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Various computational approaches have been proposed for operon prediction, but most algorithms rely on
experimental or functional data that are only available for a small subset of sequenced genomes. In this study,
we explored the possibility of using phylogenetic information to aid in operon prediction, and we constructed
a Bayesian hidden Markov model that incorporates comparative genomic data with traditional predictors, such
as intergenic distances. The prediction algorithm performs as well as the best previously reported method, with
several significant advantages. It uses fewer data sources and so it is easier to implement, and the method is
more broadly applicable than previous methods—it can be applied to essentially every gene in any sequenced
bacterial genome. Furthermore, we show that near-optimal performance is easily reached with a generic set of
comparative genomes and does not depend on a specific relationship between the subject genome and the
comparative set. We applied the algorithm to the Bacillus anthracis genome and found that it successfully
predicted all previously verified B. anthracis operons. To further test its performance, we chose a predicted
operon (BA1489-92) containing several genes with little apparent functional relatedness and tested their
cotranscriptional nature. Experimental evidence shows that these genes are cotranscribed, and the data have
interesting implications for B. anthracis biology. Overall, our findings show that this algorithm is capable of
highly sensitive and accurate operon prediction in a wide range of bacterial genomes and that these predictions

can lead to the rapid discovery of new functional relationships among genes.

A large number of bacterial genomes have been sequenced
in the past decade, and with large-scale sequencing technolo-
gies becoming cheaper and more accessible, it is reasonable to
expect that the rate at which new genomes are completed will
continue to accelerate. Accurate tools for identifying the genes
within a given genome have been developed (8, 29), but our
understanding of how these genes are expressed and regulated
depends also on knowledge of how they are organized into
operons—sets of genes that are cotranscribed into a single
mRNA sequence. Operons form the fundamental transcrip-
tional units within a bacterial genome, and as a result, defining
these structures is a key first step in examining transcriptional
regulation. In addition, operons often contain genes that are
functionally related and required by the cell for a certain pro-
cess or pathway and, thus, they are highly predictive of biolog-
ical networks. For these reasons, the definition of operon struc-
ture on a genome-wide level is an important starting point for
microbial functional genomics.

Direct experimental approaches to operon identification,
such as Northern blotting or primer extension, are usually
costly and time-consuming, and so there is considerable inter-
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est in the development of computer algorithms that will accu-
rately predict genome-wide operon structure. Given the rapid
pace at which bacterial genomes are now being sequenced,
there is a particular need for methods that are generally ap-
plicable across the bacterial domain. This requirement for
“portability” places limits on the information that can be used
in such algorithms and necessarily excludes experimental and
detailed functional data, which are only available for a small
subset of sequenced genomes (and often for only a subset of
the genes within these genomes). A truly portable operon
prediction algorithm must essentially rely on data inherent in
the genome itself: the identity, spacing, and orientation of
genes, as well as the sequence.

There has been a variety of prediction algorithms developed
in recent years, including those that take advantage of exper-
imental or functional data as well as examples that are more
generalized and only require sequence information. Examples
of the former include methods that rely on microarray-based
expression data (3, 4, 7, 26) and others that use different forms
of detailed functional annotation (5, 30, 35). Although these
algorithms have shown great promise in terms of being able to
predict operon structure with a high degree of specificity and
sensitivity, the data they rely on are only available for a select
subset of bacterial species, and this limits how widely they can
be used.

Progress has also been made toward a more generalized
method for operon prediction, and a number of groups have
constructed algorithms based on a variety of diverse informa-
tion sources, including codon usage statistics (3, 4) and the
identification of promoter and terminator sequences (6, 28, 33,
34). Although these data have all proven to be valid predictors
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of operon structure, it is striking that these studies have also
consistently demonstrated that one of the most valuable pre-
dictors is simply intergenic distance. The distances between
genes within an operon tend to be considerably shorter than
the distances between genes that are not cotranscribed, and in
several recently developed algorithms, intergenic distance was
shown to be more informative than any other data source,
including even microarray-based expression data (3, 7, 28, 34).
In addition, this trend appears to be universal in bacterial
genomes, making it a very attractive option for a generalized,
portable prediction algorithm (7, 15, 33). Unfortunately, inter-
genic distance alone only allows for a specificity of ~65 to 70%
when tested on a large set of experimentally verified operons
from within the Escherichia coli genome, and so other sources
of information must be added to bring the total accuracy to a
more acceptable level (28).

Another promising generalized predictor of operon struc-
ture is the degree to which gene order is conserved across a
variety of genomes, with the general idea that adjacent genes
that are found in the same order in multiple genomes are more
likely to be cotranscribed. This method has previously been
used as a means of assessing functional relatedness among
proteins (17), and several studies have shown that operons in a
given bacterial genome could be identified with a very high
degree of specificity using this approach (98%, as reported by
Ermolaeva et al. [9]). The drawback, however, is that its accu-
racy is derived from genes being conserved in a relatively large
number of species, and the method tends to miss operons
containing genes that are unique or less conserved. In addition,
a study by Itoh et al. showed that during evolution many oper-
ons undergo shuffling events that change the order of genes
within (but not their overall content), and such operons are
missed by an algorithm that requires conservation of order to
make predictions (11). The result is that despite the high spec-
ificity of this algorithm, it is inherently insensitive and can only
be applied to 30 to 50% of the genome being examined (9).

The extremely high specificity achieved using conserved
gene pair information underscores the utility of these data in
operon prediction, and we hypothesized that it might be pos-
sible to exploit phylogenetic information in a more general
way, such that it could be applied to the entire genome. If so,
we reasoned that these data, when combined with intergenic
distance information in a rigorous statistical model, would
allow for highly specific and sensitive operon prediction in any
sequenced bacterial genome. With this in mind, we developed
a generalized method for using phylogenetic data to predict
operon structure. We adopted a Bayesian approach in con-
structing a hidden Markov model (HMM)-based algorithm
that combines these data with intergenic distance statistics.
Using a large set of experimentally verified operons from E.
coli, we found that an optimized version of the algorithm
predicted operon structure with specificity and sensitivity levels
of >85%. We have also shown that the method can be gener-
alized easily and applied to essentially any bacterial genome,
regardless of the availability of any experimental or functional
data.

We applied the algorithm in predicting the operon structure
within the genome of Bacillus anthracis and successfully pre-
dicted all previously known B. anthracis operons. In addition,
we identified a large number of putative operons that link
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apparently unrelated genes in cotranscriptional relationships,
and we chose a particularly interesting example (BA1489-92)
for further testing. This putative operon contains four genes
that have little in common functionally, and they have not been
predicted to be cotranscribed by any previously developed al-
gorithm (23). Reverse transcription-PCR (RT-PCR) experi-
ments confirmed that these genes are in fact cotranscribed, and
targeted gene disruption data obtained in a related study (18)
were also consistent with this finding. These results suggest a
new functional link between the genes within this operon and
have interesting implications for B. anthracis biology. In addi-
tion, they suggest that many other important functional and
regulatory relationships may be identified in the same way and
that the algorithm developed in this study may be a significant
new tool for the field of bacterial genomics.

MATERIALS AND METHODS

Data sources. For a genome in which operon structure is being predicted (a
subject genome), a tab-delimited *.ptt (Protein Table) file containing the loca-
tion, length, orientation, and name of each gene was downloaded from the NCBI
GenBank and used as a master reference file. For each comparative genome
used, a multisequence FASTA file containing the complete set of protein se-
quences from that genome was obtained from the Comprehensive Microbial
Resource at The Institute for Genomic Research (http://www.tigr.org/CMR) and
used to build BLASTP databases and query files (21).

The set of 359 experimentally verified E. coli transcriptional units (257 operons
and 102 singly transcribed genes) used in testing and developing the algorithm
was obtained from the supplemental information provided by Sabatti et al. in
their recent study (26). The list was originally compiled as part of the Regu-
lonDB, a database of transcriptional regulation and organization for E. coli K-12,
and further information regarding the experimental verification of the transcrip-
tional status of each of these operons may be found there (http:/www.cifn.unam
.mx/Computational_Genomics/regulondb/) (27). The genes included in this set
were mapped onto the E. coli reference file using scripts within MS Excel.

Phylogenetic distribution analyses. The peptide sequence files obtained for
each genome were used to construct local BLASTP databases, and the complete
set of peptide sequences from the subject genome was compared to each data-
base using a locally installed copy of the NCBI BLAST search tool (software
obtained from the NCBI website [ftp:/ftp.ncbi.nlm.nih.gov/BLAST/]) run with
default parameters (2). The results from these searches were parsed using a Perl
script that identified potential orthologs as the best hit within a given compara-
tive genome for each peptide sequence within the subject genome, with the
additional provision that the expect value for potential orthologs was required to
be less than our defined cutoff (10™*). This method for identifying orthologs is
intentionally more promiscuous than the commonly used “reciprocal best match”
method. Our goal in this study was to construct an algorithm that was capable of
predicting operon structure across an entire genome, and use of the reciprocal
best match method was problematic because of the way this technique deals with
paralogs within the subject genome. Briefly, if there are a number of paralogs
within the subject genome that are all homologous to a single gene in the
reference genome, the reciprocal best match method will only identify the most
related of these as having an ortholog within the reference genome, even though
all of them are actually related to that ortholog. Essentially, this means that the
reciprocal best match method results in a number of paralogous genes within the
subject genome for which we have inaccurate phylogenetic data, and the simpler
“best match” method that we use here avoids this problem by considering each
gene independently.

A binary vector, with each dimension corresponding to a given comparative
genome and denoted by a 1 if an ortholog is present and a 0 if there is no
ortholog within that genome. These vectors have a passing similarity to
commercial barcodes, and we refer to them as phylogenetic barcodes. They
can be written as follows: (a/, a}, . .., a"), where @/=0or landj = 1,2,...,
m and where each binary code @} indicates whether an ortholog for gene i can
be found in the jth related species. The final lists of potential orthologs from
each comparative genome were combined into a single file from which the list
of phylogenetic barcodes corresponding to each gene in the subject genome
was compiled. To test the difference between the barcodes of two adjacent
genes, and thus assess the difference in their phylogenetic distributions, we
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FIG. 1. Phylogenetic barcode differences in intra- and interoper-
onic pairs. (A) Illustration of the method for calculating the change in
phylogenetic distribution (difference in phylogenetic barcode) for a
given intergenic region. In the case shown, the phylogenetic barcode
difference for intergenic region A-B is 6. (B) Phylogenetic barcode
differences in experimentally verified transcriptional units. Data for
both intraoperonic intergenic regions (squares connected by solid
lines) and interoperonic intergenic regions (triangles connected by
dashed lines) are shown.

compared the two vectors by counting how many differences exist between
them. This was calculated as follows:

A= D D

j=1

and is diagrammed schematically in Fig. 1A. All barcode compilations, as well as
the calculations of barcode differences, were done using MS Excel.

General HMM framework. A given bacterial genome can be viewed as a series
of adjacent gene pairs where the two genes in each pair are either within the
same operon or transcribed separately. (Note that for the purposes of this study,
two genes that are expressed as part of the same transcript under any condition
are considered to be part of the same operon.) This scenario fits in the frame-
work of the HMM. Whether a gene pair belongs to the same operon is the
hidden state and the string of states assumed to follow a Markov chain.

Two sources of information are considered in this study: the distance between
adjacent genes and the difference in their phylogenetic distribution. Both can be
derived from the genome sequence alone, provided that the physical location of
each gene is known. In this study, we adopted an HMM framework to accom-
modate all the information. Previous experience suggested that gamma distribu-
tions would fit the inter- and intraoperonic intergenic distances well. We mod-
eled these two populations using two distinct gamma distributions and defined
the transition probabilities from one state to the other as a function of the
intergenic distance between each adjacent gene pair. In general, a small inter-
genic distance suggests that the two genes belong to the same operon, and a
larger intergenic distance favors the opposite possibility. We also treated the
phylogenic conservation barcode defined above as observed data generated from
the hidden states. The differences in the barcodes between two adjacent genes
are assumed to follow one of two binomial distributions, depending on whether
or not they belong to the same operon. Due to the lack of good-quality training
data, we adopted a Bayesian HMM scheme as described by Liu (12), where
distribution parameters are used to calculate emission probabilities and path are
inferred from the data, and two empirical distributions were used to calculate the
distance-dependent transition probabilities. We applied the Gibbs sampler tech-
nique to iteratively sample from the conditional distributions of these unknown
quantities. A detailed description of these methods can be found in the supple-
mental material.

For comparison purposes, we also constructed two homogeneous HMMs
which model intergenic distances or phylogenic barcode differences exclusively.
In these studies, all distribution parameters, path, and transition probabilities are
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inferred from the data. No additional training data are required. The HMM
using intergenic distance alone performed better than the HMM using just the
phylogenic barcode difference data and, not surprisingly, both were inferior
relative to the aforementioned inhomogeneous HMM that combines the two
sources of information. Detailed descriptions of the implementation of these
HMMs can also be found in the supplemental material.

Algorithm testing and scoring of predictions. Predicted operons in the E. coli
K-12 genome were scored relative to the set of known E. coli transcriptional units
described in the Results section by using MS Excel. Statistical testing, including
receiver operator characteristic (ROC) curve analysis, was done within Excel
using the Analyze-It general statistics and clinical laboratory modules (Ana-
lyze-It Software, Ltd., Leeds, England).

Software availability. Software implementing the HMM-based prediction al-
gorithm is available from our group upon request, as are the Perl scripts used to
parse the BLASTP results. Potential users should note that the software tools
developed for this study are generally quite fast (requiring less than 1 min on a
typical desktop PC), and even the slowest step (the BLASTP comparisons) can
be performed in less than an hour.

Cell growth conditions and RNA isolation. Brain heart infusion broth cultures
of Bacillus anthracis strain Sterne (34F2) were grown overnight and then diluted
1:1,000 into nutrient-limiting (sporulation) modified G medium. At an optical
density at 600 nm of 1.0, 5 ml of culture was collected and bacteria were pelleted
by centrifugation. RNA isolation was performed using the Ambion RiboPure-
Bacteria kit per the manufacturer’s instructions with the following modifications:
cell disruption with zirconia beads was done for 15 min, 450 pl of RNAwiz was
used, bromochloropropane was used in place of chloroform, and 50 .l of RNase/
DNase-free distilled water was added during extraction. A QIAGEN RNeasy
mini kit with a DNase digestion step was used per the manufacturer’s RNA
cleanup protocol. RNA was quantitated via the A,50/4,5, ratio on a Beckman
DUS530 spectrophotometer. One microgram of RNA was run on a denaturing
formaldehyde gel to verify purity. The above procedures were carried out in
three separate experiments utilizing two unique cultures each time.

RT-PCR. In three separate experiments, 500 ng to 1.0 pg of RNA was used to
perform endpoint RT-PCR using the Invitrogen one-step RT-PCR with plati-
num 7Tag per the manufacturer’s instructions. Briefly, reverse transcription was
performed at 50°C for 30 min. PCR was performed with 0.25 pg of operon/gene-
specific primers for 35 or 37 cycles with an elongation temperature of 70°C and
extension time of 1 min 10 s. Five ul of endpoint PCR product was then run in
0.7% agarose gels and visualized with ethidium bromide. Negative controls
omitting reverse transcriptase and positive controls with B. anthracis Sterne
(34F2) genomic DNA were done with each experiment. Operon/gene-specific
primers were designed to result in 0.6- to 1.0-kb products.

RESULTS AND DISCUSSION

General method for utilizing phylogenetic information in
operon prediction. Several recent studies have shown that
genes within bacterial operons tend to be related functionally
and are often involved in the same pathway or process within
the cell (10, 16, 17, 31, 35). Additionally, it has been demon-
strated that functionally related genes tend to share a similar
phylogenetic distribution; that is, they tend to be coinherited
and to travel together along the phylogenetic tree (13, 14, 20).
Given these facts, we reasoned that genes within an operon
would be more likely to have similar phylogenetic distributions
than genes that are not cotranscribed and that it may be pos-
sible to use phylogenetic distribution information to predict
operon structure.

In order to test this possibility, we compared the E. coli K-12
genome to 35 other bacterial genomes (chosen arbitrarily as a
diverse set of species, including both distant and close relatives
of E. coli) (Table 1) and searched for the possible presence of
orthologs to each gene from the K-12 genome in each of the
other genomes. The phylogenetic distribution of each E. coli
gene was then compiled from these searches and represented
as a 35-digit phylogenetic barcode. We hypothesized that genes
within an operon would be more likely to have similar phylo-
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Phylum Class Order Species
Actinobacteria Actinobacteridae Actinomycetales Mycobacterium tuberculosis CDC1551
Chlamydiae Chlamydiales Chlamydiaceae Chlamydia pneumoniae AR39
Firmicutes Bacillales Bacillaceae Bacillus subtilis 168

Bacillus anthracis Ames
Bacillus cereus ATCC 14579
Listeriaceae Listeria monocytogenes 4b F2365
Staphylococcus Staphylococcus aureus MW2
Clostridia Clostridiales Clostridium perfringens 13
Clostridium tetani E88
Lactobacillales Enterococcaceae Enterococcus faecalis V583
Streptococcaceae Streptococcus pneumoniae TIGR4
Streptococcus pyogenes SF370 serotype M1
Proteobacteria Alphaproteobacteria Rhizobiales Brucella suis 1330
Betaproteobacteria Burkholderiales Bordetella pertussis Tohama I
Neisseriales Neisseria meningitidis MC58
Gammaproteobacteria Alteromonadaceae Shewanella oneidensis MR-1
Enterobacteriales Buchnera aphidicola (Baizongia pistaciae)
Escherichia coli O157:H7 EDL933
Escherichia coli O157:H7 VT2-Sakai
Escherichia coli CFT073
Salmonella enterica serovar Typhimurium LT2 SGSC1412
Salmonella enterica serovar Typhi Ty2
Shigella flexneri 2a 2457T
Yersinia pestis KIM
Legionellaceae group Coxiella burnetii RSA 493
Pasteurellaceae Pasteurella multocida M70
Pasteurellales Haemophilus influenzae KW20 Rd
Pseudomonadales Pseudomonas aeruginosa AO1
Pseudomonas putida KT2440
Vibrionales Vibrio cholerae El Tor N16961
Xanthomonadales Xylella fastidiosa 9a5c
Xanthomonas group Xanthomonas campestris pv campestris ATCC 33913
Epsilonproteobacteria Campylobacterales Campylobacter jejuni NCTC 11168
Helicobacter pylori 26695
Spirochaetes Spirochaetales Spirochaetaceae Treponema pallidum Nichols

“ Comparative genomes used for phylogenetic distribution calculations are shown. Additional information related to the background, source, and phylogenetic

classification of each can be found at The Institute for Genomic Research Comprehensive Microbial Resource (http://www.tigr.org/CMR).

genetic distributions and, therefore, that operon boundaries
might be identifiable as comparatively large changes in bar-
code structure between two adjacent, codirectional genes (note
that throughout this study, only codirectional gene pairs are
examined). With this in mind, we calculated the difference
between the barcodes of each adjacent gene pair in the E. coli
K-12 genome by comparing each pair of vectors and counting
how many differences exist between them (Fig. 1A). We then
used a large set of experimentally verified E. coli transcrip-
tional units (257 operons and 102 singly transcribed genes) to
directly test our hypothesis. The 929 genes in this set provide
us with 580 verified intraoperonic gene pairs and 626 verified
interoperonic gene pairs, and the probability distribution of
barcode differences for each of these two populations is shown
in Fig. 1B. We found that the differences observed within
known operons and those observed at operonic boundaries
form significantly different populations, with intraoperon gene
pairs generally having a smaller phylogenetic barcode differ-
ence than interoperon gene pairs. These results suggested that
the phylogenetic barcode data might be a valuable predictor of
operon structure throughout the entire genome.
Construction and testing of a hidden Markov model-based
algorithm for predicting operon structure. Given the appar-
ent utility of the phylogenetic barcode information in

operon prediction, we next sought to develop a statistical
framework in which the predictive value of the data could be
tested and into which other information sources could also
be added. We and others have observed that the operon
prediction problem fits well into an HMM framework (4,
34), especially because an HMM framework allows us to
estimate the confidence with which each prediction is made
(as opposed to rule-based prediction frameworks, which
generally do not). Accordingly, we adopted this approach in
formulating our algorithm.

The HMM-based algorithm was constructed as described in
Materials and Methods and applied to the E. coli K-12 ge-
nome. We found that, using only the phylogenetic barcode
information derived from the 35 comparative genomes and
scoring our predictions using the set of known transcriptional
units, the algorithm was able to predict the operon status of
adjacent gene pairs with 89.6% sensitivity [(true positives)/
(true positives + false negatives)] and 61.6% specificity [(true
negatives)/(true negatives + false positives)] when using a pre-
dicted probability cutoff value of 0.5. Because a full spectrum
of prediction probabilities is possible, the performance of the
algorithm is more completely described by an ROC curve. In
this method of analysis, specificity and sensitivity are plotted
for every possible prediction probability cutoff value, and the
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FIG. 2. ROC curves representing algorithm performance using dif-
ferent data sources. Dashed line, predictions generated using the phy-
logenetic barcode information; dotted line, predictions generated us-
ing the intergenic data alone; solid line, predictions generated using
both sources.

area under the curve provides a combined measure of algo-
rithm performance (with a maximal value of 1.00). The ROC
curve corresponding to predictions generated using the phylo-
genetic barcode information is shown in Fig. 2 and the area
under the curve is 0.819, indicating that this data source has
substantial predictive value. Intergenic distance, when used
alone in the HMM, yielded predictions that were somewhat
different. At a probability cutoff of 0.5, this data source made
the algorithm slightly more sensitive (91.1%) and also more
specific (75.0%) than when the phylogenetic data were used
alone (Fig. 2), and the area under the curve was slightly higher
(0.852). When we combined the two sources in an inhomoge-
neous HMM, with transition probabilities estimated from in-
tergenic distances, we found that a 0.5 cutoff value yielded
predictions with a sensitivity of 87.5% and a specificity of
86.4% (Fig. 2) and an area under the ROC curve of 0.907. We
also found that HMM helps improve the performance of the
algorithm, as the Markov property captures the “clustering”
characteristic of the operons. If the dependency among adja-
cent states were ignored (that is, if we fixed the transition
probabilities at 0.5 in the HMM) and a naive Bayes approach
was used to combine the two sources of information, the arca
was decreased to 0.857. These data are summarized in Table 2,
and they indicate that as we had hypothesized, the algorithm
performs best when the two data sources are used in combi-
nation within the framework of the inhomogeneous HMM.
Testing possible refinements of the prediction algorithm.
The performance of the algorithm in our initial experiments
encouraged us to explore different ways in which it might be
enhanced, especially as several aspects of how the phylogenetic
data were compiled were set somewhat arbitrarily at the outset
of the study. Perhaps the most obvious of these was the general
composition of the set of comparative genomes; that is, the
total number of genomes and their overall phylogenetic distri-
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bution. We initially explored this issue by increasing the num-
ber of comparative genomes to either 60 genomes that were
widely distributed throughout the bacterial domain (see Table
S1 in the supplemental material) or 49 genomes that were all
from species of Proteobacteria and thus closely related to E. coli
(see Table S2 in the supplemental material). In both cases, the
performance of the algorithm was slightly worse as measured
by area under the ROC curve (see Fig. SIA and summary in
Table S3 in the supplemental material). In contrast, when we
separated the original 35 genomes into two groups—22 species
of Proteobacteria and 13 species which are more widely dis-
persed throughout the bacterial domain—we found that using
either subset resulted in algorithm performance that was
slightly enhanced relative to when the parent set of compara-
tive genomes was used (see Fig. S1B in the supplemental
material), suggesting that a large number of comparative ge-
nomes might be unnecessary for optimal algorithm perfor-
mance. A possible explanation may be that a relatively small
set of genomes provides all the necessary phylogenetic infor-
mation and that additional comparative genomes merely du-
plicate this information (perhaps counterproductively).

These results also seemed to imply that the algorithm might
be somewhat insensitive to the phylogenetic distribution of
comparative genomes (relative to either the subject genome or
to each other), a trait that would seem to be highly desirable in
a method that is designed to be applicable to any bacterial
genome, including those for which there are no sequenced
close relatives. To further test this possibility, we examined
algorithm performance under conditions in which we system-
atically varied either the relatedness of the comparative set to
the subject genome (E. coli) or the diversity inherent within the
comparative set itself. Consistent with our earlier results, we
found that in both cases these changes had negligible effects on
overall algorithm performance (see Fig. SIC and D in the

TABLE 2. Algorithm performance with different data sources”

Data source (area) ;12%35:;1?; Spe(c(;f)city Sen(s%t)i)vity

A. Phylogenetic barcodes 0.75 65.0 88.2
alone (0.819) 0.50 61.6 89.6
0.25 55.0 90.6

B. Intergenic distance 0.75 73.1 91.7
alone (0.852) 0.50 75.0 91.1
0.25 77.8 90.6

C. Combination (0.907) 0.75 89.0 85.6
0.50 86.4 875

0.25 83.3 88.7

D. Combination (dependency 0.75 78.1 90.7
ignored) (0.857) 0.50 77.6 90.7
0.25 76.7 91.1

E. Optimized combination 0.75 89.3 83.4
(0.916) 0.50 86.9 85.5
0.25 85.2 87.2

“ A summary of prediction algorithm performance using different data sources
is shown. Specificity (the fraction of positive predictions that are correct) and
sensitivity (the fraction of true operons recognized) levels are shown for different
prediction probability cutoff values. Also noted are the area under the ROC
curve measurements for each prediction set.
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TABLE 3. Genomes used for Bacillus anthracis operon prediction”

Phylum Class Order Species
Actinobacteria Actinobacteridae Actinomycetales Mycobacterium tuberculosis CDC1551
Agquificae Aquificales Agquificaceae Agquifex aeolicus VF5
Bacteroidetes Bacteroides (class) Bacteroidales Bacteroides thetaiotaomicron VI1-5482
Chlamydiae Chlamydiales Chlamydiaceae Chlamydia trachomatis serovar D
Cyanobacteria Chroococcales Synechocystis Synechocystis sp. strain CC6803
Deinococcus-Thermus Deinococci Deinococcales Deinococcus radiodurans R1
Firmicutes Bacillales Bacillaceae Bacillus subtilis 168

Bacillus cereus ATCC 14579
Listeriaceae Listeria monocytogenes 4b F2365
Staphylococcus Staphylococcus aureus MW?2
Clostridia Clostridiales Clostridium tetani E88
Lactobacillales Enterococcaceae Enterococcus faecalis V583
Streptococcaceae Streptococcus pneumoniae TIGR4
Fusobacteria Fusobacterales Fusobacteriaceae Fusobacterium nucleatum ATCC 25586
Proteobacteria Alphaproteobacteria Caulobacterales Caulobacter crescentus CB15
Betaproteobacteria Burkholderiales Bordetella bronchiseptica RB50
Gammaproteobacteria Enterobacteriales Escherichia coli K-12 MG1655
Pseudomonadales Pseudomonas aeruginosa AO1
Epsilonproteobacteria Campylobacterales Campylobacter jejuni NCTC 11168
Spirochaetes Spirochaetales Spirochaetaceae Borrelia burgdorferi B31

“ Comparative genomes used for prediction of operon structure in Bacillus anthracis are shown. The set comprises 20 genomes that are broadly dispersed throughout

the bacterial domain, with a slight bias toward the Firmicutes (close relatives).

supplemental material). Altogether, the data confirm the ear-
lier indication that the algorithm is relatively insensitive to the
phylogenetic distribution of comparative genomes, and they
seem to suggest that near-optimal performance can be ob-
tained using a variety of different comparative sets. This point
should be stressed, because although it is not yet clear how to
construct a perfectly optimal set of comparative genomes for a
given bacterial genome, the very small differences we observed
in algorithm performance even when relatively large changes
were made to the comparative set suggest that a truly optimal
comparative set may provide only a minimal improvement.

One other issue we were interested in testing was the effect
of BLASTP stringency on the algorithm. The original compar-
ative data were compiled with the requirement that potential
orthologs were required to have a BLASTP expect value of less
than 10™%; this value is relatively permissive and is similar to
the cutoff values used in earlier studies (9). We therefore
tested whether making this cutoff value more stringent
might affect the predictive value of the comparative data.
We found that even when the expect value cutoff was
changed to 107® there was essentially no change in the
algorithm’s performance (see Fig. S1E in the supplemental
material). Given this, all other experiments were performed
with the 10™* cutoff value.

Altogether, we found that the algorithm was relatively in-
sensitive to a variety of changes in how the phylogenetic data
were compiled, and this was true even when the intergenic
distance component was removed from the HMM (that is, the
robust behavior of the algorithm to changes in the phyloge-
netic reference set was not due to the fact that the intergenic
distance component was overwhelmingly dominant [data not
shown]). The comparative set that provided the best prediction
performance was the set containing the 22 species of Pro-
teobacteria taken from the original 35 species in Table 1, and
using the phylogenetic data compiled from this set together
with the intergenic distance information in our algorithm re-

sulted in an area under the ROC curve of 0.916. As shown in
Table 2 (data source E), we found that with this method we
were able to predict operon structure in E. coli with both
sensitivity and specificity of >85% and that by choosing the
appropriate cutoff value we could fairly easily obtain levels of
90% in either parameter (with a corresponding drop to ~80%
in the other). The predictions generated in this set are avail-
able at http://www.sph.umich.edu/~qin/hmm/.

Operon prediction in Bacillus anthracis. We anticipate that
predicting operon structure in previously uncharacterized ge-
nomes will provide a variety of clues in terms of possible
functional and/or regulatory relationships. This is particularly
significant in pathogenic bacteria, where these leads may be
useful from the perspective of drug or vaccine development.
To test this idea, we used a 20-genome comparative set (cho-
sen as a relatively small, widely diverse group) (Table 3) to
predict operon structure in the gram-positive pathogen Bacil-
lus anthracis. Although this organism is now being given con-
siderable attention because of its potential as a bioterror agent
and several B. anthracis strains have been fully sequenced (19,
24, 25, 36), its operon structure remains essentially unknown.
On the chromosome of B. anthracis, which contains 5,308 pro-
tein-coding genes, the algorithm predicted a total of 2,473
cooperonic gene pairs when we used a prediction probability
cutoff of 0.5. These pairs form 1,121 multigene operons that
contain between 2 and 32 genes, and the probability distribu-
tion of operon length is remarkably similar (Pearson’s corre-
lation, 0.9917) to that reported for Bacillus subtilis in a recent
study (7). Although there are very few experimentally verified
operons to use in testing the predictions, we note that the gene
pairs within the operons that have been verified (i.e., plcC-
spmC, csaAB, rsbVW-sigB, asbABCDEF, and gerHABC) were
all predicted successfully.

One of the major benefits of operon prediction in organisms
about which little is known is that in many cases we are able to
link hypothetical genes to more-well-characterized loci and
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TABLE 4. Predicted operon structure in the BA1488-94 region of the B. anthracis genome

Intergenic distance

Phylogenetic barcode difference Predicted probability that gene,,

Gene Functional annotation (to genen 1) (relative to geney, ) and geney, ; are cooperonic
BA1488 Conserved hypothetical protein 106 18 (of a possible 20) 0.00
BA1489 Superoxide dismutase 113 6 of 20 0.98
BA1490 D-Alanyl-p-alanine carboxypeptidase -7 12 of 20 1.00
BA1491 Spore maturation protein A -3 0of 20 1.00
BA1492 Spore maturation protein 1113 13 of 20 0.00

thus gain some insight into the possible function and regulation
of the uncharacterized gene(s). There are a large number of
such examples within the predicted B. anthracis operons; for
instance, the gene BA1581 is a spore coat protein and is sur-
rounded by several conserved hypothetical genes about which
nothing is yet known. Spore coat proteins are often attractive
options for vaccine and drug development, since they are fre-
quently immunogenic and also tend to play a role in determin-
ing the resistance properties of the spore. The prediction al-
gorithm estimated with a very high confidence (=0.99 in each
case) that BA1580, BA1581, BA1582, and BA1583 make up a
single operon, and thus by association we are able to propose
not only that these uncharacterized genes might be somehow
related to formation of the spore coat, but also that they could
potentially be targets for new therapeutics.

Another relatively common finding in examining the pre-
dicted operon structure within the B. anthracis genome was
that in many instances, regulatory genes (e.g., loci encoding
transcription factors) appear to be cotranscribed with genes
that have probable roles in sensing a particular environmental
cue. One example is the predicted two-gene operon BA5371-2,
which encodes an RNA polymerase sigma factor and a glu-
taredoxin family protein. This RNA polymerase sigma factor is
one of many uncharacterized sigma factors encoded within the
B. anthracis genome, and its apparent linkage to a glutaredoxin
family member seems to suggest that its function may be re-
lated to the oxidative state of the environment. Another case in
which a probable regulatory function is suggested by operon
prediction is the putative three-gene operon BA5503-5, which
encodes a sensor histidine kinase, a DNA-binding response
regulator, and a UDP-glucose 4-epimerase, respectively. It is
typically difficult to predict a priori the environmental signal
that a two-component system responds to, and in this instance
operon prediction provides a useful clue in suggesting that
these genes may be associated with galactose utilization.

Perhaps even more useful are the instances in which predic-
tion of operon structure links disparate biochemical functions
and thus assists in our understanding of the organism’s biology.
A notable example of this is found in examining the genes
BA1489 to -92, which encode a putative superoxide dismutase
(sod15), a p-alanyl-p-alanine carboxypeptidase, and spore mat-
uration proteins A and B, respectively (Table 4). The algo-
rithm predicted that these four genes form a single operon,
with a prediction probability of =0.99 for each of the three
internal gene pairs and =0.01 for the two pairs on either side.
Homologs of the three downstream genes have been shown to
play roles in spore maturation (22), but there is no obvious
function for superoxide dismutase (sod15) in this process.
Since the finding that they appear to be part of the same

operon may imply a possible functional or regulatory link be-
tween them, we sought to test the algorithm’s prediction that
these genes are cotranscribed. We isolated RNA from bacte-
rial samples grown to late exponential phase and performed
RT-PCR analyses as diagrammed in Fig. 3. Briefly, we de-
signed primer pairs that would only amplify a product if two
adjacent genes could be found on a single mRNA molecule,
and we tested whether we could detect the presence of co-
transcribed BA1489 and -90 (AB), BA1490 and -1 (CD), and
BA1491 and -2 (EF) within the RNA pool. In each of these
cases we detected an appropriately sized PCR product, indi-
cating that these gene pairs are cotranscribed at least some of
the time (our results do not rule out the possibility of multiple
promoters and transcripts that may include some but not all of
these genes). These data confirm the prediction made by our
algorithm that these four genes are cotranscribed and point to

CD
EF

15 inner

EF-G (control)

15 inner A

- 1

38 A L LE F
" M
g TN BT T T LT
BA1489 = sod15 - Superoxide Dismutase
BA1490 = D-alanyl-D-alanine-carboxypeptidase

BA1491 = spmA - spore maturation protein A
BA1492 = spore maturation protein

FIG. 3. RT-PCR analysis of the BA1489-92 region. Gels show the
PCR products amplified by the designated primer pairs, which are
located in the BA1489-92 region of the B. anthracis chromosome as
shown at the bottom. Control RT-PCRs amplifying a section of the
sod15 (BA1489) locus or a portion of the elongation factor G mRNA
sequence are also shown. Note that control reactions in which reverse
transcriptase (but not DNA polymerase) was omitted were done for
each set and showed in each case that product amplification was not
due to DNA contamination.
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a previously unseen link between the sod15 gene and the pro-
cess of sporulation (and perhaps a specialized role that distin-
guishes the Sod15 protein from the other three B. anthracis
superoxide dismutases). Significantly, a related study showed
that a strain of B. anthracis missing the sodl5 locus formed
spores that had ultrastructural differences and a slightly higher
sensitivity to heat relative to wild-type B. anthracis, confirming
the idea that the sod15 locus is likely involved in sporulation
(18). It was also interesting that this operon would have been
missed if the algorithm had used either the intergenic distance
or the phylogenetic data alone; a model using intergenic dis-
tance alone predicts that the BA1489-90 transition is an
operon border, and a model using phylogenetic data alone
incorrectly predicts that the BA1490-1 pair is not cooperonic.
The combined information allows the correct identification of
all three intraoperon pairs, and this instance highlights the
value of using combined data sources.

On a larger scale, our findings suggest that a large number of
functional or regulatory relationships may be implied by the
operon predictions within the B. anthracis genome, as there are
a great many other examples of putative operons that contain
seemingly unrelated genes. We anticipate that the predictions
made here will lead to a number of potentially interesting
experimental questions, and as with E. coli the complete set of
predictions for B. anthracis is available at http://www.sph
.umich.edu/~qin/hmm/.

Conclusions. In this study we have demonstrated that adja-
cent genes within the same operon tend to have a much more
similar phylogenetic distribution than adjacent genes that are
not cotranscribed, and we have developed a hidden Markov
model-based algorithm in which these data can be used to
predict operon structure in a newly sequenced bacterial ge-
nome. Furthermore, we have shown that when the phyloge-
netic data are combined with intergenic distance statistics in an
inhomogeneous HMM, the algorithm is able to predict operon
structure with a high degree of both sensitivity and specificity
(Table 2, data source D). Significantly, we find that in general
the algorithm appears to perform best using a relatively small
group of comparative genomes, and it seems to be somewhat
insensitive to the phylogenetic distribution of these genomes
relative to each other and to the subject genome. Thus, it
appears that the algorithm proposed here is easily portable to
other completely sequenced bacterial species, including those
for which there are little or no functional or experimental data
available, and that operon prediction at or near the levels of
specificity and sensitivity shown in Table 2 (data source D)
should be attainable for these species as well.

This study was somewhat unique in aiming to construct an
algorithm that does not rely on experimental data (e.g., gene
expression data) or on detailed gene annotations (e.g., clusters
of orthologous genes, or COG, family information) and in
aiming to predict operon structure for any given bacterial ge-
nome. Perhaps the most similar study to date is that of Price et
al., in which the authors proposed an algorithm that relies on
intergenic distance, codon usage, and COG information for
operon prediction in any bacterial species (23). Although our
method relies on fewer data sources and assumes that the
distributions of these data are generally species independent,
we found that the algorithm’s performance is almost identical
to that described by Price et al. (areas under ROC curves of
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FIG. 4. ROC curves representing the performance of the opti-
mized algorithm (Table 2) and the algorithm described recently by
Price et al. (23) when tested using the same set of experimentally
verified E. coli operons. The area under the curve is 0.916 for the
algorithm reported here and 0.917 for that described by Price et al.

0.916 and 0.917, respectively, when scored on an identical set
of known E. coli operons) (Fig. 4). The fact that the algorithm
presented here performs equivalently with a simpler set of
input data is especially significant given that our method does
not rely on detailed annotation information, which is unavail-
able for a significant fraction (20 to 30%) of most bacterial
genomes (32), and is therefore able to predict operon structure
throughout the entire genome.

In general, it appears that there are several directions that
could be taken in attempting to improve the performance of
the algorithm described here. We are continuing to investigate
different ways of optimizing the set of comparative genomes
used in compiling the phylogenetic information, as well as ways
to take a more sophisticated view of these data. One idea that
seems particularly attractive would be to take advantage of the
fact that conserved gene order is a very strong indicator of two
genes being cooperonic, even if disruption of that order during
evolution does not necessarily also disrupt their cotranscrip-
tional status. It may be possible to improve prediction perfor-
mance by developing a more complex model in which a mea-
sure of conserved gene order is included in the phylogenetic
data, and we are currently exploring options for this sort of
approach. Similarly, although we showed in this study that the
algorithm is surprisingly insensitive to the distribution of ref-
erence genomes used, it seems intuitive that cooccurrence of a
given gene pair in a more distantly related species is a stronger
indicator of cotranscription than cooccurrence in a closely re-
lated reference species. Given this, it may be possible to im-
prove performance by incorporating a weighting strategy such
that evolutionary distance can be taken into account in com-
piling the phylogenetic data.

Going beyond phylogenetic and intergenic distance data, it
will also be interesting to test the utility of other data sources
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when added to the algorithm described here. These include
both information available for essentially all bacterial species,
such as codon usage or transcriptional terminators, as well as
data that are only available for a smaller set of species, such as
microarray and detailed functional classifications. Finally, we
note that although different prediction algorithms often reach
similar levels of accuracy, they typically do not make com-
pletely overlapping predictions. An equivalent problem is
found in comparing gene prediction algorithms, and a recent
study by Allen et al. showed that combining the results of
multiple gene prediction models allowed for more accurate
results than could be attained by any single algorithm alone
(1). If the same trend holds true for operon prediction, it may
be possible to reach unprecedented levels of accuracy by com-
bining the predictions generated using several different statis-
tical models.
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