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ABSTRACT

Motivation: The identification of peptides by tandem mass spectro-

metry (MS/MS) is a central method of proteomics research, but due

to the complexity of MS/MS data and the large databases searched,

the accuracy of peptide identification algorithms remains limited.

To improve the accuracy of identification we applied a machine-

learning approach using a hidden Markov model (HMM) to capture

the complex and often subtle links between a peptide sequence and

its MS/MS spectrum.

Model: Our model, HMM_Score, represents ion types as HMM

states and calculates the maximum joint probability for a peptide/

spectrum pair using emission probabilities from three factors: the

amino acids adjacent to each fragmentation site, the mass

dependence of ion types and the intensity dependence of ion

types. The Viterbi algorithm is used to calculate the most probable

assignment between ion types in a spectrum and a peptide

sequence, then a correction factor is added to account for the

propensity of the model to favor longer peptides. An expectation

value is calculated based on the model score to assess the

significance of each peptide/spectrum match.

Results: We trained and tested HMM_Score on three data sets

generated by two different mass spectrometer types. For a reference

data set recently reported in the literature and validated using seven

identification algorithms, HMM_Score produced 43% more positive

identification results at a 1% false positive rate than the best of

two other commonly used algorithms, Mascot and X!Tandem.

HMM_Score is a highly accurate platform for peptide identification

that works well for a variety of mass spectrometer and biological

sample types.

Availability: The program is freely available on ProteomeCommons

via an OpenSource license. See http://bioinfo.unc.edu/downloads/

for the download link.

Contact: giddings@unc.edu, giddings@med.unc.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

One of the foundations of systems biology research is protein

identification via mass spectrometry. A central method for

protein identification in a proteomic experiment is the analysis

of short peptides typically comprised of �3–20 amino acids.

Peptides are derived from enzymatic digestion of either a puri-

fied protein sample or of a cellular fraction containing complex

mixtures of proteins. In the latter case, the number of peptides

generated is high, which requires one or more stages of

separation, typically using liquid chromatography as exem-

plified by MudPIT (Washburn et al., 2001). Tandem mass

spectrometry (MS/MS) can then be used to analyze the resul-

tant peptides and hence identify the corresponding proteins

(Wysocki et al., 2005).

In MS/MS, individual peptides are chosen for fragmentation,

usually by collision induced dissociation (CID), after which

the masses of the fragmentation products are measured. MS/MS

peptide analysis produces a fragmentation pattern for the

peptide that corresponds to its primary sequence (Supplemen-

tary Fig. 1). An MS/MS spectrum can be used either to search a

database of proteins to find the closest matching amino acid

sequence to the observed spectrum (Bafna and Edwards, 2001;

Eng et al., 1994; Falkner and Andrews, 2005; Geer et al., 2004;

LeDuc et al., 2004; Narasimhan et al., 2005; Perkins et al., 1999;

Sadygov andYates, 2003; Zhang et al., 2002), or to derive a set of

de novo amino acid sequences compatible with the spectrum

(Bandeira et al., 2004; Dancik et al., 1999; Frank and Pevzner,

2005; Horn et al., 2000; Ma et al., 2003; Taylor and Johnson,

2001). In either case, if a sufficient number of peptide MS/MS

spectra or their derived sequences are matched to a single gene or

protein entry in a database, it will confirm that the protein was

present in the sample.
A peptide identification algorithm must take an MS/MS

spectrum, comprised of a series of mass and intensity values

for its peaks, and determine how each peak corresponds to

an underlying peptide sequence that may have generated it.

The CID peptide fragmentation process produces spectra

containing many different ion types, and when the spectrum is

obtained, the ion type for each peak is not known. The goal of an

MS/MS database search program is to find the peptide sequence

P that best matches the properties of the observed spectrum S,

which includes assigning ion types to each matched peak in S.

MS/MS spectra exhibit several traits that make peak

assignment difficult, which is the primary reason for the limi-

tations of existing MS/MS search algorithms. Common spectral*To whom correspondence should be addressed.
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interpretation challenges include the widely-varying intensity

profiles of the peaks produced by fragmentation, along with the

presence of many unpredicted peaks due to the breakage of

bonds besides the primary peptide backbone bond (i.e. CO–

NH2). Also, internal rearrangement of the peptide’s chemical

structure can occur, producing peaks that remain unidentified

(Yague et al., 2003).

Peak intensity variability is due to several factors. First, not

all sites along a peptide are equally susceptible to breakage—

ours and other studies have shown a complex dependency of

peptide fragmentation upon the amino acid sequence (Khatun

et al., 2007; Tabb et al., 2004). The resulting variability of peak

intensity within a spectrum has a complex and subtle link to the

underlying peptide sequence. Further, fragment ions of differ-

ent ion types have a propensity towards certain intensity and/or

mass ranges within a spectrum, producing intensity variability

depending on both ion type and position in a spectrum (Khatun

et al., 2007; Tabb et al., 2003).
While there are many successful peptide identification

algorithms for MS/MS data, small differences in the accuracy

of the methods can have significant impacts on the success of

an experiment, due to the large data sets used and large data-

bases searched. Finding a single, correct peptide entry from a

database of 107 or more possible peptides is challenging given

the factors mentioned above. This challenge becomes even

more extreme as other researchers and we undertake new

efforts to match each MS/MS spectrum against an entire

genome sequence in order to locate the original locus

responsible for encoding a given peptide. While this strategy

has great potential both for enhancing genome annotation and

bypassing limitations of existing annotations (Giddings et al.,

2003; Kuster et al., 2001), it is hampered by the difficulties

encountered in matching a spectrum uniquely to plant and

mammal genomes comprised of4109 theoretical peptides.
Motivated by these challenges, we developed a highly

accurate algorithm for scoring spectra against peptide sequence

databases, called HMM_Score. It uses statistically-derived

features of MS/MS, including the probability of each fragment

ion type, the effects on amino acids on peptide bond breakage,

the correlation between mass and the various ion types, and

the correlation of various ion types with the intensity of the

observed peak, to improve peptide recognition. HMM_Score

applies a hidden Markov model (HMM) to extract prob-

abilistic rules directly from a ‘training’ set of real spectra, to

maximize the information available to the system (Rabiner,

1989).
There have been a few other recent efforts to apply HMMs

and machine learning to MS/MS spectral analysis. Fischer et al.

used HMMs for de novo peptide sequence interpretation

(Fischer et al., 2005), modeling the peak intensities as the

emission probabilities. They reported improved performance

over competing de novo sequencing algorithms. Wan et al.

developed a database-matching algorithm that considered two

primary features of spectra, specifically the distribution of peak

intensities and the match tolerance of ion types (Wan et al.,

2006). They demonstrated improved accuracy for peptide

identification compared to standard tools such as Mascot

Cite (Perkins et al., 1999) and SEQUEST Cite (Eng et al., 1994).

HMM_Score is different from these previous efforts because
it takes advantage of not only peak intensity information, but
also the mass distribution of ion types, as well as the effects of

different amino acids on fragmentation of a peptide (hence
the observation of associated peaks in the spectrum). It jointly
uses information from the peptide sequence and the MS/MS

spectrum to score a peptide, resulting in a versatile and highly-
accurate scoring system.
We comprehensively evaluated HMM_Score on three

data sets generated from two types of mass spectrometers,
each with a different ionization technique. Data sets consist
of MS/MS spectra assigned by existing popular algorithms

followed by manual validation. We also tested the program on
a dataset of MS/MS spectra from known protein standards.
We applied a variety of analyses to evaluate the performance of

HMM_Score, including sensitivity analysis, Reciever Operating
Characteristic (ROC) curve analysis, Precision-Recall (PR)

curve analysis, and box-plot analysis, with HMM_Score show-
ing very favorable performance in each measure compared to
existing approaches.

2 METHODS

2.1 Data sets

For evaluation of HMM_Score, we chose several data sets where the

identities of the peptides were already known by combining the

application of existing programs and manual validation. The modest

size of these data sets does not reflect a limitation of HMM_score, but

of the need to have data where the answer is known beforehand in order

to benchmark the program, as further addressed in the Section 4.

Dataset 1 was used to assess our model’s applicability to spectra from

a matrix-assisted laser desorption ionization (MALDI) dual time of

flight (TOF/TOF) mass spectrometer. It consists of spectra obtained on

an Applied Biosystems 4700 TOF/TOF, that were derived from 300

E.coli protein fractions, as we previously described (Khatun et al.,

2007). The analysis generated 3000 spectra, initially analyzed by Mascot

to identify them, then further validated by hand to confirm Mascot’s

assignments, as described in (Khatun et al., 2007). This procedure

produced 579 validated MS/MS spectra whose identities were known,

for assessment of HMM_Score performance. This data set is deposited

in Proteome Commons and is available using the GetFileTool from

http://www.proteomecommons.org/dev/dfs/GetFileTool.jnlp with the

hash key given in Supplementary file Hash_Keys.txt, labeled as ‘Hash

for Data set 1’.

Data set 2 was used to assess our model’s applicability to data from

ion trap mass spectrometers. The data set was downloaded from http://

www.ludwig.edu.au/archive/, and consists of MS/MS spectra from the

Human Plasma Proteome Project, generated on an LCQ Deca XP ion

trap mass spectrometer (Thermo-Finigan, San Jose, CA, USA) using an

electrospray ionization (ESI) source. The analyzed peptides were from

tryptic digests of human plasma and/or serum proteins subsequently

separated by LC, and were of relatively high complexity. The analysis

generated 6000 MS/MS spectra, 677 of which were identified by seven

algorithms and manually validated, as described in Kapp et al. (2005).

We used those 677 validated spectra for assessing the performance

of HMM_Score, since their corresponding peptide identities were

known beforehand.

Data set 3 (known protein standards) was derived from two sources.

Subset 3a is comprised of 1986 MS/MS spectra obtained on MALDI

TOF/TOF from over 300 known, purified proteins, published on Pro-

teome Commons by Strahler et al. This data set was downloaded from

http://www.proteomecommons.org/archive/1117680671827/index.html.

Incorporating sequence information into the scoring function

675

http://www.proteomecommons.org/dev/dfs/GetFileTool.jnlp
http://
http://www.proteomecommons.org/archive/1117680671827/index.html


We also generated our own data set, subset 3b, comprised of 51 MS/MS

spectra generated on the ABI 4700 MALDI TOF/TOF from four

purified proteins: Apomyoglobin, Bovine Serum Albumin (BSA),

�-galactosidase, Cytochrome C (Sigma, St. Louis, MO) and one his-

tag purified protein, CheZ. These spectra and the corresponding

masslists are downloadable from http://www.proteomecommons.org/

dev/dfs/GetFileTool.jnlp using the hash given in the Supplementary file

Hash_Keys.txt labeled as ‘Hash for Data set 3’.

2.2 Databases

For all searches with HMM_Score, Mascot and X!Tandem, we used the

UniProt KB/Swiss-Prot Release 54.1 (277 883 annotated protein

sequences, Swiss Institute of Bioinformatics, The European Bioinfor-

matics Institute and Protein Information Resource). To assess the effect

of database size on search specificity, we also used a database of all

annotated proteins in E.coli (4279 annotated proteins) (Blattner et al.,

1997) for data set 1.

We then generated databases of peptides by performing an in silico

digest of all proteins present in each database, using digestion rules for

the enzyme trypsin, cleaving after lysine (K) and arginine (R) residues.

This produced 19 373 678 putative peptides from Swiss-Prot with up to

one missed tryptic cleavage allowed. We also created a ‘decoy’ database

by digesting all reversed protein sequences in each of the databases in

order to assess false positive match rates, using the same trypsin rule.

2.3 Search strategy and parameters

For scoring a spectrum/peptide pair with HMM_Score, the peaks in the

spectrum were filtered so that only the 100 most intense peaks were

used to score a peptide. Searches were carried out against the databases

using following parameters: 2Da precursor ion mass tolerance, 0.5Da

fragment ion mass tolerance using monoisotopic masses and up to one

missed tryptic cleavage site. While the TOF/TOF data would allow

tighter tolerances to be used, we used these settings for consistency with

the ion trap data set results.

2.4 Model

The goal of the model is to score a peptide sequence P against a

spectrum S to determine how well they match. It first predicts a set of

possible masses for the 11 most common ion types that could be

produced by the peptide P, giving a mass list Mp. It then compares Mp

against the actual set of masses Ms observed in the spectrum S, using

the HMM pictured in Figure 1. It proceeds one-by-one through the

masses from the list Ms, for each one visiting a state in the model

(circles in Fig. 1). The states correspond to ion types, and the ion type is

chosen depending upon the matching mass in the predicted set Mp, for

which the ion type is already known. The ‘internal’ ions displayed in

the figure are those resulting from secondary fragmentation of b and y

ions, thus having two bond breakages.

To illustrate how matching occurs: if the first mass in Ms is 125.4 Da,

and there is a matching mass in Mp of 125.1 Da corresponding to an

immonium ion from peptide P, then the first state visited would be the

immonium state. If there is no matching mass in the list Mp, then the

‘unassigned’ state is visited. If there is more than one ion mass in Mp

that matches a mass fromMs, then there is more than one possible path

through the HMM, and the best one is chosen using the Viterbi

algorithm, described in Section 2.6.

The primary utility of the HMM comes from probabilistic scoring

of how well the properties of each peak from spectrum S match the

predicted properties for the corresponding ion type(s) visited, as

described in Section 2.6. For example, y ions typically have the highest

intensities. Therefore, if we are visiting the ‘y’ state due to a match

between a predicted y ion from MP to a spectrum mass from Ms, if the

intensity of the actual peak from S is low, it will score poorly, whereas if

it is high intensity, it will score well. This is done for each peak in S.

Additionally, the HMM uses transition probabilities to determine

whether adjacent peaks in S and their ion state assignments in the

model occur in probable combinations. For example, it might be

expected to commonly see a y ion peak preceded by its neutral loss

products, y0 (water) and y* (ammonia). In Figure 1, the arrows leading

from state to state represent transitions.

2.5 Model parameters

The emission and transition probabilities are parameters derived by

posterior estimation from training data consisting of pre-determined

spectrum/peptide assignments taken from one of the data sets, as

described under ‘Section 3.1’. Masses and relative intensities were

divided into ten discrete bins for each of the 11 ion types, and the

frequency of emission for ions within each mass and intensity bin were

calculated for each ion type. For parameter estimation from the

training data, we extracted the following factors: (1) the probability of

emitting each ion type within a spectrum; (2) the probability of emitting

an ion of the given type occurring within the associated mass bin; (3) the

probability of emitting an ion of the given type occurring within the

associated intensity and (4) the sequence dependent probability for each

observed peak, i.e. the probability of peptide bond cleavage producing

the peak, given the amino acids in the peptide sequence adjacent to the

site. We also extracted the probability of co-occurrence of ion-types to

determine the transition probabilities between states. Further details of

parameters estimation can be found in Khatun et al. (Khatun et al.,

2007). The training set used for parameter estimation was either derived

from 10-fold cross validation (i.e. 9/10-th used for training, 1/10-th for

testing, repeated 10 times for each unique partition), or from a separate

Fig. 1. HMM architecture. The states (circles) correspond to 11

common ion types. The considered ion types are y, b, a and internal

ion along with their neutral losses, with 0 denoting the neutral loss of

water, and * denoting the neutral loss of ammonia from the specified

ion type. The unassigned state is included to model peaks that do not

match to any of the given ion types. Each state has a set of emission

parameters that describe what properties the associated peaks in the

spectrum should have for an ideal match to the given peptide sequence.

For example, y-ions typically have the highest intensities in a spectrum,

whereas internal ions have low intensities.
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data set (i.e. training on data set 1 and testing on data sets 2 and 3), as

further described in the Results section.

2.6 Scoring function

Given a peptide sequence P, comprised of amino acids aj (j¼ 1, L), and

an MS/MS spectrum S comprising N peaks, HMM_Score scores them

jointly proceeding from the begin state to a first state �1 corresponding

to the first spectral peak, then the state �2 for the second spectral peak,

and so on to produce a path �¼ {�1, �2, . . .,�N}. Each of the HMM

states �i corresponds to one of the 12 ion types considered, qj
(j¼ 1, . . . , 12), and is determined at each step by the ion type(s) any

matching mass(es) found in Mp. The joint probability of observing a

series of masses MS, their associated intensities IS, a peptide P, and a

series of states � based on matches between MS and MP, is given by:

p Ms, Is,P,�ð Þ ¼ Tb!�1
e�1

YN�1

i¼1

T�i!�iþ1
e�iþ1

: ð1Þ

Tb!�1
is the transition probability from ‘begin’ states to the first

observed state (peak), which is equal to the probability of observing

each ion type as the first one in the spectrum. T�i!�iþ1
is the transition

probability between states representing the ion types, and e�i
is the

probability of emission from the state �i and is given by the product of

two terms as,

e�i
¼ e �i,M

i
S, I

i
S

� �
e Mi

Sjaj�1, aj
� �

: ð2Þ

The first term considers the probability of emitting a peak of the given

mass and intensity corresponding to the current state’s ion type, and

can be written as:

e �i,M
i
S, I

i
S

� �
¼ eM Mi

Sj�i

� �
eI Mi

Sj�i

� �
, ð3Þ

where the term eMðMi
Sj�iÞ computes the probability of observing the

mass corresponding to the present ion type (state), while the term

eIðMi
Sj�iÞ computes the probability of observing the intensity value

corresponding to the current ion type.

The second emission term, eðMi
Sjaj�1,ajÞ, calculates the probability

of observing the present peak, given the particular amino acids pair

adjacent to the cleavage site in the peptide sequence P that generated

the predicted peak Mi
P that is being matched to the spectrum peak Mi

S.

This is given by

e Mi
Sjaj�1, aj

� �
¼ pC Mi

Sjaj�1

� �
pN Mi

Sjaj
� �

: ð4Þ

The term pCðM
i
Sjaj�1Þ is the conditional probability of observing

the mass due to the C terminal fragmentation after the given amino acid

aj�1 and pNðM
i
SjajÞ is the conditional probability of observing the mass

due to the N terminal fragmentation before given amino acid aj. In the

case of internal ions where two cleavage events must occur, this value

was averaged from both pairs of amino acids surrounding the two sites.

This accounts for the effect that certain amino acids have on frag-

mentation of the backbone bonds in their vicinity. For example,

the presence of the amino acid proline promotes frequent breakage

of the peptide bond on its N terminal side while suppressing it on the

C terminal side.

Multiple paths may be possible due to bifurcation at points where

there are more than one theoretical ion produced by the peptide

sequence P that match observed peaks in S. In such cases, the Viterbi

dynamic programming algorithm (Durbin et al., 1998) is used to

determine the path with maximal probability �* given by:

�� ¼ arg max� p MS, IS,P,�ð Þ: ð5Þ

The described calculations are performed using the logarithm (Log)

of the probability values to avoid numerical underflow, so Equation 5

produces Log(p(M, I,P,�*)). The result is a score with a larger

(absolute) numeric value corresponding to lower probability values.

It is counterintuitive to the potential user of the program to have a

larger numeric score value correspond to worse matches, particularly

since nearly all other MS/MS scoring algorithms produce larger positive

numerical values for better matches. To avoid this confusion, we

convert the probability to a score value that produces larger positive

numerical values for the better matches. Dividing the probability by

1000 then negating and exponentiating gives:

Score P,Sð Þ ¼ exp
�Ln p M, I:P,��ð Þð Þ

1000

� �
: ð6Þ

While the resulting score is no longer a probability, this transformation

preserves the direct relationship of the path probability with the

goodness of fit for the peptide match.

Initial experiments with this formulation revealed an issue that its

results were skewed towards longer peptides by the occurrence of many

false positive matches to the theoretical internal ions predicted for the

peptide sequence—they are usually far more numerous than predicted b

or y ions. However, the opposite is true in real spectra: an analysis of

data set 1 showed that 70% of the predicted y ions were observed, 50%

of predicted b ions observed, and only 10% of predicted internal ions

observed. To correct this, we introduced an additional factor that

weighs the actual and predicted occurrence frequency for each ion type,

as given by:

wðP,SÞ ¼
X
qj¼1, 12

E
qj
f �O

qj
f : ð7Þ

The first term E
qj
f is the expected frequency of each of the 11 ion

types, enumerated by the index qj, and the second term O
qj
f is the

observed frequency for each of the corresponding ion types within the

spectrum S. We used the observed frequency instead of the number of

matching ions for each ion type, because the number of matching ions

varies with the length of the peptide. This gives the highest score

correction when both the predicted and observed ion frequency is high,

and lowest when prediction and observation are both low. Another way

of considering it is that for those ion types that should be observed more

frequently, there is more effect on the score when they actually are

observed.

The combination of all scoring factors thus produce a final score for

each peptide/spectrum pair given by:

FScore P,Sð Þ ¼ w P,Sð Þ � Score P,Sð Þ: ð8Þ

Equation 8 provides relative score value representing the goodness

of fit between each peptide P in the database and the spectrum S,

which increases in a positive fashion for better-fit between peptide

sequence and spectral features. The score value is relative to the spec-

trum and peptide database searched, and is therefore not meaningful

for comparisons of search results for different spectra or databases.

To compare search results from run to run, the score distribution must

be considered, i.e. the difference in score between the best match and

the second-best, third-best, etc. This is not unique to HMM_Score,

but is a common feature of many types of database search programs.

To provide a fixed, probabilistic reference for the score values that

allows their comparison from one result to another, we convert them to

E-values, as described in the next section.

2.7 Expectation value calculation

Expectation values, commonly used by many database search methods

[e.g. BLAST, (Altschul et al., 1990)], convert a score expressed on an

arbitrary value range into a measure of the relative uniqueness of a

given match score. As described by Fenyö and Beavis for application to

MS/MS search (Fenyo and Beavis, 2003), this provides a value that can

be directly compared between different searches or even different

algorithms.

We converted the score values produced by Equation 8 into E-values

using the procedure given in Supplementary Section 2.7.1.
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2.8 Performance evaluation

We applied several common performance evaluation measures to

HMM_Score, including sensitivity and specificity measurements, along

with ROC curve analysis (Hanley and McNeil, 1982). We also

performed PR curve analysis (Davis and Goadrich, 2006) and box-

plot analysis of the E-value distributions. The detailed procedures for

calculating these measures are given in Supplementary Section 2.7.2. All

results reported below were obtained using the E-values produced from

the score in Equation 8.

We also compared HMM_Score performance to X!Tandem and

Mascot. We downloaded X!tandem (version 2007.07.01.2) and ran

Mascot standalone version (version 2.0.05) with the kind permission of

the UNC-Duke Michael Hooker Proteomics Core facility. Searches

were performed for all programs using the same version of the Swiss-

Prot database. The parameters used for all programs were: peptides

within 2 Da from the precursor ion were scored (no modification

search), there was a 0.5 Da mass tolerance for product ion matching,

and monoisotopic masses were used.

We assessed the sensitivity of each algorithm for its top scoring match

results for each spectrum, and also calculated the sensitivity of each

algorithm with the false positive rate limited to 1%. The number of

correct identifications at a 1% false positive was determined by varying

E-value threshold for X!Tandem and Mascot’s reported—Log10(P)

score, until the target rate of false positives achieved, then counting the

number of correct matches above that threshold. The same procedures

were used for HMM_Score as described in the Section 3.1.

3 RESULTS

To give a comprehensive view of HMM_Score’s performance,
we tested it using three different data sets obtained on two

different instruments and from entirely different biological
samples (E.coli bacterial proteins and human blood plasma

proteins). Our testing was focused upon spectra for which the
matching peptide was previously known and validated, to

provide a firm basis for comparison.

3.1 Sensitivity

Sensitivity is a general measure of the ability for an algorithm to
search a large database and find a correct match for the target.

In the case of MS/MS search, sensitivity implies the ability to
identify the correct peptide P from a protein sequence database

that matches the spectrum S. Sensitivity results for HMM_Score
are shown in Table 1. For data set 1, comprised of 579 MS/MS
spectra from E.coli proteins, HMM_Score was trained and

tested by 10-fold cross validation for sensitivity assessment.
HMM_Score identified 546 correct peptides in the first place

when searched against the complete Swiss-Prot database, and
576 correct peptides in the first place for a search against the
smaller E.coli database, representing a 0.6% error rate.

We performed similar testing for data set 2 and 3, though in
this case the HMM_Score model was trained (i.e. parameters

estimated) from data set 1, and then applied directly to score all
of the spectra for both data sets 2 and 3. We did this due to the
discovery that training with the high-quality data from set 1

resulted in better overall performance, despite the fact that it
was generated on a different instrument than data set 2 used in

testing. When data set 2 was searched against the complete
Swiss-Prot version 54.1, HMM_Score (trained on data set 1)
identified 469 correct peptides in the first place, and for data set

3 identified 1352 correct peptides in the first place (Table 1).

We also examined how sensitive HMM_Score is when it
produces false positives (FP) at a rate of 1%. The sensitivity at

a specified false positive rate was calculated using forward
sequence search, with the E-value threshold varied until the
target error rate achieved. As shown in Table 1, column b, for

data set 1 (E.coli, MALDI TOF/TOF), this resulted in 513
correct positive identifications when searching all of Swiss-Prot,

and 576 when searching only the E.coli protein database. For
this set, performance was not substantially affected by the
threshold limitation, since the false-positive rate was already

very low. The same procedure applied to data set 2 produced
416 correct positive identifications, and data set 3 produced

1284 correct positive identifications.
In many projects, it is desirable to know the predicted false-

positive error rate for a given identification score value when

matching spectrum to a database. The procedure to calculate
predicted false positive error rate is given in Supplementary
Section 2.7.3. and the predicted E-value threshold are given in

Supplementary Table 1.

3.2 Discriminative capability

We determined the discrimination ability of HMM_Score for
real hits versus false-positive hits for each of the 3 data sets, as

shown in Figure 2. We plotted the distribution of scores
comparing spectral searches against the Swiss-Prot database

(green bars) versus a reversed decoy database where all results
are false-positives (red bars). For all three data sets there is a
clear distinction in the range of expectation values between real

(green) and false (red) hits. For data sets 1 and 3, the separation
is almost complete. There is some overlap for data set 2
between the bottom 10% of scores for the real database search

with the top-range of the decoy database search. It is notable
that the false positive results were similar for all data sets with

E-values between �0.1 and �5, whereas the true-positive results
had a much greater difference in their distributions depending
on the instrument and experimental conditions used.

3.3 Precision-recall and receiver operating

characteristic analysis

Precision-recall analysis is used to assess the fidelity of database
search across a range of different score cutoff thresholds

to examine the tradeoffs between loose and strict scoring

Table 1. The number of correct peptide hits produced by HMM_Score,

searching against the database named in the second column

Dataset Database Total spectra Correct identifications

a b

Dataset 1 Swiss-prot 579 546 513

E.Coli protein 579 576 576

Dataset 2 Swiss-Prot 677 469 416

Dataset 3a Swiss-Prot 1986 1352 1284

The ‘Correct Identifications’ column (a) gives the number of correct peptide hits

that were ranked first place when searched against the databases. The ‘Correct

Identifications’ column (b) gives the number of correct peptides found at a 1%

false positive rate.
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criteria. As the score threshold that distinguishes a ‘positive’

from ‘negative’ match is varied, precision and recall are

calculated (Equations 13 and 14, Supplementary_Section 2).

The PR curves calculated by varying the E-value threshold for

positive identification by HMM_Score against Swiss-Prot are

shown for each of the data sets in Figure 3, using the same

training/testing procedures as for Section 3.2. The area under

the PR curve, which gives an overall assessment of performance

across a range of thresholds, was 0.95 for data set 1, 0.90 for

data set 2, and 0.93 for data set 3. HMM_Score performed

very well on all data sets, retaining high precision and recall

throughout most of the range, with precision dropping substan-

tially only at recall rates40.8.

Receiver operating characteristic analysis is another method

used to assess search fidelity by plotting specificity versus

sensitivity as the score threshold is varied. However, for large

databases its calculation is made problematic because it relies

on assessment of ‘true negatives’ which are quite numerous for

searching a large database. For comparison with the results

reported by Kapp et al. we performed ROC analysis using the

E-value scores for searches against the forward sequence

database, with sensitivity and specificity calculated as discussed

in the Supplementary Section 2. The resulting curves are shown

in Supplementary Figure 2 for all data sets. The areas under the

curve are 0.99, 0.95 and 0.98 for data set 1, 2 and 3, respectively

for searches against the complete Swiss-Prot database.

3.4 Comparison of HMM_Score with Mascot and

X!Tandem

Mascot is one of the most widely used database search

algorithms (Perkins et al., 1999), and X!Tandem is an

increasingly popular open source MS/MS search engine

(Craig et al., 2004). To provide a practical basis for the

comparison of HMM_Score performance, we applied the same

sensitivity assessments reported in Section 3.1 for HMM_Score,

to Mascot and X!Tandem for each of the three data sets. The

results are shown in Table 2 (HMM_Score results are shown

in Table 1). For each data set, HMM_Score outperformed

X!Tandem and Mascot, particularly when the program results

are limited to a 1% false positive rate. For data set 2, comprised

of 677 validated human blood plasma MS/MS spectra and

matching peptides (Kapp et al.), X!Tandem identified 289

correct peptides and Mascot identified 241 correct peptides

at the 1% false positive rate in a search against Swiss-Prot.
For comparison, HMM_Score identified 416 peptides at the

1% false positive rate for data set 2, which represents a 44%

increase over X!Tandem and 73% increase over Mascot.

The comparison using data set 2 may be the most representative

Fig. 3. The Precision-Recall curves for all data sets. To generate PR

curves we considered false positive matches using the forward sequence

of Swiss-Prot database. The solid circle curve is for data set 1 and the

area this curve is 0.95. The triangle and asterisks are for data sets 2 and

3, respectively and areas under these curves are 0.90 and 0.93,

respectively.

Fig. 2. Distribution of E-values obtained for MS/MS searches against

forward (green) and reverse (red) sequence databases for all data sets.

The solid boxes represent the ranges between lower 25% and higher

75% quartiles, and the horizontal lines represent the 5 and 95% ranges,

respectively. The left y-axis range corresponds to data sets 1 and 3,

while the right y-axis corresponds to data set 2. The difference in ranges

is due to the differing instrumentation and experimental conditions

used to produce the data for set 2 compared to sets 1 and 3.

Table 2. The number of correct peptide hits produced by Mascot and

X!Tandem when searching against Swiss-Prot protein database

Dataset Total spectra Algorithm Correct identifications

a b

1 579 X!Tandem 526 460

Mascot 543 444

2 677 X!Tandem 419 289

Mascot 372 241

3a 1986 X!Tandem 1297 1113

Mascot 1333 1148

The ‘Correct identifications’ column (a) gives the number of correct peptide hits

that were ranked with the top score when searched against the databases. The

‘Correct identification’ column (b) gives the number of correct peptides found

when the false positive rate was limited to 1%.
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of real-world performance, because it was obtained by Kapp
et al. using the combined results of 7 different search
algorithms, then hand verified. Data sets 1 and 3 are biased

in favor of Mascot because they were obtained using an initial
search by Mascot, followed by manual validation. In other
words, for data sets 1 and 3a, when Mascot produced a false

negative search result during their initial validation, that
peptide was never to be seen by the other programs in their
subsequent assessment. This artificially reduced both

HMM_Score and X!Tandem’s apparent performance on
those data sets. However, even with this caveat, HMM_score
performed better than Mascot in each case when searching a

large database like Swiss-Prot.
The number of correct peptides identified here byMascot and

X!Tandem differ from the results reported by Kapp et al.

because they used a different (and smaller) database
(International Protein Index (IPI), Human database, version

2.21). While our limited access to Mascot prevented us from
testing it with IPI v2.21, we did assess X!Tandem and
HMM_Score with this database. The version of X!Tandem we

used identified 342 correct peptides at a 1% false positive rate,
whereas Kapp et al. reported 311 peptides at the 1% false
positive rate for the program. The discrepancymay be attributed

to slightly different parameters used, such as a 3Da precursor
tolerance for Kapp’s experiments versus 2 Da for ours.
For the same IPI v2.21 database, HMM_Score produced 425

correct hits at a 1% false positive rate. It is notable that the
performance of HMM_score dropped only slightly to 416
correct peptides identified with the much larger Swiss-Prot

database. Representing only a 2% drop in identifications at a
1% false positive rate, with a 441% larger database, this is
perhaps the most significant result of our tests. It indicates that

HMM_score specificity degrades very little with increasing
database size, which is particularly important when searching

putative peptide digests of whole eukaryotic genomes that may
represent 109 peptides or more.
To provide an assessment of HMM_Score performance that

was entirely independent of the results using another search
algorithm, we collected spectra from known purified proteins,
producing data set 3b. For this data set Mascot was run from

their website (http://www.matrixscience.com/cgi/search_form.
pl?FORMVER¼2&SEARCH¼MIS). The sensitivity of the
three programs are shown in Supplementary Table 2, again

with HMM_Score correctly identifying 12% more peptides
than Mascot and 19% more peptides than X!Tandem. This
result gives an assessment of performance when all spectra

(including those of poor quality) are considered.

4 DISCUSSION

Assessing algorithm performance in a domain such as MS/MS
spectrum identification is a significant challenge, because it

requires the availability of standard data sets where the answer
is already known to determine how well the program is
working. While there are large numbers of MS/MS spectra now

available in public data sets, the only way of knowing whether
search results for an algorithm are correct is by manual
validation, which is infeasible when tens of thousands of

spectra are involved. We therefore focused in this work on

validating HMM_Score using three data sets where the answer
was already known with some reasonable confidence. Even in
the case of those sets (the best presently available to our

knowledge), their validation depended on other programs. This
introduces a conundrum: when programs disagree, which one is
correct? For this reason, Kapp et al. started with 6000 human

blood plasma derived MS/MS spectra, and analyzed them using
7 different programs, then applying a voting procedure to
determine which ones could be confidently identified by more

than one program. This resulted in a set of 677 spectra for
which the matching peptide sequence assignment had good
confidence due to agreement of multiple programs and

subsequent manual validation. We used this as data set 2. It
is likely there are other peptides we could identify using

HMM_Score in the remainder of the unidentified spectra from
that data set (5129 were unidentified), but there would be no
firm way to assure that our results were correct for those.

Because of these issues, data set 3b is likely the most
representative of true performance. Its validation had no prior
dependence upon other algorithms—it was based on a set of

known protein standards, and it was small enough that we were
able to confirm each result by hand. The second best is Kapp’s
data set (data set 2), because the validation was by multiple

programs. For both of these data sets, HMM_Score’s perform-
ance was very good. While no algorithm can presently identify
every spectrum produced by a typical experiment, HMM_Score

makes a significant improvement in identification capability.
While initially we performed intra-set 10-fold cross-validation

to assess performance, it was suggested by a colleague that we

attempt cross-instrument validation. We tested this suggestion,
and realized that whenHMM_Score was trained on theMALDI
TOF/TOF data (data set 1), it produced better search results

when applied during testing to the other data sets, including
the ion trap data used in data set 2. While this was a surprise,

we determined it was because data set 1 was a cleaner data set,
which wasmore informative for parameter estimation (training).
A fortunate side effect is that the validation described for

data sets 2 and 3 above was performed with a model trained
on data set 1, there is minimal concern about cross validation
issues such as how the data set is partitioned. The training

set was on a different instrument and from a different organ-
ism than the testing set for all reported experiments on data
sets 2 and 3.

HMM_Score has computational complexity that scales
linearly with the size of the spectrum and the number of
peptides in the database searched. The program presently takes

about 1–4ms to calculate the most probable path using Viterbi
for a mass list of 100 fragment ions. Thus, for a database like
Swiss-Prot where the average number of peptides scored for

each precursor within 2 Da is 25 000, HMM_Score takes about
a minute per spectrum. We have further optimized this in our

GFS software (Giddings et al., 2003) by pre-filtering using
short sequence tags (Mann and Wilm, 1994) and then only
applying HMM_Score to the pre-filtered spectra.

5 CONCLUSION

We have developed a scoring function using a HMM as its core,

which uniquely employs information accessible from both the
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MS/MS spectrum and the peptide sequence to provide excellent
peptide identification performance. The use of machine
learning, whereby additional fragmentation information was
provided by the peptide sequence, resulted in a very robust

algorithm. HMM_Score demonstrates the power of using
machine learning methods to take advantage of the statistics
present in large data sets. Further improvement may be possible

by incorporating additional features of spectral data, such as
the correlation between all amino acids present in a peptide and
its likelihood of observation by MS/MS.

Preliminary application of the method to whole human
genome search using Human Plasma Proteome data (results
not shown) indicates that the improved accuracy of protein

identification will aid with the accurate matching of MS/MS
spectra directly to the whole human genome, in order to facilitate
the identification of proteins that aren’t represented by available
annotation and/or to facilitate proteome-based re-annotation.

We have incorporated HMM_Score in our GFS software
version 2.1, presently an in-house beta version scheduled for
public release in late December 2007 (downloadable from

http://gfs.unc.edu). To broaden the application of the method,
we are also incorporating HMM_Score as a pluggable scoring
function into X!Tandem (Craig et al., 2004). In addition, a

standalone JAVA version of the program is available for
download from Proteome Commons, which is linked from our
website at http://bioinfo.med.unc.edu/Downloads.
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