
Chapter 13

Secondary Storage
Management

Database systems always involve secondary storage — the disks and other de
vices that store large amounts of data that persists over time. This chapter
summarizes what we need to know about how a typical computer system man
ages storage. We review the memory hierarchy of devices with progressively
slower access but larger capacity. We examine disks in particular and see how
the speed of data access is affected by how we organize our data on the disk.
We also study mechanisms for making disks more reliable.

Then, we turn to how data is represented. We discuss the way tuples of a
relation or similar records or objects are stored. Efficiency, as always, is the
key issue. We cover ways to find records quickly, and how to manage insertions
and deletions of records, as well as records whose sizes grow and shrink.

13.1 The Memory Hierarchy
We begin this section by examining the memory hierarchy of a computer system.
We then focus on disks, by far the most common device at the “secondary-
storage” level of the hierarchy. We give the rough parameters that determine
the speed of access and look at the transfer of data from disks to the lower
levels of the memory hierarchy.

13.1.1 The Memory Hierarchy
A typical computer system has several different components in which data may
be stored. These components have data capacities ranging over at least seven
orders of magnitude and also have access speeds ranging over seven or more
orders of magnitude. The cost per byte of these components also varies, but
more slowly, with perhaps three orders of magnitude between the cheapest and

557

558 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

most expensive forms of storage. Not surprisingly, the devices with smallest
capacity also offer the fastest access speed and have the highest cost per byte.
A schematic of the memory hierarchy is shown in Fig. 13.1.

DBMS

Nonvolatile

t
Volatile

I
Figure 13.1: The memory hierarchy

Here are brief descriptions of the levels, from the lowest, or fastest-smallest
level, up.

1. Cache. A typical machine has a megabyte or more of cache storage.
On-board cache is found on the same chip as the microprocessor itself,
and additional level-2 cache is found on another chip. Data and instruc
tions are moved to cache from main memory when they are needed by
the processor. Cached data can be accessed by the processor in a few
nanoseconds.

2. Main Memory. In the center of the action is the computer’s main memory.
We may think of everything that happens in the computer — instruction
executions and data manipulations — as working on information that is
resident in main memory (although in practice, it is normal for what is
used to migrate to the cache). A typical machine in 2008 is configured
with about a gigabyte of main memory, although much larger main mem
ories are possible. Typical times to move data from main memory to the
processor or cache are in the 10-100 nanosecond range.

3. Secondary Storage. Secondary storage is typically magnetic disk, a device
we shall consider in detail in Section 13.2. In 2008, single disk units
have capacities of up to a terabyte, and one machine can have several
disk units. The time to transfer a single byte between disk and main

13.1. THE MEMORY HIERARCHY 559

Computer Quantities are Powers of 2

It is conventional to talk of sizes or capacities of computer components
as if they were powers of 10: megabytes, gigabytes, and so on. In reality,
since it is most efficient to design components such as memory chips to
hold a number of bits that is a power of 2, all these numbers are really
shorthands for nearby powers of 2. Since 210 = 1024 is very close to a
thousand, we often maintain the fiction that 210 = 1000, and talk about
210 with the prefix “kilo,” 220 as “mega,” 230 as “giga,” 240 as “tera,” and
250 as “peta,” even though these prefixes in scientific parlance refer to 103,
106, 109, 1012 and 1015, respectively. The discrepancy grows as we talk of
larger numbers. A “gigabyte” is really 1.074 x 109 bytes.

We use the standard abbreviations for these numbers: K, M, G, T, and
P for kilo, mega, giga, tera, and peta, respectively. Thus, 16Gb is sixteen
gigabytes, or strictly speaking 234 bytes. Since we sometimes want to talk
about numbers that are the conventional powers of 10, we shall reserve for
these the traditional numbers, without the prefixes “kilo,” “mega,” and
so on. For example, “one million bytes” is 1,000,000 bytes, while “one
megabyte” is 1,048,576 bytes.

A recent trend is to use “kilobyte,” “megabyte,” and so on for exact
powers of ten, and to replace the third and fourth letters by “bi” to repre
sent the similar powers of two. Thus, “kibibyte” is 1024 bytes, “mebibyte”
is 1,048,576 bytes, and so on. We shall not use this convention.

memory is around 10 miliseconds. However, large numbers of bytes can
be transferred at one time, so the m atter of how fast data moves from
and to disk is somewhat complex.

4. Tertiary Storage. As capacious as a collection of disk units can be, there
are databases much larger than what can be stored on the disk(s) of a
single machine, or even several machines. To serve such needs, tertiary
storage devices have been developed to hold data volumes measured in ter
abytes. Tertiary storage is characterized by significantly higher read/write
times than secondary storage, but also by much larger capacities and
smaller cost per byte than is available from magnetic disks. Many ter
tiary devices involve robotic arms or conveyors that bring storage media
such as magnetic tape or optical disks (e.g., DVD’s) to a reading device.
Retrieval takes seconds or minutes, but capacities in the petabyte range
are possible.

560 CHAPTER 13. SECONDARY STO RAGE M ANAGEM ENT

13.1.2 Transfer of Data Between Levels

Normally, data moves between adjacent levels of the hierarchy. At the secondary
and tertiary levels, accessing the desired data or finding the desired place to
store data takes a great deal of time, so each level is organized to transfer
large amounts of data to or from the level below, whenever any data at all is
needed. Especially important for understanding the operation of a database
system is the fact that the disk is organized into disk blocks (or just blocks, or
as in operating systems, pages) of perhaps 4-64 kilobytes. Entire blocks axe
moved to or from a continuous section of main memory called a buffer. Thus,
a key technique for speeding up database operations is to arrange data so that
when one piece of a disk block is needed, it is likely that other data on the same
block will also be needed at about the same time.

The same idea applies to other hierarchy levels. If we use tertiary storage,
we try to arrange so that when we select a unit such as a DVD to read, we
need much of what is on that DVD. At a lower level, movement between main
memory and cache is by units of cache lines, typically 32 consecutive bytes.
The hope is that entire cache lines will be used together. For example, if a
cache line stores consecutive instructions of a program, we hope that when
the first instruction is needed, the next few instructions will also be executed
immediately thereafter.

13.1.3 Volatile and Nonvolatile Storage
An additional distinction among storage devices is whether they are volatile or
nonvolatile. A volatile device “forgets” what is stored in it when the power goes
off. A nonvolatile device, on the other hand, is expected to keep its contents
intact even for long periods when the device is turned off or there is a power
failure. The question of volatility is important, because one of the characteristic
capabilities of a DBMS is the ability to retain its data even in the presence of
errors such as power failures.

Magnetic and optical materials hold their data in the absence of power.
Thus, essentially all secondary and tertiary storage devices are nonvolatile. On
the other hand, main memory is generally volatile (although certain types of
more expensive memory chips, such as flash memory, can hold their data after
a power failure). A significant part of the complexity in a DBMS comes from
the requirement that no change to the database can be considered final until it
has migrated to nonvolatile, secondary storage.

13.1.4 Virtual Memory-
Typical software executes in virtual-memory, an address space that is typically
32 bits; i.e., there are 232 bytes, or 4 gigabytes, in a virtual memory. The
operating system manages virtual memory, keeping some of it in main memory
and the rest on disk. Transfer between memory and disk is in units of disk

13.1. THE MEMORY HIERARCHY 561

M oore’s Law

Gordon Moore observed many years ago that integrated circuits were im
proving in many ways, following an exponential curve that doubles about
every 18 months. Some of these parameters that follow “Moore’s law” are:

1. The number of instructions per second that can be executed for unit
cost. Until about 2005, the improvement was achieved by making
processor chips faster, while keeping the cost fixed. After that year,
the improvement has been maintained by putting progressively more
processors on a single, fixed-cost chip.

2. The number of memory bits that can be bought for unit cost and
the number of bits that can be put on one chip.

3. The number of bytes per unit cost on a disk and the capacity of the
largest disks.

On the other hand, there are some other important parameters that
do not follow Moore’s law; they grow slowly if at all. Among these slowly
growing parameters are the speed of accessing data in main memory and
the speed at which disks rotate. Because they grow slowly, “latency”
becomes progressively larger. That is, the time to move data between
levels of the memory hierarchy appears enormous today, and will only get
worse.

blocks (pages). Virtual memory is an artifact of the operating system and its
use of the machine’s hardware, and it is not a level of the memory hierarchy.

The path in Fig. 13.1 involving virtual memory represents the treatment
of conventional programs and applications. It does not represent the typical
way data in a database is managed, since a DBMS manages the data itself.
However, there is increasing interest in main-memory database systems, which
do indeed manage their data through virtual memory, relying on the operating
system to bring needed data into main memory through the paging mechanism.
Main-memory database systems, like most applications, are most useful when
the data is small enough to remain in main memory without being swapped
out by the operating system.

13.1.5 Exercises for Section 13.1
Exercise 13.1.1: Suppose that in 2008 the typical computer has a processor
chip with two processors (“cores”) that each run at 3 gigahertz, has a disk of
250 gigabytes, and a main memory of 1 gigabyte. Assume that Moore’s law
(these factors double every 18 months) holds into the indefinite future.

562 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

a) When will petabyte disks be common?

b) When will terabyte main memories be common?

c) When will terahertz processor chips be common (i.e., the total number of
cycles per second of all the cores on a chip will be approximately 1012?

d) W hat will be a typical configuration (processor, disk, memory) in the year
2015?

! Exercise 13.1 .2 : Commander Data, the android from the 24th century on
Star Trek: The Next Generation once proudly announced that his processor
runs at “12 teraops.” While an operation and a cycle may not be the same, let
us suppose they are, and that Moore’s law continues to hold for the next 300
years. If so, what would Data’s true processor speed be?

13.2 Disks
The use of secondary storage is one of the important characteristics of a DBMS,
and secondary storage is almost exclusively based on magnetic disks. Thus, to
motivate many of the ideas used in DBMS implementation, we must examine
the operation of disks in detail.

13.2.1 Mechanics of Disks
The two principal moving pieces of a disk drive are shown in Fig. 13.2; they
are a disk assembly and a head assembly. The disk assembly consists of one
or more circular platters that rotate around a central spindle. The upper and
lower surfaces of the platters are covered with a thin layer of magnetic material,
on which bits are stored. 0’s and l ’s are represented by different patterns in the
magnetic material. A common diameter for disk platters is 3.5 inches, although
disks with diameters from an inch to several feet have been built.

The disk is organized into tracks, which are concentric circles on a single
platter. The tracks that are at a fixed radius from the center, among all the
surfaces, form one cylinder. Tracks occupy most of a surface, except for the
region closest to the spindle, as can be seen in the top view of Fig. 13.3. The
density of data is much greater along a track than radially. In 2008, a typical
disk has about 100,000 tracks per inch but stores about a million bits per inch
along the tracks.

Tracks are organized into sectors, which are segments of the circle separated
by gaps that are not magnetized to represent either 0’s or l ’s.1 The sector is an
indivisible unit, as far as reading and writing the disk is concerned. It is also
indivisible as far as errors are concerned. Should a portion of the magnetic layer

1 W e show each tra c k w ith th e sam e n u m b er o f sec to rs in F ig . 13.3. However, th e n u m b er
o f sec to rs p e r tra c k no rm ally varies, w ith th e o u te r track s hav ing m ore sec to rs th a n inn er
tracks.

13.2. DISKS 563

Figure 13.2: A typical disk

be corrupted in some way, so that it cannot store information, then the entire
sector containing this portion cannot be used. Gaps often represent about 10%
of the total track and are used to help identify the beginnings of sectors. As we
mentioned in Section 13.1.2, blocks are logical units of data that are transferred
between disk and main memory; blocks consist of one or more sectors.

Figure 13.3: Top view of a disk surface

The second movable piece shown in Fig. 13.2, the head assembly, holds the
disk heads. For each surface there is one head, riding extremely close to the
surface but never touching it (or else a “head crash” occurs and the disk is
destroyed). A head reads the magnetism passing under it, and can also alter
the magnetism to write information on the disk. The heads are each attached
to an arm, and the arms for all the surfaces move in and out together, being
part of the rigid head assembly.

E xam ple 13.1: The Megatron 7^7 disk has the following characteristics, which

564 CHAPTER 13. SECONDARY STO RAG E M ANAGEM ENT

are typical of a large vintage-2008 disk drive.

• There are eight platters providing sixteen surfaces.

• There are 216, or 65,536, tracks per surface.

• There are (on average) 28 = 256 sectors per track.

• There are 212 = 4096 bytes per sector.

The capacity of the disk is the product of 16 surfaces, times 65,536 tracks,
times 256 sectors, times 4096 bytes, or 240 bytes. The Megatron 747 is thus a
terabyte disk. A single track holds 256 x 4096 bytes, or 1 megabyte. If blocks
are 214, or 16,384 bytes, then one block uses 4 consecutive sectors, and there
are (on average) 256/4 = 32 blocks on a track. □

13.2.2 The Disk Controller
One or more disk drives are controlled by a disk controller, which is a small
processor capable of:

1. Controlling the mechanical actuator that moves the head assembly, to
position the heads at a particular radius, i.e., so that any track of one
particular cylinder can be read or written.

2. Selecting a sector from among all those in the cylinder at which the heads
are positioned. The controller is also responsible for knowing when the ro
tating spindle has reached the point where the desired sector is beginning
to move under the head.

3. Transferring bits between the desired sector and the computer’s main
memory.

4. Possibly, buffering an entire track or more in local memory of the disk
controller, hoping that many sectors of this track will be read soon, and
additional accesses to the disk can be avoided.

Figure 13.4 shows a simple, single-processor computer. The processor com
municates via a data bus with the main memory and the disk controller. A
disk controller can control several disks; we show three disks in this example.

13.2.3 Disk Access Characteristics
Accessing (reading or writing) a block requires three steps, and each step has
an associated delay.

1. The disk controller positions the head assembly at the cylinder containing
the track on which the block is located. The time to do so is the seek time.

13.2. DISKS 565

Disks

Figure 13.4: Schematic of a simple computer system

2. The disk controller waits while the first sector of the block moves under
the head. This time is called the rotational latency.

3. All the sectors and the gaps between them pass under the head, while the
disk controller reads or writes data in these sectors. This delay is called
the transfer time.

The sum of the seek time, rotational latency, and transfer time is the latency
of the disk.

The seek time for a typical disk depends on the distance the heads have to
travel from where they are currently located. If they are already at the desired
cylinder, the seek time is 0. However, it takes roughly a millisecond to start
the disk heads moving, and perhaps 10 milliseconds to move them across all
the tracks.

A typical disk rotates once in roughly 10 milliseconds. Thus, rotational
latency ranges from 0 to 10 milliseconds, and the average is 5. TYansfer times
tend to be much smaller, since there are often many blocks on a track. Thus,
transfer times are in the sub-millisecond range. When you add all three delays,
the typical average latency is about 10 milliseconds, and the maximum latency
about twice that.

E xam ple 13.2: Let us examine the time it takes to read a 16,384-byte block
from the Megatron 747 disk. First, we need to know some timing properties of
the disk:

• The disk rotates at 7200 rpm; i.e., it makes one rotation in 8.33 millisec
onds.

• To move the head assembly between cylinders takes one millisecond to
start and stop, plus one additional millisecond for every 4000 cylinders

566 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

traveled. Thus, the heads move one track in 1.00025 milliseconds and
move from the innermost to the outermost track, a distance of 65,536
tracks, in about 17.38 milliseconds.

• Gaps occupy 10% of the space around a track.

Let us calculate the minimum, maximum, and average times to read that
16,384-byte block. The minimum time is just the transfer time. That is, the
block might be on a track over which the head is positioned already, and the
first sector of the block might be about to pass under the head.

Since there are 4096 bytes per sector on the Megatron 747 (see Example 13.1
for the physical specifications of the disk), the block occupies four sectors. The
heads must therefore pass over four sectors and the three gaps between them.
We assume that gaps represent 10% of the circle and sectors the remaining 90%.
There are 256 gaps and 256 sectors around the circle. Since the gaps together
cover 36 degrees of arc and sectors the remaining 324 degrees, the total degrees
of arc covered by 3 gaps and 4 sectors is 36 x 3/256 + 324 x 4/256 = 5.48
degrees. The transfer time is thus (5.48/360) x 0.00833 = .00013 seconds. That
is, 5.48/360 is the fraction of a rotation needed to read the entire block, and
.00833 seconds is the amount of time for a 360-degree rotation.

Now, let us look at the maximum possible time to read the block. In the
worst case, the heads are positioned at the innermost cylinder, and the block
we want to read is on the outermost cylinder (or vice versa). Thus, the first
thing the controller must do is move the heads. As we observed above, the time
it takes to move the Megatron 747 heads across all cylinders is about 17.38
milliseconds. This quantity is the seek time for the read.

The worst thing that can happen when the heads arrive at the correct cylin
der is that the beginning of the desired block has just passed under the head.
Assuming we must read the block starting at the beginning, we have to wait
essentially a full rotation, or 8.33 milliseconds, for the beginning of the block
to reach the head again. Once that happens, we have only to wait an amount
equal to the transfer time, 0.13 milliseconds, to read the entire block. Thus,
the worst-case latency is 17.38 + 8.33 + 0.13 = 25.84 milliseconds.

Last, let us compute the average latency. Two of the components of the
latency are easy to compute: the transfer time is always 0.13 milliseconds, and
the average rotational latency is the time to rotate the disk half way around, or
4.17 milliseconds. We might suppose that the average seek time is just the time
to move across half the tracks. However, that is not quite right, since typically,
the heads are initially somewhere near the middle and therefore will have to
move less than half the distance, on average, to the desired cylinder. We leave
it as an exercise to show that the average distance traveled is 1/3 of the way
across the disk.

The time it takes the Megatron 747 to move 1/3 of the way across the disk
is 1 + (65536/3)/4000 = 6.46 milliseconds. Our estimate of the average latency
is thus 6.46 + 4.17 + 0.13 = 10.76 milliseconds; the three terms represent average
seek time, average rotational latency, and transfer time, respectively. □

13.2. DISKS 567

13.2.4 Exercises for Section 13.2
E xercise 13.2.1: The Megatron 777 disk has the following characteristics:

1. There are ten surfaces, with 100,000 tracks each.

2. Tracks hold an average of 1000 sectors of 1024 bytes each.

3. 20% of each track is used for gaps.

4. The disk rotates at 10,000 rpm.

5. The time it takes the head to move n tracks is 1 + 0.0002n milliseconds.

Answer the following questions about the Megatron 777.

a) What is the capacity of the disk?

b) If tracks are located on the outer inch of a 3.5-inch-diameter surface, what
is the average density of bits in the sectors of a track?

c) What is the maximum seek time?

d) What is the maximum rotational latency?

e) If a block is 65,546 bytes (i.e., 64 sectors), what is the transfer time of a
block?

! f) What is the average seek time?

g) What is the average rotational latency?

! E xercise 13.2.2: Suppose the Megatron 747 disk head is at cylinder 8192,
i.e., 1/8 of the way across the cylinders. Suppose that the next request is for a
block on a random cylinder. Calculate the average time to read this block.

!! Exercise 13.2.3: Prove that if we move the head from a random cylinder to
another random cylinder, the average distance we move is 1/3 of the way across
the disk (neglecting edge effects due to the fact that the number of cylinders is
finite).

!! Exercise 13.2.4: Exercise 13.2.3 assumes that we move from a random track
to another random track. Suppose, however, that the number of sectors per
track is proportional to the length (or radius) of the track, so the bit density
is the same for all tracks. Suppose also that we need to move the head from a
random sector to another random sector. Since the sectors tend to congregate
at the outside of the disk, we might expect that the average head move would
be less than 1/3 of the way across the tracks. Assuming that tracks occupy
radii from 0.75 inches to 1.75 inches, calculate the average number of tracks the
head travels when moving between two random sectors.

568 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

E xercise 13.2.5: To modify a block on disk, we must read it into main mem
ory, perform the modification, and write it back. Assume that the modification
in main memory takes less time than it does for the disk to rotate, and that the
disk controller postpones other requests for disk access until the block is ready
to be written back to the disk. For the Megatron 747 disk, what is the time to
modify a block?

13.3 Accelerating Access to Secondary Storage
Just because a disk takes an average of, say, 10 milliseconds to access a block,
it does not follow that an application such as a database system will get the
data it requests 10 milliseconds after the request is sent to the disk controller.
If there is only one disk, the disk may be busy with another access for the same
process or another process. In the worst case, a request for a disk access arrives
more than once every 10 milliseconds, and these requests back up indefinitely.
In that case, the scheduling latency becomes infinite.

There are several things we can do to decrease the average time a disk access
takes, and thus improve the throughput (number of disk accesses per second that
the system can accomodate). We begin this section by arguing that the “I/O
model” is the right one for measuring the time database operations take. Then,
we consider a number of techniques for speeding up typical database accesses
to disk:

1. Place blocks that are accessed together on the same cylinder, so we can
often avoid seek time, and possibly rotational latency as well.

2. Divide the data among several smaller disks rather than one large one.
Having more head assemblies that can go after blocks independently can
increase the number of block accesses per unit time.

3. “Mirror” a disk: making two or more copies of the data on different disks.
In addition to saving the data in case one of the disks fails, this strategy,
like dividing the data among several disks, lets us access several blocks at
once.

4. Use a disk-scheduling algorithm, either in the operating system, in the
DBMS, or in the disk controller, to select the order in which several
requested blocks will be read or written.

5. Prefetch blocks to main memory in anticipation of their later use.

13.3.1 The I/O Model of Computation
Let us imagine a simple computer running a DBMS and trying to serve a
number of users who are performing queries and database modifications. For
the moment, assume our computer has one processor, one disk controller, and

13.3. ACCELERATING ACCESS TO SECONDARY STORAGE 569

one disk. The database itself is much too large to fit in main memory. Key parts
of the database may be buffered in main memory, but generally, each piece of
the database that one of the users accesses will have to be retrieved initially
from disk. The following rule, which defines the I/O model of computation, can
thus be assumed.

D om inance o f I /O cost: The time taken to perform a disk ac
cess is much larger than the time likely to be used manipulating
that data in main memory. Thus, the number of block accesses
(Disk I /O ’s) is a good approximation to the time needed by the
algorithm and should be minimized.

E xam ple 13.3: Suppose our database has a relation R and a query asks for
the tuple of R that has a certain key value k. It is quite desirable to have
an index on R to identify the disk block on which the tuple with key value k
appears. However it is generally unimportant whether the index tells us where
on the block this tuple appears.

For instance, if we assume a Megatron 747 disk, it will take on the order
of 11 milliseconds to read a 16K-byte block. In 11 milliseconds, a modern
microprocessor can execute millions of instructions. However, searching for
the key value k once the block is in main memory will only take thousands of
instructions, even if the dumbest possible linear search is used. The additional
time to perform the search in main memory will therefore be less than 1% of
the block access time and can be neglected safely. □

13.3.2 Organizing Data by Cylinders
Since seek time represents about half the time it takes to access a block, it makes
sense to store data that is likely to be accessed together, such as relations, on
a single cylinder, or on as many adjacent cylinders as are needed. In fact, if we
choose to read all the blocks on a single track or on a cylinder consecutively,
then we can neglect all but the first seek time (to move to the cylinder) and
the first rotational latency (to wait until the first of the blocks moves under the
head). In that case, we can approach the theoretical transfer rate for moving
data on or off the disk.

E xam ple 13.4: Suppose relation R requires 1024 blocks of a Megatron 747
disk to hold its tuples. Suppose also that we need to access all the tuples of
R; for example we may be doing a search without an index or computing a
sum of the values of a particular attribute of R. If the blocks holding R are
distributed around the disk at random, then we shall need an average latency
(10.76 milliseconds — see Example 13.2) to access each, for a total of 11 seconds.

However, 1024 blocks are exactly one cylinder of the Megatron 747. We can
access them all by performing one average seek (6.46 milliseconds), after which
we can read the blocks in some order, one right after another. We can read all
the blocks on a cylinder in 16 rotations of the disk, since there are 16 tracks.

570 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

Sixteen rotations take 16 x 8.33 = 133 milliseconds. The total time to access R
is thus about 139 milliseconds, and we speed up the operation on R by a factor
of about 80. □

13.3.3 Using M ultiple Disks
We can often improve the performance of our system if we replace one disk, with
many heads locked together, by several disks with their independent heads. The
arrangement was suggested in Fig. 13.4, where we showed three disks connected
to a single controller. As long as the disk controller, bus, and main memory
can handle n times the data-transfer rate, then n disks will have approximately
the performance of one disk that operates n times as fast.

Thus, using several disks can increase the ability of a database system to
handle heavy loads of disk-access requests. However, as long as the system is
not overloaded (when requests will queue up and are delayed for a long time or
ignored), there is no change in how long it takes to perform any single block
access. If we have several disks, then the technique known as striping (described
in the next example) will speed up access to large database objects — those
that occupy a large number of blocks.

E xam ple 1 3 .5 : Suppose we have four Megatron 747 disks and want to access
the relation R of Example 13.4 faster than the 139-millisecond time that was
suggested for storing R on one cylinder of one disk. We can “stripe” R by
dividing it among the four disks. The first disk can receive blocks 1 ,5 ,9 ,.. . of
R, the second disk holds blocks 2 ,6 ,1 0 ,.. ., the third holds blocks 3 ,7 ,1 1 ,.. .,
and the last disk holds blocks 4 ,8 ,1 2 ,.. ., as suggested by Fig. 13.5. Let us
contrive that on each of the disks, all the blocks of R are on four tracks of a
single cylinder.

r^i h
f^i r~i

IZD H
HD

10 [V]
HD

Figure 13.5: Striping a relation across four disks

Then to retrieve the 256 blocks of R on one of the disks requires an average
seek time (6.46 milliseconds) plus four rotations of the disk, one rotation for
each track. That is 6.46 + 4 x 8.33 = 39.8 milliseconds. Of course we have to
wait for the last of the four disks to finish, and there is a high probability that
one will take substantially more seek time than average. However, we should
get a speedup in the time to access R by about a factor of three on the average,
when there are four disks. □

13.3. ACCELERATING ACCESS TO SECONDARY STORAGE 571

13.3.4 Mirroring Disks
There are situations where it makes sense to have two or more disks hold identi
cal copies of data. The disks are said to be mirrors of each other. One important
motivation is that the data will survive a head crash by either disk, since it is
still readable on a mirror of the disk that crashed. Systems designed to enhance
reliability often use pairs of disks as mirrors of each other.

If we have n disks, each holding the same data, then the rate at which we
can read blocks goes up by a factor of n, since the disk controller can assign a
read request to any of the n disks. In fact, the speedup could be even greater
than n, if a clever controller chooses to read a block from the disk whose head
is currently closest to that block. Unfortunately, the writing of disk blocks does
not speed up at all. The reason is that the new block must be written to each
of the n disks.

13.3.5 Disk Scheduling and the Elevator Algorithm
Another effective way to improve the throughput of a disk system is to have the
disk controller choose which of several requests to execute first. This approach
cannot be used if accesses have to be made in a certain sequence, but if the
requests are from independent processes, they can all benefit, on the average,
from allowing the scheduler to choose among them judiciously.

A simple and effective way to schedule large numbers of block requests is
known as the elevator algorithm. We think of the disk head as making sweeps
across the disk, from innermost to outermost cylinder and then back again,
just as an elevator makes vertical sweeps from the bottom to top of a building
and back again. As heads pass a cylinder, they stop if there are one or more
requests for blocks on that cylinder. All these blocks are read or written, as
requested. The heads then proceed in the same direction they were traveling
until the next cylinder with blocks to access is encountered. When the heads
reach a position where there are no requests ahead of them in their direction of
travel, they reverse direction.

E xam ple 13.6: Suppose we are scheduling a Megatron 747 disk, which we
recall has average seek, rotational latency, and transfer times of 6.46, 4.17,
and 0.13, respectively (in this example, all times are in milliseconds). Suppose
that at some time there are pending requests for block accesses at cylinders
8000, 24,000, and 56,000. The heads are located at cylinder 8000. In addition,
there are three more requests for block accesses that come in at later times, as
summarized in Fig. 13.6. For instance, the request for a block from cylinder
16,000 is made at time 10 milliseconds.

We shall assume that each block access incurs time 0.13 for transfer and
4.17 for average rotational latency, i.e., we need 4.3 milliseconds plus whatever
the seek time is for each block access. The seek time can be calculated by the
rule for the Megatron 747 given in Example 13.2: 1 plus the number of tracks
divided by 4000. Let us see what happens if we schedule disk accesses using

572 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

Cylinder
of request

First time
available

8000 0
24000 0
56000 0
16000 10
64000 20
40000 30

Figure 13.6: Arrival times for four block-access requests

the elevator algorithm. The first request, a t cylinder 8000, requires no seek,
since the heads are already there. Thus, a t time 4.3 the first access will be
complete. The request for cylinder 16,000 has not arrived at this point, so we
move the heads to cylinder 24,000, the next requested “stop” on our sweep to
the highest-numbered tracks. The seek from cylinder 8000 to 24,000 takes 5
milliseconds, so we arrive at time 9.3 and complete the access in another 4.3.
Thus, the second access is complete at time 13.6. By this time, the request for
cylinder 16,000 has arrived, but we passed that cylinder at time 7.3 and will
not come back to it until the next pass.

We thus move next to cylinder 56,000, taking time 9 to seek and 4.3 for
rotation and transfer. The third access is thus complete at time 26.9. Now, the
request for cylinder 64,000 has arrived, so we continue outward. We require 3
milliseconds for seek time, so this access is complete at time 26.9+3+4.3 = 34.2.

At this time, the request for cylinder 40,000 has been made, so it and the
request at cylinder 16,000 remain. We thus sweep inward, honoring these two
requests. Figure 13.7 summarizes the times at which requests are honored.

Cylinder
of request

Time
completed

8000 4.3
24000 13.6
56000 26.9
64000 34.2
40000 45.5
16000 56.8

Figure 13.7: Finishing times for block accesses using the elevator algorithm

Let us compare the performance of the elevator algorithm with a more naive
approach such as first-come-first-served. The first three requests are satisfied
in exactly the same manner, assuming that the order of the first three requests
was 8000, 24,000, and 56,000. However, at that point, we go to cylinder 16,000,

13.3. ACCELERATING ACCESS TO SECONDARY STORAGE 573

because that was the fourth request to arrive. The seek time is 11 for this
request, since we travel from cylinder 56,000 to 16,000, more than half way
across the disk. The fifth request, at cylinder 64,000, requires a seek time of 13,
and the last, at 40,000, uses seek time 7. Figure 13.8 summarizes the activity
caused by first-come-first-served scheduling. The difference between the two
algorithms — 14 milliseconds — may not appear significant, but recall that
the number of requests in this simple example is small and the algorithms were
assumed not to deviate until the fourth of the six requests. □

Cylinder
of request

Time
completed

8000 4.3
24000 13.6
56000 26.9
16000 42.2
64000 59.5
40000 70.8

Figure 13.8: Finishing times for block accesses using the first-come-first-served
algorithm

13.3.6 Prefetching and Large-Scale Buffering
Our final suggestion for speeding up some secondary-memory algorithms is
called prefetching or sometimes double buffering. In some applications we can
predict the order in which blocks will be requested from disk. If so, then we can
load them into main memory buffers before they are needed. One advantage to
doing so is that we are thus better able to schedule the disk, such as by using
the elevator algorithm, to reduce the average time needed to access a block. In
the extreme case, where there are many access requests waiting at all times, we
can make the seek time per request be very close to the minimum seek time,
rather than the average seek time.

13.3.7 Exercises for Section 13.3
E xercise 13.3.1: Suppose we are scheduling I/O requests for a Megatron 747
disk, and the requests in Fig. 13.9 are made, with the head initially at track
32,000. At what time is each request serviced fully if:

a) We use the elevator algorithm (it is permissible to start moving in either
direction at first).

b) We use first-come-first-served scheduling.

574 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

Cylinder First time
of Request available

8000 0
48000 1
4000 10

40000 20

Figure 13.9: Arrival times for four block-access requests

Exercise 13.3.2: Suppose we use two Megatron 747 disks as mirrors of one
another. However, instead of allowing reads of any block from either disk, we
keep the head of the first disk in the inner half of the cylinders, and the head
of the second disk in the outer half of the cylinders. Assuming read requests
are on random tracks, and we never have to write:

a) What is the average rate at which this system can read blocks?

b) How does this rate compare with the average rate for mirrored Megatron
747 disks with no restriction?

c) What disadvantages do you foresee for this system?

E xercise 13.3.3: Let us explore the relationship between the arrival rate of
requests, the throughput of the elevator algorithm, and the average delay of
requests. To simplify the problem, we shall make the following assumptions:

1. A pass of the elevator algorithm always proceeds from the innermost to
outermost track, or vice-versa, even if there are no requests a t the extreme
cylinders.

2. When a pass starts, only those requests that are already pending will be
honored, not requests that come in while the pass is in progress, even if
the head passes their cylinder.2

3. There will never be two requests for blocks on the same cylinder waiting
on one pass.

Let A be the interarrival rate, that is the time between requests for block ac
cesses. Assume that the system is in steady state, that is, it has been accepting
and answering requests for a long time. For a Megatron 747 disk, compute as
a function of A:

2 T h e p u rpose o f th is assu m p tio n is to avoid having to deal w ith th e fac t th a t a typ ica l pass
of th e e levator a lg o rith m goes fast a t firs t, as th e re w ill b e few w aiting requests w here th e
head h as recen tly been, an d slows dow n as i t m oves in to an a re a of th e d isk w here it has no t
recen tly been. T h e analysis o f th e way request d ensity varies du ring a pass is an in terestin g
exercise in its ow n righ t.

13.4. DISK FAILURES 575

a) The average time taken to perform one pass.

b) The number of requests serviced on one pass.

c) The average time a request waits for service.

!! Exercise 13.3.4: In Example 13.5, we saw how dividing the data to be sorted
among four disks could allow more than one block to be read at a time. Sup
pose our data is divided randomly among n disks, and requests for data are also
random. Requests must be executed in the order in which they are received
because there are dependencies among them that must be respected (see Chap
ter 18, for example, for motivation for this constraint). What is the average
throughput for such a system?

! E xercise 13.3.5: If we read k randomly chosen blocks from one cylinder, on
the average how far around the cylinder must we go before we pass all of the
blocks?

13.4 Disk Failures

In this section we shall consider the ways in which disks can fail and what can
be done to mitigate these failures.

1. The most common form of failure is an intermittent failure, where an
attempt to read or write a sector is unsuccessful, but with repeated tries
we are able to read or write successfully.

2. A more serious form of failure is one in which a bit or bits are permanently
corrupted, and it becomes impossible to read a sector correctly no matter
how many times we try. This form of error is called media decay.

3. A related type of error is a write failure, where we attempt to write
a sector, but we can neither write successfully nor can we retrieve the
previously written sector. A possible cause is that there was a power
outage during the writing of the sector.

4. The most serious form of disk failure is a disk crash, where the entire disk
becomes unreadable, suddenly and permanently.

We shall discuss parity checks as a way to detect intermittent failures. We also
discuss “stable storage,” a technique for organizing a disk so that media decays
or failed writes do not result in permanent loss. Finally, we examine techniques
collectively known as “RAID” for coping with disk crashes.

576 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

13.4.1 Interm ittent Failures

An intermittent failure occurs if we try to read a sector, but the correct content
of that sector is not delivered to the disk controller. If the controller has a way
to tell that the sector is good or bad (as we shall discuss in Section 13.4.2),
then the controller can reissue the read request when bad data is read, until
the sector is returned correctly, or some preset limit, like 100 tries, is reached.

Similarly, the controller may attempt to write a sector, but the contents of
the sector are not what was intended. The only way to check that the write was
correct is to let the disk go around again and read the sector. A straightforward
way to perform the check is to read the sector and compare it with the sector
we intended to write. However, instead of performing the complete comparison
at the disk controller, it is simpler to read the sector and see if a good sector
was read. If so, we assume the write was correct, and if the sector read is bad,
then the write was apparently unsuccessful and must be repeated.

13.4.2 Checksums

How a reading operation can determine the good/bad status of a sector may
appear mysterious at first. Yet the technique used in modern disk drives is quite
simple: each sector has some additional bits, called the checksum, that are set
depending on the values of the data bits stored in that sector. If, on reading,
we find that the checksum is not proper for the data bits, then we know there
is an error in reading. If the checkum is proper, there is still a small chance
that the block was not read correctly, but by using many checksum bits we can
make the probability of missing a bad read arbitrarily small.

A simple form of checksum is based on the parity of all the bits in the sector.
If there is an odd number of l ’s among a collection of bits, we say the bits have
odd parity and add a parity bit that is 1. Similarly, if there is an even number
of l ’s among the bits, then we say the bits have even parity and add parity bit
0. As a result:

• The number of l ’s among a collection of bits and their parity bit is always
even.

When we write a sector, the disk controller can compute the parity bit and
append it to the sequence of bits written in the sector. Thus, every sector will
have even parity.

E xam ple 1 3 .7 : If the sequence of bits in a sector were 01101000, then there
is an odd number of l ’s, so the parity bit is 1. If we follow this sequence by its
parity bit we have 011010001. If the given sequence of bits were 11101110, we
have an even number of l ’s, and the parity bit is 0. The sequence followed by
its parity bit is 111011100. Note that each of the nine-bit sequences constructed
by adding a parity bit has even parity. □

13.4. DISK FAILURES 577

Any one-bit error in reading or writing the bits and their parity bit results
in a sequence of bits that has odd parity, i.e., the number of l ’s is odd. It is
easy for the disk controller to count the number of l ’s and to determine the
presence of an error if a sector has odd parity.

Of course, more than one bit of the sector may be corrupted. If so, the
probability is 50% that the number of 1-bits will be even, and the error will not
be detected. We can increase our chances of detecting errors if we keep several
parity bits. For example, we could keep eight parity bits, one for the first bit
of every byte, one for the second bit of every byte, and so on, up to the eighth
and last bit of every byte. Then, on a massive error, the probability is 50%
that any one parity bit will detect an error, and the chance that none of the
eight do so is only one in 28, or 1/256. In general, if we use n independent bits
as a checksum, then the chance of missing an error is only 1/2". For instance,
if we devote 4 bytes to a checksum, then there is only one chance in about four
billion that the error will go undetected.

13.4.3 Stable Storage
While checksums will almost certainly detect the existence of a media failure
or a failure to read or write correctly, it does not help us correct the error.
Moreover, when writing we could find ourselves in a position where we overwrite
the previous contents of a sector and yet cannot read the new contents correctly.
That situation could be serious if, say, we were adding a small increment to
an account balance and now have lost both the original balance and the new
balance. If we could be assured that the contents of the sector contained either
the new or old balance, then we would only have to determine whether the
write was successful or not.

To deal with the problems above, we can implement a policy known as
stable storage on a disk or on several disks. The general idea is that sectors
are paired, and each pair represents one sector-contents X . We shall refer to
the pair of sectors representing X as the “left” and “right” copies, X l and X r .
We continue to assume that the copies are written with a sufficient number of
parity-check bits so that we can rule out the possibility that a bad sector looks
good when the parity checks are considered. Thus, we shall assume that if the
read function returns a good value w for either X l or X r , then w is the true
value of X . The stable-storage writing policy is:

1. Write the value of X into X l - Check that the value has status “good” ;
i.e., the parity-check bits are correct in the written copy. If not, repeat the
write. If after a set number of write attempts, we have not successfully
written X into X l , assume that there is-a media failure in this sector. A
fix-up such as substituting a spare sector for X l must be adopted.

2. Repeat (1) for X r .

The stable-storage reading policy is to alternate trying to read X l and X r ,

578 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

until a good value is returned. Only if no good value is returned after some
large, prechosen number of tries, is X truly unreadable.

13.4.4 Error-Handling Capabilities of Stable Storage
The policies described in Section 13.4.3 are capable of compensating for several
different kinds of errors. We shall outline them here.

1. Media failures. If, after storing X in sectors X l and X r , one of them
undergoes a media failure and becomes permanently unreadable, we can
always read X from the other. If both X l and X r have failed, then we
cannot read X , but the probability of both failing is extremely small.

2. Write failure. Suppose that as we write X , there is a system failure —
e.g., a power outage. It is possible that X will be lost in main memory,
and also the copy of X being written at the time will be garbled. For
example, half the sector may be written with part of the new value of X ,
while the other half remains as it was. When the system becomes available
and we examine X l and X r , we are sure to be able to determine either
the old or new value of X . The possible cases are:

(a) The failure occurred as we were writing X l ■ Then we shall find that
the status of X l is “bad.” However, since we never got to write X r ,
its status will be “good” (unless there is a coincident media failure
at X r , which is extremely unlikely). Thus, we can obtain the old
value of X . We may also copy X r into X l to repair the damage to
X l .

(b) The failure occurred after we wrote X l- Then we expect that X l
will have status “good,” and we may read the new value of X from
X l - Since X r may or may not have the correct value of X , we
should also copy X l into X r .

13.4.5 Recovery from Disk Crashes
The most serious mode of failure for disks is the “disk crash” or “head crash,”
where data is permanently destroyed. If the data was not backed up on another
medium, such as a tape backup system, or on a mirror disk as we discussed in
Section 13.3.4, then there is nothing we can do to recover the data. This
situation represents a disaster for many DBMS applications, such as banking
and other financial applications.

Several schemes have been developed to reduce the risk of data loss by disk
crashes. They generally involve redundancy, extending the idea of parity checks
from Section 13.4.2 or duplicated sectors, as in Section 13.4.3. The common
term for this class of strategies is RAID, or Redundant Arrays of Independent
Disks.

13.4. DISK FAILURES 579

The rate at which disk crashes occur is generally measured by the mean time
to failure, the time after which 50% of a population of disks can be expected to
fail and be unrecoverable. For modern disks, the mean time to failure is about
10 years. We shall make the convenient assumption that if the mean time to
failure is n years, then in any given year, 1 /nth of the surviving disks fail. In
reality, there is a tendency for disks, like most electronic equipment, to fail early
or fail late. That is, a small percentage have manufacturing defects that lead
to their early demise, while those without such defects will survive for many
years, until wear-and-tear causes a failure.

However, the mean time to a disk crash does not have to be the same as
the mean time to data loss. The reason is that there are a number of schemes
available for assuring that if one disk fails, there are others to help recover the
data of the failed disk. In the remainder of this section, we shall study the most
common schemes.

Each of these schemes starts with one or more disks that hold the data (we’ll
call these the data disks) and adding one or more disks that hold information
that is completely determined by the contents of the data disks. The latter are
called redundant disks. When there is a disk crash of either a data disk or a
redundant disk, the other disks can be used to restore the failed disk, and there
is no permanent information loss.

13.4.6 Mirroring as a Redundancy Technique
The simplest scheme is to mirror each disk, as discussed in Section 13.3.4.
We shall call one of the disks the data disk, while the other is the redundant
disk, which is which doesn’t matter in this scheme. Mirroring, as a protection
against data loss, is often referred to as RAID level 1. It gives a mean time
to memory loss that is much greater than the mean time to disk failure, as
the following example illustrates. Essentially, with mirroring and the other
redundancy schemes we discuss, the only way data can be lost is if there is a
second disk crash while the first crash is being repaired.

E xam ple 13.8: Suppose each disk has a 10-year mean time to failure, which
we shall take to mean that the probability of failure in any given year is 10%.
If disks are mirrored, then when a disk fails, we have only to replace it with a
good disk and copy the mirror disk to the new one. At the end, we have two
disks that are mirrors of each other, and the system is restored to its former
state.

The only thing that could go wrong is that during the copying the mirror
disk fails. Now, both copies of at least part of the data have been lost, and
there is no way to recover.

But how often will this sequence of events occur? Suppose that the process
of replacing the failed disk takes 3 hours, which is 1/8 of a day, or 1/2920 of a
year. Since we assume the average disk lasts 10 years, the probability that the
mirror disk will fail during copying is (1/10) x (1/2920), or one in 29,200. If

580 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

one disk fails every 10 years, then one of the two disks will fail once in 5 years
on the average. One in every 29,200 of these failures results in data loss. Put
another way, the mean time to a failure involving data loss is 5 x 29,200 =
146,000 years. □

13.4.7 Parity Blocks

While mirroring disks is an effective way to reduce the probability of a disk crash
involving data loss, it uses as many redundant disks as there are data disks.
Another approach, often called RAID level 4, uses only one redundant disk, no
m atter how many data disks there are. We assume the disks are identical, so
we can number the blocks on each disk from 1 to some number n. Of course,
all the blocks on all the disks have the same number of bits; for instance, the
16,384-byte blocks of the Megatron 747 have 8 x 16,384 = 131,072 bits. In the
redundant disk, the *th block consists of parity checks for the *th blocks of all
the data disks. That is, the j th bits of all the ith blocks, including both the
data disks and the redundant disk, must have an even number of l ’s among
them, and we always choose the bit of the redundant disk to make this condition
true.

We saw in Example 13.7 how to force the condition to be true. In the
redundant disk, we choose bit j to be 1 if an odd number of the data disks
have 1 in that bit, and we choose bit j of the redundant disk to be 0 if there
are an even number of l ’s in that bit among the data disks. The term for this
calculation is the modulo-2 sum. That is, the modulo-2 sum of bits is 0 if there
are an even number of l ’s among those bits, and 1 if there are an odd number
of l ’s.

E xam p le 1 3 .9 : Suppose for sake of an extremely simple example that blocks
consist of only one byte — eight bits. Let there be three data disks, called
1, 2, and 3, and one redundant disk, called disk 4. Focus on the first block
of all these disks. If the data disks have in their first blocks the following bit
sequences:

disk 1: 11110000
disk 2: 10101010
disk 3: 00111000

then the redundant disk will have in block 1 the parity check bits:

disk 4: 01100010

Notice how in each position, an even number of the four 8-bit sequences have
l ’s. There are two l ’s in positions 1, 2, 4, 5, and 7, four l ’s in position 3, and
zero l ’s in positions 6 and 8. □

13.4. DISK FAILURES 581

R eading

Reading blocks from a data disk is no different from reading blocks from any
disk. There is generally no reason to read from the redundant disk, but we
could.

W riting

When we write a new block of a data disk, we need not only to change that
block, but we need to change the corresponding block of the redundant disk
so it continues to hold the parity checks for the corresponding blocks of all the
data disks. A naive approach would read the corresponding blocks of the n data
disks, take their modulo-2 sum, and rewrite the block of the redundant disk.
That approach requires a write of the data block that is rewritten, the reading
of the n — 1 other data blocks, and a write of the block of the redundant disk.
The total is thus n + 1 disk I /O ’s.

A better approach is to look only at the old and new versions of the data
block i being rewritten. If we take their modulo-2 sum, we know in which
positions there is a change in the number of l ’s among the blocks numbered i
on all the disks. Since these changes are always by one, any even number of l ’s
changes to an odd number. If we change the same positions of the redundant
block, then the number of l ’s in each position becomes even again. We can
perform these calculations using four disk I/O ’s:

1. Read the old value of the data block being changed.

2. Read the corresponding block of the redundant disk.

3. Write the new data block.

4. Recalculate and write the block of the redundant disk.

E xam ple 13.10: Suppose the three first blocks of the data disks are as in
Example 13.9:

disk 1: 11110000
disk 2: 10101010
disk 3: 00111000

Suppose also that the block on the second disk changes from 10101010 to
11001100. We take the modulo-2 sum of the old and new values of the block
on disk 2, to get 01100110. That tells us we must change positions 2, 3, 6, and
7 of the first block of the redundant disk. We read that block: 01100010. We
replace this block by a new block that we get by changing the appropriate po
sitions; in effect we replace the redundant block by the modulo-2 sum of itself
and 01100110, to get 00000100. Another way to express the new redundant
block is that it is the modulo-2 sum of the old and new versions of the block

582 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

The Algebra of Modulo-2 Sums

It may be helpful for understanding some of the tricks used with parity
checks to know the algebraic rules involving the modulo-2 sum opera
tion on bit vectors. We shall denote this operation ©. As an example,
1100 ® 1010 = 0110. Here are some useful rules about ffi:

• The commutative law: x © y = y ffi x.

• The associative law. x © (y © z) — (x © y) © z.

• The all-0 vector of the appropriate length, which we denote 0, is the
identity for ©; that is, x ffi 0 = 0 ffi x = x.

• ffi is its own inverse: x ffi x = 0. As a useful consequence, if x ffi y = 2 ,
then we can “add” x to both sides and get y = x ffi z.

being rewritten and the old value of the redundant block. In our example, the
first blocks of the four disks — three data disks and one redundant — have
become:

disk 1: 11110000
disk 2: 11001100
disk 3: 00111000
disk 4: 00000100

after the write to the block on the second disk and the necessary recomputation
of the redundant block. Notice that in the blocks above, each column continues
to have an even number of l ’s. □

Failure R ecovery

Now, let us consider what we would do if one of the disks crashed. If it is the
redundant disk, we swap in a new disk, and recompute the redundant blocks. If
the failed disk is one of the data disks, then we need to swap in a good disk and
recompute its data from the other disks. The rule for recomputing any missing
data is actually simple, and doesn’t depend on which disk, data or redundant,
is failed. Since we know that the number of l ’s among corresponding bits of all
disks is even, it follows that:

• The bit in any position is the modulo-2 sum of all the bits in the corre
sponding positions of all the other disks.

If one doubts the above rule, one has only to consider the two cases. If the
bit in question is 1, then the number of corresponding bits in the other disks

13.4. DISK FAILURES 583

that are 1 must be odd, so their modulo-2 sum is 1. If the bit in question is 0,
then there are an even number of l ’s among the corresponding bits of the other
disks, and their modulo-2 sum is 0.

E xam ple 13.11: Suppose that disk 2 fails. We need to recompute each block
of the replacement disk. Following Example 13.9, let us see how to recompute
the first block of the second disk. We are given the corresponding blocks of the
first and third data disks and the redundant disk, so the situation looks like:

disk 1: 11110000
disk 2: ????????
disk 3: 00111000
disk 4: 01100010

If we take the modulo-2 sum of each column, we deduce that the missing block
is 10101010, as was initially the case in Example 13.9. □

13.4.8 An Improvement: RAID 5
The RAID level 4 strategy described in Section 13.4.7 effectively preserves data
unless there are two almost simultaneous disk crashes. However, it suffers from
a bottleneck defect that we can see when we re-examine the process of writing
a new data block. Whatever scheme we use for updating the disks, we need to
read and write the redundant disk’s block. If there are n data disks, then the
number of disk writes to the redundant disk will be n times the average number
of writes to any one data disk.

However, as we observed in Example 13.11, the rule for recovery is the
same as for the data disks and redundant disks: take the modulo-2 sum of
corresponding bits of the other disks. Thus, we do not have to treat one disk as
the redundant disk and the others as data disks. Rather, we could treat each
disk as the redundant disk for some of the blocks. This improvement is often
called RAID level 5.

For instance, if there are n + 1 disks numbered 0 through n, we could treat
the ith cylinder of disk j as redundant if j is the remainder when i is divided
by n + 1.

E xam ple 13.12: In our running example, n = 3 so there are 4 disks. The
first disk, numbered 0, is redundant for its cylinders numbered 4, 8, 12, and so
on, because these are the numbers that leave remainder 0 when divided by 4.
The disk numbered 1 is redundant for blocks numbered 1, 5, 9, and so on; disk
2 is redundant for blocks 2, 6, 1 0 ,.. ., and disk 3 is redundant for 3, 7, 1 1 ,... .

As a result, the reading and writing load for each disk is the same. If all
blocks are equally likely to be written, then for one write, each disk has a 1/4
chance that the block is on that disk. If not, then it has a 1/3 chance that
it will be the redundant disk for that block. Thus, each of the four disks is
involved in 1/4 + (3/4) x (1/3) = 1/2 of the writes. □

584 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

13.4.9 Coping W ith M ultiple Disk Crashes
There is a theory of error-correcting codes that allows us to deal with any
number of disk crashes — data or redundant — if we use enough redundant
disks. This strategy leads to the highest RAID “level,” RAID level 6. We
shall give only a simple example here, where two simultaneous crashes are
correctable, and the strategy is based on the simplest error-correcting code,
known as a Hamming code.

In our description we focus on a system with seven disks, numbered 1
through 7. The first four are data disks, and disks 5 through 7 are redun
dant. The relationship between data and redundant disks is summarized by
the 3 x 7 matrix of 0’s and l ’s in Fig. 13.10. Notice that:

a) Every possible column of three 0’s and l ’s, except for the all-0 column,
appears in the matrix of Fig. 13.10.

b) The columns for the redundant disks have a single 1.

c) The columns for the data disks each have at least two l ’s.

Data Redundant

Disk number 1 2 3 4 5 6 7

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

Figure 13.10: Redundancy pattern for a system that can recover from two
simultaneous disk crashes

The meaning of each of the three rows of 0’s and l ’s is that if we look at
the corresponding bits from all seven disks, and restrict our attention to those
disks that have 1 in that row, then the modulo-2 sum of these bits must be 0.
Put another way, the disks with 1 in a given row of the matrix are treated as
if they were the entire set of disks in a RAID level 4 scheme. Thus, we can
compute the bits of one of the redundant disks by finding the row in which that
disk has 1, and talcing the modulo-2 sum of the corresponding bits of the other
disks that have 1 in the same row.

For the matrix of Fig. 13.10, this rule implies:

1. The bits of disk 5 are the modulo-2 sum of the corresponding bits of disks
1, 2, and 3.

2. The bits of disk 6 are the modulo-2 sum of the corresponding bits of disks
1, 2, and 4.

13.4. DISK FAILURES 585

3. The bits of disk 7 are the modulo-2 sum of the corresponding bits of disks
1, 3, and 4.

We shall see shortly that the particular choice of bits in this matrix gives us a
simple rule by which we can recover from two simultaneous disk crashes.

R eading

We may read data from any data disk normally. The redundant disks can be
ignored.

W riting

The idea is similar to the writing strategy outlined in Section 13.4.8, but now
several redundant disks may be involved. To write a block of some data disk,
we compute the modulo-2 sum of the new and old versions of that block. These
bits are then added, in a modulo-2 sum, to the corresponding blocks of all those
redundant disks that have 1 in a row in which the written disk also has 1.

E xam ple 13.13: Let us again assume that blocks are only eight bits long,
and focus on the first blocks of the seven disks involved in our RAID level 6
example. First, suppose the data and redundant first blocks are as given in
Fig. 13.11. Notice that the block for disk 5 is the modulo-2 sum of the blocks
for the first three disks, the sixth row is the modulo-2 sum of rows 1, 2, and 4,
and the last row is the modulo-2 sum of rows 1, 3, and 4.

Disk Contents

1) 11110000
2) 10101010
3) 00111000
4) 01000001
5) 01100010
6) 00011011
7) 10001001

Figure 13.11: First blocks of all disks

Suppose we rewrite the first block of disk 2 to be 00001111. If we sum this
sequence of bits modulo-2 with the sequence 10101010 that is the old value of
this block, we get 10100101. If we look at the column for disk 2 in Fig. 13.10,
we find that this disk has l ’s in the first two rows, but not the third. Since
redundant disks 5 and 6 have 1 in rows 1 and 2, respectively, we must perform
the sum modulo-2 operation on the current contents of their first blocks and
the sequence 10100101 just calculated. That is, we flip the values of positions 1,
3, 6, and 8 of these two blocks. The resulting contents of the first blocks of all

586 CHAPTER 13. SECONDARY STORAGE MANAGEMENT

disks is shown in Fig. 13.12. Notice that the new contents continue to satisfy the
constraints implied by Fig. 13.10: the modulo-2 sum of corresponding blocks
that have 1 in a particular row of the matrix of Fig. 13.10 is still all 0’s. □

Disk Contents

1) 11110000
2) 00001111
3) 00111000
4) 01000001
5) 11000111
6) 10111110
7) 10001001

Figure 13.12: First blocks of all disks after rewriting disk 2 and changing the
redundant disks

Failure R ecovery

Now, let us see how the redundancy scheme outlined above can be used to
correct up to two simultaneous disk crashes. Let the failed disks be a and b.
Since all columns of the matrix of Fig. 13.10 are different, we must be able to
find some row r in which the columns for a and b are different. Suppose that a
has 0 in row r, while b has 1 there.

Then we can compute the correct b by taking the modulo-2 sum of corre
sponding bits from all the disks other than b that have 1 in row r. Note that
a is not among these, so none of these disks have failed. Having recomputed b,
we must recompute a, with all other disks available. Since every column of the
matrix of Fig. 13.10 has a 1 in some row, we can use this row to recompute disk
a by taking the modulo-2 sum of bits of those other disks with a 1 in this row.

Disk Contents

1) 11110000
2) ????????
3) 00111000
4) 01000001
5) ????????
6) 10111110
7) 10001001

Figure 13.13: Situation after disks 2 and 5 fail

13.4. DISK FAILURES 587

E xam ple 13.14: Suppose that disks 2 and 5 fail at about the same time.
Consulting the matrix of Fig. 13.10, we find that the columns for these two
disks differ in row 2, where disk 2 has 1 but disk 5 has 0. We may thus
reconstruct disk 2 by taking the modulo-2 sum of corresponding bits of disks
1, 4, and 6, the other three disks with 1 in row 2. Notice that none of these
three disks has failed. For instance, following from the situation regarding the
first blocks in Fig. 13.12, we would initially have the data of Fig. 13.13 available
after disks 2 and 5 failed.

If we take the modulo-2 sum of the contents of the blocks of disks 1, 4, and
6, we find that the block for disk 2 is 00001111. This block is correct as can be
verified from Fig. 13.12. The situation is now as in Fig. 13.14.

Disk Contents

1) 11110000
2) 00001111
3) 00111000
4) 01000001
5) ????????
6) 10111110
7) 10001001

Figure 13.14: After recovering disk 2

Now, we see that disk 5’s column in Fig. 13.10 has a 1 in the first row. We
can therefore recompute disk 5 by taking the modulo-2 sum of corresponding
bits from disks 1, 2, and 3, the other three disks that have 1 in the first row.
For block 1, this sum is 11000111. Again, the correctness of this calculation
can be confirmed by Fig. 13.12. □

13.4.10 Exercises for Section 13.4
Exercise 13.4.1: Compute the parity bit for the following bit sequences:

a) 00111011.

b) 00000000.

c) 10101101.

Exercise 13.4.2: We can have two parity bits associated with a string if we
follow the string by one bit that is a parity bit for the odd positions and a
second that is the parity bit for the even positions. For each of the strings in
Exercise 13.4.1, find the two bits that serve in this way.

588 CHAPTER 13. SECONDARY STORAGE MANAGEMENT

Additional Observations About RAID Level 6

1. We can combine the ideas of RAID levels 5 and 6, by varying the
choice of redundant disks according to the block or cylinder number.
Doing so will avoid bottlenecks when writing; the scheme described
in Section 13.4.9 will cause bottlenecks at the redundant disks.

2. The scheme described in Section 13.4.9 is not restricted to four data
disks. The number of disks can be one less than any power of 2, say
2k — 1. Of these disks, k are redundant, and the remaining 2k — k — 1
are data disks, so the redundancy grows roughly as the logarithm of
the number of data disks. For any k , we can construct the matrix
corresponding to Fig. 13.10 by writing all possible columns of k 0’s
and l ’s, except the all-O’s column. The columns with a single 1
correspond to the redundant disks, and the columns with more than
one 1 are the data disks.

E xercise 13.4.3: Suppose we use mirrored disks as in Example 13.8, the
failure rate is 4% per year, and it takes 8 hours to replace a disk. What is the
mean time to a disk failure involving loss of data?

! E xercise 13.4.4: Suppose that a disk has probability F of failing in a given
year, and it takes H hours to replace a disk.

a) If we use mirrored disks, what is the mean time to data loss, as a function
of F and H I

b) If we use a RAID level 4 or 5 scheme, with N disks, what is the mean
time to data loss?

!! E xercise 13.4.5: Suppose we use three disks as a mirrored group; i.e., all
three hold identical data. If the yearly probability of failure for one disk is F,
and it takes H hours to restore a disk, what is the mean time to data loss?

E xercise 13.4.6: Suppose we are using a RAID level 4 scheme with four data
disks and one redundant disk. As in Example 13.9 assume blocks are a single
byte. Give the block of the redundant disk if the corresponding blocks of the
data disks are:

a) 01010110,11000000, 00111011, and 11111011.

b) 11110000, 11111000, 00111111, and 00000001.

13.4. DISK FAILURES 589

Error-Correcting Codes and RAID Level 6

There is a theory that guides our selection of a suitable matrix, like that
of Fig. 13.10, to determine the content of redundant disks. A code of
length n is a set of bit-vectors (called code words) of length n. The Ham
ming distance between two code words is the number of positions in which
they differ, and the minimum distance of a code is the smallest Hamming
distance of any two different code words.

If C is any code of length n, we can require that the corresponding
bits on n disks have one of the sequences that are members of the code. As
a very simple example, if we are using a disk and its mirror, then n = 2,
and we can use the code C — {00,11}. That is, the corresponding bits
of the two disks must be the same. For another example, the matrix of
Fig. 13.10 defines the code consisting of the 16 bit-vectors of length 7 that
have arbitrary values for the first four bits and have the remaining three
bits determined by the rules for the three redundant disks.

If the minimum distance of a code is d, then disks whose corresponding
bits are required to be a vector in the code will be able to tolerate d — 1
simultaneous disk crashes. The reason is that, should we obscure d — 1
positions of a code word, and there were two different ways these positions
could be filled in to make a code word, then the two code words would have
to differ in at most the d — 1 positions. Thus, the code could not have
minimum distance d. As an example, the matrix of Fig. 13.10 actually
defines the well-known Hamming code, which has minimum distance 3.
Thus, it can handle two disk crashes.

E xercise 13.4.7: Using the same RAID level 4 scheme as in Exercise 13.4.6,
suppose that data disk 1 has failed. Recover the block of that disk under the
following circumstances:

a) The contents of disks 2 through 4 are 01010110,11000000, and 00111011,
while the redundant disk holds 11111011.

b) The contents of disks 2 through 4 are 11110000, 11111000, and 00111111,
while the redundant disk holds 00000001.

E xercise 13.4.8: Suppose the block on the first disk in Exercise 13.4.6 is
changed to 10101010. What changes to the corresponding blocks on the other
disks must be made?

Exercise 13.4.9: Suppose we have the RAID level 6 scheme of Example 13.13,
and the blocks of the four data disks are 00111100, 11000111, 01010101, and
10000100, respectively.

590 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

a) What are the corresponding blocks of the redundant disks?

b) If the third disk’s block is rewritten to be 10000000, what steps must be
taken to change other disks?

E xercise 13.4.10: Describe the steps taken to recover from the following fail
ures using the RAID level 6 scheme with seven disks: (a) disks 1 and 7, (b) disks
1 and 4, (c) disks 3 and 6.

13.5 Arranging D ata on Disk
We now turn to the m atter of how disks are used store databases. A data
element such as a tuple or object is represented by a record, which consists of
consecutive bytes in some disk block. Collections such as relations are usually
represented by placing the records that represent their data elements in one or
more blocks. It is normal for a disk block to hold only elements of one relation,
although there are organizations where blocks hold tuples of several relations.
In this section, we shall cover the basic layout techniques for both records and
blocks.

13.5.1 Fixed-Length Records

The simplest sort of record consists of fixed-length fields, one for each attribute
of the represented tuple. Many machines allow more efficient reading and writ
ing of main memory when data begins at an address that is a multiple of 4 or 8;
some even require us to do so. Thus, it is common to begin all fields at a mul
tiple of 4 or 8, as appropriate. Space not used by the previous field is wasted.
Note that, even though records are kept in secondary, not main, memory, they
are manipulated in main memory. Thus it is necessary to lay out the record so
it can be moved to main memory and accessed efficiently there.

Often, the record begins with a header, a fixed-length region where infor
mation about the record itself is kept. For example, we may want to keep in
the record:

1. A pointer to the schema for the data stored in the record. For example,
a tuple’s record could point to the schema for the relation to which the
tuple belongs. This information helps us find the fields of the record.

2. The length of the record. This information helps us skip over records
without consulting the schema.

3. Timestamps indicating the time the record was last modified, or last read.
This information may be useful for implementing database transactions
as will be discussed in Chapter 18.

13.5. ARRANGING DATA ON DISK 591

4. Pointers to the fields of the record. This information can substitute for
schema information, and it will be seen to be important when we consider
variable-length fields in Section 13.7.

CREATE TABLE M ovieStar(
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
gender CHAR(l),
b ir th d a te DATE

);

Figure 13.15: A SQL table declaration

E xam ple 13.15: Figure 13.15 repeats our running MovieStar schema. Let us
assume all fields must start at a byte that is a multiple of four. Tuples of this
relation have a header and the following four fields:

1. The first field is for name, and this field requires 30 bytes. If we assume
that all fields begin at a multiple of 4, then we allocate 32 bytes for the
name.

2. The next attribute is address. A VARCHAR attribute requires a fixed-
length segment of bytes, with one more byte than the maximum length
(for the string’s endmarker). Thus, we need 256 bytes for address.

3. Attribute gender is a single byte, holding either the character ’M’ or ’F ’ .
We allocate 4 bytes, so the next field can start at a multiple of 4.

4. Attribute b ir th d a te is a SQL DATE value, which is a 10-byte string. We
shall allocate 12 bytes to its field, to keep subsequent records in the block
aligned at multiples of 4.

. The header of the record will hold:

a) A pointer to the record schema.

b) The record length.

c) A timestamp indicating when the record was created.

We shall assume each of these items is 4 bytes long. Figure 13.16 shows the
layout of a record for a MovieStar tuple. The length of the record is 316 bytes.
□

592 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

to schem a
length

tim estam p gender

nam e address birthdate

0 12 44

header

300304 316

Figure 13.16: Layout of records for tuples of the MovieStar relation

13.5.2 Packing Fixed-Length Records into Blocks
Records representing tuples of a relation are stored in blocks of the disk and
moved into main memory (along with their entire block) when we need to
access or update them. The layout of a block that holds records is suggested
in Fig. 13.17.

header record 1 record 2 record n

Figure 13.17: A typical block holding records

In addition to the records, there is a block header holding information such
as:

1. Links to one or more other blocks that are part of a network of blocks
such as those that will be described in Chapter 14 for creating indexes to
the tuples of a relation.

2. Information about the role played by this block in such a network.

3. Information about which relation the tuples of this block belong to.

4. A “directory” giving the offset of each record in the block.

5. Timestamp(s) indicating the time of the block’s last modification and/or
access.

By fax the simplest case is when the block holds tuples from one relation,
and the records for those tuples have a fixed format. In that case, following
the header, we pack as many records as we can into the block and leave the
remaining space unused.

E xam ple 13.16: Suppose we are storing records with the layout developed in
Example 13.15. These records are 316 bytes long. Suppose also that we use
4096-byte blocks. Of these bytes, say 12 will be used for a block header, leaving
4084 bytes for data. In this space we can fit twelve records of the given 316-byte
format, and 292 bytes of each block axe wasted space. □

13.6. REPRESENTING BLOCK AND RECORD ADDRESSES 593

13.5.3 Exercises for Section 13.5
E xercise 13.5.1: Suppose a record has the following fields in this order: A
character string of length 15, an integer of 2 bytes, a SQL date, and a SQL time
(no decimal point). How many bytes does the record take if:

a) Fields can start at any byte.

b) Fields must start at a byte that is a multiple of 4.

c) Fields must start at a byte that is a multiple of 8.

E xercise 13.5.2: Repeat Exercise 13.5.1 for the list of fields: a real of 8 bytes,
a character string of length 17, a single byte, and a SQL date.

E xercise 13.5.3: Assume fields are as in Exercise 13.5.1, but records also have
a record header consisting of two 4-byte pointers and a character. Calculate
the record length for the three situations regarding field alignment (a) through
(c) in Exercise 13.5.1.

E xercise 13.5.4: Repeat Exercise 13.5.2 if the records also include a header
consisting of an 8-byte pointer, and ten 2-byte integers.

13.6 Representing Block and Record Addresses
When in main memory, the address of a block is the virtual-memory address
of its first byte, and the address of a record within that block is the virtual-
memory address of the first byte of that record. However, in secondary storage,
the block is not part of the application’s virtual-memory address space. Rather,
a sequence of bytes describes the location of the block within the overall system
of data accessible to the DBMS: the device ID for the disk, the cylinder number,
and so on. A record can be identified by giving its block address and the offset
of the first byte of the record within the block.

In this section, we shall begin with a discussion of address spaces, especially
as they pertain to the common “client-server” architecture for DBMS’s (see
Section 9.2.4). We then discuss the options for representing addresses, and
finally look at “pointer swizzling,” the ways in which we can convert addresses
in the data server’s world to the world of the client application programs.

13.6.1 Addresses in Client-Server Systems
Commonly, a database system consists of a server process that provides data
from secondary storage to one or more client processes that are applications
using the data. The server and client processes may be on one machine, or the
server and the various clients can be distributed over many machines.

The client application uses a conventional “virtual” address space, typically
32 bits, or about 4 billion different addresses. The operating system or DBMS

594 CHAPTER 13. SECONDARY STORAGE MANAGEMENT

decides which parts of the address space are currently located in main memory,
and hardware maps the virtual address space to physical locations in main
memory. We shall not think further of this virtual-to-physical translation, and
shall think of the client address space as if it were main memory itself.

The server’s data lives in a database address space. The addresses of this
space refer to blocks, and possibly to offsets within the block. There are several
ways that addresses in this address space can be represented:

1. Physical Addresses. These are byte strings that let us determine the
place within the secondary storage system where the block or record can
be found. One or more bytes of the physical address are used to indicate
each of:

(a) The host to which the storage is attached (if the database is stored
across more than one machine),

(b) An identifier for the disk or other device on which the block is lo
cated,

(c) The number of the cylinder of the disk,
(d) The number of the track within the cylinder,
(e) The number of the block within the track, and
(f) (In some cases) the offset of the beginning of the record within the

block.

2. Logical Addresses. Each block or record has a “logical address,” which is
an arbitrary string of bytes of some fixed length. A map table, stored on
disk in a known location, relates logical to physical addresses, as suggested
in Fig. 13.18.

logical physical

Figure 13.18: A map table translates logical to physical addresses

Notice that physical addresses are long. Eight bytes is about the minimum
we could use if we incorporate all the listed elements, and some systems use
many more bytes. For example, imagine a database of objects that is designed
to last for 100 years. In the future, the database may grow to encompass one

13.6. REPRESENTING BLOCK AND RECORD ADDRESSES 595

million machines, and each machine might be fast enough to create one object
every nanosecond. This system would create around 277 objects, which requires
a minimum of ten bytes to represent addresses. Since we would probably prefer
to reserve some bytes to represent the host, others to represent the storage
unit, and so on, a rational address notation would use considerably more than
10 bytes for a system of this scale.

13.6.2 Logical and Structured Addresses
One might wonder what the purpose of logical addresses could be. All the infor
mation needed for a physical address is found in the map table, and following
logical pointers to records requires consulting the map table and then going
to the physical address. However, the level of indirection involved in the map
table allows us considerable flexibility. For example, many data organizations
require us to move records around, either within a block or from block to block.
If we use a map table, then all pointers to the record refer to this map table,
and all we have to do when we move or delete the record is to change the entry
for that record in the table.

Many combinations of logical and physical addresses are possible as well,
yielding structured address schemes. For instance, one could use a physical
address for the block (but not the offset within the block), and add the key value
for the record being referred to. Then, to find a record given this structured
address, we use the physical part to reach the block containing that record, and
we examine the records of the block to find the one with the proper key.

A similar, and very useful, combination of physical and logical addresses is
to keep in each block an offset table that holds the offsets of the records within
the block, as suggested in Fig. 13.19. Notice that the table grows from the front
end of the block, while the records are placed starting at the end of the block.
This strategy is useful when the records need not be of equal length. Then, we
do not know in advance how many records the block will hold, and we do not
have to allocate a fixed amount of the block header to the table initially.

offset
tab le - *"

— header — — unused —

Figure 13.19: A block with a table of offsets telling us the position of each
record within the block

The address of a record is now the physical address of its block plus the offset

596 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

of the entry in the block’s offset table for that record. This level of indirection
within the block offers many of the advantages of logical addresses, without the
need for a global map table.

• We can move the record around within the block, and all we have to do
is change the record’s entry in the offset table; pointers to the record will
still be able to find it.

• We can even allow the record to move to another block, if the offset table
entries are large enough to hold a forwarding address for the record, giving
its new location.

• Finally, we have an option, should the record be deleted, of leaving in its
offset-table entry a tombstone, a special value that indicates the record has
been deleted. Prior to its deletion, pointers to this record may have been
stored at various places in the database. After record deletion, following
a pointer to this record leads to the tombstone, whereupon the pointer
can either be replaced by a null pointer, or the data structure otherwise
modified to reflect the deletion of the record. Had we not left the tomb
stone, the pointer might lead to some new record, with surprising, and
erroneous, results.

13.6.3 Pointer Swizzling

Often, pointers or addresses are part of records. This situation is not typical
for records that represent tuples of a relation, but it is common for tuples
that represent objects. Also, modern object-relational database systems allow
attributes of pointer type (called references), so even relational systems need the
ability to represent pointers in tuples. Finally, index structures are composed
of blocks that usually have pointers within them. Thus, we need to study
the management of pointers as blocks are moved between main and secondary
memory.

As we mentioned earlier, every block, record, object, or other referenceable
data item has two forms of address: its database address in the server’s address
space, and a memory address if the item is currently copied in virtual memory.
When in secondary storage, we surely must use the database address of the
item. However, when the item is in the main memory, we can refer to the item
by either its database address or its memory address. It is more efficient to put
memory addresses wherever an item has a pointer, because these pointers can
be followed using a single machine instruction.

In contrast, following a database address is much more time-consuming. We
need a table that translates from all those database addresses that are currently
in virtual memory to their current memory address. Such a translation table
is suggested in Fig. 13.20. It may look like the map table of Fig. 13.18 that
translates between logical and physical addresses. However:

13.6. REPRESENTING BLOCK AND RECORD ADDRESSES 597

a) Logical and physical addresses are both representations for the database
address. In contrast, memory addresses in the translation table are for
copies of the corresponding object in memory.

b) All addressable items in the database have entries in the map table, while
only those items currently in memory are mentioned in the translation
table.

D Baddr m em -addr

Figure 13.20: The translation table turns database addresses into their equiva
lents in memory

To avoid the cost of translating repeatedly from database addresses to mem
ory addresses, several techniques have been developed that are collectively
known as pointer swizzling. The general idea is that when we move a block
from secondary to main memory, pointers within the block may be “swizzled,”
that is, translated from the database address space to the virtual address space.
Thus, a pointer actually consists of:

1. A bit indicating whether the pointer is currently a database address or a
(swizzled) memory address.

2. The database or memory pointer, as appropriate. The same space is used
for whichever address form is present at the moment. Of course, not all
the space may be used when the memory address is present, because it is
typically shorter than the database address.

E xam ple 13.17: Figure 13.21 shows a simple situation in which the Block 1
has a record with pointers to a second record on the same block and to a record
on another block. The figure also shows what might happen when Block 1
is copied to memory. The first pointer, which points within Block 1, can be
swizzled so it points directly to the memory address of the target record.

However, if Block 2 is not in memory at this time, then we cannot swizzle the
second pointer; it must remain unswizzled, pointing to the database address of
its target. Should Block 2 be brought to memory later, it becomes theoretically
possible to swizzle the second pointer of Block 1. Depending on the swizzling
strategy used, there may or may not be a list of such pointers that are in

598 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

memory, referring to Block 2; if so, then we have the option of swizzling the
pointer at that time. □

D isk M em ory

B lock 2

Figure 13.21: Structure of a pointer when swizzling is used

A u to m a tic Sw izzling

There are several strategies we can use to determine when to swizzle pointers. If
we use automatic swizzling, then as soon as a block is brought into memory, we
locate all its pointers and addresses and enter them into the translation table
if they are not already there. These pointers include both the pointers from
records in the block to elsewhere and the addresses of the block itself and/or
its records, if these are addressable items. We need some mechanism to locate
the pointers within the block. For example:

1. If the block holds records with a known schema, the schema will tell us
where in the records the pointers are found.

2. If the block is used for one of the index structures we shall discuss in
Chapter 14, then the block will hold pointers at known locations.

3. We may keep within the block header a list of where the pointers are.

When we enter into the translation table the addresses for the block just
moved into memory, and/or its records, we know where in memory the block
has been buffered. We may thus create the translation-table entry for these
database addresses straightforwardly. When we insert one of these database
addresses A into the translation table, we may find it in the table already,
because its block is currently in memory. In this case, we replace A in the block

13.6. REPRESENTING BLOCK AND RECORD ADDRESSES 599

just moved to memory by the corresponding memory address, and we set the
“swizzled” bit to true. On the other hand, if A is not yet in the translation
table, then its block has not been copied into main memory. We therefore
cannot swizzle this pointer and leave it in the block as a database pointer.

Suppose that during the use of this data, we follow a pointer P and we find
that P is still unswizzled, i.e., in the form of a database pointer. We consult the
translation table to see if database address P currently has a memory equivalent.
If not, block B must be copied into a memory buffer. Once B is in memory,
we can “swizzle” P by replacing its database form by the equivalent memory
form.

Sw izzling on D em and

Another approach is to leave all pointers unswizzled when the block is first
brought into memory. We enter its address, and the addresses of its pointers,
into the translation table, along with their memory equivalents. If we follow a
pointer P that is inside some block of memory, we swizzle it, using the same
strategy that we followed when we found an unswizzled pointer using automatic
swizzling.

The difference between on-demand and automatic swizzling is that the latter
tries to get all the pointers swizzled quickly and efficiently when the block is
loaded into memory. The possible time saved by swizzling all of a block’s
pointers at one time must be weighed against the possibility that some swizzled
pointers will never be followed. In that case, any time spent swizzling and
unswizzling the pointer will be wasted.

An interesting option is to arrange that database pointers look like invalid
memory addresses. If so, then we can allow the computer to follow any pointer
as if it were in its memory form. If the pointer happens to be unswizzled, then
the memory reference will cause a hardware trap. If the DBMS provides a
function that is invoked by the trap, and this function “swizzles” the pointer
in the manner described above, then we can follow swizzled pointers in single
instructions, and only need to do something more time consuming when the
pointer is unswizzled.

N o Sw izzling

Of course it is possible never to swizzle pointers. We still need the translation
table, so the pointers may be followed in their unswizzled form. This approach
does offer the advantage that records cannot be pinned in memory, as discussed
in Section 13.6.5, and decisions about which form of pointer is present need not
be made.

P rogram m er C ontrol o f Sw izzling

In some applications, it may be known by the application programmer whether
the pointers in a block are likely to be followed. This programmer may be able

600 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

to specify explicitly that a block loaded into memory is to have its pointers
swizzled, or the programmer may call for the pointers to be swizzled only as
needed. For example, if a programmer knows that a block is likely to be accessed
heavily, such as the root block of a B-tree (discussed in Section 14.2), then the
pointers would be swizzled. However, blocks that are loaded into memory, used
once, and then likely dropped from memory, would not be swizzled.

13.6.4 Returning Blocks to Disk
When a block is moved from memory back to disk, any pointers within that
block must be “unswizzled”; that is, their memory addresses must be replaced
by the corresponding database addresses. The translation table can be used
to associate addresses of the two types in either direction, so in principle it is
possible to find, given a memory address, the database address to which the
memory address is assigned.

However, we do not want each unswizzling operation to require a search of
the entire translation table. While we have not discussed the implementation
of this table, we might imagine that the table of Fig. 13.20 has appropriate
indexes. If we think of the translation table as a relation, then the problem
of finding the memory address associated with a database address x can be
expressed as the query:

SELECT memAddr
FROM T ransla tionT ab le
WHERE dbAddr = x;

For instance, a hash table using the database address as the key might be
appropriate for an index on the dbAddr attribute; Chapter 14 suggests possible
data structures.

If we want to support the reverse query,

SELECT dbAddr
FROM T ransla tionT ab le
WHERE memAddr = y;

then we need to have an index on attribute memAddr as well. Again, Chapter 14
suggests data structures suitable for such an index. Also, Section 13.6.5 talks
about linked-list structures that in some circumstances can be used to go from
a memory address to all main-memory pointers to that address.

13.6.5 Pinned Records and Blocks
A block in memory is said to be pinned if it cannot at the moment be written
back to disk safely. A bit telling whether or not a block is pinned can be located
in the header of the block. There are many reasons why a block could be pinned,
including requirements of a recovery system as discussed in Chapter 17. Pointer
swizzling introduces an important reason why certain blocks must be pinned.

13.6. REPRESENTING BLOCK AND RECORD ADDRESSES 601

If a block Bi has within it a swizzled pointer to some data item in block B 2,
then we must be very careful about moving block B2 back to disk and reusing
its main-memory buffer. The reason is that, should we follow the pointer in
B i, it will lead us to the buffer, which no longer holds B 2\ in effect, the pointer
has become dangling. A block, like B 2, that is referred to by a swizzled pointer
from somewhere else is therefore pinned.

When we write a block back to disk, we not only need to “unswizzle” any
pointers in that block. We also need to make sure it is not pinned. If it is
pinned, we must either unpin it, or let the block remain in memory, occupying
space that could otherwise be used for some other block. To unpin a block
that is pinned because of swizzled pointers from outside, we must “unswizzle”
any pointers to it. Consequently, the translation table must record, for each
database address whose data item is in memory, the places in memory where
swizzled pointers to that item exist. Two possible approaches are:

1. Keep the list of references to a memory address as a linked list attached
to the entry for that address in the translation table.

2. If memory addresses are significantly shorter than database addresses, we
can create the linked list in the space used for the pointers themselves.
That is, each space used for a database pointer is replaced by

(a) The swizzled pointer, and

(b) Another pointer that forms part of a linked list of all occurrences of
this pointer.

Figure 13.22 suggests how two occurrences of a memory pointer y could be
linked, starting at the entry in the translation table for database address
x and its corresponding memory address y.

y !
/

y

Swizzled pointer

Translation table

Figure 13.22: A linked list of occurrences of a swizzled pointer

602 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

13.6.6 Exercises for Section 13.6

Exercise 13.6.1: If we represent physical addresses for the Megatron 747 disk
by allocating a separate byte or bytes to each of the cylinder, track within
a cylinder, and block within a track, how many bytes do we need? Make a
reasonable assumption about the maximum number of blocks on each track;
recall that the Megatron 747 has a variable number of sectors/track.

Exercise 13.6.2: Repeat Exercise 13.6.1 for the Megatron 777 disk described
in Exercise 13.2.1

Exercise 13.6.3: If we wish to represent record addresses as well as block
addresses, we need additional bytes. Assuming we want addresses for a single
Megatron 747 disk as in Exercise 13.6.1, how many bytes would we need for
record addresses if we:

a) Included the number of the byte within a block as part of the physical
address.

b) Used structured addresses for records. Assume that the stored records
have a 4-byte integer as a key.

Exercise 13.6.4: Today, IP addresses have four bytes. Suppose that block
addresses for a world-wide address system consist of an IP address for the host,
a device number between 1 and 1000, and a block address on an individual
device (assumed to be a Megatron 747 disk). How many bytes would block
addresses require?

Exercise 13.6.5: In IP version 6, IP addresses are 16 bytes long. In addition,
we may want to address not only blocks, but records, which may start at any
byte of a block. However, devices will have their own IP address, so there will
be no need to represent a device within a host, as we suggested was necessary
in Exercise 13.6.4. How many bytes would be needed to represent addresses in
these circumstances, again assuming devices were Megatron 747 disks?

Exercise 13.6.6: Suppose we wish to represent the addresses of blocks on a
Megatron 747 disk logically, i.e., using identifiers of k bytes for some k. We also
need to store on the disk itself a map table, as in Fig. 13.18, consisting of pairs
of logical and physical addresses. The blocks used for the map table itself are
not part of the database, and therefore do not have their own logical addresses
in the map table. Assuming that physical addresses use the minimum possible
number of bytes for physical addresses (as calculated in Exercise 13.6.1), and
logical addresses likewise use the minimum possible number of bytes for logical
addresses, how many blocks of 4096 bytes does the map table for the disk
occupy?

13.7. VARIABLE-LENGTH DATA AND RECORDS 603

! Exercise 13.6.7: Suppose that we have 4096-byte blocks in which we store
records of 100 bytes. The block header consists of an offset table, as in Fig.
13.19, using 2-byte pointers to records within the block. On an average day, two
records per block are inserted, and one record is deleted. A deleted record must
have its pointer replaced by a “tombstone,” because there may be dangling
pointers to it. For specificity, assume the deletion on any day always occurs
before the insertions. If the block is initially empty, after how many days will
there be no room to insert any more records?

Exercise 13.6.8: Suppose that if we swizzle all pointers automatically, we
can perform the swizzling in half the time it would take to swizzle each one
separately. If the probability that a pointer in main memory will be followed at
least once is p, for what values of p is it more efficient to swizzle automatically
than on demand?

! E xercise 13.6.9: Generalize Exercise 13.6.8 to include the possibility that we
never swizzle pointers. Suppose that the important actions take the following
times, in some arbitrary time units:

i. On-demand swizzling of a pointer: 30.

ii. Automatic swizzling of pointers: 20 per pointer.

Hi. Following a swizzled pointer: 1.

iv. Following an unswizzled pointer: 10.

Suppose that in-memory pointers are either not followed (probability 1 — p)
or are followed k times (probability p). For what values of k and p do no-
swizzling, automatic-swizzling, and on-demand-swizzling each offer the best
average performance?

13.7 Variable-Length Data and Records
Until now, we have made the simplifying assumptions that records have a fixed
schema, and that the schema is a list of fixed-length fields. However, in practice,
we also may wish to represent:

1. Data items whose size varies. For instance, in Fig. 13.15 we considered a
MovieStar relation that had an address field of up to 255 bytes. While
there might be some addresses that long, the vast majority of them will
probably be 50 bytes or less. We could save more than half the space used
for storing MovieStar tuples if we used only as much space as the actual
address needed.

2. Repeating fields. If we try to represent a many-many relationship in a
record representing an object, we shall have to store references to as many
objects as are related to the given object.

604 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

3. Variable-format records. Sometimes we do not know in advance what the
fields of a record will be, or how many occurrences of each field there
will be. An important example is a record that represents an XML ele
ment, which might have no constraints at all, or might be allowed to have
repeating subelements, optional attributes, and so on.

4. Enormous fields. Modern DBMS’s support attributes whose values are
very large. For instance, a movie record might have a field that is a 2-
gigabyte MPEG encoding of the movie itself, as well as more mundane
fields such as the title of the movie.

13.7.1 Records W ith Variable-Length Fields

If one or more fields of a record have variable length, then the record must
contain enough information to let us find any field of the record. A simple
but effective scheme is to put all fixed-length fields ahead of the variable-length
fields. We then place in the record header:

1. The length of the record.

2. Pointers to (i.e., offsets of) the beginnings of all the variable-length fields
other than the first (which we know must immediately follow the fixed-
length fields).

E xam p le 1 3 .18 : Suppose we have movie-star records with name, address,
gender, and birthdate. We shall assume that the gender and birthdate are
fixed-length fields, taking 4 and 12 bytes, respectively. However, both name
and address will be represented by character strings of whatever length is ap
propriate. Figure 13.23 suggests what a typical movie-star record would look
like. Note that no pointer to the beginning of the name is needed; that field
begins right after the fixed-length portion of the record. □

other header inform ation
record length

to address
gender

birthdate address

Figure 13.23: A MovieStar record with name and address implemented as
variable-length character strings

13.7. VARIABLE-LENGTH DATA AND RECORDS 605

Representing Null Values

Tuples often have fields that may be NULL. The record format of Fig. 13.23
offers a convenient way to represent NULL values. If a field such as address
is null, then we put a null pointer in the place where the pointer to an
address goes. Then, we need no space for an address, except the place for
the pointer. This arrangement can save space on average, even if address
is a fixed-length field but frequently has the value NULL.

13.7.2 Records W ith Repeating Fields
A similar situation occurs if a record contains a variable number of occurrences
of a field F, but the field itself is of fixed length. It is sufficient to group all
occurrences of field F together and put in the record header a pointer to the
first. We can locate all the occurrences of the field F as follows. Let the number
of bytes devoted to one instance of field F be L. We then add to the offset for
the field F all integer multiples of L, starting at 0, then L, 2L, 3L, and so on.
Eventually, we reach the offset of the field following F or the end of the record,
whereupon we stop.

E xam ple 13.19: Suppose we redesign our movie-star records to hold only
the name and address (which are variable-length strings) and pointers to all
the movies of the star. Figure 13.24 shows how this type of record could be
represented. The header contains pointers to the beginning of the address field
(we assume the name field always begins right after the header) and to the
first of the movie pointers. The length of the record tells us how many movie
pointers there are. □

other header inform ation
record length

to address
to m ovie pointers

address

pointers to movies

Figure 13.24: A record with a repeating group of references to movies

An alternative representation is to keep the record of fixed length, and put
the variable-length portion — be it fields of variable length or fields that repeat

606 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

an indefinite number of times — on a separate block. In the record itself we
keep:

1. Pointers to the place where each repeating field begins, and

2. Either how many repetitions there are, or where the repetitions end.

Figure 13.25 shows the layout of a record for the problem of Example 13.19,
but with the variable-length fields name and address, and the repeating field
s ta r r e d ln (a set of movie references) kept on a separate block or blocks.

Figure 13.25: Storing variable-length fields separately from the record

There are advantages and disadvantages to using indirection for the variable-
length components of a record:

• Keeping the record itself fixed-length allows records to be searched more
efficiently, minimizes the overhead in block headers, and allows records to
be moved within or among blocks with minimum effort.

• On the other hand, storing variable-length components on another block
increases the number of disk I /O ’s needed to examine all components of
a record.

A compromise strategy is to keep in the fixed-length portion of the record
enough space for:

1. Some reasonable number of occurrences of the repeating fields,

13.7. VARIABLE-LENGTH DATA AND RECORDS 607

2. A pointer to a place where additional occurrences could be found, and

3. A count of how many additional occurrences there are.

If there are fewer than this number, some of the space would be unused. If there
are more than can fit in the fixed-length portion, then the pointer to additional
space will be nonnull, and we can find the additional occurrences by following
this pointer.

13.7.3 Variable-Format Records
An even more complex situation occurs when records do not have a fixed
schema. We mentioned an example: records that represent XML elements.
For another example, medical records may contain information about many
tests, but there are thousands of possible tests, and each patient has results for
relatively few of them. If the outcome of each test is an attribute, we would
prefer that the record for each tuple hold only the attributes for which the
outcome is nonnull.

The simplest representation of variable-format records is a sequence of tagged
fields, each of which consists of the value of the field preceded by information
about the role of this field, such as:

1. The attribute or field name,

2. The type of the field, if it is not apparent from the field name and some
readily available schema information, and

3. The length of the field, if it is not apparent from the type.

E xam ple 13.20: Suppose movie stars may have additional attributes such
as movies directed, former spouses, restaurants owned, and a number of other
known but unusual pieces of information. In Fig. 13.26 we see the beginning of
a hypothetical movie-star record using tagged fields. We suppose that single
byte codes are used for the various possible field names and types. Appropriate
codes are indicated on the figure, along with lengths for the two fields shown,
both of which happen to be of type string. □

code for name

icode for string type
T length_________

code fo r restaurant owned
| code fo r string type
| y length_____________

n : 14 Clint Eastwood R 16 Hog's Breath Inri

Figure 13.26: A record with tagged fields

608 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

13.7.4 Records That Do Not Fit in a Block

Today, DBMS’s frequently are used to manage datatypes with large values;
often values do not fit in one block. Typical examples are video or audio “clips.”
Often, these large values have a variable length, but even if the length is fixed
for all values of the type, we need special techniques to represent values that are
larger than blocks. In this section we shall consider a technique called “spanned
records.” The management of extremely large values (megabytes or gigabytes)
is addressed in Section 13.7.5.

Spanned records also are useful in situations where records are smaller than
blocks, but packing whole records into blocks wastes significant amounts of
space. For instance, the wasted space in Example 13.16 was only 7%, but if
records are just slightly larger than half a block, the wasted space can approach
50%. The reason is that then we can pack only one record per block.

The portion of a record that appears in one block is called a record fragment.
A record with two or more fragments is called spanned, and records that do not
cross a block boundary are unspanned.

If records can be spanned, then every record and record fragment requires
some extra header information:

1. Each record or fragment header must contain a bit telling whether or not
it is a fragment.

2. If it is a fragment, then it needs bits telling whether it is the first or last
fragment for its record.

3. If there is a next and/or previous fragment for the same record, then the
fragment needs pointers to these other fragments.

E xam ple 13.21: Figure 13.27 suggests how records that were about 60% of a
block in size could be stored with three records for every two blocks. The header
for record fragment 2a contains an indicator that it is a fragment, an indicator
that it is the first fragment for its record, and a pointer to next fragment, 2b.
Similarly, the header for 2b indicates it is the last fragment for its record and
holds a back-pointer to the previous fragment 2a. □

13.7.5 BLOBs

Now, let us consider the representation of truly large values for records or fields
of records. The common examples include images in various formats (e.g., GIF,
or JPEG), movies in formats such as MPEG, or signals of all sorts: audio, radar,
and so on. Such values are often called binary, large objects, or BLOBs. When
a field has a BLOB as value, we must rethink at least two issues.

13.7. VARIABLE-LENGTH DATA AND RECORDS 609

block header

record header

record 1
record

2 -a
record

2 -b record 3

b lock 1 block 2

Figure 13.27: Storing spanned records across blocks

Storage o f B L O B s

A BLOB must be stored on a sequence of blocks. Often we prefer that these
blocks are allocated consecutively on a cylinder or cylinders of the disk, so the
BLOB may be retrieved efficiently. However, it is also possible to store the
BLOB on a linked list of blocks.

Moreover, it is possible that the BLOB needs to be retrieved so quickly
(e.g., a movie that must be played in real time), that storing it on one disk
does not allow us to retrieve it fast enough. Then, it is necessary to stripe the
BLOB across several disks, that is, to alternate blocks of the BLOB among
these disks. Thus, several blocks of the BLOB can be retrieved simultaneously,
increasing the retrieval rate by a factor approximately equal to the number of
disks involved in the striping.

R etrieva l o f B L O B s

Our assumption that when a client wants a record, the block containing the
record is passed from the database server to the client in its entirety may not
hold. We may want to pass only the “small” fields of the record, and allow the
client to request blocks of the BLOB one at a time, independently of the rest of
the record. For instance, if the BLOB is a 2-hour movie, and the client requests
that the movie be played, the BLOB could be shipped several blocks at a time
to the client, at just the rate necessary to play the movie.

In many applications, it is also important that the client be able to request
interior portions of the BLOB without having to receive the entire BLOB.
Examples would be a request to see the 45th minute of a movie, or the ending
of an audio clip. If the DBMS is to support such operations, then it requires a
suitable index structure, e.g., an index by seconds on a movie BLOB.

13.7.6 Column Stores
An alternative to storing tuples as records is to store each column as a record.
Since an entire column of a relation may occupy far more than a single block,
these records may span many blocks, much as long files do. If we keep the

610 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

values in each column in the same order, then we can reconstruct the relation
from the column records. Alternatively, we can keep tuple ID’s or integers with
each value, to tell which tuple the value belongs to.

E xam ple 13.22 : Consider the relation

The column for X can be represented by the record (a, c, e) and the column for
Y can be represented by the record (b ,d ,f). If we want to indicate the tuple
to which each value belongs, then we can represent the two columns by the
records ((l,a) , (2 ,c), (3 ,e)) and ((1,6), (2,d), (3 ,/)) , respectively. No matter
how many tuples the relation above had, the columns would be represented by
variable-length records of values or repeating groups of tuple ID’s and values.
□

If we store relations by columns, it is often possible to compress data, the
the values all have a known type. For example, an attribute gender in a relation
might have type CHAR(l), but we would use four bytes in a tuple-based record,
because it is more convenient to have all components of a tuple begin at word
boundaries. However, if all we are storing is a sequence of gender values, then
it would make sense to store the column by a sequence of bits. If we did so, we
would compress the data by a factor of 32.

However, in order for column-based storage to make sense, it must be the
case that most queries call for examination of all, or a large fraction of the values
in each of several columns. Recall our discussion in Section 10.6 of “analytic”
queries, which are the common kind of queries with the desired characteristic.
These “OLAP” queries may benefit from organizing the data by columns.

13.7.7 Exercises for Section 13.7
Exercise 13.7 .1 : A patient record consists of the following fixed-length fields:
the patient’s date of birth, social-security number, and patient ID, each 10 bytes
long. It also has the following variable-length fields: name, address, and patient
history. If pointers within a record require 4 bytes, and the record length is a
4-byte integer, how many bytes, exclusive of the space needed for the variable-
length fields, are needed for the record? You may assume that no alignment of
fields is required.

E xercise 13.7 .2 : Suppose records are as in Exercise 13.7.1, and the variable-
length fields name, address, and history each have a length that is uniformly
distributed. For the name, the range is 10-50 bytes; for address it is 20-80
bytes, and for history it is 0-1000 bytes. W hat is the average length of a
patient record?

13.7. VARIABLE-LENGTH DATA AND RECORDS 611

The Merits of Data Compression

One might think that with storage so cheap, there is little advantage to
compressing data. However, storing data in fewer disk blocks enables us
to read and write the data faster, since we use fewer disk I /O ’s. When
we need to read entire columns, then storage by compressed columns can
result in significant speedups. However, if we want to read or write only
a single tuple, then column-based storage can lose. The reason is that in
order to decompress and find the value for the one tuple we want, we need
to read the entire column. In contrast, tuple-based storage allows us to
read only the block containing the tuple. An even more extreme case is
when the data is not only compressed, but encrypted.

In order to make access of single values efficient, we must both com
press and encrypt on a block-by-block basis. The most efficient compres
sion methods generally perform better when they are allowed to compress
large amounts of data as a group, and they do not lend themselves to
block-based decompression. However, in special cases such as the com
pression of a gender column discussed in Section 13.7.6, we can in fact do
block-by-block compression that is as good as possible.

E xercise 13.7.3: Suppose that the patient records of Exercise 13.7.1 are aug
mented by an additional repeating field that represents cholesterol tests. Each
cholesterol test requires 16 bytes for a date and an integer result of the test.
Show the layout of patient records if:

a) The repeating tests are kept with the record itself.

b) The tests are stored on a separate block, with pointers to them in the
record.

E xercise 13.7.4: Starting with the patient records of Exercise 13.7.1, suppose
we add fields for tests and their results. Each test consists of a test name, a
date, and a test result. Assume that each such test requires 40 bytes. Also,
suppose that for each patient and each test a result is stored with probability
P-

a) Assuming pointers and integers each require 4 bytes, what is the average
number of bytes devoted to test results in a patient record, assuming that
all test results are kept within the record itself, as a variable-length field?

b) Repeat (a), if test results are represented by pointers within the record
to test-result fields kept elsewhere.

! c) Suppose we use a hybrid scheme, where room for k test results are kept
within the record, and additional test results are found by following a

612 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

pointer to another block (or chain of blocks) where those results are kept.
As a function of p, what value of k minimizes the amount of storage used
for test results?

!! d) The amount of space used by the repeating test-result fields is not the
only issue. Let us suppose that the figure of merit we wish to minimize
is the number of bytes used, plus a penalty of 10,000 if we have to store
some results on another block (and therefore will require a disk I/O for
many of the test-result accesses we need to do. Under this assumption,
what is the best value of k as a function of p?

!! E xercise 13.7.5: Suppose blocks have 1000 bytes available for the storage of
records, and we wish to store on them fixed-length records of length r, where
500 < r < 1000. The value of r includes the record header, but a record
fragment requires an additional 16 bytes for the fragment header. For what
values of r can we improve space utilization by spanning records?

!! E xercise 13.7.6: An MPEG movie uses about one gigabyte per hour of play.
If we carefully organized several movies on a Megatron 747 disk, how many
could we deliver with only small delay (say 100 milliseconds) from one disk.
Use the timing estimates of Example 13.2, but remember that you can choose
how the movies are laid out on the disk.

13.8 Record M odifications
Insertions, deletions, and updates of records often create special problems.
These problems are most severe when the records change their length, but
they come up even when records and fields are all of fixed length.

13.8.1 Insertion
First, let us consider insertion of new records into a relation. If the records of
a relation are kept in no particular order, we can just find a block with some
empty space, or get a new block if there is none, and put the record there.

There is more of a problem when the tuples must be kept in some fixed
order, such as sorted by their primary key (e.g., see Section 14.1.1). If we need
to insert a new record, we first locate the appropriate block for that record.
Suppose first that there is space in the block to put the new record. Since
records must be kept in order, we may have to slide records around in the block
to make space available at the proper point. If we need to slide records, then
the block organization that we showed in Fig. 13.19, which we reproduce here
as Fig. 13.28, is useful. Recall from our discussion in Section 13.6.2 that we
may create an “offset table” in the header of each block, with pointers to the
location of each record in the block. A pointer to a record from outside the
block is a “structured address,” that is, the block address and the location of
the entry for the record in the offset table.

13.8. RECORD MODIFICATIONS 613

offset
table

header — unused

/y ///////) record
record 4

I

record 3 2 record 1

Figure 13.28: An offset table lets us slide records within a block to make room
for new records

If we can find room for the inserted record in the block at hand, then we
simply slide the records within the block and adjust the pointers in the offset
table. The new record is inserted into the block, and a new pointer to the record
is added to the offset table for the block. However, there may be no room in
the block for the new record, in which case we have to find room outside the
block. There are two major approaches to solving this problem, as well as
combinations of these approaches.

1. Find space on a “nearby” block. For example, if block Bi has no available
space for a record that needs to be inserted in sorted order into that
block, then look at the following block B 2 in the sorted order of the
blocks. If there is room in B 2, move the highest record(s) of B i to B 2,
leave forwarding addresses (recall Section 13.6.2) and slide the records
around on both blocks.

2. Create an overflow block. In this scheme, each block B has in its header
a place for a pointer to an overflow block where additional records that
theoretically belong in B can be placed. The overflow block for B can
point to a second overflow block, and so on. Figure 13.29 suggests the
structure. We show the pointer for overflow blocks as a nub on the block,
although it is in fact part of the block header.

B lock B overflow block
for B

Figure 13.29: A block and its first overflow block

614 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

13.8.2 Deletion

When we delete a record, we may be able to reclaim its space. If we use an
offset table as in Fig. 13.28 and records can slide around the block, then we
can compact the space in the block so there is always one unused region in the
center, as suggested by that figure.

If we cannot slide records, we should maintain an available-space list in the
block header. Then we shall know where, and how large, the available regions
are, when a new record is inserted into the block. Note that the block header
normally does not need to hold the entire available space list. It is sufficient to
put the list head in the block header, and use the available regions themselves
to hold the links in the list, much as we did in Fig. 13.22.

There is one additional complication involved in deletion, which we must
remember regardless of what scheme we use for reorganizing blocks. There
may be pointers to the deleted record, and if so, we don’t want these pointers
to dangle or wind up pointing to a new record that is put in the place of the
deleted record. The usual technique, which we pointed out in Section 13.6.2, is
to place a tombstone in place of the record. This tombstone is permanent; it
must exist until the entire database is reconstructed.

Where the tombstone is placed depends on the nature of record pointers.
If pointers go to fixed locations from which the location of the record is found,
then we put the tombstone in that fixed location. Here are two examples:

1. We suggested in Section 13.6.2 that if the offset-table scheme of Fig. 13.28
were used, then the tombstone could be a null pointer in the offset table,
since pointers to the record were really pointers to the offset table entries.

2. If we are using a map table, as in Fig. 13.18, to translate logical record
addresses to physical addresses, then the tombstone can be a null pointer
in place of the physical address.

If we need to replace records by tombstones, we should place the bit that serves
as a tombstone at the very beginning of the record. Then, only this bit must
remain where the record used to begin, and subsequent bytes can be reused for
another record, as suggested by Fig. 13.30.

Figure 13.30: Record 1 can be replaced, but the tombstone remains; record 2
has no tombstone and can be seen when we follow a pointer to it

13.9. SUMMARY OF CHAPTER 13 615

13.8.3 Update
When a fixed-length record is updated, there is no effect on the storage system,
because we know it can occupy exactly the same space it did before the update.
However, when a variable-length record is updated, we have all the problems
associated with both insertion and deletion, except that it is never necessary to
create a tombstone for the old version of the record.

If the updated record is longer than the old version, then we may need
to create more space on its block. This process may involve sliding records
or even the creation of an overflow block. If variable-length portions of the
record are stored on another block, as in Fig. 13.25, then we may need to move
elements around that block or create a new block for storing variable-length
fields. Conversely, if the record shrinks because of the update, we have the
same opportunities as with a deletion to recover or consolidate space.

13.8.4 Exercises for Section 13.8
Exercise 13.8.1: Relational database systems have always preferred to use
fixed-length tuples if possible. Give three reasons for this preference.

13.9 Summary of Chapter 13
♦ Memory Hierarchy: A computer system uses storage components ranging

over many orders of magnitude in speed, capacity, and cost per bit. From
the smallest/most expensive to largest/cheapest, they are: cache, main
memory, secondary memory (disk), and tertiary memory.

♦ Disks/Secondary Storage: Secondary storage devices are principally mag
netic disks with multigigabyte capacities. Disk units have several circular
platters of magnetic material, with concentric tracks to store bits. Plat
ters rotate around a central spindle. The tracks at a given radius from
the center of a platter form a cylinder.

♦ Blocks and Sectors: Tracks are divided into sectors, which are separated
by unmagnetized gaps. Sectors are the unit of reading and writing from
the disk. Blocks are logical units of storage used by an application such
as a DBMS. Blocks typically consist of several sectors.

♦ Disk Controller: The disk controller is a processor that controls one or
more disk units. It is responsible for moving the disk heads to the proper
cylinder to read or write a requested track. It also may schedule competing
requests for disk access and buffers the blocks to be read or written.

♦ Disk Access Time: The latency of a disk is the time between a request to
read or write a block, and the time the access is completed. Latency is
caused principally by three factors: the seek time to move the heads to

the proper cylinder, the rotational latency during which the desired block
rotates under the head, and the transfer time, while the block moves under
the head and is read or written.

♦ Speeding Up Disk Access: There are several techniques for accessing disk
blocks faster for some applications. They include dividing the data among
several disks (striping), mirroring disks (maintaining several copies of the
data, also to allow parallel access), and organizing data that will be ac
cessed together by tracks or cylinders.

♦ Elevator Algorithm: We can also speed accesses by queueing access re
quests and handling them in an order that allows the heads to make one
sweep across the disk. The heads stop to handle a request each time
it reaches a cylinder containing one or more blocks with pending access
requests.

♦ Disk Failure Modes: To avoid loss of data, systems must be able to handle
errors. The principal types of disk failure are intermittent (a read or write
error that will not reoccur if repeated), permanent (data on the disk is
corrupted and cannot be properly read), and the disk crash, where the
entire disk becomes unreadable.

♦ Checksums: By adding a parity check (extra bit to make the number of
l ’s in a bit string even), intermittent failures and permanent failures can
be detected, although not corrected.

♦ Stable Storage: By making two copies of all data and being careful about
the order in which those copies are written, a single disk can be used to
protect against almost all permanent failures of a single sector.

♦ RAID: These schemes allow data to survive a disk crash. RAID level
4 adds a disk whose contents are a parity check on corresponding bits
of all other disks, level 5 varies the disk holding the parity bit to avoid
making the parity disk a writing bottleneck. Level 6 involves the use of
error-correcting codes and may allow survival after several simultaneous
disk crashes.

♦ Records: Records are composed of several fields plus a record header. The
header contains information about the record, possibly including such
matters as a timestamp, schema information, and a record length. If the
record has varying-length fields, the header may also help locate those
fields.

♦ Blocks: Records are generally stored within blocks. A block header, with
information about that block, consumes some of the space in the block,
with the remainder occupied by one or more records. To support in
sertions, deletions and modifications of records, we can put in the block
header an offset table that has pointers to each of the records in the block.

616 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

13.10. REFERENCES FOR CHAPTER 13 617

♦ Spanned Records: Generally, a record exists within one block. However,
if records are longer than blocks, or we wish to make use of leftover space
within blocks, then we can break records into two or more fragments, one
on each block. A fragment header is then needed to link the fragments of
a record.

♦ BLOBs: Very large values, such as images and videos, are called BLOBs
(binary, large objects). These values must be stored across many blocks
and may require specialized storage techniques such as reserving a cylinder
or striping the blocks of the BLOB.

♦ Database Addresses: Data managed by a DBMS is found among several
storage devices, typically disks. To locate blocks and records in this stor
age system, we can use physical addresses, which are a description of
the device number, cylinder, track, sector(s), and possibly byte within a
sector. We can also use logical addresses, which are arbitrary character
strings that are translated into physical addresses by a map table.

♦ Pointer Swizzling: When disk blocks are brought to main memory, the
database addresses need to be translated to memory addresses, if pointers
are to be followed. The translation is called swizzling, and can either be
done automatically, when blocks are brought to memory, or on-demand,
when a pointer is first followed.

♦ Tombstones: When a record is deleted, pointers to it will dangle. A
tombstone in place of (part of) the deleted record warns the system that
the record is no longer there.

♦ Pinned Blocks: For various reasons, including the fact that a block may
contain swizzled pointers, it may be unacceptable to copy a block from
memory back to its place on disk. Such a block is said to be pinned. If the
pinning is due to swizzled pointers, then they must be unswizzled before
returning the block to disk.

13.10 References for Chapter 13
The RAID idea can be traced back to [8] on disk striping. The name and error-
correcting capability is from [7]. The model of disk failures in Section 13.4
appears in unpublished work of Lampson and Sturgis [5].

There are several useful surveys of disk-related material. A study of RAID
systems is in [2]. [10] surveys algorithms suitable for the secondary storage
model (block model) of computation. [3] is an important study of how one
optimizes a system involving processor, memory, and disk, to perform specific
tasks.

References [4] and [11] have more information on record and block struc
tures. [9] discusses column stores as an alternative to the conventional record

618 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

structures. Tombstones as a technique for dealing with deletion is from [6]. [1]
covers data representation issues, such as addresses and swizzling in the context
of object-oriented DBMS’s.

1. R. G. G. Cattell, Object Data Management, Addison-Wesley, Reading
MA, 1994.

2. P. M. Chen et al., “RAID: high-performance, reliable secondary storage,”
Computing Surveys 26:2 (1994), pp. 145-186.

3. J. N. Gray and F. Putzolo, “The five minute rule for trading memory for
disk accesses and the 10 byte rule for trading memory for CPU time,”
Proc. ACM SIGMOD Intl. Conf. on Management of Data, pp. 395-398,
1987.

4. D. E. Knuth, The Art of Computer Programming, Vol. I, Fundamental
Algorithms, Third Edition, Addison-Wesley, Reading MA, 1997.

5. B. Lampson and H. Sturgis, “Crash recovery in a distributed data storage
system,” Technical report, Xerox Palo Alto Research Center, 1976.

6. D. Lomet, “Scheme for invalidating free references,” IBM J. Research and
Development 19:1 (1975), pp. 26-35.

7. D. A. Patterson, G. A. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks,” Proc. ACM SIGMOD Intl. Conf. on Man
agement of Data, pp. 109-116, 1988.

8. K. Salem and H. Garcia-Molina, “Disk striping,” Proc. Second Intl. Conf.
on Data Engineering, pp. 336-342, 1986.

9. M. Stonebraker et al., “C-Store: a column-oriented DBMS,” Proc. Thirty-
first Intl. Conf. on Very Large Database Systems” (2005).

10. J. S. Vitter, “External memory algorithms,” Proc. Seventeenth Annual
ACM Symposium on Principles of Database Systems, pp. 119-128, 1998.

11. G. Wiederhold, File Organization for Database Design, McGraw-Hill,
New York, 1987.

