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Multiple sequence alignment:
In pursuit of homologous DNA positions
Sudhir Kumar1 and Alan Filipski
Center for Evolutionary Functional Genomics, Biodesign Institute and School of Life Sciences, Arizona State University,
Tempe, Arizona 85287-5301, USA

DNA sequence alignment is a prerequisite to virtually all comparative genomic analyses, including the identification
of conserved sequence motifs, estimation of evolutionary divergence between sequences, and inference of historical
relationships among genes and species. While it is mere common sense that inaccuracies in multiple sequence
alignments can have detrimental effects on downstream analyses, it is important to know the extent to which the
inferences drawn from these alignments are robust to errors and biases inherent in all sequence alignments. A survey
of investigations into strengths and weaknesses of sequence alignments reveals, as expected, that alignment quality is
generally poor for two distantly related sequences and can often be improved by adding additional sequences as
stepping stones between distantly related species. Errors in sequence alignment are also found to have a significant
negative effect on subsequent inference of sequence divergence, phylogenetic trees, and conserved motifs. However,
our understanding of alignment biases remains rudimentary, and sequence alignment procedures continue to be used
somewhat like benign formatting operations to make sequences equal in length. Because of the central role these
alignments now play in our endeavors to establish the tree of life and to identify important parts of genomes
through evolutionary functional genomics, we see a need for increased community effort to investigate influences of
alignment bias on the accuracy of large-scale comparative genomics.

The relative positions of nucleotides within the same gene in
different species and in duplicated genomic regions are disturbed
by insertion and deletion of stretches of DNA over evolutionary
time. This leads to differences in the length of the homologous
regions in the genome, with more distant relatives having a
higher likelihood of sequence length difference. A comparison of
lengths of genome segments spanning protein-coding genes in
human and mouse shows the extent of the effect of evolution by
insertions and deletions (Fig. 1). The lengths of noncoding or-
thologous sequences have also evolved substantially after diver-
gence over 90 million years ago. A grand challenge in compara-
tive genomics is to line up these bases by inserting gaps in se-
quences, because genomic analyses must be based on
comparisons between bases at positions (sites) that coincided in
a common ancestor. The task is to re-establish (estimate) the
ancestral site-wise homology obfuscated by the insertion–
deletion and substitution processes. Naturally, this operation has
come to be known as “alignment,” and the resulting set of se-
quences, all of which are the same length (taking gaps in to
account), is also called an alignment (Fig. 2). We can distinguish
between “pairwise” alignments, in which sequences, even if they
are part of a larger set, are aligned only in pairs, and “multiple”
alignments, in which more than two sequences are aligned si-
multaneously.

Alignment procedures may also be classified as either “glob-
al” or “local.” In the simplest form, sequences are aligned begin-
ning to end to produce global alignments. This is appropriate for
sequences of protein-coding genes and for short stretches of the
genomic sequence. For longer genomic DNA, it is necessary

to account for medium and large-scale rearrangements in addi-
tion to large sequence insertions and deletions, which necessi-
tates the building of local alignments. Local alignments differ
from global alignments in that the former focus on shared re-
gions of high similarity while ignoring regions that do not show
high sequence homology between sequences. Unlike traditional
global and local alignment methods that assume colinearity of
homologous segments among sequences, “glocal” alignment
methods model the rearrangement process explicitly during the
alignment procedure itself and result in a nonlinear mapping
between homologous regions of different sequences (Brudno et
al. 2003b).

For most applications in the areas of molecular phylogenet-
ics and evolution, we are interested in properties and relation-
ships of “rows” of the alignment, which represent species, genes,
or genomic regions (Fig. 2). Examples of these include inference
of multigene family and species phylogenies, determination of
evolutionary rates in different lineages, and identification of
bouts of selection and patterns of DNA sequence change over
time (Nei and Kumar 2000; Felsenstein 2002). The second use of
sequence alignments (local as well as global) stems from the need
to understand properties of individual or groups of contiguous
“columns.” A common example is the building of genomic pro-
files of conservation and divergence in different DNA positions
or sets of contiguous positions (genomic regions). These applica-
tions are considered to fall in the area of functional genomics
(Hardison 2000; Gaucher et al. 2002; Town 2002; Koonin and
Galperin 2003; Pevsner 2003). Of course, many studies involve
joint analyses of rows and columns, but from the perspective of
accuracy, the requirements of these two alignment usages are
quite different. In the following sections, we assess the existing
knowledge of the fidelity of the alignment process, focusing pri-
marily on finding motifs, estimating sequence divergence, and
inferring phylogenetic relationships.
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Practical sequence alignment

The amount of nucleotide sequence data in GenBank and other
public databases has expanded exponentially since the inception
of these electronic warehouses; the data now consist of over 125
billion base pairs of sequence data from over 200,000 organisms.
Understanding the functional significance of these data has be-
come the central problem in comparative genomics. Naturally,
because of this great volume of data, scientists would like to
establish DNA homologies by applying one or more of the highly
innovative alignment methods available today in an automated
high-throughput fashion (Thompson et al. 1994; Eddy 1995;
Morgenstern et al. 1998; Notredame et al. 2000; Brudno et al.
2003a; Covert et al. 2004).

The process of alignment involves insertion of gaps into
sequences to make them the same length. These gaps are hypoth-
eses about the site homologies resulting from historical inser-
tion–deletion events. Since mutations can cause two homolo-
gous sites to differ from each other (substitutions), the complexi-
ties of the alignment process transcend traditional string-
matching problems in computer science. The interplay of
insertion–deletion events and substitutions over thousands and
millions of years produces sequences that may lead to many dif-
ferent alignments, with some containing more gaps than others.
One may prefer a specific alignment over another if some “opti-
mality” score is better (Needleman and Wunsch 1970). Such

a score typically represents some func-
tion of the numbers and positions of col-
umns that contain identical bases, dif-
ferent bases, or gaps. Each difference is
penalized and there are penalties for in-
serting and extending gaps.

The scoring functions incorporate
differences in the likelihood of change
from one base to another and of insert-
ing of gaps of various lengths. It is well-
established, for example, that transi-
tional mutations are much more com-
mon than transversional mutations
(Vogel and Kopun 1977; Rosenberg and
Kumar 2003). Hence, transitional differ-
ences are penalized less (i.e., they are al-
lowed in the alignments more fre-
quently). Longer gaps are also known to
be rare as compared with shorter ones,
so alignments containing long gaps are
favored less (Waterman et al. 1976; Gu
and Li 1995; Qian and Goldstein 2001;
Miklos et al. 2004). However, the exact

value to be assigned to each parameter is difficult to determine,
as it is expected to differ between closely and distantly related
species and vary from species to species (Vingron and Waterman
1994; Wheeler 1995; Zhu et al. 1998; Yuan et al. 1999). Although
progress has been made in establishing biological justification for
the use of some scoring schemes, a comprehensive theoretical
framework for gap and substitution penalties still eludes us (Gu
and Li 1995; Miklos et al. 2004). Thus, the optimal alignment
under a specific scoring scheme may not be the true one (Landan
2005; Morgenstern et al. 2006). In fact, many different align-
ments for the same sequence set may be equally optimal under
the scoring scheme chosen, and it is often difficult to choose
among them (Fitch and Smith 1983; Wheeler and Gladstein
1994; Vingron 1996; Cerchio and Tucker 1998; Landan 2005).
Furthermore, the accuracy of the alignments obtained using
common default values of alignment parameters is only slightly
worse than those obtained were we to know the true penalties for
inserting gaps and allowing base substitutions (Landan 2005).
This means that the absence of knowledge of true parameter
value does not substantially affect the alignment accuracy, al-
though it also points to the need for developing methods
wherein the true parameters can be used more effectively.

Insurmountable computational demands limit our ability to
generate optimal alignment for more than a few sequences. Find-
ing an optimal alignment for a single pair of sequences, even very
long genomic ones, has become practical using dynamic pro-

Figure 1. Frequency distributions of percent difference in total coding sequence length (exons only)
between human and mouse orthologs (light gray) and between human and chimpanzee orthologs
(black) for 7645 protein-coding genes. Forty-nine percent of the genes exhibit some length difference
between human and mouse; human and chimpanzee orthologs exhibit length difference in only 17 of
these 7645 genes. Data from Clark et al. (2003).

Figure 2. Example of an alignment. A phylogenetic tree is shown for the taxa (rows), and a G+C content profile is shown for the sites (columns).
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gramming methods that now require running times and memory
requirement proportional to the total lengths of the two se-
quences (Needleman and Wunsch 1970; Myers and Miller 1988;
Delcher et al. 2002; Kurtz et al. 2004). However, the time require-
ments go up exponentially with increasing numbers of sequences
and quickly exceed the capabilities of available computers, even
when cleverly optimized (Lipman et al. 1989). Therefore, all prac-
tical applications today resort to the use of heuristics when align-
ing more than a few sequences. Progressive alignment is the most
commonly employed heuristic procedure. In this method, a mul-
tiple sequence alignment is generated in a step-wise fashion by
iteratively aligning pairs of individual sequences or aligned
groups of sequences (Barton and Sternberg 1987; Feng and
Doolittle 1987; Taylor 1988; Thompson et al. 1994; Brudno et al.
2003a; Bray and Pachter 2004). Because the algorithm needs to
start somewhere, a hierarchical alignment order is first created by
determining which pairs of sequences and pairs of groups of se-
quences are the most similar. This order is often referred to as the
“guide tree.” Using progressive alignment, it was possible to align
one thousand short (<500 base pairs each) sequences in a little
over an hour using an ordinary PC workstation, and this time
was reduced to less than seven minutes using special-purpose
hardware (Oliver et al. 1992).

In heuristic approaches, no overall optimal alignment is
sought. Instead, it is hoped that optimizing pairwise alignments
will lead to a “good” solution. The time efficiency of this ap-
proach has led to its becoming the standard, as reflected in its
implementation in a variety of well-used software packages
(Thompson et al. 1994; Notredame et al. 2000; Brudno et al.
2003a). While some other methods are also available, they have
not yet become mainstream because of the lack of unequivocal
superiority over classical methods (for review, see Eddy 1995;
Notredame and Higgins 1996; Morrison and Ellis 1997; Morgen-
stern et al. 1998; Thompson et al. 1999; Pollard et al. 2004).
Finally, in light of the fact that over 75 approaches to the mul-
tiple alignment problem are available (M.S. Rosenberg, pers.
comm.), methods have been developed to produce a single con-
sensus alignment out of many (Wallace et al. 2006). This con-
sensus approach remains to be thoroughly evaluated.

Up to this point, we have primarily focused on DNA se-
quence alignments, but the discussion applies in principle to the
alignment of amino acid sequences. In the latter, the probability
of substitution from one amino acid to another is incorporated
by using 20 � 20 scoring matrices (e.g., PAM and BLOSUM) to
accommodate differences in different types of amino acid substi-
tutions (Dayhoff et al. 1978; Altschul 1991; Henikoff and Heni-
koff 1992). Furthermore, the alignment of coding DNA se-
quences of exons is regularly carried out by first aligning the
translated amino acid sequences and then adjusting the DNA
sequence to reflect the protein alignment. In addition to avoid-
ing the disruption of coding frames, this approach offers the
added benefit of achieving better alignment accuracy, because
amino acid changes accumulate more slowly than DNA base
changes (Zhang et al. 1997; Nei and Kumar 2000).

Finding functionally important motifs via sequence alignment

A major current focus of study in comparative genomics is the
identification of short motifs important for gene regulation.
Many motif discovery tools have been developed with the com-
mon approach to construct a multiple alignment of homologous
sequences and identify short stretches of DNA positions that are

more conserved over disparate genomes than would be expected
by chance (see Stojanovic et al. 1999; Stormo 2000; Keich and
Pevzner 2002; McCue et al. 2002; Bulyk 2003; Sinha et al. 2004;
Tompa et al. 2005). Accurate motif discovery is known to pose
challenging requirements for a multiple alignment program. The
data used need to contain sufficiently numerous and diverged
species to allow distinction to be made between short signifi-
cantly conserved (potentially functional) regions and regions
that are conserved by chance alone. ENCODE and other projects
have addressed this situation for at least some groups of species
by providing long homologous DNA segments for many closely
related species (particularly mammals) along with some distant
relatives of humans (ENCODE Project Consortium 2004;
http://www.genome.gov/10005107). The evaluation of the
success in finding functionally important segments of DNA
(motifs) requires knowledge of the accuracy of current pro-
cedures for aligning homologous sites correctly in all the
sequences in the data set (perfect columns) as well as the accu-
racy of aligning successive DNA positions without gaps. Surpris-
ingly, no investigations appear to have tackled both of these
questions together in a comprehensive fashion; however, results
from some specific studies may be tied together to obtain useful
insights.

The accuracy of alignment algorithms has been assessed di-
rectly by measuring the fraction of positions that are aligned
correctly between sequence pairs in multiple sequence align-
ments in computer-simulated data (Altschul and Gish 1996;
Thompson et al. 1999; Pollard et al. 2004; Rosenberg 2005a). This
metric is referred to as “homology accuracy” here. As expected,
homology accuracy is found to be lower for distantly related
sequences irrespective of the algorithm used (Fig. 3). The usual
pattern is that the fraction of positions aligned correctly declines
with increasing sequence divergence, with a rapid decline appar-
ent once the difference between DNA sequences is greater than
35% (Fig. 3A). This point corresponds to one base substitution for
every two positions, which is close to an evolutionary distance of
0.5 substitutions per site (Pollard et al. 2004; Rosenberg 2005a).
This trend holds for several well-known alignment tools; all of
them become ineffective by the time the sequence divergence
reaches one substitution per site (even though their accuracy
diminishes at different rates). To put these divergences in an
evolutionary perspective, sequence divergences close to 0.5 sub-
stitutions per site are often reported for the comparison of neu-
trally evolving positions in human and mouse, whereas mouse–
chicken and Drosophila melanogaster–D. pseudoobscura diver-
gences are expected to exceed one substitution per site (Kumar
and Subramanian 2002; Tamura et al. 2004).

Limits on the homology accuracy in Figure 3A are for DNA
segments in which all positions are evolving strictly neutrally
(i.e., without any natural selection). However, a more realistic
scenario is to consider situations in which genomic segments
contain highly conserved blocks, because natural selection acts
to keep important motifs intact to maintain function. As ex-
pected, the existence of conserved blocks enhances the homol-
ogy accuracy and makes the performance of different methods
more similar. Differences do exist, however. Global alignment
programs (e.g., ClustalW) perform worse than the procedures
that are essentially local in nature (e.g., Lagan, DiAlign), espe-
cially for highly divergent sequences (Fig. 3B). The local align-
ment methods work better because they look for regions of very
high sequence similarity and, thus, evolutionary conservation
(Smith and Waterman 1981). The presence of large- and small-
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scale rearrangements will also severely affect the quality of
the global alignments (Morgenstern et al. 1998; Siddharthan
2006).

The probability of aligning multiple adjacent sites correctly
in a set of sequences is a direct function of the homology accu-
racy at each position, so it is evident that identifying short ge-
nomic segments involved in gene regulation via comparative se-
quence analysis is likely to produce many false-negatives if the
sequences involved are highly divergent. This is clearly seen in a
dramatic decline in finding short motifs after the addition of a
nonmammalian species (chicken) to a data set containing pla-
cental mammals (human, chimp, mouse, and rat) (Prakash and
Tompa 2005) (Fig. 4). Because the bird–mammal sequence diver-
gence is expected to be about three times the divergence between
human and mouse based on the timing of their divergence

(Hedges and Kumar 2003), the inclusion of an avian sequence
demands that the alignment methods correctly align DNA bases
that have experienced up to 1.5 mutations per site. The homol-
ogy accuracy is very low at such high divergences, as mentioned
above, and the chances of correctly aligning conserved motifs are
small (Fig. 3). Of course, it is possible, and would not be surpris-
ing, that fewer conserved motifs are found between birds and
mammals simply because fewer such motifs exist (Cooper et al.
2005).

The use of multiple sequences and the choice of species
critically impacts motif discovery. Certainly, pairwise sequence
analysis can be carried out in the absence of a robust phylogeny
(Elnitski et al. 2003), but this is less informative because of the
difficulty in detecting multiple substitutions at the same site, and
because of an inability to distinguish the direction of sequence

change (Bergman and Kreitman 2001).
Also, the use of multiple sequences im-
proves statistical power to detect short
conserved elements by bringing more
data to bear on the problem (Sumiyama
et al. 2001; Gottgens et al. 2002; Brudno
et al. 2003a; Thomas et al. 2003). The
term “data” here refers not only to the
sequence length and the total number of
differences among sequences but also to
the distribution of sequence differences
among the species represented. For ex-
ample, a set of several closely related
(e.g., primate) sequences tends to be
more informative than a single pair of
sequences (e.g., mouse and human),
even though the total number of substi-
tutions in the evolutionary history of
the sequences considered is identical.
We expect better homology accuracy in
primate sequence alignments than that
between human and mouse sequences,
so we expect to find more highly con-
served motifs when using the primate
data set. This was indeed the case when
a group of primate species was used to
provide essentially the same amount of
collective additive phylogenetic diver-

Figure 3. Graphs showing how the accuracy of pairwise alignment varies with evolutionary distance in computer simulations with only insertion–
deletions (A) and insertion–deletions together with the constraint that 20% of all DNA positions are occupied by interspersed highly conserved blocks
that evolve 10 times slower than other positions (Pollard et al. 2004) (B). The homology accuracy is calculated as a fraction of simulated positions that
were aligned correctly, and it is plotted against the fraction of sites different, as reported in Figures 2 and 4 of Pollard et al. (2004). Even though the
same set of evolutionary distances is simulated for both panels, the percent sequence difference in B is smaller for a given simulated distance because
of the existence of highly conserved blocks. Programs compared for homology accuracy are ClustalW (Thompson et al. 1994), BLASTZ (Schwartz et al.
2003), DiAlign (Morgenstern 1999), and Lagan (Brudno et al. 2003a).

Figure 4. Graph showing the performance of different multiple sequence alignment programs in
detecting conserved motifs of length 10 in sets of orthologous 1000 base-pair putative promoter
regions of vertebrate genomes (Prakash and Tompa 2005). The axes represent the fraction of align-
ments (using the given program) of orthologous sequences in which at least one perfectly conserved
motif of length 10 was detected. The x-axis represents 5073 alignments containing human, chimp,
mouse, and rat sequences, while the y-axis represents 945 alignments of human, chimp, mouse, rat,
and chicken. The smaller number of hits in the latter set is partly attributable to fewer conserved motifs
and partly to increased difficulty of detection. The programs used are ClustalW (Thompson et al. 1994),
MAVID (Bray and Pachter 2004), DiAlign (Morgenstern 1999), MLagan (Brudno et al. 2003a), TBA
(Blanchette et al. 2004), and FootPrinter (Blanchette and Tompa 2003). Data are from Figure 2 of
Prakash and Tompa (2005).
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gence as exists between mouse and human (Boffelli et al.
2003).

Many DNA segments will be found to be conserved in
closely related species, but such false positives can be detected by
using many sequences and by estimating false-positive rates
(Cooper et al. 2005; Prakash and Tompa 2005). Still, all conserved
motifs found may not be functional, and the pursuit of function-
ally important motifs via evolutionary conservation profiles im-
plicitly assumes that the same motif(s) are functional in different
species. The latter assumption is expected to be satisfied in analy-
ses involving closely related species as compared with distantly
related species (Cooper et al. 2005). Therefore, the species chosen
are critical in multispecies analysis to find candidate, functional
motifs.

Knowledge of correct evolutionary relationships is impor-
tant in motif discovery. Efforts have been made to determine
how the use of shared ancestry (specified using phylogenetic re-
lationships) enhances the accuracy of motif detection over
simple treatment of sequences as an aligned set (Dubchak and
Frazer 2003; Sinha et al. 2004; Siddharthan et al. 2005; Gertz et al.
2006). However, the effect of using incorrect phylogeny on the
accuracy of motif-discovery remains to be measured. Intuitively,
it is clear that if two sister species are placed distantly in a phy-
logeny, then statistical methods will spuriously identify con-
served regions as candidate motifs, even though they could be
explained by chance alone if the correct phylogeny were to be
used. Likewise, placing species nearer than they ought to be
would discount the significance of similarities and lead to false-
negatives. There is an urgent need for quantification of the false-
positive and -negative rates in motif discovery caused by the use
of incorrect phylogenetic trees.

Estimating sequence divergence

Evolutionary distances are routinely estimated from pairs of
aligned sequences and are used for inferring phylogenies, diver-
gence times, and rates of evolution (Nei and Kumar 2000). What
effect does the alignment process have on distances estimated in
this way? It appears that as long as the evolutionary distance is
less than about one substitution per site between sequences, evo-
lutionary distances estimated from pairwise alignments of DNA
sequences are relatively insensitive to even large amounts (50%)
of alignment error (Rosenberg 2005a). In contrast, and as ex-
pected, computer simulations exploring the effect of the use of a
wide range of alignment parameter values leads to distances that
often fall outside the 95% confidence interval around the opti-
mal estimates (Fleissner et al. 2000, 2005) (Fig. 5), because a large
fraction of alignment parameter values are likely to be biologi-
cally unrealistic. There is no single default set that works over a
wide range of true distances and insertion–deletion models, even
though methods are available to help select good values for align-
ment parameters (e.g., Holmes and Durbin 1998).

Multiple sequence alignments are considered better than
pairwise alignments because more similar sequences will act as
intermediates between highly dissimilar ones (Lesk 2005). How
does adding a third sequence to an alignment problem affect the
accuracy of subsequently estimated distances? In a direct two-
sequence comparison, a branch to a third sequence was added at
varying intermediate points between the two. This improved the
accuracy of estimated distance between the original two, but the
highest accuracy for the estimates of evolutionary distance was
not achieved when the maximal homology accuracy was found.

Generally, the estimated distance between the two original se-
quences increased fairly linearly as the origin of the added
branch was moved closer to the common ancestor of the original
pair and the true evolutionary divergence was less than one sub-
stitution per site (Rosenberg 2005b).

Another measure of homology accuracy useful for motif de-
tection is the fraction of sites successfully aligned when se-
quences are added one-by-one to the data set. This is used when
the true sequence alignment is not known, as in empirical data
analysis. Indeed, the number of sites aligned between two dis-
tantly related sequences increases as the data set is expanded by
adding more sequences intermediate to two distantly related se-
quences in question (Margulies et al. 2006). This is similar to the
effect observed for homology accuracy in the simulated data
(Rosenberg 2005b), with the caveat that the relative divergence
of the additional sequence is critically important.

Effect of alignment homology inaccuracies on phylogenetic
inference

The common modus operandi for building phylogenetic trees is
to align a data set using some program, inspect the result for
obvious error, perhaps realign, and then infer a phylogeny from
the result. Current computer simulations aimed at deciphering
the effect of sequence homology accuracy on phylogenetic re-
construction for various shapes of trees and phylogenetic meth-
ods show that, on average, homology accuracy correlates with
the accuracy of the inferred phylogeny (Ogden and Rosenberg
2006). However, the relationship is far from monotonic and phy-
logenetic accuracy may increase or decrease dramatically even
with small changes in homology accuracy (Fig. 6). In fact, the
phylogenies inferred appear to be more sensitive to alignment
method and parameters than to the choice of the tree-building

Figure 5. A barycentric representation of the distribution of matches,
mismatches, and gaps for optimally aligned pairs of sequences having
exactly 60 matches, 30 mismatches, and 10 gaps each over the entire
range of alignment parameters (match, mismatch, and gap penalties) for
which mismatches are penalized more than matches. Each point in the
triangle represents a number of matches, mismatches, and gaps sum-
ming to 100. The lengths of the perpendiculars from a point in the
diagram to the right, left, and bottom side of the triangle are proportional
to the corresponding match, mismatch, and gap fractions, respectively.
Simulation outcomes are represented by the dark gray points near the
bottom of the triangle. In 1000 trials, the true sequence-pair description
(60 matches, 30 mismatches, 10 gaps) was never recovered, and only
those 1.1% of the alignments lying precisely on the line labeled “true
distance” yielded estimated distances equal to the true distance (1/3)
between the original pair of sequences. Adapted, with permission, from
Figure 2.3 of Fleissner 2003.
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method (Morrison and Ellis 1997; Cammarano et al. 1999; Og-
den and Whiting 2003; Hertwig et al. 2004; Lebrun et al. 2006).

The inevitable need for the use of heuristic procedures in
sequence alignment contributes significantly toward phyloge-
netic error, when the sequences being aligned have undergone a
large number of substitutions and many insertion–deletion
events. A key component of any progressive (heuristic) align-
ment procedure is the guide tree that sets up the order in which
sequences (and sequence profiles) are aligned. Guide trees can be
created in different ways. ClustalW, for example, creates a matrix
of pairwise distances by aligning each sequence pair separately
and computing a dissimilarity score from each pairwise align-
ment. This dissimilarity matrix is then subjected to the neighbor-
joining algorithm to generate a directional hierarchy of sequence
relationships (Thompson et al. 1994). Obviously, the guide tree is
not guaranteed to reflect the true evolutionary history of se-
quences; because the dissimilarity scores are not evolutionary
distances, the sequence alignment produced will most likely be
based on incorrect inferences.

Guide-tree errors are known to have serious effects on down-
stream phylogenetic inference, as the increase in the phyloge-
netic error rate is found to be associated with errors in the guide
trees (Lake 1991; Thorne and Kishino 1992; Landan 2005; Redel-
ings and Suchard 2005). However, the error introduced by incor-
rect guide trees is generally considered a nuisance and thought to
decrease the power of statistical inference by reducing our ability
to distinguish among alternative phylogenetic hypotheses. Be-
cause the use of a guide tree is required to make sequence align-
ment feasible computationally, the implicit consolation has been
that at least incorrect phylogenetic clusters will not garner high
statistical support. This intuition is reasonable for short se-
quences, as the statistical biases introduced by guide trees in se-
quence alignments are expected to be smaller than the variances
associated with estimation of evolutionary distances and branch

lengths when conducting Maximum
Likelihood and Least Squares analyses
using sophisticated models of nucleotide
substitution.

Disregarding the effect of guide-tree
errors on evolutionary and phylogenetic
inference is no longer tenable, because
these errors are amplified in today’s large
data sets. The genomic revolution in
building the Tree of Life has now taken
root and very long sequences are being
used to establish key species relation-
ships (Hedges 2002; Bashir et al. 2005;
Margulies et al. 2005; Elango et al. 2006).
First, these sequences need to be aligned,
which is done invariably by using guide
trees either explicitly or implicitly. In
such data sets, the variance of estimates
of evolutionary parameters is expected
to become vanishingly small, as it de-
creases with sequence length. Alignment
bias caused by errors in the guide tree
will affect each position aligned, and it
will not diminish with increasing se-
quence length. These two factors may
combine to mislead phylogenomic in-
ferences and incorrect phylogenetic
clusters may be supported by spuriously

high confidence. For example, alignments of homologous 20,000
base-pair regions of human, mouse, rabbit, and cow produce
high bootstrap support for the species relationship implied by
the guide tree itself when ClustalW is used (Fig. 7). A similar
trend is observed when using genome sequence alignment ap-
proaches, such as the TBA (Blanchette et al. 2004) (V. Swarna,
pers. comm.). We do not know which phylogeny is the true one,
but it is clear that error in guide trees can produce incorrect
inferences supported by high confidence. On a positive note,
guide trees inferred using very long sequences may contain few
or no errors, so the situation may not be as grim as it appears.
However, this question has yet to be examined and is being in-
vestigated currently by our group.

When is it appropriate to use genomic multiple sequence
alignments available in various database resources, which use a
specific phylogeny as a guide tree? The answer depends on the
purpose of the analysis. To begin with, the use of such multiple
sequence alignments for inferring species phylogenies will be cir-
cular and will often (but not always) produce outcomes that
merely reflect bias introduced by the alignment procedure (Fig.
7). This will be particularly problematic for traditionally hard-to-
resolve phylogenetic relationships, because they are often asso-
ciated with short internal branches (i.e., small amount of evolu-
tionary change) in the phylogenetic trees. Errors introduced by
alignment bias are expected to affect these parts of the phylogeny
most severely, as the phylogenetic signal may be overwhelmed
by the bias in the sequence alignment. For example, resolving the
phylogenetic relationship of major groups of mammals using the
sequence alignment of ENCODE data is not desirable, because
these alignments are constructed using a guide tree that best
reflects our current understanding of mammalian and vertebrate
species relationships (http://www.genome.gov/10005107). On the
other hand, these alignments are appropriate for inferring ancestral
genomes and times of species divergence events, because

Figure 6. Graph illustrating the relationship between the accuracy of an alignment and the topo-
logical error of a phylogenetic tree reconstructed from that alignment by the Maximum Likelihood
method in a large-scale simulation study. The x-axis is the average homology accuracy of all pairwise
alignments in a multiple alignment. The y-axis is the number of incorrect branches in the tree obtained
from the reconstructed alignment minus the number of incorrect branches in the tree reconstructed
from the true alignment. Each point plotted is a moving average of 50 simulated results. Trees are
based on 16 taxa and have a variety of topologies, relative branch lengths, and maximum distances.
The shaded area shows plus and minus one standard deviation of points within the moving-average
window. The results indicate that very poor alignments produce bad trees, but as long as 60% or more
of the sites are accurately aligned, further improvements in alignment homology accuracy make little
difference; even highly accurate alignments produce trees with substantial variation in quality. Results
for Bayesian and Maximum Parsimony phylogenetic analyses are similar; Neighbor-Joining shows
higher levels (an average of around 1 additional branch incorrect) of phylogenetic error. Based on data
from Figure 4 of Ogden and Rosenberg (2006).
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those procedures and all the results obtained are explicitly con-
ditional on the evolutionary tree used. Obviously, one would gen-
erally use the same evolutionary tree for aligning sequences and
for conducting evolutionary analyses, as long as it is substanti-
ated. Otherwise, the use of an incorrect phylogeny will not only
produce ancestral sequences and speciation times for ancestors
that never existed, but it will also bias results for those that indeed
existed. On the other hand, errors in the guide tree are expected
to have a significantly lesser impact on the estimation of evolu-
tionary rates at individual positions (or in sliding windows), and
thus on motif finding, as such summary statistics are derived
using a large amount of data for each position when many spe-
cies are used (see, e.g., Yang and Kumar 1996; Siepel et al. 2005).

One unexplored wrinkle in the guide-tree conundrum is the
observation that closely related species can show very different
base compositions in homologous genomic segments. For in-
stance, equality of substitution pattern can be rejected in ∼40% of
human–mouse protein-coding gene orthologs, associated with
differences in G+C content (Kumar and Gadagkar 2001; Jermiin
et al. 2004). Among eubacteria, genome-wide G+C content can
vary by a factor of two (Nakashima et al. 2003). This variation
would serve to distort apparent distances among taxa and lead to
biased guide trees. Either one may bias phylogenetic analyses
(Steel et al. 1993; Kolaczkowski and Thornton 2004; Gadagkar
and Kumar 2005). These deviations are seldom incorporated in

simulated studies or models, but they are
known to run rampant in real sequence
data. One way of avoiding guide-tree
bias on phylogenetic inference is to si-
multaneously infer multiple sequence
alignment and phylogeny, so that one
does not depend on the completion of
the other (Hein 1990). Maximum Likeli-
hood and Bayesian methods developed
for this purpose seem promising for
small-to-medium-sized problems (Fleiss-
ner et al. 2005; Lunter et al. 2005; Redel-
ings and Suchard 2005), but their appli-
cation to data sets with a large number
of sequences and to long sequences is
still computationally prohibitive.

Conclusions

The multiple sequence alignment proce-
dure forms the backbone of comparative
and evolutionary genomics. Results
from some recent studies involving com-
puter simulations and large-scale ge-
nomic data have begun to clarify and
quantify sources of bias and the effects
of alignment on subsequent down-
stream processing. Because of rapid
growth of large scale data sets and in-
creasing applications of multiple se-
quence alignments to understand pat-
terns and processes that govern gene, ge-
nome, and species evolution, it would be
prudent to further intensify these inves-
tigations and make their conclusions
more accessible to practicing biologists.
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