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MicroRNAs are small noncoding RNAs that recognize and bind
to partially complementary sites in the 3¢ untranslated regions
of target genes in animals and, by unknown mechanisms,
regulate protein production of the target transcript1–3. Different
combinations of microRNAs are expressed in different cell
types and may coordinately regulate cell-specific target genes.
Here, we present PicTar, a computational method for
identifying common targets of microRNAs. Statistical tests using
genome-wide alignments of eight vertebrate genomes, PicTar’s
ability to specifically recover published microRNA targets, and
experimental validation of seven predicted targets suggest that
PicTar has an excellent success rate in predicting targets for
single microRNAs and for combinations of microRNAs. We find
that vertebrate microRNAs target, on average, roughly 200
transcripts each. Furthermore, our results suggest widespread
coordinate control executed by microRNAs. In particular,
we experimentally validate common regulation of Mtpn by
miR-375, miR-124 and let-7b and thus provide evidence for
coordinate microRNA control in mammals.

Expression profiling of microRNAs by cloning and sequencing, north-
ern blotting or microarrays4 has shown that a small number of
microRNAs (typically one to ten) are often expressed in specific tissues
and developmental stages. Many known target genes of microRNAs
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Figure 1 The PicTar algorithm. (a) Schematic overview. Input to PicTar

consists of multiple alignments of RNA sequences (typically 3¢ UTRs) and

a search set of mature (coexpressed) microRNA sequences. The program

nuclMap locates all perfect nuclei (length 7, starting at position 1 or 2 of

the 5¢ end of the microRNA) and imperfect nuclei in 3¢ UTR sequences.

Highly probable nuclei that survive the optimal free energy filter and fall into

overlapping positions in the alignments for all species under consideration

are called anchors. If a 3¢ UTR multiple alignment has a minimal (user-

defined) number of anchors, each UTR in the alignment will be scored by

the central PicTar maximum likelihood procedure (b). Scores for individual
UTRs in an alignment are combined to obtain the final PicTar score, which

can be used to obtain a ranked list of all sets of orthologous transcripts.

(b) PicTar scoring of a single 3¢ UTR sequence. PicTar tallies all

segmentations of the RNA sequence (3¢ UTR) into binding sites and

background sequences15. PicTar computes the maximum likelihood score

(PicTar score) that the RNA sequence is targeted by combinations of

microRNAs from the search set when compared to background and the

individual probability pi for each subsequence of the RNA sequence to be

bound by a microRNA (only the nuclei for the binding sites are depicted).

These posterior probabilities are different from the probability that a single

subsequence is a microRNA binding site and reflect the competition of

microRNAs and background for binding in the UTR.
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contain several microRNA binding sites, and the degree of translational
repression may increase exponentially with the number of microRNA
binding sites in the 3¢ untranslated region (UTR)5. Thus, as in
transcriptional regulation, the concentrations of the trans-acting
microRNAs in a cell may be read out by cis-regulatory sites and used
to fine-tune gene expression6. Hence, to understand biological micro-
RNA function, it may be important to search for combinations of
microRNA binding sites for sets of coexpressed microRNAs. Previously
developed computational algorithms can identify targets for single
microRNAs7–14 but have not so far been used to score common targets
of several microRNAs. Furthermore, they typically have relatively high
false-positive rates when the number of binding sites for a given
microRNA in a 3¢ UTR is small3. Our method, probabilistic identifica-
tion of combinations of target sites (PicTar), overcomes these problems
by generalizing previous methods and allows the identification of
targets for both single microRNAs and combinations of microRNAs.

Input to PicTar (Fig. 1a) is a fixed search set of microRNAs and
multiple alignments of orthologous nucleotide sequences (3¢ UTRs).
Output are scores that rank genes by their likelihood of being a
common target of members (subsets) of the search set and probabil-
ities for the predicted binding sites in each UTR. The algorithm
follows the general logic of Ahab, a validated probabilistic algorithm
for the identification of combinations of transcription factor binding
sites15,16. PicTar tallies all segmentations of a sequence into binding
sites and background and computes the maximum likelihood score
that the sequence is bound by combinations of microRNAs (Fig. 1b
and Supplementary Note online). In this probabilistic model, micro-
RNAs compete with each other and background for binding. The
model accounts for synergistic effects of multiple binding sites of one
microRNA or several microRNAs acting together, as well as for the

appropriate scoring of overlapping sites. The probabilities assigned to
a single site were modeled in accordance with experimental7,8,12,17 and
computational7–14 results. Cross-species comparisons are crucial for
filtering out false positives: candidate target genes are defined as UTRs
with a minimal (user-defined) number of evolutionarily conserved
putative binding sites. PicTar then scores the candidate sequences for
each species separately. The resulting scores are combined to obtain
the final PicTar score for a gene. Future insights into microRNA target
site recognition and repression efficacy can easily be incorporated into
the model.

In Caenorhabditis elegans, the sequential stage-specific expression of
the microRNAs lin-4 and let-7 coordinates developmental timing18. To
test PicTar, we applied it to search our genome-wide set of 10,607
C. elegans and Caenorhabditis briggsae 3¢ UTR sequences (Supple-
mentary Methods online) for targets of lin-4 or let-7. The known
targets lin-14, hbl-1, daf-12 and lin-28 were ranked first, second, fourth
and seventh, respectively, and only one known target gene (lin-41) was
not recovered, suggesting that PicTar has excellent specificity and
sensitivity. In accordance with previous studies18,19, PicTar predicts
lin-14 and lin-28 to be targeted by both lin-4 and let-7. Notably, PicTar
found only a few genes with sites for both lin-4 and let-7, suggesting
that the number of lin-4–let-7 common targets is relatively small. We
further tested PicTar by computing predictions for each microRNA
separately over all C. elegans 3¢ UTRs without any cross-species
comparisons. Randomization tests (Supplementary Methods online)
indicated that a highly significant (410 s.d.) fraction of predicted sites
is evolutionarily conserved, strengthening confidence in PicTar.

For target predictions in vertebrates, we constructed multiple
alignments of 20,254 annotated human 3¢ UTRs to genomic sequences
from seven other vertebrates, chimpanzee, mouse, rat, dog, chicken,

Figure 2 Signal-to-noise ratio for vertebrate

microRNA target site predictions. (a) Signal-to-

noise ratio for predicted single target sites. The

number of predicted conserved target sites

(anchors) for the set of 58 unique conserved

human microRNAs versus the corresponding

number for randomized microRNAs, requiring

conservation of anchor sites between human,

chimpanzee, mouse (first column), rat and dog

(second column), chicken (third column) and

pufferfish (last column). Inclusion of more

distantly related species substantially boosts

signal-to-noise ratio (indicated above black bars).

For human, chimpanzee, mouse, rat and dog, we

predict 17,542 conserved target sites with a
signal-to-noise ratio of 2.3 and therefore

B10,000 true target sites. (b) Multiplicity of

target sites boosts the signal-to-noise ratio. The

ratio of the number of transcripts with at least n

anchor sites per microRNA for real versus random

microRNAs provides an estimate of the signal-to-

noise ratio for sites conserved in human,

chimpanzee, mouse (black bars), rat, dog (light

gray bars) and chicken (dark gray bars). The

multiplicity of target sites (scored by PicTar)

helps to raise the signal-to-noise ratio. (c) PicTar

score–dependent sensitivity and specificity of

single microRNA target site predictions. The average number of predicted targets of a single microRNA with at least one anchor site per transcript in human,

chimpanzee, mouse, rat and dog (upper curve) or in human, chimpanzee, mouse, rat, dog and chicken (lower curve) is plotted as a function of a PicTar score

cutoff (discarding transcripts with a score below cutoff). Signal-to-noise ratios are indicated above each curve. (d) PicTar score–dependent sensitivity and

specificity of target site predictions for four sets of coexpressed microRNAs4 (Supplementary Table 4 online) and corresponding sets of randomized

microRNAs, requiring two anchor sites for different microRNAs in human, chimpanzee, mouse, rat and dog. The plot shows the average number of targets

per pair of microRNAs as a function of the PicTar score cutoff (signal-to-noise ratios above the curve).
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pufferfish and zebrafish, using the University of California at Santa
Cruz (UCSC) database20. Of these alignments, 92% covered all
mammalian species, 55% included chicken sequences and 21%
spanned all eight vertebrates. Comparing human-mouse sequence
pairings of the alignments to pairings independently defined through
a gene orthology table (Supplementary Methods online) yielded a
low error rate of B3%.

To estimate false positive rates for vertebrate microRNA target site
predictions, we recorded all perfectly binding conserved target sites
(‘anchors’) for 58 unique human microRNAs conserved in human,
chimpanzee, mouse, rat, dog and chicken (Supplementary Table 1
online) and for randomized microRNAs11,13. Figure 2a shows the
ratio of the total number of anchor sites for real and randomized
microRNAs at different degrees of conservation. The inclusion of the
dog and chicken genomes substantially improved the signal-to-noise
ratio from 1.8 for human, chimpanzee and mouse to 2.3 and 3.6,
respectively. Overall, our results suggest that on average, each micro-
RNA targets B200 transcripts above noise, similar to other predic-
tions21. We recorded signal-to-noise ratios for the number of
transcripts with at least n conserved anchors for each microRNA
separately (Fig. 2b). The multiplicity of sites in a UTR, which is scored
by PicTar, also leads to a substantial increase of signal-to-noise11.
Encouraged by these results, we used PicTar to make ranked
target predictions for all currently available, conserved microRNAs

(Supplementary Tables 2 and 3 online). Specificity and sensitivity
strongly correlated with the PicTar score (Fig. 2c). The specificity as a
function of PicTar score for sets of coexpressed microRNAs used for
the tissue-specific target predictions in four mammalian tissues
(Supplementary Table 4 online) is shown in Figure 2d. In addition,
we validated 7 of 13 predicted targets of miR-124 and miR-375 by
either western blotting or luciferase reporter assays, consistent with
our false positive estimates (Table 1).

It has been proposed that microRNAs can target genomic DNA in
animals and induce transcriptional silencing of genes through chro-
matin modification1. To test this hypothesis, we ran PicTar on
genome-wide sets of nontranscribed upstream sequences (Supple-
mentary Methods online). We found, in contrast to our results for
3¢ UTRs, neither correlation of binding site positions with evolu-
tionary conservation nor substantial differences in the conservation of
putative target sites for real or randomized microRNAs (data not
shown). Our data suggest that most animal microRNAs recognize
targets in genomic DNA by mechanisms not captured by our algo-
rithm, target sequences other than proximal upstream sequences or do
not target genomic DNA to a considerable extent.

To provide a crude estimate of the number of microRNAs that may
coordinately regulate target genes, we counted how many sets of three
microRNAs have anchor sites in common transcripts. We plotted the
probability that a fixed triplet of microRNAs has an anchor site for
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Table 1 Target validation for miR-124 and miR-375 by immunoblotting and luciferase reporter assays

microRNA RefSeq gene ID Gene functional annotation Immunoblotting Luciferase

miR-375 NM_013464.2 Mus musculus aryl-hydrocarbon receptor (Ahr) � ND

miR-375 NM_010847.1 M. musculus Max interacting protein 1 (Mxi1) � ND

miR-375 NM_016889.1 M. musculus insulinoma-associated 1 (Insm1) � ND

miR-375 NM_008413.1 M. musculus Janus kinase 2 (Jak2) ND +

miR-375 NM_007573.1 M. musculus complement component 1, q subcomponent binding protein (C1qbp) ND +

miR-375 NM_146144.1 M. musculus ubiquitin specific protease 1 (Usp1) ND +

miR-375 NM_008098.2 M. musculus myotrophin (Mtpn) + +

miR-375 NM_197985 M. musculus adiponectin receptor 2 (Adipor2) + +

miR-124 NM_009498.3 M. musculus vesicle-associated membrane protein 3 (Vamp3) � ND

miR-124 NM_013464.2 M. musculus aryl-hydrocarbon receptor (Ahr) � ND

miR-124 NM_011951.1 M. musculus mitogen activated protein kinase 14 (Mapk14) + ND

miR-124 NM_008098.2 M. musculus myotrophin (Mtpn) + +

miR-124 NM_197985 M. musculus adiponectin receptor 2 (Adipor2) � �

The genes tested were selected from the single microRNA target prediction lists requiring different levels of conservation (human, chimpanzee and mouse or human, chimpanzee,
mouse, rat and dog). Genes indicated in bold were validated by immunoblotting or luciferase reporter assay (+). �, no detectable decrease of endogenous target protein levels or
luciferase reporter activity following microRNA overexpression; ND, not determined. Predictions to be tested were not selected by their PicTar score. The average score of the predicted
targets for miR-375 and miR-124 is 2.66 and 2.04, respectively, which is low. Therefore, our number of false positives is comparable to the predicted signal-to-noise ratio (Fig. 2).

Figure 3 Estimate of the number of coordinately regulated targets for sets of

three microRNAs. The probability p(n) that a set of three microRNAs hits at

least n transcripts is plotted on a log scale for real (upper curve) and

random (lower curve) microRNAs as a function of n. The criterion for a ‘hit’

was the presence of at least one anchor site, conserved in human,

chimpanzee, mouse, rat and dog, for each microRNA in the triplet. The

probability of obtaining not a single hit for a triple of real microRNAs is

1 � p(1) ¼ 0.35. p(n) drops off exponentially and much more steeply for

random microRNAs, indicating that PicTar runs with random microRNAs will

typically yield a vastly reduced number of predictions. p(25) is B0.001 for

real microRNAs, thereby indicating that only B30 of B30,000 possible

sets of microRNA triples (sampled from our set of 58 microRNAs) are

candidates to coordinately regulate at least 25 different transcripts each.
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each microRNA in at least n different transcripts (Fig. 3). This
probability decays exponentially with n. Roughly two thirds of all
possible microRNA triplets could coordinately regulate transcripts.
The probability that a fixed set of three microRNAs hit more than
10 or 25 targets was 0.04 or 0.001, respectively. Roughly 600 of all
triples drawn from the 58 microRNAs could coordinately regulate
more than ten targets each with at least two of the three anchor sites
above noise. We also computed the same statistics for randomized
microRNA sequences (Fig. 3), which showed that running PicTar
with sets of randomized microRNAs resulted in markedly fewer
predicted targets.

We hypothesized that the three most highly expressed microRNAs
in the murine pancreatic cell line MIN6 (ref. 22), miR-124 (11.5% of
the total microRNA profile), miR-375 (6.5%) and let-7b (6.5%), may
act together on a target gene. We used them as input for PicTar,
requiring at least one anchor site to be conserved between human,
chimpanzee, mouse, rat and dog for each microRNA. We examined
the results for Mtpn, a known target of miR-375 (ref. 22). When we
searched B18,500 3¢ UTR alignments with miR-375 only, Mtpn was at
rank 102, with one predicted binding site with a nucleus 3,135 nt
downstream of the stop codon and a probability of 0.74. We
previously validated the functionality of this site22. Searching for
miR-124 targets put Mtpn at rank 727. Using both miR-124 and
miR-375 as the search set boosted the rank to 14. Finally, searching for
targets of miR-124, miR-375 and let-7b placed Mtpn at rank 4.

To validate these predictions experimentally, we tested Mtpn reg-
ulation by miR-124 and let-7b using two methods. First, we transfected
neuroblastoma N2A cells with short interfering RNA (siRNA)

duplexes that are homologous in sequence to miR-124 (si-124) or
let-7b (si-let-7b). We observed in both cases a decrease in endogenous
Mtpn expression by western blotting (Fig. 4a). Second, to test whether
Mtpn is a target of miR-124 or let-7b, we subcloned the Mtpn 3¢ UTR
downstream of a luciferase reporter gene. Cotransfection of N2A cells
with this reporter construct and with si-124 or si-let-7b substantially
decreased luciferase activity compared with cotransfection with a
control siRNA targeting eGFP (si-GFP; Fig. 4b). Downregulation by
si-124 and si-let-7b was similar to that caused by si-375. Furthermore,
cotransfection of N2A cells with the luciferase reporter and a pool of
si-124, si-let-7b and si-375 resulted in normalized luciferase activity
that was substantially less than the activity in any of the other
cotransfections, suggesting that Mtpn is regulated by the coordinate
action of all three microRNAs. Together, our results provide evidence
for a direct and microRNA concentration–dependent regulation of
Mtpn by miR-375, miR-124 and let-7b and thus establish that Mtpn
expression is coordinately regulated by three highly expressed pan-
creatic microRNAs.

In summary, we developed a computational approach that success-
fully identifies not only microRNA target genes for single microRNAs
but also targets that are likely to be regulated by microRNAs that are
coexpressed or act in a common pathway. We showed that massive
sequence comparisons using previously unavailable genome-wide
alignments across eight vertebrate species strongly decreased the
false positive rates of microRNA target predictions, allowing PicTar
to predict (above noise), on average, B200 targeted transcripts per
microRNA. PicTar’s combinatorial microRNA target predictions led to
the experimental validation of Mtpn as the first mammalian gene
shown to be regulated coordinately by three microRNAs. Our results
thus provide a computational and experimental model for studying
translational gene regulation by multiple microRNAs and a first
glimpse at the complexity of translational gene regulation executed
by microRNAs.

METHODS
Vertebrate 3¢ UTR sequences and alignments. We extracted genome-wide

multiple alignments of eight vertebrates from the UCSC Genome Database.

These alignments were built from the following genome assemblies: human,

May 2004 (hg17); chimpanzee, November 2003 (panTro1); mouse, May 2004

(mm5); rat, June 2003 (rn3); dog, July 2004 (canFam1); chicken, February 2004

(galGal2); pufferfish, August 2002 (fr1); and zebrafish, November 2003

(danRer1). We used the UCSC mappings of the human RefSeq mRNA data23

(Release 6, 5 July 2004) to the human genome to define multiple alignments of

3¢ UTRs. These alignments cover 19,971 sequences for human and chimpanzee;

19,289 for human, chimpanzee and mouse; 18,717 for human, chimpanzee,

mouse and rat; 18,567 for human, chimpanzee, mouse, rat and dog; 11,190 for

human, chimpanzee, mouse, rat, dog and chicken; 6,136 for human, chim-

panzee, mouse, rat, dog, chicken and pufferfish; and 4,355 for human,

chimpanzee, mouse, rat, dog, chicken, pufferfish and zebrafish. The sequence

space of each species in the alignment is given by the respective number of

nucleotides (Table 2). The multiple alignments cover human, chimpanzee,

mouse, rat and dog for 90% of all human 3¢ UTR sequence nucleotides.

Sequences of all eight species are aligned for 21% of all human 3¢ UTRs. The

coverage for human, chimpanzee, mouse, rat, dog and chicken (55%) is

consistent with the estimated number of orthologous human-chicken genes24.

Table 2 Total number of nucleotides per species in the multiple alignment

Human Chimpanzee Mouse Rat Dog Chicken Pufferfish Zebrafish

1 19,253,481 18,720,159 15,610,779 15,071,221 17,356,774 5,485,265 1,334,211 1,688,879

2 14,575,934 14,224,691 13,144,375 12,699,682 13,873,555 4,398,114 1,136,336 1,430,061

Row 1 enumerates the total number of nucleotides in our raw 3¢ UTR multiple alignments; row 2 lists the same quantities for unique and repeat masked sequences.
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Figure 4 Regulation of Mtpn by miR-375, miR-124 and let-7b.

(a) Immunoblotting (IB). N2A cells were transiently transfected with siRNAs

designed against eGFP (si-GFP), miR-124 (si-124) or let-7b (si-let-7b) and

lysed after 48 h. Mtpn expression was assessed after SDS-PAGE and

immunoblotting with antibodies to Mtpn. TBP (TATA-binding protein)

expression was analyzed as a loading control. (b) Dual luciferase assay of

N2A cells transfected with a Renilla reniformis luciferase (Rr-luc) construct

containing the full length 3¢ UTR of Mtpn and si-GFP, si-124, si-let-7b, si-

375 or all three siRNAs for 48 h and lysed. A Photinus pyralis luciferase

(Pp-luc) served as an internal transfection control. The ratios of Rr-luc to

Pp-luc expression were normalized to the si-GFP transfections. Error bars

represent the standard error (s.e.) from three independent experiments.

*P r 0.05; **P r 0.01.

4 98 VOLUME 37 [ NUMBER 5 [ MAY 2005 NATURE GENETICS

L E T T E R S
©

20
05

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eg
en

et
ic

s



For generating our statistics, we produced a final data set of 3¢ UTRs by

restricting human 3¢ UTR sequences to unique sequences and by masking

repeats using the UCSC repeat masks (Table 2).

Vertebrate promoter sequences and alignments. Similarly, we used UCSC

mappings of human RefSeq mRNA sequences to define 500 bp upstream of

transcription start sites (‘promoters’). To exclude possible overlaps with

3¢ UTRs, we did not include sequences that overlapped any transcript, arriving

at a total of 17,883 human sequences. In some cases, however, our promoters

will overlap with 5¢ UTRs, because transcription start sites are often not known.

We constructed multiple alignments for promoters across vertebrates as

described above.

PicTar algorithm: identification of single microRNA target sites. The

‘nucleus’ (or ‘seed’), typically a perfectly Watson-Crick–base-paired stretch of

B7 nt in the microRNA:mRNA duplex, has a key role in both target site

recognition and repression of the target transcript. The nucleus is usually

located in the 5¢ end of the microRNA starting at the first or second position3.

Its free energy correlates with the ability of the microRNA:mRNA duplex to

repress translation of the targeted transcript17. We used these and other

experimental results12 to define probabilities for a mRNA sequence to be a

binding site for a given microRNA. More precisely, we defined a ‘perfect

nucleus’ as a perfectly Watson-Crick–base-paired stretch of 7 nt starting at

either the first or the second base of the microRNA (counted from the 5¢ end).

Insertions or mutations in the mRNA sequence of a perfect nucleus are allowed

as long as its free energy of binding, determined by standard RNA secondary

structure prediction software, does not increase and does not contain G:U base-

pairings. These mutated nuclei are called imperfect nuclei. In accordance with

previous studies7–14, we also require that the free energy of the entire

microRNA:mRNA duplex be below a cutoff value. For sites with perfect nuclei,

this value is set to 33% of the optimal free energy of the entire mature

microRNA binding to a perfectly complementary target site. This filter

discarded, on average, only B5% of all perfect nuclei but increased our

signal-to-noise ratio. At present we use a much more stringent filter (66% of

the optimal free energy) for sites with imperfect nuclei to safeguard against false

positives. A perfect nucleus that survives the filtering is assigned a probability

p to be a binding site for the microRNA. The probability for imperfect nuclei

is 1 – p divided by the total number of imperfect nuclei (typically in the range

of 2–20). We worked with a high p (p E 0.8) because most of the known target

sites do not have imperfect nuclei but checked that rankings of UTRs with

PicTar scores were not sensitive to particular settings of reasonably high values

of p. The current settings strongly disfavor contributions from imperfect sites.

More sophisticated ways to assign probabilities to microRNA binding sites will

be possible once more targets are validated.

PicTar algorithm: scoring combinations of target sites. PicTar computes a

maximum likelihood score that a given RNA sequence (typically a 3¢ UTR) is

targeted by a fixed set of microRNAs (Supplementary Note online). Once the

probabilities for each subsequence of the RNA sequence to be a binding site for

a microRNA are fixed, the scoring of PicTar is similar to the Ahab algorithm as

described15 with the following five implementation details. First, PicTar sets the

length of putative microRNA binding sites to the length of the corresponding

nuclei. This captures the experimental result that overlapping binding sites

seem to act independently as long as their nuclei are not overlapping17. Second,

a short 3¢ UTR (o300 bp) cannot be used to reliably estimate its own

background nucleotide frequencies. In these cases, we take the linear combina-

tion of the background nucleotide frequencies estimated from the UTR and

background frequencies estimated from all UTRs for the same species in our

data set. Third, we use the Baum-Welch algorithm25 to compute maximum

likelihoods. Convergence of the logarithm of the partition sum is checked up to

a precision of 0.0005. Fourth, we use the optimized prior for background when

computing the partition sum for background only. Fifth, the order of the

model for background sequence is set to 0.

PicTar algorithm: genome-wide PicTar runs and cross-species comparisons.

We first precomputed the positions of all possible microRNA nuclei in all UTR

sequences with the program nuclMap. We checked whether nuclei for the same

microRNA fall into overlapping alignment positions for all species under

consideration. If nuclei are conserved by these criteria, we checked whether

the optimal free energy of their predicted microRNA:mRNA duplexes passed

our filtering criteria. Perfect nuclei that survived these steps are called anchors.

The number of anchors in a UTR determines whether a transcript will be

scored by PicTar. If so, the optimal free energy of all sites with perfect or

imperfect nuclei in each UTR sequence is used to filter out improbable target

sites. The remaining sites for each UTR are input to PicTar to compute a score

for each UTR in the multiple alignment. To obtain a final score that reflects the

probability that the UTR is regulated by the given set of microRNAs, we

averaged the scores for all species that were used to define anchor sites. This

average should reflect the different evolutionary distances between species. We

averaged the human and chimpanzee scores and the mouse and rat scores

independently to obtain a primate score and a rodent score. These scores were

then averaged with the dog score to obtain a score reflecting conservation in all

mammals. Similarly, we averaged this mammalian score, the chicken score and

the averaged fish scores for an overall score, as appropriate. Running an entire

analysis on a standard PC with 2 GB of memory took B15 min when searching

for targets of one to six microRNAs.

Optimal free energy estimates of RNA:RNA duplexes. We calculated free

energies of RNA:RNA duplexes using RNAhybrid14 with options -s3utr_human

for vertebrate sequences, -s3utr_worm for nematode sequences and default

settings otherwise.

Data sets of known and randomized mature microRNA sequences. We

downloaded mature microRNA sequences from Rfam26 (Release 5.0) and

added nine microRNAs22. We extracted a subset of microRNAs conserved

between human, chimpanzee, mouse, rat, dog and chicken using Rfam

annotations of mature vertebrate microRNAs homologous to a human micro-

RNA. Whenever no annotation was available, we used stringent criteria to

check conservation of the precursor and for the mature microRNA. We

constructed a set of unique microRNAs by lumping together microRNAs with

identical bases at positions 1–7 or 2–8 (starting at the 5¢ end). We obtained 58

unique microRNAs that are conserved in human, chimpanzee, mouse, rat, dog

and chicken. Similar to a previously described method11, we generated cohorts

of unique randomized microRNAs by extracting 8-mers with approximately

the same abundance (7 15%) of the 7-mer starting at positions 1 and 2 and

the corresponding 7-mer of the considered microRNA in all human 3¢ UTRs.

Experimenting with numerous other randomization schemes led to compar-

able signal-to-noise ratios. We attached the 3¢ end of each microRNA to the

corresponding random 8-mer.

Assay of luciferase activity. We excised the wild-type mouse myotrophin

3¢ UTR from IMAGE clone 6839739 and subcloned it downstream of the

stop codon in pRL-TK (Promega). We transfected N2A cells with 0.1 mg

of the pRL-TK reporter vector encoding Rr-luc and 0.1 mg of the pGL3

control vector encoding Pp-luc (Promega). We transfected cells with 200 ng

of siRNAs; in cases where pools were compared with single siRNAs, the

difference was made up using si-GFP. We collected and assayed cells 30–36 h

after transfection.

siRNAs. Synthetic microRNAs and siRNAs were synthesized by Dharmacon

Research, Inc. We transfected N2A cells with vectors and siRNAs using

Lipofectamine 2000 (Invitrogen) in accordance with the manufacturer’s

instructions.

Cell culture and western blotting. We cultured N2A cells in Dulbecco’s

modified Eagle medium containing 25 mM glucose and 10% fetal bovine

serum. We used a polyclonal antibody to myotrophin at 1:1,000 dilution for

western blotting22.

URLs. PicTar results will be available at http://pictar.bio.nyu.edu. The UCSC

Genome Browser is available at http://www.genome.ucsc.edu/.

Note: Supplementary information is available on the Nature Genetics website.
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