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ABSTRACT

Motivation: The sequencing of whole genomes from various species
has provided us with a wealth of genetic information. To make use
of the vast amounts of data available today it is necessary to devise
computer-based analysis techniques.
Results: We propose a Hidden Markov Model (HMM) based
algorithm to detect groups of genes functionally similar to a set
of input genes from microarray expression data. A subset of
experiments from a microarray is selected based on a set of related
input genes. HMMs are trained from the input genes and a group of
random gene input sets to provide significance estimates. Every gene
in the microarray is scored using all HMMs and significant matches
with the input genes are retained. We ran this algorithm on the life
cycle of Drosophila microarray data set with KEGG pathways for cell
cycle and translation factors as input data sets. Results show high
functional similarity in resulting gene sets, increasing our biological
insight into gene pathways and KEGG annotations. The algorithm
performed very well compared to the Signature Algorithm and a
purely correlation-based approach.
Availability: Java source codes and data sets are available at
http://www.ittc.ku.edu/∼xwchen/software.htm
Contact: xwchen@ittc.ku.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
A milestone in molecular and computational biology has been
reached with the sequencing of a complete human genome, marking
the beginning of the post-genomic era (Venter et al., 2001). With
a wealth of genomic sequence data now available from multiple
species, the main goal in molecular and computational biology has
shifted to better understand the functions of genes in a cellular
context. Genes encode the information necessary to build proteins;
functions using certain proteins cause a higher rate of expression
for the associated genes. Functionally related genes can thus often
be identified by similarities in gene expression patterns during time
periods when the function is active in a cell. Cellular functions are
generally complex and require groups of genes to cooperate; these
groups of genes are called functional modules. Modular organization
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of genetic functions has been evident since 1999 (Hartwell, 1999;
Ravasz and Barabási, 2002; Ravasz et al., 2002). Detecting these
functional modules, learning how functions are carried out in detail
and how individual functional modules relate to each other, are
current research topics in this field (Barabási and Oltavi, 2004; Wu
et al., 2005).

Modularity is recognized as a common occurrence in all complex
systems, and functional modules form a basis for the recovery of
higher-level interaction networks. Complex interactions of cellular
functions can be viewed as interaction networks of simpler subunits
and functional modules (Friedman, 2004; Kholodenko et al., 2002;
Petti and Church, 2005).

The technology most prevalent in the study of genetic functional
modules is the microarray. Microarray gene expression captures the
abundance of gene products for thousands of genes and multiple
experiments in the same data set. The abundance of gene products
under each experimental condition indicate the level of activity of
a gene, which points to genes that are responding to the conditions
set by the experiment.

Functionally related genes show some measure of similarity
in their expression profiles. Standard approaches for detecting
functional modules are to cluster these genes using hierarchical
clustering techniques (Eisen, 1998; Grotkjær et al., 2006), k-means
clustering (Tavazoie, 1999), techniques such as Self Organizing
Maps (SOM) (Tamayo et al., 1999), or combinations of these
techniques (Herrero and Dopazo, 2002). While this works well for
smaller microarray data sets it has some limitations, specifically
with larger microarray data sets. Most clustering techniques base
their distance metric on the entire range of experimental conditions,
when typically only a subset of conditions is responsible for the
functional similarity; and most standard clustering techniques do
not take into consideration that genes can participate in multiple
modules, which nearly every gene does.

Coupled two-way clustering (CTWC) (Getz et al., 2000)
introduced the notion that clusters contain subsets of genes and
experiments. A notable work using this idea is the Signature
Algorithm (Bergmann et al., 2003; Ihmels et al., 2002, 2004). This
work develops the concept of a transcriptional module as a subset of
genes and experimental conditions. A set of seed genes is first scored
with all experimental conditions and highest-scoring conditions are
retained. Then all genes in the microarray are scored with a separate
scoring function over the subset of selected conditions. All high-
scoring genes are included in the result set. Some of the original
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seed genes may be dropped if they score low and new genes are
added (Ihmels et al., 2002). The algorithm may then iterate until it
converges on a set of genes which is taken to be a functional module
(Bergmann et al., 2003; Ihmels et al., 2004).

Similar work is also performed at the level of protein–protein
interaction data (Dittrich et al., 2008; Pereira-Leal et al., 2004;
Snel et al., 2002; Spirin and Mirny, 2003). Functional modules at
this level are characterized by a very high number of interactions
between proteins within a module compared to a lower number of
interactions outside of the module. Most algorithms in this category
are graph algorithms operating on known protein interaction
networks. Several promising approaches have also been undertaken
in combining both protein–protein interaction data and gene
microarray expression data to derive functional modules at both
levels (Tornow and Mewes, 2003). Other approaches integrate yet
more data, such as growth phenotype data, transcription factor
binding sites (Tanay et al., 2004) or physical interactions, protein
function, and network topology characteristics (Wong et al., 2004)
across multiple diverse data sources.

This article analyzes microarray data of the fruit fly (Drosophila
melanogaster) with the purpose of detecting genes participating in
cellular pathways. The resulting groups of related genes produced
by our algorithm can be used as basis for the recovery of
regulatory interaction networks and for the assignment of functional
annotations to genes with few or no current annotations. Our
machine-learning approach is related to remote homology detection;
it is capable of detecting weak similarity signals in data sets where
other algorithms produce no significant results. The open nature of
the machine-learning algorithm also allows us to study data sets
based on different sources of similarities

The next section provides our motivation and an overview of
the proposed algorithm, followed by a detailed description of the
important steps and the data sets used. Results are presented and
discussed in the following sections and the article ends with a
conclusion and outlook on further research.

2 METHODS
We apply Hidden Markov Models (HMMs) to the problem of detecting
genes related to a group of input genes in microarray data sets because
of the excellent capability of HMMs in handling time-series data (Rabiner,
1989). The problem of searching for functionally related genes is similar
to the protein remote homology detection problem, which is concerned
with finding protein sequences related to a group of proteins with known
structural similarities. The information from multiple protein sequences is
commonly presented as a Position-Specific Scoring Matrix (PSSM, also
referred to as ‘profiles’) (Gribskov et al., 1987) describing the probability
of finding amino acids at a position in a protein sequence, based on a
set of input proteins. Krogh et al. (1994) introduced the idea of using
HMMs to model profiles (‘Profile HMMs’). Profile HMMs represent the
probability distributions of amino acids at all positions in the multiple
sequence alignment. The topology of a Profile HMM is a linear series of
states that are traversed sequentially, starting from the leftmost (starting)
node.

2.1 Algorithm overview
The algorithm proposed in this article is designed to work with input genes
based on common Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway (Kanehisa et al., 2004), common functional properties, or common

Gene Ontology (GO) annotations (The Gene Ontology Consortium, 2000).
It proceeds in clearly defined steps:

(1) A microarray data set is acquired from a public source and prepared
using published data preprocessing and cleansing techniques to
produce a complete expression matrix with no missing values.
Missing value imputation increases the amount of information
available to the analysis algorithm.

(2) Input genes are selected from the literature or from publicly available
databases. Genes with an average pairwise correlation coefficient
above a certain threshold in the microarray are selected for HMM
training. Microarrays are often generated to study gene responses
under specific conditions, and not all sets of related input genes
show significant similarities in all microarrays. This step filters out
genes where the similarity relation is not captured well in the selected
microarray.

(3) A novel algorithm is used to select a relevant subset of experiments
from the microarray data matrix that best represent the input
genes. Similarities in gene behavior generally do not extend to all
experiments in a microarray. This step filters out experiments where
there is low similarity between the selected genes. All experiments not
in the subset are discarded from the expression matrix. This step filters
out experimental conditions where the input genes are less likely to
cooperate.

(4) A HMM is trained on the input data set, consisting of the gene
expression values of the input genes at the subset of experimental
conditions from Step 3. Additional sets of HMMs are trained from
random sets of genes of the same size as the input gene set to enable
an estimation of the significance of HMM scores. These scores are
used to find new genes related to the input genes.

(5) All genes in the microarray are scored with each trained HMM.
The random-gene-trained HMM scores are used to estimate the
Parzen density function (PDF) (Parzen, 1962). New genes from the
microarray are added if the score from the input-gene-trained HMM
is statistically significant, given the PDF for that gene. This step filters
out genes not related to the same source of similarity selected for the
input set. Generating the PDF is further discussed in Section 2.4.

A graphical outline of the algorithm is presented in Figure 1. The following
sections describe each step of the algorithm in detail.

2.2 Microarray data sets and data preparation
There are several databases publishing microarray data sets. Prominent
among them are The European Bioinformatics Institute’s (EBI)ArrayExpress
(Parkinson et al., 2007) and the National Center for Biotechnology
Information’s (NCBI) Gene Expression Omnibus (GEO) data base (Barrett
et al., 2006; Edgar et al., 2002). The data set used in this article is selected
from the GEO database, accession number GDS191, the life cycle of
Drosophila (Arbeitman et al., 2002).

Experimental microarray data sets often contain missing values stemming
from errors or contaminations in the experiment that render parts of the results
unusable. However, statistical analysis algorithms work best with complete
data sets. While missing data can be modeled in the statistical tests, more
often the experimental data sets are pre-processed to eliminate gaps as much
as possible.

At this stage our algorithm imputes missing values using a KNN-based
method (Troyanskaya et al., 2001). Missing values are estimated to be the
average of the five closest genes, as measured by root mean squared distance
(RMSD) in the microarray. Once the data set is complete it is passed on to
the input gene pre-processing algorithm.

A subset of genes is then selected with an average absolute pairwise
correlation coefficient above a certain threshold. We use the commonly used
Pearson correlation coefficient to calculate the similarity between two gene
expression profiles. The input for this algorithm is a set of genes known to
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Fig. 1. Algorithm outline: given a microarray and one pathway from the KEGG database, functional features (subset of features where pathway genes show
very high correlation) are calculated. This input set, along with multiple random-generated input sets with the same number of genes, is used to train HMMs,
one HMM per input set. All genes in the microarray are scored with all HMMs and the PDF for each gene is derived. Genes with significant scores from the
input-gene-trained HMM are included in the result set.

be involved in the same pathway or cellular function. In this article we select
our list of input genes list from the KEGG pathway database.

2.3 Functional feature reduction
Cellular functions do not typically span the entire set of experiments covered
by a microarray. The first step in the analysis then is to detect a reasonable
subset of experiments in which the input genes show the greatest level
of similarity, as measured by the average absolute pairwise correlation
coefficients. We are calling these conditions the Functional Features of the
microarray and the input gene set. A novel algorithm is developed to select
these experiments; this algorithm chooses n Functional Features from a
microarray with m experiments where genes are highly correlated, as outlined
in Algorithm 1.

Algorithm 1

1: Repeat until convergence 
2:  Select experimental conditions 1 – n
3:  for i = 1 … n
4:   calculate average pairwise correlation, c, over 1 … n
5:   for j = n+1 … m
6:    exchange experimental features i and j
7:    calculate average absolute pairwise correlation, d
8:    if d < c then
9:     reverse, exchange features i and j again 

10:    Else
11:     keep features exchanged 
12:    end if 
13:   end for 
14:  end for 

Algorithm 1 converges when the set of experimental conditions 1−n
remains unchanged after one loop iteration. A number of n = 60 experiments
is chosen initially to represent the Functional Features in the microarray,
reducing the dimensionality of the data set to those experiments where the
average pair-wise correlation of the input genes is largest. The set of input
genes, now each 60 elements long, is then used to train a HMM. The actual
choice of number of features n is less important, because the HMM model
used in the next step can mask areas of low similarity between the input
genes to a certain degree.

2.4 Functional learning using HMMs
2.4.1 HMM Are machine-learning tools for modeling hidden
(unobservable) generative processes from observable events (Baum
et al., 1970). The hidden process in an HMM is assumed to be a first-order
Markov Chain (Markov assumption). Parameters are learned from given
sequences of observable events. A trained HMM can generate observation
sequences similar to the training data, and for a given sequence the
probability that this sequence was generated by the HMM can be calculated.

HMMs are a widely used machine learning tools, especially in areas of
protein sequence alignments.

HMMs are essentially finite state machines that produce output symbols
according to an emission probability distribution B at each state [B={bi},
bi =P(Ot =vk |Xt =ait)], given a sequence of observations, O= (o1,o2,…,oT )
of length T , and observation alphabet, V=(v1,v2,…,vM ), of all events that
could possibly be observed. M denotes the number of discrete observable
events. In the most general case, each state may transition to any of the other
states in the HMM, according to a state transition probability A [A={aij}, aij =
P(Xt+1 =aj|Xt =ai)]. Due to the Markov assumption, each state transition
aij only depends on the current state ai. Each state may be chosen as starting
state according to the initial state distribution π [π, πi =P(X0 =ai)]. The
formal definition of a HMM λ is the set of all parameters:

λ= (A,B,π). (1)

The set of all observed events is the state alphabet set of the HMM and is
denoted by S, which is a subset of V . In continuous-value applications V
is obtained by binning the range of observable values into M bins. In our
algorithm V corresponds to a set of numbers denoting the bin into which a
microarray gene expression value falls, V = {1,…,M}. In the most general
HMM model the length of an observation sequence, T , can be shorter or
longer than the number of states.

Sequential applications of HMMs often use profile HMMs (Eddy, 1998;
Grundy et al., 1997; Karplus et al., 1999). Profile HMMs are very popular
in remote homology detection (Karplus et al., 1999), sequence alignments
(Krogh et al., 1994), and other sequential applications such as motif detection
and database search (Henikoff et al., 1995). In this algorithm we build a
profile of the gene expression patterns for genes with the same function,
or genes in the same pathway. HMMs are very well suited for this task.
Finding related genes, then, becomes similar to finding homologous protein
sequences, except that we look at gene expression values instead of amino
acid residues.

Figure 2 shows the topology of the HMMs used in our application.AHMM
represents the probability distribution of gene expression profiles at different
time points. In this model, a hidden state is related to a time point and the
emissions at each state represent gene expression levels (e.g. up- and down-
regulated). Thus, the emission probabilities are the probability distributions
for the expected gene expression levels at a particular time (state) and
the transition probabilities describe the probability of the expression level
of a gene at time t+1 given its expression level at time t. In our model,
HMMs have a matching number of states and observation sequence events
(N =T ). Our model deviates from profile HMMs described in Krogh et al.
(1994) and the approach taken in BLOCKS (Henikoff et al., 1995) in the
number of restrictions: it allows state transitions between all nodes if the
training data strongly indicates an advantage in this. After the training
step our HMM models tend to converge to true sequential HMMs for
the majority of nodes; exceptions generally have very low state transition
probabilities. This better enables the algorithm to model noise in the
data set.
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Fig. 2. A HMM with 14 states models a series of functionally related genes based on their microarray gene expression values. The topology of the HMM
is very linear, with state transitions ai,i+1 tending towards 1. If the training data indicates an advantage for transitions between other states our model will
accommodate it. Emissions at each state are gene microarray expression values. This HMM learns the ‘profile’ of gene expression for a group of related genes.
Other genes with significantly high probabilities to be generated by this HMM (‘HMM score’) are taken to be functionally related. The algorithm presented
in this article uses HMMs with 60 states.

2.4.2 HMM training Training an HMM is performed using the
Baum–Welch algorithm. This algorithm needs a fully specified initial
HMM model, even if it is initialized using random values. Our algorithm
initializes HMMs based on statistical observations in the input gene set.
The number of nodes is set to the number of experiments selected after
Functional Feature selection. Initial state probabilities are set to π = {π1 = 0.9,
π2 = 0.1/(N−1),…, πN = 0.1/(N−1)}, placing a heavy bias on the first node.
State transition probabilities are initialized similarly, using aij = 0.9 for
j = i + 1 and aij = 0.1/(N−1) for j �= i + 1, placing a heavy bias on always
proceeding to the next state. Emission probabilities are initialized based on
observed occurrence probabilities for each symbol.

These parameter settings provide an early approximation of the structure
of the final trained HMM, without locking parameters firmly into place.
Profile HMMs usually have a fixed starting state and always transition to
a state associated with the next observation. If the training data demands
changes to the basic HMM model then our model can accommodate that.
Otherwise it converges to a basic HMM model. Figure 1 demonstrates how
state transition probabilities converged to 1 for all states aij , where j = i + 1,
but also left a possibility to transition from state 4 to other states; and while
initial state probabilities for π actually decreased for state 1, it increased for
state 4. In general we expect π1 to converge to 1 after training.

Given this model, the Baum–Welch algorithm modifies the parameters
(A,B,π) to increase the likelihood P(O|λ) that this HMM generates the
provided observation sequences. There is no known algorithm to globally
maximize the parameters, so Baum–Welch locally optimizes λ until
the HMM reaches sufficient probabilities and parameters stabilize. The
Baum–Welch algorithm has a forward pass and a backward pass, which
are like the E and M steps in Expectation Maximization (EM) algorithms
and are guaranteed to converge to a local maximum (Dempster et al., 1977).

Let Q = {q1, q2, …, qN } denote the states of the HMM and I =
{I1, I2, …, IN } the underlying state sequence; in a true HMM we expect
I to converge to I = {1, 2, …, N}. Further, let λg denote parameter values
from the previous EM iteration, and O1:N the entire observation sequence
where the number of observations is identical to the number of nodes, N .
We can view Q as the hidden variables and define Q(λ,λg) as the auxiliary
functions to be maximized iteratively:

Q(λ,λg)=E[log p(O1:N ,Q1:N |λ)|O1:T ,λg], (2)

=
∑

q1:N
[log p(o1:N ,q1:N |λ)]|p(o1:T ,q1:N |λg) (3)

Each iteration of the Baum–Welch EM algorithm updates parameters λ by
maximizing Q with respect to λ:

λi =argmax
λ

Q(λ,λi). (4)

This re-estimation procedure is repeated iteratively until convergence is
reached, when the change in parameter estimates λ is very small between
successive EM iterations. The final HMM model is called the maximum
likelihood estimate of that HMM.

2.5 Random HMM generation and result genes
The fully trained HMM is used to score every gene in the microarray,
using only the Functional Features identified in the previous step. The score
is calculated as the probability that an observation sequence, i.e. a gene
expression profile, was generated by the HMM. A high probability score
indicates a high likelihood that the gene was generated by the HMM and
belongs to the same functional module as the input genes used for training.
We are looking for genes that score very high given the trained HMM. Our
result group of genes then consists of all genes from the microarray with
statistically significant HMM scores.

To estimate the significance of the obtained probability scores, we generate
multiple groups of genes randomly selected from the entire microarray; each
group contains the same number of genes as the input gene set, and the same
training process is then used to produce fully trained HMM models from
these random groups. Each gene in the microarray is scored again using all
random-trained HMM models. The resulting scores are used to estimate the
Parzen density distribution function (PDF) (Parzen, 1962) for that gene. If
the probability score from the input gene-trained HMM is significant with
respect to the PDF of the random-trained HMM scores, the gene is included
in the functional module set.

Parzen density functions have the advantage of not relying on a-priori
assumptions on the distribution of HMM scores, but are derived directly
from the data itself. A PDF is a non-parametric kernel density estimation.
The density function, p̂(x) is calculated as

p̂(x)= 1

V

n∑

i=1

Ki(xi). (5)

2948

 at U
niversidade de S

?o P
aulo on O

ctober 27, 2010
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


[17:47 30/10/2009 Bioinformatics-btp521.tex] Page: 2949 2945–2954

Identification of genes

It is the sum of kernel functions Ki(x) around xi. The scaling factor V ensures
that the total area under the function is 1. While K can be any kernel function,
most commonly a Gaussian kernel centered on the data points is used, such
that Ki(x)=G(x;xi,�). The general Gaussian kernel G=G(x;µ,�) is given
in Equation (6):

G(x;µ,�)= 1

(2π)
d
2 |�| 1

2

e− 1
2 (x−µ)T �−1(x−µ)

. (6)

Here d refers to the dimensionality of the data; µ is the center of the kernel,
� and the covariance matrix.

Significance estimates are calculated as the p-value of the original HMM
score given the PDF derived from scores of all random-trained HMMs. One-
tailed probability thresholds for p are set very low to exclude ‘noisy’ data,
i.e. high-scoring genes that are not related to the input gene group. Genes
with significantly high scores are added to the input genes and form the set
of result genes

2.6 Statistical analysis
Functional annotations of the set of result genes are compared to annotations
of the input gene set to estimate the confidence that new genes really are
related to the input genes. This is not trivial; each gene has multiple different
functional annotations in GO, because each gene participates in multiple
cellular functions. Even if an input gene data set is chosen based on a specific
functional similarity, other biological functions may also be overrepresented
in the same data set. A machine-learning algorithm given this input set may
pick up new genes related to any of the original functions, not just the
intended one. It is important to account for this in the final analysis of the
result set.

In our analysis, we characterize the biological function of the input gene
set by the list of GO term biological process annotations of all genes in the
set. The modules we find are parts of the complex biological machinery of
the cell, so we are primarily interested in whether genes are involved in
related biological processes.

The list of GO terms for any new gene in the result set is first enlarged by
including all direct parent and child terms in the GO term hierarchy. Then
all GO terms from gene homologues and orthologs listed in the FlyMine
database (Lyne et al., 2007) are added, and annotations from interacting
proteins from the BioGRID database (Stark et al., 2006) are also added.
The similarity between input genes and the set of new genes is calculated
as overlap between both GO term lists, and by comparison of statistically
overrepresented GO terms (given only the genes in the microarray) in both
sets. We are looking for high match rates in both categories.

Overrepresentation analysis was performed using the freely available
Ontologizer software (Bauer et al., 2008; Grossmann et al., 2007). This
software package allows the calculation of overrepresented GO terms
based on restricted input data sets, which allows for a calculation relative
to the genes in the microarray data set we used. Calculations were
carried out using the term-for-term mode and Westfall-Young single-step
calculation with 500 samples. Any result visualizations are performed using
GraphViz.

If genes in the result set do not have any GO term annotations they are
assigned a function based on the closest or most dominant category of the
combined group, and are assigned to the cellular pathway of the input gene
set. The higher the number of matches between the input gene set and the
new genes in the result set, the higher the confidence of this assignment.

Due to the nature of this algorithm there remains a small amount of
randomness in the results. Each algorithm run may produce slightly different
sets of results; however, the overlap between result sets is very large. The
difference stems from the use of randomized groups of genes used to estimate
a PDF for each gene. Each run will produce a new set of random gene sets,
affecting the PDF slightly.

3 RESULTS
We performed tests on synthetic microarray data sets and on a
biological data set. Two synthetic data sets were constructed: one
by embedding a simulated pathway into a data set of randomized
gene expression values. This pathway consists of gene expression
values generated from an HMM previously trained on the cell cycle
pathway in a biological data set. The second data set contains a
pathway with aggregate gene expression values of the pathway genes
above a certain threshold.

This first data set (HMM set) contains 100 experiments for 500
genes. The first 125 genes contain the simulated pathway, extending
over 40 experiments. Gaussian noise, multiplied by a factor ranging
from 0 to 4 was added to evaluate the ability of the algorithm to
recover the correct set of Functional Features and pathway genes.
The data set used is shown in Figure 3b.

A second synthetic data set (SA set) was generated based on
Bergman et al. (2003) to compare the performance of our algorithm
to the Signature Algorithm. This data set, Ecg, was generated by
setting gene expression values of all members of the pathway to 1,
and all other values in the microarray to 0. The matrix Ecg was then
multiplied by scaling factors sg and sc, Ecgsgsc, picked randomly
from the uniform distribution over [0,1] for each gene and condition.
Varying degrees of noise was then added to every element of the
matrix. The data set we generated is shown in Figure 3a.

The biological microarray used in this article was taken from
GEO, a large repository hosted by the National Institutes of Health
(NIH) (Barrett et al., 2006; Edgar et al., 2002). The data set accession
is GDS 191, which is the Life Cycle of Drosophila (Arbeitman et al.,
2002). This microarray captures the life cycle of D.Melanogaster
from conception through 30 days under normal environmental
conditions. At each time interval during the experiment expression
levels of genes from the entire organism were tested. This data set
is first parsed to remove any data not related to the result (duplicate
rows, tests, comparisons, etc.), and columns and rows with an
excessive amount of missing data are also removed (columns:
≥25%, rows: ≥33% missing), due to limitations in the ability to
impute very large blocks of missing values. Any remaining missing
values are imputed, resulting in a 2646 × 158 gene expression matrix
with no missing values.

In sections 3.2 and 3.3, our algorithm is run with two biological
input gene data sets: (i) the KEGG cell cycle reference pathway, and
(ii) the KEGG dme03012 pathway (translation factors).

The most closely related algorithm to the work presented in this
paper is the Signature Algorithm (Ihmels et al., 2002). Similar to the
Signature Algorithm, we select a subset of experimental conditions
before proceeding with the selection of similar genes. We found,
however, that the Signature Algorithm did not perform well with the
data sets we were studying. In section 3.4 we provide comparative
results obtained with an implementation of the Signature Algorithm
as it is described in the literature.

3.1 Synthetic data set—evaluation
3.1.1 Feature selection Our algorithm uses the average absolute
pairwise correlation coefficient of all possible pairs of input genes
to select a subset of n Functional Features from the microarray data
set. We use a synthetic microarray data set to evaluate the ability of
our Functional Feature algorithm to select the correct features with
respect to an increasing amount of noise.
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Fig. 3. (a) Synthetic Signature Algorithm (SA) data set, created according to Bergman et al. (2003) (see Section 3.1 for details). The pathway contains 250
genes and extends over 40 experiments. The entire data set contains 2600 genes and 100 experiments. (b) HMM data set is created by generating sequences
of expression values from a previously trained HMM and embedding it in a matrix filled with random expression values. This pathway contains 125 genes
and extends over 40 experiments. The entire data set contains 500 genes and 100 experiments. (c) ROC curves using our HMM Algorithm and the HMM
data set. We used 50 genes to train the HMM, the ROC curve shows the performance finding the remaining 75 genes in data sets with increasing amounts
of noise. Noise Level 2 contains some noise; Noise Level 4 leaves the pathway almost indistinguishable from background noise. An ROC curve for the
Signature Algorithm on the HMM data set at Noise Level 0 (no noise added) is included to demonstrate that the SA algorithm does not perform well on the
HMM data set. (d) Shows a comparison between the Signature Algorithm and our HMM Algorithm using the SA data set. In this test we use 125 randomly
selected training genes and recover the remaining 125 pathway genes. The data set contains a medium level of noise (3). Both algorithms show comparable
performance. The Signature Algorithm does not work well with the HMM data set because the expression values of the pathway are, on average, lower than
the random expression values. The Signature Algorithm works by finding genes with aggregate expression values over all pathway genes above a threshold.

Using the HMM data set we select the first 50 genes of the pathway
as input gene list. The purpose of this step in our algorithm is to
select a good set of n features for the HMM training and evaluation
algorithm.

Our Functional Feature algorithm recovers 97.5% of the correct
features in the data set at noise level 0 (no noise), 95% of features
at noise level 1, 80% of features at noise level 3, and 60% at
noise level 4 (pathway begins to blend into background noise).
Even at noise level 4, the algorithm is still above purely random
performance.

The advantage of the HMM algorithm is its ability to focus on
features with higher amounts of information during the training
process, and place less emphasis on features that provide less
information.

3.1.2 Gene selection Using the two synthetic data sets (HMM
set) and (SA set) we evaluate the performance of our HMM
algorithm in comparison to the Signature Algorithm and the effect
of increasing noise on the ability to recover pathway genes.
Figure 3c and d shows the results.

The HMM algorithm is tested on the HMM data set containing
one pathway that includes 125 genes and extends over 40 conditions.
This pathway was generated using an HMM previously trained on
the biological data set and the cell cycle pathway. It was embedded in
a 500×100 microarray consisting of randomized expression values.
To simulate noise, Gaussian noise multiplied by factors 0–4 was
added to the entire microarray. Our algorithm shows a good ability
to recover pathway genes even in noisy data.

The Signature Algorithm does not work well with this synthetic
microarray (Fig. 3c). By design, the Signature Algorithm detects
groups of genes with higher-than-average aggregate expression
values over the set of pathway genes. In the HMM data set the
pathway genes are distinguished by high HMM scores instead; the
expression values of the pathway genes are lower than many random
genes.

To perform a valid comparison to the Signature Algorithm on
synthetic data, we generated a 2600×100 microarray using the same
method described in Bergman et al. (2003). In this data set, the
pathway is characterized by genes with higher average expression
values relative to the remaining genes. The pathway contains 250
genes and extends over 40 conditions. We then added Gaussian noise
to the entire microarray. This data set works with the strengths of
the Signature Algorithm.

Our analysis in Figure 3d shows that the HMM Algorithm is
competitive to the Signature Algorithm on this data set.

3.1.3 Run time evaluation Our algorithm consists of three steps
that tend to contribute differently to the total run time, depending on
the size of the microarray data set, the size of the list of input genes,
and the size of the Functional Feature set. We tested the timing of
these parts of the algorithm using the HMM data set and a set of 50
input genes:

(1) Functional feature selection run time depends on number of
features and the number of input genes. The run time from
start of the program, including loading of all data sets, until the
completion of the selection algorithm is 47 s with the synthetic
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HMM data set. The complexity bound for this state is given
by O[N(N −M)K log (K)], where N is the number of features,
M is the number of experimental conditions in the microarray
data set, and K is the number of genes in the gene input list.

(2) HMM training and gene scoring. This step is also dependent
on the same factors—number of Functional Features and
number of input genes. Additionally, this step trains multiple
HMMs from random sets of input genes, which multiplies the
time requirement by the number of random HMMs. This step
is trivially parallel, however, which makes it convenient to
use in a multi-CPU environment. Our tests were performed
using 400 random HMMs and were run using 4 Java threads
on a 2.4 GHz quad-core Intel Q6600 CPU (running at an
elevated 3.0 GHz). Run time for this part of the algorithm
using the synthetic data set with 400 random HMMs is 7 min,
46 s. The Training step uses the Baum–Welch algorithm with
a complexity bound of i∗O(K2N), where i is the number
of iterations, K is the number of states and N the length
of the sequence; we use 500 iterations in our training step.
With our linear HMM topology the number of states tends
towards 1 for each observation, but the step is repeated for
multiple HMMs, so the bound is given as: h∗i∗O(N), where
h is the number of HMMs used in an algorithm run. In a
similar fashion the bound for scoring is given for the Forward
algorithm as h∗O(K2N) where K also tends towards 1.

(3) Evaluation and Parzen Density Function (PDF). The run time
of this step is dependent on the size of the microarray data set
and the number of random HMMs used, because every gene
in the microarray is scored with every HMM. This step is also
trivially parallel and is performed using 4 Java threads. Run
time for this step is 39 s, including disk output of the results.
The complexity of this step only depends on the number of
scores provided, which corresponds to the number of HMMs
produced in the previous step. The complexity bound is thus
constant, O(K), where K is the number of HMM scores,
which is independent of the size of the microarray and gene
input set.

The total run time using 50 input genes is 9 min, 12 s. Run
times vary slightly between runs due to the random nature of this
algorithm. The major factor for the total run time is the use of
random HMMs to estimate the significance of a gene score. Each
random HMM is generated and scored using the same algorithm
as the original HMM, and doubling the number of HMMs nearly
doubles its run time.

3.2 KEGG cell cycle data set (derived)
There currently is no cell cycle pathway available for
D.melanogaster in KEGG, so the data set used here is the set of all
orthologs from the reference cell cycle pathway in KEGG, selecting
only the genes present in the pre-processed GDS191 microarray data
set. Eighteen genes matched and were taken as input genes for the
algorithm. One gene with a low average pairwise correlation to the
remaining set was removed, yielding an HMM training set of 17
genes.

Eight-hundred additional HMMs were trained from random-
generated groups of 17 genes to estimate the PDF used for each
gene, and a low p-value of 0.005 as used as significance threshold for

the inclusion of new genes, given the PDF. Our algorithm produced
27 new genes with these settings, 23 of them with current GO term
annotations.

Figure 4a shows the similarity in expression patterns between the
dominant features of the set of input genes and the new genes added.
Functionally these new genes in the result data set are similar to the
input gene data set.

Overrepresentation analysis shows that both the original set
of genes and the combined result set have the same functional
characteristic, which is a strong indication that the new genes added
to this group are not random.

Analysis of the functional annotation shows that the majority
of new genes with GO term (biological process) annotation are
functionally related to the input gene data set. Eighty-three percent
of genes have annotations directly matching the set of expected
annotations for the input genes. Four new genes have no GO Term
annotation and based on these results we predict genes with no
current GO term annotations to be annotated with the Cell Cycle
biological process. These genes are: FBgn0033459, FBgn0033992,
FBgn0030122 and FBgn0028506.

Of the remaining three genes with no direct match with the input
gene annotations, two genes only have a single annotation. It is
reasonable to add a cell cycle annotation to these genes as well:
FBgn0030854 and FBgn0038306. This leaves just one gene with
no matching annotation, FBgn0013269. Its pathway annotation is
‘Protein Folding’.

3.3 KEGG translation factors (dme03012) data set
The translation factor pathway genes taken from KEGG (KEGG
Database) exhibit a low average pairwise correlation in our
microarray data set. Pre-processing the input data set to exclude
genes with low average pairwise correlation produces only 10
matching genes between the microarray and the pathway. In these
10 genes we found two subgroups of five genes that exhibit a very
high average pairwise correlation. This indicates that the pathway
may contain more than just one function, and overrepresentation
analysis confirms that each subgroup captures a different GO term
annotation category from the original set of all pathway genes. The
overrepresentation graph for the pathway created by Ontologizer is
shown in Supplementary Figure 1.

This is an interesting situation. To find genes associated with the
Translation factors pathway, we ran the algorithm twice—once for
each of the subgroups. The results were combined again for the
analysis step.

New genes were added in two independent runs of the algorithm,
the result data set was combined for the final analysis. The number
of random-group HMMs was lowered in this case to 400, and
the inclusion p-value increased to 0.035 to account for the small
size of the input set. The results are shown in Figure 4b. The two
independent runs produced 6 and 19 new genes, respectively, for a
total of 25 genes added to the original 10 genes. Figure 4c shows
the combined result set matrix. Of the 25 new genes there are 10
matches with expected GO terms from the input data set; one genes
is annotated with a different pathway (‘purine metabolism’) and
one gene with a single, but different GO term (‘protein amino acid
glycosylation’), producing a match rate of 88%. Eight genes have
no prior GO term or pathway annotation and can be annotated with
the translation factors pathway.
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(a) (b) (c)

Fig. 4. (a) Input and result genes for the cell cycle pathway. Result genes show a very similar expression behavior as the input genes. (b) Two input gene
groups, and result genes for translation factors pathway. In this case the pathway was split into two groups of genes, each producing their own result genes.
Expression levels are generally low, but show similarities for each group. (c) Comparison between HMM- and correlation-based re-sults for the cell cycle
pathway. The result genes produced by the correlation-only algorithm exhibit visibly less consistent expression behavior to the input gene group. This is
confirmed in the statistical analysis.

Putative annotations for the ‘translation factors’ pathway are
assigned to genes FBgn0001977, FBgn0042125, FBgn0037490,
FBgn0035373, FBgn0036958, FBgn0034643, FBgn0036911 and
FBgn0033794.

Overrepresentation analysis confirms that input genes and
result data sets share common overrepresented GO terms. The
overrepresentation graph produced by the Ontologizer software is
listed in Supplementary Figure 2.

3.4 Discussion—cell cycle data comparisons
3.4.1 Why not just use correlation? Our algorithm uses machine-
learning tools to pick out genes whose expression profile is similar
to a group of input genes. It would be computationally much faster to
simply pick out new genes based on correlation coefficients between
new genes and the group of input genes.

We ran the purely correlation-based algorithm on the same pre-
processed cell cycle data set. The data set does have a very good
pairwise correlation coefficient to begin with, so is it possible to pick
out new genes based on correlation? Figure 4c shows a comparison
between HMM- and correlation-based runs.

It is possible to find genes that have a similar gene expression
behavior in the microarray, although visually the HMM approach
produces better agreement between the character of the input gene
data and result genes. Functional analysis reveals that the resulting
group of genes does not have the same functional characteristics
in the overrepresentation analysis as the input genes. The new
genes also do not have a significant number of expected GO term
annotations.

The HMM-based approach is apparently more apt at recognizing
the relevant expression values of the input genes. It is interesting to
see how areas of greater variance in the expression values of input
genes produce a more uniform expression level in the result genes,
as seen in the right part of the result data set. Correlation by itself
is limited in its ability to find relevant genes given a set of input
genes.

3.4.2 Comparison to the Signature Algorithm The Signature
Algorithm works with a similar overall architecture, but the details of
the algorithm are implemented very differently. The gene expression
matrix is normalized within each experimental condition to zero

mean and unit length for all expression values. Experimental
conditions are selected where the sum over absolute expression
values for the input genes are significant (above a threshold). The raw
expression matrix is then normalized again with respect to each gene,
weighing each condition according to its condition score, and genes
with a significant absolute sum of expression values are added to
the functional module. To reduce noise the algorithm is run multiple
times with slightly modified input data sets: a fraction of the input
set is replaced by random genes. Genes that occur in the majority
of result sets are taken as final result of the algorithm run. This
eliminates false positives based on potential noise in the input gene
data set.

This algorithm has proven to run well with combined yeast
microarray data sets (Ihmels et al., 2002). We have run the Signature
Algorithm with the same data sets used in our study of the fruit fly,
the GDS191 microarray and the derived KEGG cell cycle pathway
for D. melanogaster. The set of input genes is the same set of 17
genes used with our algorithm.

While we were able to generate results for individual data sets,
the recurrence requirement did not turn out to have enough recurrent
genes to be added to the result data set. In fact, we ran the algorithm
for 20 iterations with fixed parameter settings and a fraction of 25%
of input genes replaced with randomly selected genes each time,
producing widely varying result both in the number of experimental
conditions as well as in the number of genes included in the
functional modules. These results are shown in Supplementary
Table 1.

This is an interesting result. Why does an algorithm that is so
successful with the yeast data set produce no results? The Signature
Algorithm works based on summation over ranges of genes and
conditions. Our analysis of the scores produced by the Signature
Algorithm show that there is decent separation between experimental
conditions of the input genes and the rest, enabling a selection of
the Signature (subset of conditions where input genes score above
a threshold).

The problem seems to be the scoring of all genes in the microarray
data set. While it is possible to select genes above a certain threshold
for any given set of input genes, we were not able to generate
result data sets with recurrent genes produced by slightly modified
input data sets. The microarray we used apparently does not contain
features strong enough to be detected by the Signature Algorithm.
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This suggests that our algorithm is able to pick out weaker signals
from the data. The signal in this case is a certain gene expression
profile that is related to some cellular function or pathway.

4 CONCLUSION
The purpose of this algorithm is to detect functionally related genes
for cellular pathways and functional modules based on similarities
in the gene expression patterns of microarray data sets. To achieve
this goal, we propose a machine-learning algorithm that selects new
genes from a microarray data set based on characteristics in the
expression profiles of a group of input genes.

Data preprocessing ensures that the microarray data set is
complete and the input gene data set shows a reasonable level
of similarity in the selected microarray. A subset of experimental
conditions is selected from the microarray where the input genes
have the highest absolute pairwise correlation coefficient. Multiple
HMMs are then trained using the subset of conditions, one using
the set of input genes, all others using random groups of genes.
Each gene in the microarray is then evaluated and the statistical
significance of the score produced by the input-gene-trained HMM is
evaluated using the PDF derived from random-gene-trained HMMs.
Genes with p-values below a threshold are added to the result gene
data set.

Existing algorithms do not perform well and do not produce
biologically meaningful results with the data set we are studying.
The results presented in this article show how well our HMM-based
algorithm performs with a difficult data set compared to its closest
relative, the Signature Algorithm and with correlation-only based
algorithms. New genes were added to the original input gene data
set with evident functional ties to the input genes, allowing for the
characterization of genes with previously unknown functions with
putative pathway and GO term annotations.

Our algorithm has shown to provide good results from a single
microarray data set, generating modules of functionally related
genes from various sources of input. We propose to expand
this algorithm in two primary directions: integration of multiple
microarray data sets in the analysis, and iterating the current
algorithm until it converges on a set of genes and conditions.

Other proposed enhancements to the current algorithm include
improvements in the run time performance by utilizing the parallel
architecture of current video graphics hardware, and to use this
algorithm to perform semi-supervised clustering operations. Given
the nature of this machine-learning algorithm it requires prior
knowledge to train one HMM for each cluster. This may be used
to cluster a set of genes based on all KEGG pathways.

Other methods of selecting features in microarrays have been
proposed (Schäfer and Strimmer, 2005). While our Functional
Feature algorithm has been shown to perform very well, we also
propose to improve this step in our algorithm to enable us to apply
it to a larger range of data sets where the similarity relationships may
not be captured optimally by correlating observation sequences.
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