
Vol. 23 no. 21 2007, pages 2949–2951BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm479

Sequence analysis

Improved BLAST searches using longer words for protein

seeding
Sergey A. Shiryev, Jason S. Papadopoulos, Alejandro A. Schäffer and Richa Agarwala*
Department of Health and Human Services, National Center for Biotechnology Information, National Institutes of Health

Received on August 8, 2007; revised on September 13, 2007; accepted on September 19, 2007

Advance Access publication October 6, 2007

Associate Editor: Thomas Lengauer

ABSTRACT

Motivation: The blastp and tblastn modules of BLAST are

widely used methods for searching protein queries against protein

and nucleotide databases, respectively. One heuristic used in BLAST

is to consider only database sequences that contain a high-scoring

match of length at most 5 to the query. We implemented the capa-

bility to use words of length 6 or 7. We demonstrate an improved

trade-off between running time and retrieval accuracy, controlled by

the score threshold used for short word matches. For example, the

running time can be reduced by 20-30% while achieving ROC

(receiver operator characteristic) scores similar to those obtained

with current default parameters.

Availability: The option to use long words is in the NCBI C and Cþþ

toolkit code for BLAST, starting with version 2.2.16 of blastall.

A Linux executable used to produce the results herein is available at:

ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/protein_longwords

Contact: richa@helix.nih.gov

1 INTRODUCTION

BLAST is a widely used set of programs that produce local

alignments for input query sequences by searching a database of

subject sequences. In this note, we consider the blastp
module where the query is a protein and the database also

contains proteins, and the tblastn module where the query

is a protein and the database contains DNA sequences that

are hypothetically translated. The BLAST algorithm (Altschul

et al., 1990, 1997) consists of three major stages:

(1) Seeding stage: subject sequences are scanned to find

locations that resemble the query sequence. The output is

a list of offset pairs called seeds. Each seed represents

coordinates on the query and subject sequences.

(2) Ungapped extension stage: an initial extension for each

seed is performed by comparing the amino acids on both

sides of the seed. A decision is made whether the location

is of interest or not. At this stage, the majority (more than

99%) of seeds are typically discarded.

(3) Gapped extension stage: each high-enough-scoring

ungapped alignment becomes the starting point for a

local gapped alignment that attempts to improve the

score further. Gapped alignments for which the

calculated expect-value is below the threshold (default

is 10) are considered for the final result set.

Each stage takes �30% of the total running time.
This note presents improvements in the seeding stage.

In BLAST, seeding is implemented via a lookup table

approach. When we scan a sequence, for each location we
group several consecutive letters into a word. A numerical

representation of this word becomes the entry’s offset in the

lookup table. The lookup table was populated in advance using

words from the query sequence, so when we scan the subject
and find that the word being considered corresponds to a non-

empty entry in the lookup table, we have a seed. An example of

seeds of length 6 is shown below:

Query: 127 THRHMTEFTGLDMEMAF
T RH+ E +D EMAF

Sbjct: 117 TTRHLNEAWSIDSEMAF
Seed1 Seed2

To improve lookup performance, BLAST utilizes CPU caches

by employing a small bit array structure that is consulted prior to
accessing the lookup table (Cameron et al., 2006). The bit array

is used to avoid unnecessary (and expensive) lookups in the

lookup table for entries known to be empty.

2 METHODS

To improve the performance of the blastp and tblastn modules,

we modified the implementation of the seeding stage to reduce the

number of seeds generated, thus reducing time spent in later stages. The

primary concern was not with the speed of the seeding stage (although

we did spend some time optimizing it), but with the number and quality

of seeds produced.

An obvious way to reduce the number of seeds is to increase the

number of amino acids considered, which we call word size, when

deciding if we have a seed or not. The baseline code from which we

started supports word size up to 5, with the default of 3 and an

additional requirement that there be two seeds in close proximity (called

two-hit in BLAST). An early version used size 4 (Altschul et al., 1990).

A previous study showed that the two-hit requirement with word size

3 has a better time-sensitivity trade-off than using the older single-hit

rule (Altschul et al., 1997). Since the current code supports word size 5,

it was natural to ask whether lookup tables for word sizes 6 and 7 could

be designed, and if so, how they would perform.

A simple increase in word size is not practical because of exponential

growth in the size of the lookup table, e.g. for word size 7 we would

have at least 207 ¼ 1:3e9 lookup table entries! To tackle this explosion,*To whom correspondence should be addressed.

� 2007 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/protein_longwords
http://creativecommons.org/licenses/

we decided to use compressed alphabets that group similar letters

together into disjoint sets (Edgar, 2004). Grouping letters decreases

memory requirements, and if the compressed alphabet is chosen

carefully, the loss of information is less than the smaller alphabet size

would suggest.

To implement the seeding method described in this article, the

following subproblems must be solved: (i) choose an alphabet size;

(ii) given an alphabet size, determine the compressed alphabet;

(iii) given a compressed alphabet, decide how to populate the lookup

table; (iv) given a location, decide how to score a candidate seed;

(v) decide how to evaluate performance of the algorithm.

2.1 Choice of compressed alphabets sizes

The size of the CPU cache was the primary factor in deciding the size of

the alphabet to use for a given word size. On modern CPUs with

traditional architecture, the size of the level 2 cache is usually

somewhere between 512KB and 4MB, so 22–25 bits of address space

is an estimate for the ‘working set’ of the bit array and this in turn gives

us the number of entries in the lookup table.

Because the access pattern is highly non-uniform (due to the non-

uniform frequency distribution of amino acids), the actual size of the bit

array can be slightly larger than available cache while still being very

effective. For example, words starting with many ‘W’ characters are

extremely rare. Thus, we can rely on the CPU’s cache control

mechanism to adapt automatically to the incoming stream of letters

to keep the most frequent combinations in cache. An additional benefit

of a non-uniform access pattern is that performance changes gracefully

as the amount of available CPU cache changes.

For word sizes 6 and 7, we chose 15-letter and 10-letter alphabets,

respectively. This setup leads to a 1.4MB array of bits for 6-letter words

and a 1.2MB bit array for 7-letter words.

2.2 Choice of compressed alphabets

Using compressed alphabets in (Edgar, 2004) as the starting point, we

tested various compressed alphabets and selected the following ones:

IJLMV AST BDENZ KQR G FY P H C W ð1Þ

ST IJV LM KR EQZ A G BD P N F Y H C W ð2Þ

Each string of consecutive letters without spaces represents one letter set

in the compressed alphabet. Alphabet (1) is the ‘SE-V(10)’ alphabet in

Edgar (2004) with ambiguity characters added. For the 15-letter alphabet

(2), however, we added one more letter set to Edgar’s ‘SE-B(14)’.

Because the bit array may not fit into CPU cache on some machines,

using an alphabet’s matrix entropy (Altschul, 1991) as the sole selection

criterion is not sufficient. In practice, alphabet (2) demonstrated well-

balanced performance. To further reduce the number of cache misses,

we sorted letter sets within the alphabet in descending order of

background probabilities.

2.3 Populating the lookup table

We can populate the lookup table with encoded words from the query,

and then scan the subject looking for exact matches. Unfortunately,

such an approach is not sensitive enough.

To increase sensitivity, we employed the same threshold-based

mechanism as used in protein BLAST’s lookup table population. Not

only is the exact encoding of a word included in the lookup table, but

also all of the word’s neighbors, words that match the original word

with a score not lower than a given threshold.

The matching score between two words is the sum of substitution

scores for each pair of corresponding letters. The score for aligning one

letter with another is taken from a score matrix.

Because substitution score usage is central to the algorithm, we

cautiously decided not to use BLOSUM62 (Henikoff and Henikoff,

1992) at the standard precision because that precision may be too low.

Instead we used a scaled version of the integer scores obtained by

rounding C ln rij ¼ C lnðqij=ðpipjÞÞ, where C is a constant, qij is the

probability of aligning amino acid i with amino acid j and pi, pj are the

background probabilities of i and j, respectively (Schäffer et al., 2001).

Using a high-precision threshold allowed us much greater freedom in

selecting the sensitivity of the BLAST algorithm. For example, in

baseline blastp, going from threshold value 12 to 11 almost doubles

the running time and there is no allowed threshold in between. Now, we

can select any value and thereby adjust performance to meet time and

computing power constraints. The new threshold is entered as a floating

point number, treated on the same scale as the current low-precision

threshold, and then internally converted to a scaled-up integer.

2.4 Calculating matching score

Converting the query and subject to the compressed alphabet and using

a square score matrix (10� 10 or 15� 15) produced subpar results.

Using a square matrix loses information in both query and subject

sequences, leading to a high proportion of seeds that are discarded in

later stages.

To prioritize potential seeds, we decided to weight the matching score

by the probability of a match. For example, the matching score for ‘A’

to the ‘AST’ letter set is calculated based on the frequency ratio of ‘A’

to each one of the three letters weighted by the conditional probability

of that letter. This additional weighting is needed because at the time of

lookup table population, we do not know which exact letters we

will encounter—the compressed alphabet obscures that information.

We used background probabilities from Robinson and Robinson (1991)

to calculate conditional probabilities, e.g. pðAjA_S_TÞ, pðTjA_S_TÞ.

In practice, Robinson–Robinson background probabilities produced

good results, sometimes even better than using the observed letter

frequencies of the database.

Mathematically, the implemented scoring matrix is 20 (plus ambiguity

characters) rows by 10 or 15 columns. The score for matching amino acid

i to letter set gk, denoted by sik, is calculated using the formula:

sik ¼
1

�
ln

X

j2 gk

rijpð j j gkÞ ð3Þ

where j is an amino acid that belongs to the letter set gk, rij is the fre-

quency ratio defined above, � is a scaling factor and pðj j gkÞ is the group

conditional probability of amino acid j and is given by pj=ð
P

a2gk
paÞ.

The example in the Introduction section has two seeds. The query is

d1eova2 and the subject is d1b8aa2 from ASTRAL (Chandonia

et al., 2004). Seed1, a 6-letter seed with mismatch at position 1 and 5,

illustrates that we can have multiple mismatches at arbitrary

positions. Seed1 has a scaled score of 19.1 exceeding the recommended

threshold of 18.8.

2.5 Performance evaluation

To evaluate result quality, we used SCOP/ASTRAL (Chandonia et al.,

2004). The SCOP/ASTRAL dataset provides a gold standard from

which it is possible to identify true and false positives in the output and

compute ‘receiver operator characteristic’ (ROC) scores (Gribskov and

Robinson, 1996). We report ROC10000 scores, meaning that matches for

all queries are combined and ranked by expect-value up to the first 10 000

false positives. Program configuration A is considered to have higher

quality output than configuration B if the ROC score for A is higher than

for B. We used sequences of <40% identity in the current ASTRAL

version 1.71. True positives are query-subject pairs in the same

superfamily. We ignored self-hits and we used as queries, the 7218

sequences that have at least two sequences in the same superfamily.

Unfortunately, ASTRAL is not large enough to adequately represent

the more commonly used nr and Swiss-Prot databases. We therefore

decided to use a hybrid measurement approach. We measured ROC

scores produced by using different values of the threshold. We then ran

S.A.Shiryev et al.

2950

our software with these thresholds, ASTRAL data as the set of queries,

and the first volume of nr (4 August 2007 with 2 671 244 sequences and

903 233 208 total letters) as the database to measure running time. We

assert that the overall sensitivity of the algorithm is set by the threshold

and as such does not depend on the size of the database. The assertion

held when we used different ROC score datasets and when we

compared output quality on nr using different seeding strategies, but

set to the same sensitivity level.

In particular, the high precision for the threshold value allowed us to

match (by trial and error) the ROC score of our algorithm to the ROC

score of the baseline BLAST. This allowed direct comparison of running

times between these two programs. The performance evaluation method

described here has proven to be quite sensitive—it allowed us to see

minute differences in speed between different alphabets and word sizes.

Results of the performance evaluation of blastp are shown in

Figure 1. It can be seen that using word size 6 improves performance of

the program. Baselineblastp with default score threshold 11 took 18 h

56min, while blastp with word size 6 and threshold 18.8 took 13 h

37min. Performance results for tblastn are qualitatively similar

to blastp, although the ROC score test set we used is small

(Gertz et al., 2006).

The primary reason for this improvement is the much smaller number

of seeds generated in the first stage of the program. Compared to the

baseline configuration: for threshold 11 and its equivalent, for query

and subject used for the timing tests above, we have 1.3e11 seeds (word

size 6) versus. 2.3e12 seeds (baseline), i.e. 17 times fewer seeds to be

examined. In our tests of blastp, word size 6 worked better than 7.

3 IMPLEMENTATION

The results reflect performance on a 32-bit gcc 3.4.2 compiled
application (single-threaded) run on a 64-bit 3GHz Intel
Xeon 5160, 4MB L2 cache and 8GB RAM. We compiled on

a 32-bit machine for portability; compiling on the 64-bit
machine improves running time. The following command line
parameters were used to run baseline program: ‘blastall
�p blastp �C 2 �m 8’; for word size 6 runs: ‘blastall
�p blastp �C 2 �m 8 �W 6 �P 1 �f 18.8’. Option �C 2
is for compositionally adjusted statistics (Altschul et al., 2005;
Gertz et al., 2006); �m 8 is the output format; �W 6 is the word

size (default is 3); �P 1 to force one-hit extensions (default is
two-hit); �f 18.8 is the threshold.

4 DISCUSSION

Longer seeds would be expected to improve sensitivity of

BLAST searches, but memory limitations make longer seeds

difficult to implement with a good running time. Our

implementation shows that using compressed alphabets can

overcome the memory limitations for word sizes 6 and 7, while

retaining overall sensitivity of the algorithm. For output quality

comparable to the baseline BLAST, the running time decreases

by 20–30%. The implementation enables a fine-scale trade-off

between running time and output quality. Preliminary experi-

mental results for larger (eight letters or more) word sizes were

not promising.
BLAST can take as input multiple queries (e.g. in a single

FASTA-formatted file) and can scan the database for several

queries simultaneously to save time. Therefore, for any usage

with many queries, the effective query size should be large.

However, when the effective size of the query or the database is

small, our approach cannot yet compete with baseline BLAST

or deterministic finite automaton seeding (Cameron et al.,

2006) due to additional setup time required for building the

lookup table and to slightly slower scanning speed. Our method

is targeted for ‘bulk-processing’ applications that align large

queries to large databases, for which our implementation

outperforms both baseline blastall and the implementation

of Cameron et al. (2006).

ACKNOWLEDGEMENTS

This research was supported by the Intramural Research

Program of the National Institutes of Health, National

Library of Medicine. Thanks to Stephen Altschul, E. Michael

Gertz and Aleksandr Morgulis for helpful comments.

Conflict of Interest: none declared.

REFERENCES

Altschul,S.F. (1991) Amino acid substitution matrices from an information

theoretic perspective. J. Mol. Biol., 219, 555–565.

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST. a new generation of

protein database search programs. Nucleic Acids Res., 25, 3389–3402.

Altschul,S.F. et al. (2005) Protein database searches using compositionally

adjusted substitution matrices. FEBS J., 272, 5101–5109.

Cameron,M. et al. (2006) A deterministic nite automation for faster protein hit

detection in BLAST. J. Comput. Biol., 13, 965–978.

Chandonia,J.-M. et al. (2004) The ASTRAL compendium in 2004. Nucleic Acids

Res., 32, D189–D192.

Edgar,R.C. (2004) Local homology recognition and distance measures in linear

time using compressed amino acid alphabets. Nucleic Acids Res., 32, 380–385.

Gertz,E.M. et al. (2006) Composition-based statistics and translated nucleotide

searches: improving the TBLASTN module of BLAST. BMC Biol., 4, 41.

Gribskov,M. and Robinson,N.L. (1996) Use of receiver operating characteristic

(ROC) analysis to evaluate sequence matching. Comput. Chem., 20, 25–33.

Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution matrices from

protein blocks. Proc. Natl Acad. Sci. USA, 89, 10915–10919.

Robinson,A.B. and Robinson,L.R. (1991) Distribution of glutamine and

asparagine residues and their near neighbors in peptides and proteins. Proc.

Natl Acad. Sci. USA, 88, 8880–8884.

Schäffer,A.A. et al. (2001) Improving the accuracy of PSI-BLAST protein

database searches with composition-based statistics and other refinements.

Nucleic Acids Res., 29, 2994–3005.

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 2 4 6 8 10 12 14 16 18 20

T
hr

es
ho

ld
's

 R
O

C
 s

co
re

Running time (hours)

Word size 6 (single-hit)

18.81919.5
20

20.5
21

22

23

24

Baseline (word size 3, two-hit)

11

12

13

14

Fig. 1. Trade-off between blastp running time and ASTRAL 1.71

ROC10000 scores. Points for word size 3 are not connected as high-

precision thresholds are allowed only for word sizes 6 and 7. The

numbers next to the points in the graph are the score thresholds.

Improved BLAST searches

2951

