
BIOINFORMATICS Vol. 00 no. 00 2008
Pages 1–8

Local RNA structure alignment with incomplete sequence
Diana L. Kolbe 1 and Sean R. Eddy 1∗

1HHMI Janelia Farm Research Campus, Ashburn VA 20147, USA
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: Accuracy of automated structural RNA alignment is
improved by using models that consider not only primary sequence
but also secondary structure information. However, current RNA
structural alignment approaches tend to perform poorly on incomplete
sequence fragments, such as single reads from metagenomic envi-
ronmental surveys, because nucleotides that are expected to be base
paired are missing.
Results: We present a local RNA structural alignment algorithm,
trCYK, for aligning and scoring incomplete sequences under a model
using primary sequence conservation and secondary structure infor-
mation when possible. The trCYK algorithm improves alignment
accuracy and coverage of sequence fragments of structural RNAs
in simulated metagenomic shotgun datasets.
Availability: The source code for Infernal 1.0, which includes trCYK,
is available at http://infernal.janelia.org
Contact: {kolbed,eddys}@janelia.hhmi.org

1 INTRODUCTION
Sequence alignment approaches may be broadly divided intoglobal
alignmentmethods, where sequences are assumed to be homolo-
gous and alignable over their entire lengths, andlocal alignment
methods, where only part of each sequence is assumed to be homo-
logous and alignable (Gusfield, 1997; Durbinet al., 1998). Local
alignment is more widely used because there are many biological
and technical reasons why sequences may not be globally alignable.
For example, many protein sequences have arisen by accretion of
common protein domains in different combinations (Vogelet al.,
2004), and some high-throughput sequencing strategies such as
metagenomic shotgun sampling generate fragmentary sequence data
(Schloss and Handelsman, 2005).

For local alignment of primary sequences (Smith and Waterman,
1981; Pearson and Lipman, 1988; Altschulet al., 1990), one is
merely looking for an alignment of contiguous linear subsequences
of a query and a target. At this level there is little informative dif-
ference between local alignments that arise by biological evolution
versus incomplete data. However, the nature of local alignment can
be markedly different when we adopt more realistic and complex
sequence alignment models that capture evolutionary constraints
at a higher level than primary sequence alone. For example, in
comparing three-dimensional protein structures, which often share
structural similarity in only part of their overall fold (Chothia and
Lesk, 1986), it is advantageous to adopt local structural alignment

∗to whom correspondence should be addressed

algorithms that allow alignment of spatially local units of three-
dimensional structure that may not be composed of contiguous
colinear residues in the primary sequence (Gibratet al., 1996).

Here we are concerned with alignment of structural RNAs, using
models that consider both primary sequence and secondary struc-
ture constraints. Evolution of a structural RNA is constrained by its
secondary structure. Base pairing tends to be conserved even as the
sequence changes, and aligned sequences exhibit correlated substi-
tutions in which base pairs are substituted by compensatory base
pairs. Computational methods for aligning structural RNAs under a
combined primary sequence and secondary structure scoring model
have been developed (Sakakibaraet al., 1994; Backofen and Will,
2004) including “covariance model” (profile stochastic context-free
grammar) methods (Eddy and Durbin, 1994; Durbinet al., 1998;
Eddy, 2002; Nawrocki and Eddy, 2007). These models represent
a given RNA consensus secondary structure as a binary tree, with
individual nodes representing and scoring individual base pairs and
single-stranded residues.

Local RNA secondary structural alignment has been implemented
by allowing an alignment to start or end at any internal node in the
tree (Eddy, 2002; Klein and Eddy, 2003; Backofen and Will, 2004),
much as local primary sequence alignment allows starting and
ending at any residue in the linear sequence. Thissubtree method
of local RNA alignment can include or exclude any subtree of the
RNA, corresponding well to secondary structure domains. Biologi-
cally, this serves as a reasonable approximation of some important
evolutionary constraints on RNA secondary structure alignment, alt-
hough it neglects higher-order constraints, including pseudoknots
and tertiary structure.

However, defining locality by subtrees is a poor model of local
structural RNA alignment when locality arises for technical rather
than biological causes. A shotgun sequencing strategy will truncate
at the linear sequence level without respect for the conserved base-
paired structure, and residues involved in base pairs may be missing
in the observed sequence, as illustrated in Figure 1. In this case, we
do not want to score the missing residues as deletions of conserved
base pairs, but neither do we want to leave the homologous observed
residues unaligned if we are trying to get the most information from
fragmentary sequence data.

Here we will focus specifically on thehomology search and ali-
gnmentproblem. We have a given RNA sequence and secondary
structure as a query, and the task is to search a sequence data-
base for homologous sequences and/or align target sequences to the
query. This is directly analogous to the use of the Smith/Waterman
local alignment algorithm for primary sequence analysis (Smith and
Waterman, 1981), and it is the problem addressed by our Infernal

c© Oxford University Press 2008. 1

D. Kolbe and S. Eddy

software package (Nawrockiet al., 2009), for instance using Rfam
models of known RNA families to infer and annotate homologous
RNAs in genome sequence (Gardneret al., 2009). It should not be
confused, for example, with the related problem ofde novo motif
identification, which arises in RNA analysis when the input data
consist of two or more sequences that are presumed to share an
unknownstructural motif in common, and the task is to produce
a local structural alignment that identifies the common motif and
infers its common structure. De novo motif identification requires
a means of inferring the unknown structural consensus in addition
to a local alignment algorithm. Although we expect thatde novo
motif identification approaches such as CMFinder (Yaoet al., 2006)
or other approaches for inferring locally conserved RNA structure
such as LocARNA (Willet al., 2007) would be able to incorporate
the local alignment algorithm we will describe, for the purposes of
introducing our local alignment algorithm in the present paper, we
will not discuss thede novomotif identification problem further.

An important example of the local RNA alignment problem in
homology search and alignment arises in metagenomic shotgun sur-
vey sequencing (Schloss and Handelsman, 2005; Chen and Pachter,
2005), particularly when assembly is incomplete or not possible.
Structural RNA sequence alignments (particularly of small subunit
ribosomal RNA) are important in analyzing the phylogenetic diver-
sity of metagenomic samples, but a single shotgun read (often of
only about 200-400 bp) will fall more or less randomly into the
consensus alignment of an RNA, generally leaving unsatisfied con-
sensus base pairs because of the incomplete nature of the sampled
sequences, and it may also include extraneous genomic sequence.

To deal with thistruncated sequencetype of locality we want
to align the observed sequence, or a subsequence of it, to a con-
tiguous subsequence of the yield of the model’s tree: the linear
consensus sequence, as read counterclockwise around the tree’s lea-
ves. We want to use secondary structure information wherever we
have both residues in a base pair, but revert to primary sequence
alignment when we are missing sequence data. If we magically
knew a priori the endpoints of the correct alignment of an obser-
ved sequence read with respect to the yield of the RNA model, we
could derive a new model that used base pair states where we had
both residues, and converted pair states to appropriately margina-
lized single-residue states where the pairing partner was missing.
The problem is that these endpoints must be inferred when we align
the observed sequence to the model. We describe an optimal recur-
sive dynamic programming solution for this problem, and evaluate
the algorithm’s utility in accurate alignment of simulated datasets of
unassembled metagenomic sequence.

2 APPROACH

2.1 Local alignment as a missing data problem
We frame the alignment of truncated sequences as a missing data
inference problem (Rubin, 1976). We specify two probabilistic pro-
cesses: one that generates complete data (our existing probabilistic
model of global alignment), and one that generates observed frag-
ments from the complete data (by random sequence truncation). The
joint probability of observed sequence fragments and their local ali-
gnment to the model will then be an appropriate marginal sum over
global alignments. We will identify the optimal local alignment for
the observed sequence by maximizing this joint probability.

model
end

model
begin

sequence
begin

sequence
end

Fig. 1. Comparison of local alignment types. Left:global alignment; fil-
led circles indicate observed residues in an RNA structure, which can be
thought of as a binary tree.Center: subtree method of local RNA structu-
ral alignment. Whole domains of the RNA structure may be skipped (open
circles indicate consensus positions without aligned sequence residues), but
the observed alignment satisfies all expected structural constraints: if a resi-
due is aligned to a pair state, another residue will be aligned to form a base
pair. Right: truncated sequence method of local RNA structural alignment,
where the observed sequence may begin and end anywhere with respect
to the consensus RNA structure. Aligned residues may be base-paired to
positions that are missing from the alignment.

We will describe the essence of the approach (and two appro-
ximations we make) in general terms with respect to binary trees,
deferring the specific notation we use for profile stochastic context-
free grammars (covariance models, CMs). In a CM, both the
consensus structure of the model and a particular structural ali-
gnment of the model to an individual RNA sequence are binary
trees. (A binary tree suffices to capture all nested base-pairing
correlations, but non-nested interactions such as pseudoknots and
higher order interactions such as base triples are neglected (Durbin
et al., 1998).) Construction of a CM starts by representing the RNA
consensus structure as aguide tree, with nodesrepresenting con-
sensus base pairs and consensus unpaired positions. Each consensus
node is then stereotypically expanded into one or more stochastic
context-free grammar (SCFG)states, with one state representing
the consensus (“match”) behavior and additional states and state
transitions representing the probability of insertions and deletions
relative to consensus. A CM is a special case of SCFGs, with all
its states and state transitions arranged in a directed graph follo-
wing the branching pattern of a consensus RNA structure’s binary
tree. An alignment of the CM to a particular sequence is represen-
ted as an SCFGparse tree, a state path through the consensus guide
tree, using match, insert, and delete states to account for alignment
positions, and start, bifurcation, and end states to account for the
branching tree structure itself.

A parameterized RNA CMθ specifies a joint probability distribu-
tion P (x̂, π̂ | θ) overcompletesequenceŝx and parse treeŝπ: i.e.
overglobalalignments.

A missing data processP (x, π | x̂, π̂, θ) specifies how a com-
plete sequencêx with lengthL̂ is truncated to an observed sequence
fragmentx of lengthL, and correspondingly, how the global parse
treeπ̂ is truncated to a notion of a local parse treeπ. (We will soli-
dify our definition of a local parse tree shortly.) Because we are
imagining a complete sequence randomly truncated to a sequence
fragment, the missing data process would ideally be conditionally
independent of the model and the parse tree. For instance, we could
sample each possible sequence fragment from a complete sequence
of lengthL̂ with uniform probability 2

L̂(L̂+1)
. However, under this

missing data process, we would need to marginalize (sum over) all
possible complete sequences of all possible lengthsL̂ = 0 . . .∞.

2

Local RNA alignment

This 2

L̂(L̂+1)
term becomes problematic in the recursive dynamic

programming optimization framework we describe below.
Instead we will make what should be a reasonable approxima-

tion of the truncation process. We assume that a truncation∆gh

is done by selecting a fragmentg . . . h relative to the positions in
the fixed-lengthconsensus yieldas defined by themodel(the con-
sensus sequence positions defined by the CM’s consensus guide tree
nodes). This truncation is then conditionally independent of both the
parse tree and the sequence. This approximation should be reasona-
ble because high-probability complete sequencesx̂ will generally
have lengths similar to the consensus length. It means that local ali-
gnments will only begin and end at consensus positions, never at
sequence insertions. For a model withW consensus positions, the
probability of choosing any particular fragmentg . . . h with respect
to the complete yield1..W is P (∆gh | θ) = 2

W (W+1)
. This term

is now a constant with respect to the necessary summation over
complete data.

Now we define what we mean by a local parse tree fragmentπ.
Choose two positionsg, h on the consensus yield of the model: these
consensus sequence positions correspond unambiguously to states
sg andsh in parse trees (the states used by the parse tree to account
for how the endpoints of a particular sequence align to a model con-
sensus position: either a consensus match, or a deletion). Alocal
parse treeπgh (equivalent to what we have called justπ until now)
is defined as the minimal (smallest) subtree of a complete parse tree
π̂ that containssg andsh. Usually this is a parse subtree rooted at
eithersg or sh, but sg andsh may also be on opposing sides of a
bifurcation, with the minimal subtree rooted at the bifurcation state.

Truncation of a complete parse treeπ̂ to a local parse treeπgh

defines two different sorts of missing data. Outside the local parse
tree, we are missing (and will sum over) both sequence residues and
parse tree states that were in the complete parse tree; let this missing
data be represented byx′, π′. Inside the local parse tree, we may
have states with unsatisfied, missing sequence residues, such as base
pairs where only one residue is in the observed sequence: here we
will be summing only over the missing sequence residues, denoted
asx′′. The combination of the observed data (x, πgh) and the unob-
served data (x′′,x′, π′) together uniquely determine the complete
alignment̂x, π̂.

The desired joint probability may then be written as a summation
over the two types of missing data defined by a local parse tree:

P (x, πgh | θ) =
X
x′′

X
x′,π′

P (∆gh|x̂, π̂, θ)P (x̂, π̂|θ).

Summation over missing datax′, π′ results in two terms. The
first is a termP (πx1 = sg, πxL = sh | θ) that represents the
marginal probability that a complete parse tree truncated atg, h has
statessg, sh assigned to the endpoints of the truncation; this is just
the fraction of complete parse trees that contain statessg andsh.
The second term isP (x,x′′, πgh|πx1 = sg, πxL = sh, θ) for the
local parse tree and its associated sequence residues (both observed
and unobserved) conditional on local parse tree endpoints at states
sg, sh. Thus:

P (x, πgh | θ) =
2

W (W + 1)
P (πx1 = sg, πxL = sh | θ)

×
X
x′′

P (x,x′′, πgh|πx1 = sg, πxL = sh, θ)

Although it is straightforward to calculateP (πx1 = sg, πxL =
sh | θ), the term becomes problematic in the dynamic programming
recursion we define. One or both of the optimal truncation endpoints
sg, sh are undetermined until the dynamic programming recursion
is complete and a traceback is performed. We therefore make our
second approximation here, approximating this term as 1.0 when
sg, sh are consensus match states and 0.0 when they are not. This
corresponds to an assumption that all probability mass flows through
the consensus match states at the endpointsg, h, neglecting the pro-
bability that an SCFG deletion state could be used at one of these
consensus positions. Local alignments will therefore be forced to
start and end with consensus match positions (just as in standard
Smith/Waterman local sequence alignment). This leaves:

P (x, πgh | θ) '
2

W (W + 1)

X
x′′

P (x,x′′, πgh|πx1 = sg, πxL = sh, θ)

In the next section, we show there is an efficient dynamic pro-
gramming algorithm for finding the parse treeπgh that performs the
necessary summation over missing data and maximizes this joint
probability for a given observed sequence fragmentx.

2.2 Description of the trCYK algorithm
The Cocke-Younger-Kasami (CYK) algorithm is a standard algo-
rithm for calculating the maximum likelihood SCFG parse tree for
a given sequence (Kasami, 1965; Younger, 1967; Hopcroft and Ull-
man, 1979; Durbinet al., 1998). CYK recursively calculates terms
αv(i, j) representing the log probability of the optimal parse subtree
rooted at statev that accounts for a subsequencexi . . . xj , initiali-
zing at the smallest subtrees and subsequences (model end states
aligned to subsequences of length 0) and iteratively building lar-
ger subtrees accounting for longer subsequences. At termination,
the scoreα0(1, L) is the log probability of a parse tree rooted
at the model’s start state0 accounting for the complete sequence
x1 . . . xL. The optimal parse tree is then recovered by a traceback
of the dynamic programming matrix. When applied specifically to
a CM of M consensus nodes and a sequence of lengthL, the CYK
algorithm requiresO(L2M) memory andO(L3M) time (Eddy and
Durbin, 1994). A more complex divide-and-conquer variant of the
CM CYK algorithm requiresO(L2 log M) memory (Eddy, 2002).

Previously, we implemented subtree-based local RNA structure
alignment by a minor adaptation of the CM’s generative model that
required no substantive alteration of the CYK algorithm. Specifi-
cally, we allowed a start transition from the model’s root state 0 to
any of the consensus states in the model, and we allowed an end
transition from any consensus state in the model to a “local end”
state (EL) that emits zero or more nonhomologous residues with a
self-transition loop. The start transition allows the model to align
to any model subtree and not just the complete model, and the end

3

D. Kolbe and S. Eddy

transition allows it to replace any subtree with a nonhomologous
insertion.

The truncated sequence local alignment algorithm we describe
here, for finding an optimal local parse treeπgh that accounts for
a linear sequence fragment, does require a substantial modification
of the CYK algorithm because it needs to identify the optimal end-
pointsg, h. The two approaches to local alignment are not mutually
exclusive. We retain the local end transition to an EL state to model
nonhomologous replacement of structural elements inside a local
parse subtree.

The key property of local parse treesπgh that enables a recursive
CYK-style algorithm can be summarized as “once marginal, always
marginal”, as illustrated in Figure 2. As the CYK calculation builds
larger and larger subtrees – climbing “up” the model – it will usually
grow by adding appropriate(v, i, j) triplets that deal with complete
(joint) emission of any base paired residues (upper left panel of
Figure 2). At some point it may need to decide that the sequence
is truncated at either the right or left endpoint of the optimal parse
subtree (upper middle and upper right panels of Figure 2, respec-
tively), in which case only the left residuexi or the right residuexj

(respectively) will be added to the growing parse subtree, and sco-
red as the marginal probability of generating the observed residue at
statev summed over all possible identities of the missing residue.
We refer to this asjoint mode versus left and rightmarginal modes
for a growing alignment. The switch from joint mode to a marginal
mode identifies one of the endpoints (h or g, respectively). Once
switched, the alignment must stay in that marginal mode until the
root state of the optimal local parse subtree is identified. Left margi-
nal mode alignments may only be extended by aligning left residues
xi (central panel of Figure 2), and right marginal mode alignments
may only be extended by aligning right residuesxj (center right
panel of Figure 2). In marginal modes, residue emission probabili-
ties involving missing data are the appropriate marginal summation
of the state’s emission probabilities.

In order to recursively calculate the optimal local parse tree, inclu-
ding these optimal switch points from joint to marginal modes, we
extend the CYK algorithm to treat the different modes separately
(essentially as an additional layer of hidden state information), and
calculate separate matrices for each mode:αJ for the standard case
(joint mode),αL for extension only at the 5’ end (emissions are
marginalized to the left), andαR for extension only at the 3’ end
(emissions are marginalized to the right). Each column in Figure 2
illustrates the main cases that have to be examined : for example,
the calculation ofαL

v (i, j) for a base-pair emitting statev would
examine each of its transition-connected statesy and consider both
the possibility of reaching(v, i, j) by extension of a previously cal-
culated left-marginalαL

y (i− 1, j), and the possibility of reaching it
by switching from a previously calculated jointαJ

y (i− 1, j).
The calculation at bifurcation states requires special considera-

tion, as illustrated in Figure 3. Only combinations of modes for
left and right branches that would form a contiguous subsequence
xi . . . xj aligned to a local parse tree rooted at bifurcation statev are
allowed. Cases in which an entire branch is missing data must also
be considered (shown as∅ in Figure 3). There is a unique case when
both branches of the bifurcation have marginal alignments (bottom
of Figure 3), and the resulting join cannot be extended further. For
convenience, we call the score of this caseαT , noting that it is only
defined whenv is a bifurcation state and that because it is a terminal
case, it does not have to be stored in the recursion.

J L R

Alignment Type

Extending
from a joint
alignment

Extending from
a marginal
alignment

Beginning a
new alignment

Fig. 2. Extension possibilities for building alignments.Extension may
generally be joint (J), left marginal (L), or right marginal (R).Top: an exi-
sting joint alignment may use any type of extension. Grey circles indicate
the previously existing alignment, with the new residues added in red, and
open circles for when no residue is aligned. Transitioning from joint to mar-
ginal alignment sets an endpoint of the alignment.Center: an alignment that
is already marginal may only continue with marginal extension on the same
side.Bottom: a new alignment may be started in any of the three modes.
The joint alignment here is shown skipping a portion of the subtree, but that
need not be the case. Initiating an alignment in marginal mode also sets one
of the alignment endpoints.

Joint, left
marginal,
or right
marginal

Left
marginal
only

Right
marginal
only

Cannot be
extended
(terminal)

Possible branch combinations
Next
Extension

J + J

J + L J + 0 L + 0

0 + J 0 + RR + J

R + L

Bifur-
cation
Mode

J

L

R

T

Fig. 3. Extension possibilities at bifurcations.A bifurcation state joins
two subtrees, one 5’ (left, blue) and one 3’ (right, red). Each subtree has its
own alignment mode, either joint (J), left marginal (L), right marginal (R), or
empty (∅). The subtree modes together must give a continuous subsequence,
and all valid combinations are shown. The combination determines the mode
of the bifurcation state, which can subsequently be extended like any other
state, except for the terminal case T. (Arrows show possibilities for later
extension.)

4

Local RNA alignment

The score of the optimal local parse tree aligned to a subsequence
xi . . . xj is the combination of consensus statev, sequence posi-
tions i, j, and modeX ∈ {J, L, R, T} that maximizesαX

v (i, j).
Alternatively, the entire observed sequencex1 . . . xL can be forced
into an optimal local alignment to the model by choosingv, X that
maximizeαX

v (1, L).

2.3 The trCYK algorithm
The following description of the truncated sequence CYK dynamic
programming algorithm (trCYK) assumes familiarity with notation
and conventions used in previously published descriptions of CMs
(Durbin et al., 1998; Eddy, 2002). Briefly, sequence positions are
indexed byi, j andk; xi is the residue at positioni; andd refers to
the length of a subsequencexi . . . xj whered = j−i+1. The main
parameters of a CM are the emission and transition probabilities of
its states. These states are indexed byv, y, z, ranging from1 to M ,
the total number of model states.Cv lists all thechildreny of state
v; the transition probability for moving fromv to y is tv(y). (A
bifurcation statev splits toy, z with probability1.0). Sv is thetype
of statev; possible values are S (start), P (pair emit), L (left emit), R
(right emit), D (deletion), B (bifurcation), and E (end).ev represents
emission probabilities at statev, which (depending on the state type)
may emit either one or two residues,ev(xi) or ev(xi, xj). Emission
probabilities marginalized over a missing residue are indicated by a
∗ for the missing residue; for exampleev(xi, ∗) =

P
a ev(xi, a).

Initialization:
bestscore= −∞
for j = 0 to L, d = 0 to j

i = j − d + 1
αJ

EL(i, j) = d ∗ log tEL(EL)

α
{L,R}
EL (i, j) = −∞

for v = M down to 1, j = 0 to L
if Sv = D or S

αJ
v (j + 1, j) = maxy∈Cv

ˆ
αJ

y (j + 1, j) + log tv(y)
˜

α
{L,R}
v (j + 1, j) = −∞

else ifSv = P or L or R
α
{J,L,R}
v (j + 1, j) = −∞

else ifSv = B
αJ

v (j + 1, j) = αJ
y (j + 1, j) + αJ

z (j + 1, j)

α
{L,R,T}
v (j + 1, j) = −∞

else ifSv = E
α
{J,L,R}
v (j + 1, j) = 0

Recursion:
for v = M down to 1, j = 1 to L, d = 1 to j

i = j − d + 1
if Sv = D or S

αJ
v (i, j) = maxy∈Cv

ˆ
αJ

y (i, j) + log tv(y)
˜

αL
v (i, j) = maxy∈Cv

ˆ
αL

y (i, j) + log tv(y)
˜

αR
v (i, j) = maxy∈Cv

ˆ
αR

y (i, j) + log tv(y)
˜

else ifSv = P
if d ≥ 2

αJ
v (i, j) = log ev(xi, xj)

+ maxy∈Cv

ˆ
αJ

y (i + 1, j − 1) + log tv(y)
˜

αL
v (i, j) = log ev(xi, ∗)

+ maxy∈Cv

h
α
{J,L}
y (i + 1, j) + log tv(y)

i
αR

v (i, j) = log ev(∗, xj)

+ maxy∈Cv

h
α
{J,R}
y (i, j − 1) + log tv(y)

i
else αJ

v (i, j) = −∞
αL

v (i, j) = log ev(xi, ∗)
αR

v (i, j) = log ev(∗, xj)

if α
{J,L,R}
v (i, j) > bestscore
store bestscore, v, i, j, mode

else ifSv = L
αJ

v (i, j) = log ev(xi)+maxy∈Cv

ˆ
αJ

y (i + 1, j) + log tv(y)
˜

if d ≥ 2 αL
v (i, j) = log ev(xi)

+ maxy∈Cv

ˆ
αL

y (i + 1, j) + log tv(y)
˜

else αL
v (i, j) = log ev(xi)

αR
v (i, j) = maxy∈Cv

h
α
{J,R}
y (i, j) + log tv(y)

i
if α

{J,L}
v (i, j) > bestscore
store bestscore, v, i, j, mode

else ifSv = R
αJ

v (i, j) = log ev(xj)+maxy∈Cv

ˆ
αJ

y (i, j − 1) + log tv(y)
˜

αL
v (i, j) = maxy∈Cv

h
α
{J,L}
y (i, j) + log tv(y)

i
if d ≥ 2 αR

v (i, j) = log ev(xj)
+ maxy∈Cv

ˆ
αR

y (i, j − 1) + log tv(y)
˜

else αR
v (i, j) = log ev(xj)

if α
{J,R}
v (i, j) > bestscore
store bestscore, v, i, j, mode

else ifSv = B
(y, z) = Cv

αJ
v (i, j) = maxi−1≤k≤j

ˆ
αJ

y (i, k) + αJ
z (k + 1, j)

˜
αL

v (i, j) = maxi−1≤k≤j

ˆ
αJ

y (i, k) + αL
z (k + 1, j)

˜
αR

v (i, j) = maxi−1≤k≤j

ˆ
αR

y (i, k) + αJ
z (k + 1, j)

˜
αT

v (i, j) = maxi≤k≤j−1

ˆ
αR

y (i, k) + αL
z (k + 1, j)

˜
if α

{J,L,R,T}
v (i, j) > bestscore
store bestscore, v, i, j, mode

αL
v (i, j) = max

n
αL

v (i, j), α
{J,L}
y (i, j)

o
αR

v (i, j) = max
n

αR
v (i, j), α

{J,R}
z (i, j)

o
else ifSv = E

α
{J,L,R}
v (i, j) = −∞

Termination:
score= bestscore+ log 2

W (W+1)

After this recursion is completed, the optimal local parse tree may
be recovered by traceback from the best scoringαX

v (i, j). To facili-
tate this, it is helpful to store traceback pointers during the dynamic
programming recursion; for clarity, these are not indicated in the
algorithm description above. In order to avoid parsing ambiguity,
any ties in the traceback are resolved in favor of joint mode over
marginal modes. Thus marginal mode is only used when required to
account for one or more missing residues in the local parse tree.

It is worth noting that an additional kind of structural alignment
locality is dealt with by the state structure of a covariance model,
rather than by the trCYK algorithm. The alignable subsequence (as
identified by trCYK) may also be subject to large internal deleti-
ons and insertions relative to the consensus RNA structure. CMs
accomodate large structural insertions and deletions by allowing
any consensus state to transition to a special “EL” (end-local) state
which has a self-transition loop, thereby allowing any structural
domain to be truncated anywhere and replaced by zero or more non-
homologous residues. The EL state appears in the recursion above,

5

D. Kolbe and S. Eddy

and its use and rationale for accomodating local structural variation
are more fully explained elsewhere (Klein and Eddy, 2003).

3 IMPLEMENTATION
The algorithm described above requiresO(L2M) memory to store trace-
back pointers for recovering an optimal local parse tree. In order to be able
to align large RNAs, we also implemented an extension of the divide and
conquer approach described in (Eddy, 2002) to trCYK, reducing the memory
requirement toO(L2 log M) at the expense of a small increase in compu-
tation time. The divide and conquer version was used to obtain the results
described below. Both versions are provided in the ANSI C source code of
Infernal in the supplementary material.

trCYK has an upper bound time complexity ofO(L3M), the same as
standard CYK. trCYK’s additional calculations and three matrices in place
of one contribute a constant multiplier. Empirically, trCYK runs about five-
fold slower than standard CYK on the same problem size. For example, a
single RNase P alignment for the results in Figure 2 (283 nodes and 1119
states in the model; sequence length of 400) took 40 seconds fortrcyk
vs. 9.4 seconds for Infernalcmsearch with equivalent settings, on a single
3.0GHz Intel Xeon processor.

4 EVALUATION
We compared the effectiveness of the trCYK method for local struc-
tural RNA alignment to the previous subtree method, by measuring
how accurately and completely the two methods align single shot-
gun sequence reads to structural RNA consensus models. To do
this, we constructed a synthetic test of realigning simulated reads
generated by sampling sequence fragments from trusted (presumed
correct) alignments. We chose to use simulated data instead of real
data because we are interested in conducting a controlled compari-
son of the two algorithms against known correct answers. Because
alignment quality and (in particular) local alignment coverage are
strongly affected by parameterization, in order to isolate the algo-
rithm’s effect, we used the same profile SCFGs as parameterized by
the same implementation (Infernal), and compared Infernal’s default
subtree alignment method versus its newly implemented trCYK
option. To put this comparison in context, we also test two other
primary sequence methods: pairwise alignment with BLASTN, and
sequence profile alignment with HMMER.

We used multiple sequence alignments of two well known struc-
tural RNA genes, small subunit ribosomal RNA (SSU rRNA) and
RNase P. SSU rRNA is in general highly conserved, so in many
regions of the RNA consensus and for all but the most outlying taxa,
SSU rRNA is usually not a particularly challenging sequence ali-
gnment problem. RNase P sequences, in contrast, tend to be highly
divergent at the primary sequence level. For a trusted RNase P mul-
tiple alignment, we used the bacterial class A seed alignment from
Rfam 8.1 (Brown, 1999; Griffiths-Joneset al., 2005), and our trusted
SSU rRNA alignment was adapted from the bacterial seed alignment
from the Comparative RNA Web Site, CRW (Cannoneet al., 2002).
Due to the large number of sequences, the SSU alignment was fil-
tered to remove sequences such that no aligned pair was more than
92% pairwise identical. It was also edited slightly towards a consen-
sus structural alignment in preference to an evolutionarily correct
alignment where there was ambiguity between structural conserva-
tion and homology. Our SSU rRNA alignment is provided in the
supplementary material.

The sequences in the trusted alignment were clustered by single
linkage by pairwise identity (as defined by the original alignment)
and split into a smaller training alignment subset and a testing set, so
as to minimize pairwise identity between training and test data and
create more challenging alignment tests. For SSU, this gave 101 trai-
ning sequences and 51 testing sequences, with maximum identity
between sets of 82%. The smaller RNase P family has 28 trai-
ning sequences and 15 testing sequences, with maximum identity
of 60%.

We simulated a genomic context for each test sequence, con-
sisting of randomly generated sequence of the same monoresidue
composition, and then sampled a random subsequence of length 800
(SSU rRNA) or 400 (RNase P) that contained at least 100 nucleoti-
des of the RNA. Five fragments were sampled for each SSU rRNA
test sequence, and ten for each RNase P test sequence, for a total
of 255 SSU test fragments and 150 RNase P test fragments. The
800 nt length of SSU rRNA test fragments roughly corresponds to
the average single read length in recent metagenomic sequencing
surveys with Sanger sequencing technology (Venteret al., 2004;
Ruschet al., 2007). RNase P is a shorter RNA (average length
just 310 nt) so shorter fragments of 400 bases were used, roughly
according to the current capabilities of newer 454 sequencing tech-
nology. The training alignments and test fragments are provided in
the supplementary material.

We aligned each test sequence fragment to the training alignment
using four different local alignment methods. For BLAST local
sequence alignment, we used NCBI blastn (Altschulet al., 1997),
with default parameters except for a word length of W=6 and an E-
value cut-off of 1.0, and used the pairwise alignment with the lowest
E-value to identify the nearest neighbor among any of the indivi-
dual training set sequences. All alignments to that nearest-neighbor,
including lower scoring ones, were considered as portions of the
complete alignment. For profile alignment, we used HMMER 2.3.2
(Eddy, 2008) to build a profile HMM from the training alignment
subset withhmmbuild using the-f option to build local alignment
models, and aligned each test fragment to the profile (thereby
adding it to the multiple alignment with the training sequences) with
hmmalign using default parameters. For the subtree-based local
alignment method, we used Infernal version 1.0 to build a CM of the
training alignment subset withcmbuild with the--enone option
to shut off entropy weighting. (We have observed that Infernal’s
entropy weighting option (Nawrocki and Eddy, 2007) is appro-
priate for maximal sensitivity in remote homology search, but not
for alignment accuracy; DLK, SRE, and Eric Nawrocki, unpublis-
hed observations.) We aligned each test fragment to the CM with
cmsearch using default parameters. Finally, for trCYK, we used
the trcyk program included in Infernal 1.0 to align test fragments
to the same CM used forcmsearch .

To evaluate the alignments, they are mapped to the reference
alignment using an intermediary sequence; for blastn, this is the
nearest-neighbor sequence it was aligned to, and for the profile
methods it is the consensus sequence of the model. If a residue in
the test sequence was aligned to a non-gap position in the reference
alignment, it is correct in the output alignment if it is aligned to that
same position, and incorrect otherwise. If the residue was originally
aligned to a gap position, it is judged to be correct if, in the output
alignment, it is between the same two consensus positions that bor-
dered the original gap. Misaligned residues include both residues
that should be aligned but are incorrect, and residues that should

6

Local RNA alignment

RNaseP

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
coverage (sensitivity)

 a
cc

ur
ac

y
(P

P
V

)

SSU

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
coverage (sensitivity)

 a
cc

ur
ac

y
(P

P
V

)

blast

cmsearch

hmmalign

trcyk

blast cmsearch hmmalign
trcyk

0.96

0.98

1.00

0.6 0.7 0.8 0.9 1.0

Fig. 4. Per-residue accuracy of alignment methods.Alignment of simu-
lated metagenomic reads compared against a reference alignment for four
alignment methods: primary sequence (blastn), primary sequence profile
(hmmalign), CM with subtree-based local alignment (cmsearch), and CM
with truncated sequence model (trcyk). Means and standard deviations for
sensitivity and PPV are plotted. Top: alignment of 800nt fragments to
the bacterial small subunit ribosomal RNA. Bottom: alignment of 400nt
fragments to bacterial RNase P.

not be aligned at all (part of the surrounding “genomic” sequence).
We measured both the accuracy of the resulting alignments (positive
predictive value, PPV: the fraction of aligned positions that are also
found in the trusted alignment) and the coverage (sensitivity: the
fraction of aligned positions in the trusted alignment that are found
in the calculated local alignment).

The results, mean and standard deviations for sensitivity and PPV
for each method, are shown in Figure 4. BLAST generally returns
highly accurate alignments, but has low coverage, corresponding
to a tendency to pick out only the most highly conserved portions
of the true alignments. (The default NCBI BLAST scoring scheme
is tuned for high sequence identity. In principle we should be able
to improve the coverage somewhat by a different choice of scoring
matrix.) Profile HMMs (hmmalign) achieve both high accuracy and
coverage. CMs with subtree-based local alignment (cmsearch) show
poor coverage relative to HMMs, illustrating the issue that motiva-
ted this work. The new method, trCYK, matches the coverage of
profile HMM sequence alignment, while providing higher accuracy.
The improvement is not large, but even small increases in cover-
age and accuracy are important when the alignment is to be used in
downstream phylogenetic analyses that are sensitive to both.

5 DISCUSSION
The trCYK algorithm performs local structural RNA alignment in a
manner that uses secondary structural information (correlated base
pairs) where possible, and reverts to sequence alignment when a
truncation has removed sequence that would be base paired. Ali-
gnment coverage of sequence fragments (such as single reads from
metagenomic shotgun sequencing) is maximized, while still retai-
ning the accuracy of CM-based RNA structural alignment methods.
The trCYK algorithm rests on good theoretical ground by viewing
the sequence truncation problem formally as a missing data infe-
rence problem, and it makes only two minor assumptions to simplify
the missing data inference problem to one that can be solved by a
relatively efficient dynamic programming recursion.

The disadvantage of trCYK is that unlike local primary sequence
alignment, which is as computationally efficient as global sequence
alignment, it needs to track the three possible structural alignment
modes (joint, left marginal, and right marginal) in the dynamic pro-
gramming recursion. This imposes about a three-fold increase in
memory and five-fold increase in CPU time required relative to pre-
vious CM alignment implementations. This cost is unfortunate, as
the use of CM-based approaches is already limited by their relatively
high computational complexity. We expect to be able to accelerate
trCYK with the same approaches we are developing for stan-
dard CYK using the subtree-based alignment model (Nawrocki and
Eddy, 2007). We additionally expect it will be feasible to develop
simple accelerated heuristics for identifying optimal or near-optimal
switch points from joint to marginal alignment modes, in order to
bypass the need for full dynamic programming. For example, we
should be able to use fast primary sequence alignment to deter-
mine likely endpoints of the alignment on the consensus yield of
the structural model, and from that derive a CM with an appropria-
tely marginalized partial structure. We therefore envision trCYK’s
future role as a rigorous baseline against which more heuristic local
RNA structural alignment methods may be compared.

FUNDING
This work was supported by a National Science Foundation Gra-
duate Research Fellowship to DLK, and by the Howard Hughes
Medical Institute.

REFERENCES
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic

local alignment search tool.J. Mol. Biol., 215, 403–410.
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W.,

and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation
of protein database search programs.Nucl. Acids Res., 25, 3389–3402.

Backofen, R. and Will, S. (2004). Local sequence-structure motifs in RNA.J Bioinform
Comput Biol, 2, 681–698.

Brown, J. W. (1999). The ribonuclease P database.Nucl. Acids Res., 27, 314.
Cannone, J. J., Subramanian, S., Schnare, M. N., Collett, J. R., D’Souza, L. M., Du, Y.,

Feng, B., Lin, N., Madabusi, L. V., Mller, K. M., Pande, N., Shang, Z., Yu, N., and
Gutell, R. R. (2002). The comparative RNA web (CRW) site: an online database
of comparative sequence and structure information for ribosomal, intron, and other
RNAs. BMC Bioinformatics., 3, 2.

Chen, K. and Pachter, L. (2005). Bioinformatics for whole-genome shotgun sequencing
of microbial communities.PLoS Comput Biol., 1, 106–112.

Chothia, C. and Lesk, A. (1986). The relation between the divergence of sequence and
structure in proteins.EMBO J., 5, 823–826.

7

D. Kolbe and S. Eddy

Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G. J. (1998).Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press, Cambridge UK.

Eddy, S. R. (2002). A memory-efficient dynamic programming algorithm for optimal
alignment of a sequence to an RNA secondary structure.BMC Bioinformatics, 3,
18.

Eddy, S. R. (2008). HMMER - biosequence analysis using profile hidden Markov
models. [http://hmmer.janelia.org/].

Eddy, S. R. and Durbin, R. (1994). RNA sequence analysis using covariance models.
Nucl. Acids Res., 22, 2079–2088.

Gardner, P. P., Daub, J., Tate, J. G., Nawrocki, E. P., Kolbe, D. L., Lindgreen, S.,
Wilkinson, A. C., Finn, R. D., Griffiths-Jones, S., Eddy, S. R., and Bateman, A.
(2009). Rfam: Updates to the RNA families database. NAR, in press.

Gibrat, J. F., Madej, T., and Bryant, S. H. (1996). Surprising similarities in structure
comparison.Curr Opin Struct Biol., 6, 377–385.

Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S. R., and Bateman,
A. (2005). Rfam: Annotating non-coding RNAs in complete genomes.Nucl. Acids
Res., 33, D121–D141.

Gusfield, D. (1997).Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press.

Hopcroft, J. E. and Ullman, J. D. (1979).Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley.

Kasami, T. (1965). An efficient recognition and syntax algorithm for context-free algo-
rithms. Technical Report AFCRL-65-758, Air Force Cambridge Research Lab,
Bedford, Mass.

Klein, R. J. and Eddy, S. R. (2003). RSEARCH: finding homologs of single structured
RNA sequences.BMC Bioinformatics, 4, 44.

Nawrocki, E. P. and Eddy, S. R. (2007). Query-dependent banding (QDB) for faster
RNA similarity searches.PLoS Comput. Biol., 3, e56.

Nawrocki, E. P., Kolbe, D. L., and Eddy, S. R. (2009). Infernal 1.0: Inference of RNA
alignments. manuscript submitted.

Pearson, W. R. and Lipman, D. J. (1988). Improved tools for biological sequence
comparison.Proc. Natl. Acad. Sci. USA, 85, 2444–2448.

Rubin, D. B. (1976). Inference and missing data.Biometrika, 63, 581–592.

Rusch, D. B., Halpern, A. L., Sutton, G., Heidelberg, K. B., Williamson, S., Yoo-
seph, S., Wu, D., Eisen, J. A., Hoffman, J. M., Remington, K., Beeson, K., Tran,
B., Smith, H., Baden-Tillson, H., Stewart, C., Thorpe, J., Freeman, J., Andrews-
Pfannkoch, C., Venter, J. E., Li, K., Kravitz, S., Heidelberg, J. F., Utterback,
T., Rogers, Y. H., Falcon, L. I., Souza, V., Bonilla-Rosso, G., Eguiarte, L. E.,
Karl, D. M., Sathyendranath, S., Platt, T., Bermingham, E., Gallardo, V., Tamayo-
Castillo, G., Ferrari, M. R., Strausberg, R. L., Nealson, K., Friedman, R., Frazier,
M., and Venter, J. C. (2007). The Sorcerer II Global Ocean Sampling expedition:
northwest Atlantic through eastern tropical Pacific.PLoS Biol., 5, e77.

Sakakibara, Y., Brown, M., Hughey, R., Mian, I. S., Sjölander, K., Underwood, R. C.,
and Haussler, D. (1994). Stochastic context-free grammars for tRNA modeling.
Nucl. Acids Res., 22, 5112–5120.

Schloss, P. D. and Handelsman, J. (2005). Metagenomics for studying unculturable
microorganisms: Cutting the gordian knot.Genome Biol., 6, 229.

Smith, T. F. and Waterman, M. S. (1981). Identification of common molecular
subsequences.J. Mol. Biol., 147, 195–197.

Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen,
J. A., Wu, D., Paulsen, I., Nelson, K. E., Nelson, W., Fouts, D. E., Levy, S., Knap,
A. H., Lomas, M. W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons,
R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y. H., and Smith, H. O. (2004).
Environmental genome shotgun sequencing of the Sargasso Sea.Science., 304,
66–74.

Vogel, C., Bashton, M., Kerrison, N. D., Chothia, C., and Teichmann, S. A. (2004).
Structure, function and evolution of multidomain proteins.Curr. Opin. Struct. Biol.,
14, 208–216.

Will, S., Reiche, K., Hofacker, I. L., Stadler, P. F., and Backofen, R. (2007). Infer-
ring noncoding RNA families and classes by means of genome-scale structure-based
clustering.PLoS Comput Biol., 3, e65.

Yao, Z., Weinberg, Z., and Ruzzo, W. L. (2006). CMfinder–a covariance model based
RNA motif finding algorithm.Bioinformatics., 22, 445–452.

Younger, D. H. (1967). Recognition and parsing of context-free languages in timen3.
Information and Control, 10, 189–208.

8

