MAT1351 - CÁLCULO PARA FUNÇÕES DE UMA VARIÁVEL REAL I 1° semestre de 2019

Lista 6

- 1. Prove que a função $f(x) = x^{101} + x^{51} + x + 1$ não tem nem máximo nem mínimo locais.
- 2. Determine as dimensões do retângulo de área máxima cujo perímetro é 2p.
- 3. Determine a altura do cone circular reto, de volume máximo, inscrito na esfera de raio R dado.
- 4. Qual é o retângulo de maior área que pode ser inscrito num círculo de raio r?
- 5. (a) Mostre que entre os retângulos de uma certa área dada, o de menor perímetro é o quadrado.
 - (b) Mostre que entre os retângulos de um certo perímetro dado, o de maior área é o quadrado.
- 6. Um arame de comprimento L deve ser cortado em dois pedaços, um para formar um quadrado e outro para formar um triângulo equilátero. Como se deve cortar o arame para que a soma das áreas cercadas por estes dois pedaços seja máxima? E para que seja mínima? Mostre que no segundo caso, o lado do quadrado é $\frac{2}{3}$ da altura do triângulo.
- 7. Mostre que, de todos os triângulos isósceles com um dado perímetro, aquele que tem a maior área é equilátero.
- 8. Deseja-se construir uma esfera e um cubo de modo que a soma das áreas de suas superfícies seja igual a 2. Determine o raio da esfera que maximiza e o que minimiza a soma de seus volumes.
- 9. Um triângulo isósceles está circunscrito a um círculo de raio R. Se x é a altura do triângulo, mostre que sua área é mínima quando x = 3R.
- 10. Um cilindro é obtido girando-se um retângulo ao redor do eixo x, onde a base do retângulo está apoiada. Seus vértices superiores estão sobre a curva $y = \frac{x}{x^2 + 1}$. Qual é o maior volume que tal cilindro pode ter?
- 11. Um fazendeiro tem 24 metros de cerca e quer cercar um campo retangular que tem fronteira com um rio (ou seja, só precisa cercar três lados). Quais são as dimensões do campo para que a área seja máxima?
- 12. Deseja-se construir uma caixa, de forma cilíndrica, de 1m³ de volume. Nas laterais e no fundo será utilizado material que custa R\$ 10 o metro quadrado e na tampa, material de R\$ 20 o metro quadrado. Determine as dimensões da caixa que minimizem o custo do material empregado.
- 13. Duas partículas P e Q movem-se, respectivamente, sobre os eixos x e y. A função de posição de P é $x=\sqrt{t}$ e a de Q, $y=t^2-\frac{3}{4}$. Determine o instante em que a distância entre P e Q seja a menor possível.

- 14. Um retângulo tem sua base no eixo x e seus vértices superiores sobre a parábola $y = 12 x^2$. Desses retângulos, quais as dimensões do que tem maior área?
- 15. Qual o ponto P da curva $y=x^2$ que se encontra mais próximo de (3,0)? Seja P=(a,b) tal ponto; mostre que a reta que passa por (3,0) e (a,b) é normal à curva em (a,b).
- **16**. Seja (x_0, y_0) , $x_0 > 0$ e $y_0 > 0$ um ponto da elipse $x^2 + 4y^2 = 1$. Seja T a reta tangente à elipse no ponto (x_0, y_0) .
 - (a) Verifique que T tem por equação $x_0x + 4y_0y = 1$.
 - (b) Determine x_0 de modo que a área do triângulo determinado por T e pelos eixos coordenados seja mínima.
- 17. Encontre o ponto da curva $y=\frac{2}{r},\,x>0,$ que está mais próximo da origem.
- 18. Em quais pontos da curva $y = 1 + 40x^3 3x^5$ a reta tangente tem a sua maior inclinação?
- 19. Seja g definida e positiva no intervalo I. Seja $p \in I$. Prove: p será ponto de máximo (ou de mínimo) de $h(x) = \sqrt{g(x)}$ em I se, e somente se, p for ponto de máximo (ou de mínimo) de g em I.
- **20**. Se f tiver um valor mínimo em c, mostre que a função g(x) = -f(x) tem um valor máximo em c.
- 21. Determine os valores máximos e mínimos (caso existam) da função dada, no intervalo dado.

(a)
$$f(x) = \frac{x^4}{4} - x^3 - 2x^2 + 3 \text{ em } [-2, 3];$$

(b) $f(x) = x^3 - 3x^2 + 3x - 1 \text{ em } [-2, 1];$
(c) $f(x) = e^{-x} - e^{-2x} \text{ em } [0, 1];$
(d) $f(x) = \sin x - \cos x \text{ em } [0, \pi];$
(e) $f(x) = \sin x - \cos x \text{ em } [0, \pi];$
(f) $f(x) = \sin x - \cos x \text{ em } [0, \pi];$
(g) $f(x) = \sqrt[3]{x^3 - 2x^2} \text{ em } [-1, 2];$

(e)
$$f(x) = e^{-x} - e^{-2x}$$
 em $[0, 1]$;

(b)
$$f(x) = x^3 - 3x^2 + 3x - 1$$
 em $[-2, 1]$:

(f)
$$f(x) = \operatorname{sen} x - \operatorname{cos} x \text{ em } [0, \pi]$$

(c)
$$f(x) = |x^4 - 2x^3|$$
 em $[0, 3]$;

(g)
$$f(x) = \sqrt[3]{x^3 - 2x^2}$$
 em $[-1, 2]$;

(d)
$$f(x) = x - 3 \ln x$$
 em [1, 4];

(h)
$$f(x) = \frac{1}{x^3 - 2x^2}$$
 em]0,2[.

- **22**. Seja $f \colon \mathbb{R} \to \mathbb{R}$. Seja $a \in \mathbb{R}$ tal que f''(a) existe. Se a é um ponto de mínimo de f, mostre que $f''(a) \ge 0$. Pode-se melhorar o resultado para f''(a) > 0? E se a for um ponto de máximo, o que se pode dizer?
- **23**. Suponha que f é diferenciável em [a, b].
 - (a) Mostre que se o mínimo de f em [a,b] for em a, então $f'(a) \ge 0$ e que, se for em b, então $f'(b) \leq 0.$
 - (b) Suponha que f'(a) < 0 e f'(b) > 0. Mostre que f'(x) = 0 para algum $x \in [a, b[$. Dica: f tem mínimo em [a,b]?
 - (c) Mostre que se f'(a) < c < f'(b), então f'(x) = c para algum $x \in]a, b[$. Dica: Encontre uma função adequada e aplique o item anterior.
 - (d) Mostre que se f é derivável em [a,b] e f' não se anula em [a,b], então f é estritamente crescente em [a, b] ou estritamente decrescente em [a, b].