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ABSTRACT 
Motivation: The inference of pre-mutation immunoglobulin (Ig) rear-
rangements is essential in the study of the antibody repertoires pro-
duced in response to infection, in B-cell neoplasms and in autoim-
mune disease.  Often, there are several rearrangements that are 
nearly equivalent as candidates for a given Ig gene, but have differ-
ent consequences in an analysis.  Our aim in this paper is to de-
velop a probabilistic model of the rearrangement process and a 
Bayesian method for estimating posterior probabilities for the com-
parison of multiple plausible rearrangements. 
Results: We have developed SoDA2, which is based on a Hidden 
Markov Model and used to compute the posterior probabilities of 
candidate rearrangements and to find those with the highest values 
among them. We validated the software on a set of simulated data, 
a set of clonally related sequences, and a group of randomly se-
lected Ig heavy chains from Genbank. In all tests, SoDA2 performed 
better than other available software for the task.  Furthermore, the 
output format has been redesigned, in part, to facilitate comparison 
of multiple solutions. 
Availability: SoDA2 is available online at 
https://hippocrates.duhs.duke.edu/soda. Simulated sequences 
available upon request. 
Contact:  kepler@duke.edu 

1 INTRODUCTION  
B cells express immunoglobulin (Ig) molecules on their outer sur-
face and secrete them into the extracellular space.  Secreted Ig is 
known as antibody. The genes that encode for antibodies are gen-
erated by many diversifying mechanisms including combinatorial 
rearrangement of gene segments, addition of non-templated (n) 
nucleotides at the junctions, and somatic hypermutation. This cir-
cumstance presents the important challenge of inferring the com-
ponents of the original rearrangement for any observed Ig gene.  
Because point mutations cause loss of information regarding the 
original rearrangement, there may be multiple plausible solutions.  
In this paper, we present a Bayesian statistical method based on a 
Hidden Markov Model (HMM) that allows a complete statistical 

  
*To whom correspondence should be addressed.  

treatment of the problem by providing the posterior probability of 
each possible rearrangement. 

Antibodies serve as effector molecules that neutralize microbes 
by binding to exposed antigens and targeting them to other compo-
nents of the immune system, such as phagocytic cells and com-
plement, that effect clearance.  Ig genes generate diversity in two 
stages: an antigen-independent stage and an antigen-dependent 
stage. Antigen-independent diversity is generated in the bone mar-
row, where B cells originate, by combinatorial rearrangement of 
gene segments and junctional diversity. Combinatorial diversity is 
created in a number of ways. First, each antibody molecule com-
prises one heavy chain protein and one light chain protein. Both 
the light and heavy chain genes are encoded by gene segments that 
are genetically rearranged during a process known as V(D)J re-
combination (Sakano et al., 1980 and Tonegawa, 1983). Heavy 
chains are made up of three gene segments – Variable (VH), Di-
versity (DH) and Joining (JH) where as light chains only have a V 
and J segment. In humans, there are approximately 50 known func-
tional VH segments, 27 known functional DH segments, and six 
known functional JH segments (LeFranc, 2001). This arrangement 
allows for approximately 8100 combinations in the heavy chain 
alone. Humans also have two light chain loci, κ (Lorenz et al., 
2001) and λ (Frippiat et al., 1995). Only one of these loci is ex-
pressed per cell so that each antibody either has a κ light chain or a 
λ light chain. Humans have 44 functional Vκ, 5 Jκ, 33 Vλ genes 
and 5 Jλ (LeFranc, 2001) resulting in 220 possible κ chains and 
165 possible λ chains. Thus this combinatorial rearrangement alone 
allows for greater than 3 million antibodies. Junctional diversity is 
the result of multiple recombination site choices for each recombi-
nation event and the addition of n nucleotides. n nucleotides are 
sometimes added at the junction by terminal deoxynucleotidyl 
transferase (TdT) between adjoining gene segments (Desiderio et 
al, 1984). Although TdT is believed to be expressed only in pro-B 
cells, the stage in which the heavy chain rearrangement takes place 
(Desiderio et al, 1984), the presence of n nucleotides in light 
chains has also been seen in a few studies (Bridges, 1998). 
Antigen-dependent diversity is generated by somatic hypermuta-
tion in the periphery in a manner dependent on activation-induced 
cytidine deaminase (AID); during this process, mutations in the Ig 
genes are accumulated at rate of up to 106 times the normal back-
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ground rate (Muramatsu et al., 2000). B cells are subsequently 
selected for enhanced affinity for the eliciting antigen. It is esti-
mated that these processes of diversification can generate ap-
proximately 1012 different antibodies making it challenging to 
correctly identify the underlying germline gene segments and sub-
sequently the sequences of the complementarity determining re-
gions (CDRs). 

The inference of the recombination and mutation events that 
produced a given Ig gene is of great importance in the study of 
humoral immunity and has been tackled in many different ways. 
The goal of such inference is to identify each of the component 
gene segments used as well as the recombination sites, point muta-
tions and n nucleotides. The aligned gene segments usually over-
lap, which is why alignments of the target gene to the individual 
gene segments cannot be treated as independent. Somatic muta-
tions, n nucleotide addition and recombination site choice make 
this task more challenging. The short length of the DH gene seg-
ment makes it especially difficult to identify the CDR3 region of 
the heavy chain, which is the most diverse region in the antibody 
sequence. This leads to many possible gene segment combinations 
that can result in a given antibody gene. Hence, it is necessary to 
report all such rearrangements and assign a probability to each of 
the combinations, making it easy to compare all possible rear-
rangements. 

Several algorithms have been developed for inferring Ig gene 
segment composition. IMGT/V-QUEST is one of the first and 
most complete of these tools and has the ability to analyze both Ig 
and TCR sequences for a variety of organisms including human 
and mouse (Guidicelli et al., 2004). V-QUEST, however, is based 
on the BLAST algorithm; it does not guarantee finding the best 
alignment of two sequences (Altschul et al., 1990). Additionally, 
the implementation of the algorithm only allows for running a 
maximum of 50 sequences at a time. Another tool, JOINSOLVER, 
is based on the identification of conserved motifs in the target gene 
(Souto-Carneiro et. al, 2004). Both JOINSOLVER and V-QUEST 
provide multiple gene segment possibilities but the implementation 
only provides junction analysis for the topmost choice. Somatic 
Diversification Analysis (SoDA) (Volpe et. al, 2006) uses a 3D 
alignment algorithm that allows for insertions and deletions. The 
algorithm uses dynamic programming and is an extension of the 
Smith-Waterman local alignment Algorithm (Smith and Water-
man, 1981). The 3D alignment allows for a continuous alignment 
through all the states of the recombination. SoDA infers only a 
single highest-scoring alignment, and ignores other solutions that 
may have equal or nearly equal scores.  SoDA’s guarantee of op-
timality in the inferred rearrangement is obtained at the cost of 
computational effort; SoDA takes more CPU time than either 
JOINSOLVER or V-QUEST.  A major shortcoming for all the 
programs above is that they do not provide a meaningful compari-
son of the different possible rearrangements. iHMMune-align 
(Gaeta et al., 2008) partially solves the problem and provides a 
probabilistic model using an HMM to infer the rearrangement. 
iHMMune-align uses the Viterbi algorithm (Rabiner, 1989) to find 
the most probable path through the alignment matrix, but does not 
sum over paths or provide results on sub-optimal alignments.  This 
choice becomes an issue when selecting an appropriate D gene 
segment for Ig heavy chains. The D gene is the shortest of all gene 
segments, and is typically the most difficult to align. We have 
found Ig genes that present an equally good alignment with differ-

ent D genes (see Results and Figure 5). iHMMune-align or SoDA 
gives only the solution with the highest score even if the highest 
score is not significantly better than the second highest score and 
so on (iHMMune-align does provide the option of viewing the top 
10 V gene alignments, but not D).    

Among these four methods, only SoDA allows for gaps when 
performing alignments, although insertions and deletions are 
known to occur at non-negligible frequencies during somatic hy-
permutation (Smith et. al, 1996), and alignment without gaps when 
gaps are present leads to dramatically erroneous inferences.   

The method we are introducing here is an update of SoDA—we 
call it SoDA2.  It employs a probability mass function-based 
alignment for determining gene segments and a probabilistic HMM 
for the inference of CDR3. The system calculates the posterior 
probability over all paths using a particular set of gene segments 
by the forward and backward algorithms.  It then provides the 
alignment path with the highest posterior probability. If the se-
quence does not hold enough information to unambiguously select 
a gene segment, SoDA2 reports all alignments that do not differ 
significantly. We tested this method using a simulated dataset con-
structed from the statistics of observed rearrangements and com-
pared these results with those obtained using existing methods. We 
also used two natural datasets, a set of clonally related Ig genes 
and a random set of sequences from NCBI.  Each test indicates that 
SoDA2 provides the most thorough and accurate results among all 
programs in addition to providing the most statistically complete 
results. 

2 METHODS 

2.1 Determining the Type of Ig 
The first step consists of aligning the target sequence with a consensus-like 
sequence of the VH, Vκ and Vλ families to determine if the input sequence 
is a heavy, kappa or lambda chain. These consensus sequences are pre-
created by separate alignments of the VH, Vκ and Vλ segments. We use the 
AHO numbering scheme (Honegger and Plückthun, 2001) which is based 
on the spatial alignment of known three-dimensional structures of immu-
noglobulin domains. The gaps are placed to minimize the average deviation 
from the averaged structure of the aligned domain so that the position of 
the CDRs remains consistent. The consensus is represented by a probability 
mass function (pmf), a L × 5 matrix where L is the length of the V genes in 
this case (Kepler et al, submitted). For each nucleotide position in the gene, 
we determine the frequency of use for each nucleotide state (including 
“gap”) at that position in the family. For the target antibody, we create a 
similar pmf using the quality scores of the input sequence. The quality 
score is proportional to the log probability of the estimated sequencing 
error and is provided by the user’s base-calling software (Ewing and Green, 
1998). If quality scores are not provided, we treat the input sequence as 
well-determined and all mismatches as due to somatic mutation. The pmf at 
each position of the target sequence depends on the quality score, which 
varies at each position, and a mutation frequency µ which is assumed to be 
constant over positions. For each position, we then have the probability of 
observing the 5 bases (including a gap) at that position given the quality 
score and the mutation frequency. We use the pmf of the target antibody 
gene and the pmf of the VH, Vκ and Vλ sequences as scores to create a 
local alignment (Smith and Waterman, 1981; Kepler et al, submitted).  

2.2 V and J gene pre-alignment 
Assume, for example, that our target sequence has been determined to be a 
heavy chain.  We use the traceback path generated by aligning the pmf of 
VH to our target and obtain the likelihood for each member of the VH 
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family. The mutation frequency µ is recalculated after observing mis-
matches in the highest scoring alignment. All VH segments with equally 
high likelihood alignments are then submitted to the HMM. The position of 
the invariant cysteine is determined. 
The target sequence is then aligned past the invariant cysteine with all the 
appropriate JH segments, using the pmf-based alignment mentioned above. 
The Js with the highest likelihood are selected for submission to the HMM. 
The target sequence is further trimmed at the invariant trypto-
phan/phenylalanine, and only the remaining region, CDR3, is used as our 
target sequence for the HMM. The 3’ ends (post-invariant cysteine) of all 
significant V gene segments and the 5’ ends (before invariant trypto-
phan/phenylalanine) of all J segments from the pre-alignment are also 
chosen for the HMM. Since D segments are most difficult to identify, we 
submit all D segments to the HMM. The mutation frequency of the final 
trimmed target sequence to be considered for the HMM is set at 1.5µ since 
the CDR3 region is subject to higher mutation than the VH region (Cowell 
et al., 1999, Gaeta et. al, 2007).   Figure 1 shows the basic set-up of the 
HMM for heavy chains (1a) and light chains (1b) with an overview of the 
states and allowed transitions. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 1: The basic topology of the HMM for (a) heavy chains and (b) kap-

pa and lambda chains. The HMM starts at the last base of the invariant 
cysteine of all high-likelihood V segments, runs through all D segments 
and through all high-likelihood J segments till the first base of the invariant 
tryptophan or phenylalanine.  

2.3 HMM 
We implemented a pair HMM with 10 non-silent states - Match/Mistmatch 
state in V gene, Insertion in V gene (Iv), Deletion in V gene (Dv), V-D 
junction n nucleotides, Match/Mismatch in D gene, Insertion in the D gene 
(Id), Deletion in the D gene (Dd), D-J junction n nucleotides, 
Match/Mismatch in the J gene, Insertion in the J gene (Ij) and Deletion in 
the J gene (Dj). Our HMM must begin in the Match/Mismatch state of the 
V gene since the invariant cysteine is encoded by the V. The end state must 
be Match/Mismatch in the J gene at the beginning of the invariant trypto-
phan/phenylalanine. 

The emission probabilities in every state are determined by the pmf cal-
culated using the quality scores and the mutation rate µ. For target se-
quences with unknown quality scores, high quality scores are assumed, 
making the probability of the observed base depend only on µ. Emission 
probabilities for the N nucleotide states are determined based on empirical 
data (Basu et al., 1983). Transition probabilities between states are deter-
mined by fitting a negative binomial distribution to the recombination site 
choice for VH, DH and JH and number of n nucleotides in the junctions as 
determined in a set of 293 unmutated sequences rearranged sequences 
(Figure 2, Jackson et. al, 2004). Figure 3 shows a detailed implementation 
of the HMM with transition probabilities. 

2.4 Algorithm 
 Once we have the appropriately trimmed target and germline sequences, 
we calculate the log of the total probability of a proposed rearrangement 
using the forward and backward algorithms (Durbin et al., 1998 and Majo-
ras, 2007). We select the gene segments that lead to the highest posterior 

probabilities, and perform a Posterior Viterbi algorithm with traceback 
(Fariselli et. al, 2005) to select the path with the highest posterior probabil-
ity for each possible rearrangement. We report the probability of the most 
probable path for each of the equally probable gene segment sets. For a 
heavy chain, a D gene alignment of less than 3 nucleotides is flagged as 
“Unreliable D Alignment”. The functionality of an antibody gene is deter-
mined as follows and reported with the results. A functional Ig chain must 
have no stop codons and the invariant cysteine at the start of CDR3 must be 
in-frame and intact. For heavy chains, the invariant tryptophan at the end of 
CDR3 must be in-frame and intact; for light chains, CDR3 must end with 
an in-frame and intact phenylalanine. We provide color-coded output in 
HTML, text and excel formats to allow the user to use the information in 
ways most convenient to his or her needs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Distributions for (a) V gene recombination site choice (b) n nu-
cleotides in the VD junction (c) 5’ D recombination site choice (d) 3’ D 
recombination site choice (e) n nucleotides in the DJ junction (f) 5’ J re-
combination site choice. All the data is fit to negative binomial distribu-
tions with varying parameters derived from Jackson et al, 2004. These 
parameters are used for transition probabilities in the HMM. 

3 RESULTS 

3.1 Simulated Datasets 
We created simulated datasets of 100 sequences each with muta-
tion frequencies of 2.5%, 5%, 10% and 20%. Recombination site 
choice and number of n nucleotides for these simulations were 
drawn from a negative binomial distribution. To avoid any bias 
towards our HMM, the parameters for these simulations were es-
timated using a set of 662 sequences obtained from Genbank. Fur-
thermore, rearrangements for these sequences were determined 
using IMGT/VQuest (Guidicelli et al., 2004) rather than SoDA or 
SoDA2. IMGT Junction Analysis was used to determine empirical 
data for deriving the distributions (Monod et al., 2004). Mutations 
were introduced such that the average mutation frequency across 
the gene was 2.5%, 5%, 10% and 20%, and the mutation frequency 
in the CDRs was 2x than that in the framework. Each of these da-
tasets was used to test SoDA2, SoDAv1.0, IMGT/VQuest, 
JOINSOLVER and iHMMune-align. Inverted D segments were 
omitted from the simulations because IMGT/VQuest and iHM-
Mune-align do not allow for alignments against them. Table 1 
shows the results of running our simulated datasets using the vari-
ous available software. The table shows the number of rearrange-
ments (all VH, DH and JH with alleles) identified correctly at each 
mutation rate by each program out of the 100 sequences tested in 
each group. For all our tests, we only compare the highest scoring  
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Table 1: Number of correct rearrangements (correct gene and allele for V, 
D & J segments) identified by each software out of 100 sequences tested at 
each mutation rate 

rearrangement provided by SoDA2 with the highest scoring ones 
provided by other programs. For our simulated data, we see that 
SoDA2 performs better in identifying the complete rearrangement 
(including correct alleles) than other programs under all mutation 
rates (Table 1). In particular, SoDA2 outperforms all other pro-
grams in D segment identification (Table 2). SoDA2 falls slightly 
behind IMGT/V-Quest in V and J gene identification due to the 
trade-off between accuracy and efficiency. We employ a computa-
tionally efficient alignment algorithm that aligns the target gene to 
consensus sequences of alleles, which can lead to the identification 
of the incorrect allele in a very few cases. Aligning the target gene 
to every allele would decrease this error but increase computation 
time significantly. Such errors are seen rarely and do not change 
the overall superior performance of SoDA2 shown in Table 1. If 
the score for multiple rearrangements is equal for any of the pro-
grams, all rearrangements are considered. Although SoDA2s per-
formance falls at the 20% mutation rate, it still performs better than 
other software. We only report all alignments that are equally 
probable and leave it up to the user to select and view any number 
of V, J or complete alignments he or she wants.  
For sequences where SoDA2 failed to identify the correct rear-
rangement as the most probable one, we found a median difference 
of 0.67 in the natural log of the probability between the highest 
scoring rearrangement and the correct one at the 5% mutation rate. 
Thus, if allowed to include rearrangements with low differences 
(<1) in the natural log of the probability from the top scoring align-
ment, SoDA2 would have identified correct rearrangements for 22 
additional sequences at the 5% mutation rate, yielding a possible 
87% success rate. 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3: Shows a detailed topology of the HMM with all possible transitions. 
Each nucleotide in the observed sequence is treated as a separate state. The 
transition probabilities are derived from empirical data (Jackson et al., 
2004). The star denotes the start (3rd position of invariant cystiene) of the 
HMM and the + denotes the end (first position of invariant trypto-
phan/phenylalanine). The I and D in every state stand for insertions and 
deletions respectively. 

3.2 Clonally Related Datasets 
In order to test real biological data, we used two clonally related 
datasets that were used to test iHMMune-align (Gaeta et. al, 2007) 
derived from tonsilar IgD class-switched B cells (Zheng et al., 
2004). Because they are clonally related, sequences within a given 
set should have identical rearrangements and differ only by so-
matic mutation. We analyzed this dataset using VQuest, 
JOINSOLVER, SoDA and iHMMune-align to determine the num-
ber of times each of the programs resulted in the same rearrange-
ment as was done by Gaeta et al. (2007). We ran the sequences 
through all the programs and found that iHMMune-align selected 
47/57 identical rearrangements for the first group of sequences, 
while SoDA2 selected 34/57 identical rearrangements. 
IMGT/VQuest, JOINSOLVER and SoDA identified 37, 25 and 18 
identical rearrangements respectively. SoDA2 returned a minority 
D gene segment in 17 cases, a minority J allele in 5 cases, and a 
minority V allele in 4 cases. In cases where SoDA2 failed to select 
the majority V or J gene segment, all the other programs, including 
iHMMune-align also failed to select the majority gene segment. It 
can be seen in these cases that mutation had obliterated the infor-
mation necessary to make the correct inference. For the 17 cases 
where SoDA2 did not return the majority D segment, the D seg-
ment that was returned was typically judged more probable than 
the majority segment due to the balancing of n-nucleotide use and 
mutations. An example of this phenomenon is the inference for 
AF262199 (Figure 4). In this case, In this case, the mutation fre-
quency in the VH gene segment is ~7%. SoDA2 selects 
IGHD1~26*01 requiring 3 mutations (8.5% mutation frequency in 
CDR3) and 7 n-nucleotides, while IGHD7~27*01 requires 2 muta-
tions (5.5% mutation frequency) and 10 n-nucleotides.  For the 
second dataset of 99 sequences, both iHMMune-align and SoDA2 
identified 68/99 identical rearrangements while IMGT/VQuest, 
JOINSOLVER and SoDA identified 56, 41 and 37 identical rear-
rangements, respectively. 
 
 
 
 
 
 
 

 

Figure 4: (a) Top rearrangement as chosen by SoDA2 with a higher muta-
tion frequency than the alternative (b). This is calibrated with the mutation 
frequency in the VH region. 

 

 2.50% 5% 10% 20% 

SoDA2 73 65 47 28 

IMGT/V-QUEST 52 47 42 16 

JOINSOLVER 59 47 34 11 

iHMMune-align 41 31 22 12 

SoDA 46 30 31 6 
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Table 2: Number of V, D and J genes (with alleles) identified at each mutation rate for the simulated sequences

 
 
 
 
 
 
 

 

 

 

Figure 5: The alignment of CDR3H of sequence by 1154693 using IGHD1-21*01 by (a) SoDA2 (b) IMGT/V-QUEST, JOINSOLVER and iHHMune (c) 
SoDA. Rearrangements (b) and (c) were also provided by SoDA2 at a slightly lower probability. 

3.3 Sequences from Genbank 
We tested a set of 662 sequences collected from Genbank and 
previously used for testing iHMMune-align and SoDA (Genbank 
accession nos Z68345-487 and Z80363-770). 113 out of 662 se-
quences produced inferences on which all five programs agreed. 
There was no agreement from any of the programs on 140 se-
quences. This means that they either could not infer a rearrange-
ment at all or they all differed in their inference. From the rest, 
SoDA2 agreed with the majority of the programs on 300 rear-
rangements (Table 3). These did not include those where SoDA 
and SoDA2 were the only two in agreement and the chosen rear-
rangement was the majority. SoDA2 performs considerably better 
than other programs in this test. We closely examined sequences 
for which SoDA2 failed to agree with 2 or more programs. We 
found a median difference of 1.05 between the top scoring rear-
rangement and the majority rearrangement. We also found that in 
all cases, SoDA2 selected an alternative rearrangement equally 
likely as the majority one. Figure 5 shows an example of one such 
sequence where SoDA2 selected IGHD2~21*01 to be the best 
fitting D alignment with a score of -785.07 (5a). On allowing 
alignments with a slightly higher probability, we found both the 
rearrangement chosen by the majority of the programs (VQuest, 
JOINSOLVER and iHMMune-align, Figure 5b) and also the rear-
rangement selected by SoDA (5c). The difference in the natural log 
of the probability is 0.63 in the first case and 0.93 in the second. 
This shows that allowing rearrangements within a reasonable range 
of probabilities in SoDA2 would give an accurate and thorough 

picture of the various rearrangements possible for a given immu-
noglobulin sequence. It is important to note that SoDA2 considers 
factors such as recombination site choices for each gene segment 
and numbers of n nucleotides at both junctions derived from em-
pirical data in inferring rearrangements while alignment algorithms 
used by SoDA, VQuest and JOINSOLVER base their results on 
sequence similarity matrices which may not accurately represent 
the process of V(D)J recombination. 
 

 Number of Rear-
rangements 

All Programs Agree 113 
All Programs disagree 140 
SoDA2 agrees with 2 or more programs  300 
VQuest agrees with 2 or more programs 255 
iHMMune-align agrees with 2 or more 

programs 
137 

JOINSOLVER agrees with 2 or more 
programs 

272 

SoDA agrees with 2 or more programs 244 
SoDA2 agrees only with SoDA 
(no other programs agree) 

11 

Table 3: Results from 662 sequences from Genbank, showing the perform-
ance of the 5 programs. If 2 or more programs displayed the same rear-
rangement (including the alleles), it was believed to be the majority rear-
rangement. 

  2.5%     5%     10%     20%     

  V D J V D J V D J V D J 
SoDA2 97 76 98 94 73 94 87 58 88 85 42 78 
JOINSOLVER 90 65 98 83 61 92 81 42 85 72 20 76 
IMGT/Vquest 99 52 94 97 49 93 93 45 89 88 23 82 
SoDA 79 65 92 77 68 87 76 42 69 69 20 45 
iHMMune-align 87 48 90 86 42 87 78 32 86 69 21 61 
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4 CONCLUSION 
The problem of inferring the correct rearrangement for antigen 
receptors is difficult due to the stochastic nature of the process, but 
the task is important for an increased understanding of the popula-
tion somatic genetics of the immune response. In this paper we 
present a method based on an HMM that provides a statistical basis 
for identifying rearrangements of Ig genes. In addition to providing 
the posterior probability of the top rearrangement candidate, 
SoDA2 also provides the user with an option to see all rearrange-
ments with sufficiently high posterior probabilities, thus giving the 
user a statistically complete picture of the observed sequence’s 
origins. 

We tested SoDA2 against simulated datasets that were created 
using empirically observed recombination site choices for each of 
the gene segments and numbers of n nucleotides in the junctions. 
We also tested it on two clonally-related datasets as well as a set of 
Ig heavy chains chosen randomly from Genbank. Our software 
performed as well as or better than available software on two out 
of three validation tests. The one test where SoDA did not outper-
form all of the others involved a single rearrangement.  On the 
identical test with a different rearrangement, SoDA did as well as 
its nearest competitor.  It is important to realize that the key feature 
of this paper is to provide a tool based entirely on a probability 
model, and that therefore returns results interpretable as posterior 
probabilities rather than arbitrary scores.  As with other inferential 
procedures, it is important to not only identify the optimal solution, 
but to identify near-optimal solutions and have a method for the 
absolute comparison among these alternatives. This performance 
and thorough result reporting leads to a substantially longer com-
putation time. SoDA2 takes approximately 15s of real user time 
per set of V and J segment for a given heavy target sequence on a 
64 bit machine with a 2.19GHz processor and 4GB RAM, but the 
investment of computational effort seems worthwhile. 

ACKNOWLEDGEMENTS 
Special thanks to William H. Majoros, Institute for Genome Sci-
ences and Policy, Duke University and Todd Wasson, Computa-
tional Biology and Bioinformatics Program, Duke University for 
very helpful discussions on implementing Hidden Markov Models. 
 
Funding: We are grateful for the financial support of the Bill and 
Melinda Gates Foundation through grant number 38643 to Dr. 
Barton F. Haynes. 
 
Conflict of Interest: none declared 

REFERENCES 
Altschul, S.F. et al. (1990) Basic Local Alignment Tool. J. Mol. Biol., 215, 403-410. 
Basu, M. et al. (1983) Synthesis of compositionally unique DNA by terminal de-

oxynucleotidyl transferase. Biochem. Biophhys. Res. Comm, 111, 1105-1112. 
Bridges, S.L. (1998) Frequent N addition and clonal relatedness among immu-

noglobulin lambda light chains expressed in rheumatoid arthritis synovia and 
PBL, and the influence of V lambda gene segment utilization on CDR3 length. 
Mol Med., 4, 525–553. 

Cowell, L.G. et al. (1999) Enhanced Evolvability in Immunoglobulin V Genes Under 
Somatic Hypermutation. J. Mol. Evol, 49, 23-26. 

Desiderio, S.V. et al. (1984) Insertion of N regions into heavy-chain genes is corre-
lated with the expression of terminal deoxytransferase in B-cells. Nature, 311, 
752-757. 

Durbin, R., et al. (1998) Pairwise alignment using HMMs. In Durbin, R. (ed) Biologi-
cal Sequence Analysis: probabilistic models of proteins and nucleic acids. Cam-
bridge University Press, Cambridge, UK, pp 80-99. 

Ewing, B. and Green, P. (1998) Basecalling of automated sequencer traces using 
phred. II. Error probabilities. Genome Res., 8, 186-194. 

Fariselli, P. et al. (2005) A new decoding algorithm for hidden Markov models im-
proves the prediction of the topology of all-beta membrane proteins. BMC Bioin-
formatics, 6, S12. 

Frippiat, J.P. et al. (1995) Organization of the human immunoglobulin lambda light-
chain locus on chromosome 22q11.2. Human Mol. Genet., 4, 983-991. 

Gaeta, B.A. et al. (2007) iHMMune-align: hidden Markov model-based alignment and 
identification of germline genes in rearranged immunoglobulin gene sequences. 
Bioinformatics, 23, 1580-1587 

Guidicelli, V et al. (2004) IMGT/V-QUEST, an integrated software program for 
immunoglobulin and T cell receptor V–J and V–D–J rearrangement analysis. Nu-
cleic Acids Res., 32, W435-W440. 

Honegger, A. and Plückthun, A. (2001) Yet another numbering scheme for immu-
noglobulin variable domains: An automatic modeling and analysis tool. J. Mol. 
Biol., 309, 657-670. 

Jackson, K.J. et al. (2004) Exonuclease activity and P nucleotide addition in the gen-
eration of the expressed immunoglobulin repertoire. BMC Immunol., 5, 19. 

Kepler, T.B. et al. (under review) Characterization of Chiropteran Type-I Interferon 
Genes Inferred from Genome Sequencing Traces by a Novel Gene-Family As-
sembler. 

LeFranc, M.P. (2001) IMGT, the international ImMunoGeneTics database. Nucleic 
Acids Res., 29, 207-209. 

Lorenz, W. et al. (2001) Physical map of the immunoglobulin K locus and its implica-
tions for the mechanisms of VK-JK rearrangement. Nucleic Acids Res., 15, 9667-
9676. 

Majoros, W.H. (2007) Hidden Markov Models. In Methods for Computational Gene 
Prediction. Cambridge University Press, Cambridge UK, pp 136-183. 

Monod, M.Y. (2004) IMGT/JunctionAnalysis: the first tool for the analysis of the 
immunoglobulin and T cell receptor complex V-J and V-D-J JUNCTIONs. Bioin-
formatics, 20, i379-i385. 

Muramatsu, M. et al. (2000) Class switch recombination and hypermutation require 
activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. 
Cell, 102, 553-563. 

Rabiner, L.R. (1989) A tutorial on hidden markov-models and selected applications in 
speech recognition. Proc. IEEE, 77, 257-286 

Sakano, H. et al. (1980) Two types of somatic recombination are necessary for the 
generation of complete immunoglobulin heavy-chain genes. Nature, 286, 676-
683. 

Smith, D.S., et al. (1996) Di- and trinucleotide target preferences of somatic mutage-
nesis in normal and autoreactive b cells. J. Immunol., 156, 2642–2652. 

Smith, T.F and Waterman, M.S. (1981) Identification of common molecular subse-
quences. J. Mol. Biol., 147, 195–197 

Souto-Carneiro, M.M. et al. (2004) Characterization of the Human Ig Heavy Chain 
Antigen Binding Complementarity Determining Region 3 Using a Newly Devel-
oped Software Algorithm, JOINSOLVER. J. Immunol., 172, 6790-6802. 

Tonegawa, S. (1983) Somatic Generation of Antibody Diversity. Nature, 302, 575-
581. 

Volpe, J.M. et al., (2006) SoDA: implementation of a 3D alignment algorithm for 
inference of antigen receptor recombinations. Bioinformatics, 22, 438-444. 

Zheng, N.Y. et al. (2004) Human immunoglobulin selection associated with class 
switch and possible tolerogenic origins for C delta class-switched B cells. J. Clin. 
Invest., 113, 1188-1201. 

 at U
niversidade de S

?o P
aulo on N

ovem
ber 25, 2010

bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/

