do tipo eliminação de uma ação.

CONTRIBUIÇÕES

- Implementação eficiente do VACTL usando BDDs
- Implementação de um Sistema de Atualização de Modelos baseado em α-CTL

PÚBLICO ALVO E PUBLICAÇÕES


PÚBLICO ALVO

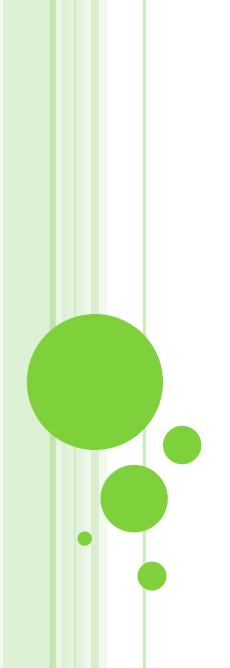
- Pesquisadores de Inteligência Artificial
- Pesquisadores de Métodos Formais e Verificação de Modelos

CONFERÊNCIAS E SIMPÓSIOS

- ICAPS International Conference on Automated Planning and Scheduling (se objetivos desejável for atingido)
- SBIA Simpósio Brasileiro de Inteligência Artificial
- SBMF Simpósio Brasileiro de Métodos Formais
- IFM International Conference on Integrated Formal Methods

CRONOGRAMA

CRONOGRAMA


Atividades	Out /08	Nov /08	Dez /08	Jan /09	Fev /09	Mar /09	Abr /09	Mai /09	Jun /09	Jul /09	Ago /09
Definir tema	Χ										
Estudos sobre Model Checking	Х	Х									
Estudos sobre αCTL		Χ	Χ	Χ							
Estudos sobre At. de Modelos					Х	Χ	Х				
Estudos sobre BDDs							Χ	Χ			
Implementar VACTL com BDDs								Х	Х	Х	
Escrever Qualificação								Χ	Х	Χ	
Exame de Qualificação											X

CRONOGRAMA

Atividades	Set /09	Out /09	Nov /09	Dez /09	Jan /10	Fev /10	Mar /10	Abr /10	Mai /10	Jun /10	Jul /10	Ago /10
Desenvolver sistema de At. de Modelos	Χ	Χ	Χ	Χ								
Definir Problemas e Testes				Χ	Χ							
Analisar resultados					Х							
Artigo para SBIA					Χ	Χ						
Artigo para IFM						Χ	Χ					
Artigo para SBMF								Χ	Χ			
Escrever Dissertação						Х	Χ	Χ	Χ	Х	Х	
Defender												X

BIBLIOGRAFIA

- Buccafurri, F., Eiter, T., Gottlob, G., & Leone, N. (1999).
 Enhancing model checking in verication by ai techniques.
 Artificial Intelligence, 112, 57-104.
- Pereira, S. L. Planejamento sob incerteza para metas de alcançabilidade estendidas. (2007). 169f. Tese(Doutorado em Ciência da Computação). Instituto de Matemática e Estatística -Universidade de São Paulo, São Paulo..
- Harris, H., & Ryan, M. (2003). Theoretical foundations of updating systems. In Proceedings of the 18th IEEE International Conference on Automated Software Engineering, pp.291-298.
- Zhang, Y. & Ding, Y. (2008). CTL Model Update for System Modications. In *Journal of Artificial Intelligence Research*, 31: 113-155.
- Zhang, Y. & Ding, Y. (2006). A Case Study for CTL Model Update. In KSEM, pp. 88-101.

FIM