MAP2110 Modelagem e Matemática

$1^{\underline{0}}$ Semestre de 2018

1^a Prova

A prova deverá ser entregue até 10/04/2018. Cada questão vale 1.0 ponto.

Questão 1 Considere no plano xy a reta dada pela equação 5x - 2y = 10.

- (a) Apresente as equações paramétricas dessa reta.
- (b) Apresente a equação vetorial dessa reta.

Questão 2 Considere no espaço xyz o plano de equação 5x - 2y + 3z = 30.

- (a) Apresente as equações paramétricas desse plano.
- (b) Apresente a equação vetorial desse plano.

Questão 3 Considere o sistema linear

$$\begin{cases} x_1 - 2x_2 + x_3 = 1 \\ x_1 + 3x_2 + 7x_3 = 2 \\ x_1 - 12x_2 - 11x_3 = 5 \\ 2x_1 - 9x_2 - 4x_3 = 7 \\ 6x_1 - 27x_2 - 12x_3 = 20 \end{cases}$$

- (a) Apresente o sistema na forma escalonada.
- (b) Apresente o sistema na forma escalonada reduzida.

 ${\bf Quest\~ao}$ 4 Considere o sistema linear formado pelas primeiras 3 equações do sistema da quest\~ao 3

$$\begin{cases} x_1 - 2x_2 + x_3 = 1 \\ x_1 + 3x_2 + 7x_3 = 2 \\ x_1 - 12x_2 - 11x_3 = 5 \end{cases}$$

- (a) Resolva o sistema pelo Método de Eliminação de Gauss (isto é, usando a forma escalonada).
- (b) Resolva o sistema pelo Método de Eliminação de Gauss-Jordan (isto é, usando a forma escalonada reduzida).

 ${\bf Quest\~ao}$ 5 Considere o sistema linear formado pelas primeiras 2 equações do sistema da quest\~ao 3

$$\begin{cases} x_1 - 2x_2 + x_3 = 1 \\ x_1 + 3x_2 + 7x_3 = 2 \end{cases}$$

- (a) Resolva o sistema pelo Método de Eliminação de Gauss (isto é, usando a forma escalonada).
- (b) Resolva o sistema pelo Método de Eliminação de Gauss-Jordan (isto é, usando a forma escalonada reduzida).

1

(c) Apresente a solução do sistema na forma vetorial.

Questão 6 Considere as equações do sistema linear da questão 3:

$$\begin{cases}
(I) & x_1 - 2x_2 + x_3 = 1 \\
(II) & x_1 + 3x_2 + 7x_3 = 2 \\
(III) & x_1 - 12x_2 - 11x_3 = 5 \\
(IV) & 2x_1 - 9x_2 - 4x_3 = 7 \\
(V) & 6x_1 - 27x_2 - 12x_3 = 20
\end{cases}$$

Responda se cada ítem abaixo é verdadeiro ou falso, e justifique.

- (a) O sistema linear formado pelas equações (I), (II), (III) e (IV) tem exatamente uma solução.
- (b) O sistema linear formado pelas equações (I), (II), (III) e (V) tem exatamente uma solução.
- (c) O sistema linear formado pelas equações (I), (II), (III), (IV) e (V) tem exatamente uma solução.

Questão 7 Ache a inversa da matriz A do sistema Ax = b formado pelas 3 primeiras equações do sistema linear da questão 3.

Questão 8 Considere a matriz A do sistema Ax = b formado pelas 3 primeiras equações do sistema linear da questão 3.

Ache matrizes $T_1, T_2, \ldots, T_p, 3 \times 3$, cada uma delas da forma E_{lk} ou $M_{k,\beta}$ ou $G_{lk,\lambda}$, de modo que o produto $T_pT_{p-1}T_{p-2}\cdots T_2T_1A$ seja uma matriz na forma escalonada.

(Aqui, E_{lk} , $M_{k,\beta}$, $G_{lk,\lambda}$, são da forma definida na 1a. lista de exercícios.)

Questão 9 Seja V o conjunto das matrizes 2×2 triangulares superiores com a adição e a multiplicação por escalar usuais.

Mostre que V é um espaço vetorial sobre \mathbf{R} .

Questão 10 Considere o espaço vetorial sobre \mathbf{R} : $V = \mathbf{R}^4$.

Em cada ítem, decida se o conjunto de vetores de V apresentado é ou não linearmente independente:

- (a) $A_1 = \{(2, 1, 1, 3)\}.$
- (b) $A_2 = \{(2, 1, 1, 3), (1, 2, 1, 2)\}.$
- (c) $A_3 = \{(2,1,1,3), (1,2,1,2), (4,5,3,7)\}.$

Questão 11 Considere o conjunto V das matrizes 2×2 trianulares superiores. J vimos na questão 9 que V com a adio e a multiplicação por escalar usuais é um espaço vetorial sobre \mathbf{R} .

Sejam
$$u = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}, v = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, w = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Em cada ítem, decida se o conjunto de vetores de V apresentado é ou não linearmente independente:

- (a) $B_1 = \{u\}.$
- (b) $B_2 = \{u, v\}.$
- (c) $B_3 = \{u, v, w\}.$