[MAC0426] Sistemas de Bancos de Dados [IBI5013] Bancos de Dados para Bioinformática Aula 7

Projeto Lógico de Bancos de Dados: Mapeamento do Modelo Entidade-Relacionamento (Estendido) para o Modelo Relacional

Kelly Rosa Braghetto

DCC-IME-USP

03 de abril de 2017

Projeto Lógico de Banco de Dados:

Modelo ER → Modelo Relacional

Projeto Lógico de BD

⇒ Mapeamento de um esquema em um modelo conceitual para um em um modelo de implementação.

Algoritmo para mapeamento de um modelo ER para um modelo relacional:

- 1. Mapeamento dos tipos de entidade regulares
- 2. Mapeamento dos tipos de entidade fracas
- 3. Mapeamento dos tipos de relacionamento binários 1:1
- Mapeamento dos tipos de relacionamento binários 1:N
- Mapeamento dos tipos de relacionamento binários N:M
- 6. Mapeamento dos tipos de relacionamento *n*-ários
- 7. Mapeamento de atributos multivalorados

Passo 1: Mapeamento dos tipos de entidade regulares

Para cada tipo de entidade regular (forte) E

- Criar uma relação entidade R
- ▶ Incluir em *R* todos os atributos simples e as componentes simples dos atributos compostos de *E*
- ► Entre as chaves candidatas de *E*, escolher uma para ser a chave primária em *R*
 - as demais chaves candidatas serão chaves únicas (= secundárias) de R

Obs.: se a chave escolhida de E for uma chave composta, a chave primária de R será a composição dos atributos simples componentes da chave de E

Passo 2: Mapeamento dos tipos de entidade fracas

Para cada tipo de entidade fraca F

- Criar uma relação entidade R
- ▶ Incluir em R todos os atributos simples e as componentes simples dos atributos compostos de F
- ▶ Inserir como chave estrangeira de *R* a chave primária da relação correspondente à sua entidade forte *E*.
- ▶ Definir como chave primária de R a combinação da chave primária da relação E e da chave parcial de F (quando houver)

Passo 3: Mapeamento dos tipos de relac. binários 1:1

Para cada tipo de relacionamento binário 1:1 R

- ▶ Identificar as relações S e T correspondentes aos tipos de entidade participantes do relacionamento R
- Escolha uma das relações, por exemplo S, para incluir como chave estrangeira de S a chave primária de T
 Obs.: É melhor escolher como S o tipo de entidade com participação total em R
- ► Inclua em *S* todos os atributos simples e as componentes simples dos atributos compostos de *R*

Obs.: Quando a participação de S e T em R é total, pode ser conveniente combinar S e T em uma única relação.

Passo 4: Mapeamento dos tipos de relac. binários 1:N

Para cada tipo de relacionamento binário 1:N R

- ▶ Identificar a relação S que representa o tipo de entidade participante do lado N do relacionamento R
- ▶ Identificar a relação T que representa o tipo de entidade participante do lado 1 do relacionamento R
- ▶ Incluir como chave estrangeira de S a chave primária de T
- ► Incluir em *S* os atributos simples e os componentes simples dos atributos compostos de *R*

Passo 5: Mapeamento dos tipos de relac. binários N:M

Para cada tipo de relacionamento binário N:M R

- Criar uma nova relação S para representar R
- ▶ Incluir como chave estrangeira em S as chaves primárias das relações que representam os tipos de entidade participantes de R
- ▶ Definir como chave primária de S a combinação das chaves estrangeiras criadas no passo anterior
- ▶ Incluir em S os atributos simples e os componentes simples dos atributos compostos de R

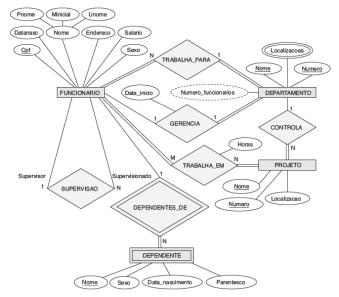
Obs.: A relação S é chamada de referência cruzada ou relação de relacionamento.

Um "parênteses" sobre relacionamentos...

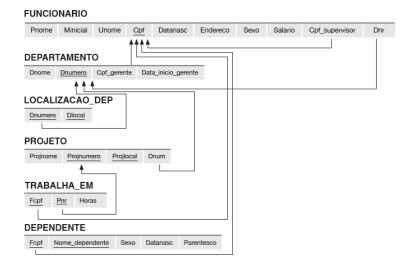
- Sempre é possível mapear tipos de relacionamento 1:1 ou 1:N da mesma maneira que os M:N, ou seja, com uma relação especialmente criada para representar o relacionamento.
 - No caso 1:1, a chave da relação de relacionamento pode ser qualquer uma das 2 chaves estrangeiras
 - No caso 1:N, a chave da relação de relacionamento deve ser a chave estrangeira para a relação entidade do lado 1 do relacionamento
- Entretanto, isso só é viável quando há poucas instâncias do relacionamento (para se evitar NULLs) ou quando se sabe que a razão de cardinalidade do relacionamento será modificada no futuro.

Passo 6: Mapeamento dos tipos de relac. *n*-ários

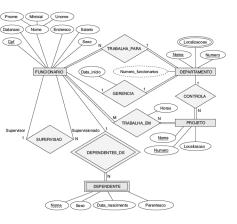
Para cada tipo de relacionamento R n-ário (em que n > 2)


- Criar uma nova relação S para representar R
- ▶ Incluir como chave estrangeira em S as chaves primárias das relações que representam os tipos de entidade participantes em R
- ▶ Incluir em *S* os atributos simples e os componentes simples dos atributos compostos de R
- Geralmente, a chave primária de S é definida como a combinação das chaves estrangeiras incluídas em S. Mas, se a restrição de cardinalidade em qualquer um dos tipos de entidade E participante em R for 1, então a chave primária de S não deve incluir a chave estrangeira que faz referência à relação E' correspondente à E.

Passo 7: Mapeamento de atributos multivalorados


Para cada atributo multivalorado A

- Criar uma nova relação R que inclua um atributo correspondente a A
 Obs.: Se A é composto, incluir em R os seus atributos simples
 - componentes.
- Incluir em R a chave primária K da relação que representa o tipo de entidade ou o tipo de relacionamento que tem A como atributo
- ▶ Definir como chave primária de R a combinação de K e A


Exemplo – BD Empresa (modelo conceitual)

Exemplo – BD Empresa (modelo relacional)

Exemplo completo – BD Empresa

Modelo ER → Modelo relacional (Resumo)

Tipo de entidade Relação "entidade" Tipo de rel. 1:1 ou 1:N Chave estrangeira (ou relação "relacioname	•
Tipo de rel. 1:1 ou 1:N Chave estrangeira (ou relação "relacioname	•
	roiroc
Tipo de rel. N:M Relação "relacionamento" e 2 chaves estran	zeiras
Tipo de rel. <i>n</i> -ário Relação "relacionamento" e <i>n</i> chaves estran	geiras
Atributo simples Atributo	
Atributo composto Conjunto de atributos simples componentes	
Atributo multivalorado Relação e chave estrangeira	
Conjunto de valores Domínio	
Atributo chave Chave primária (ou secundária)	

Projeto Lógico de Banco de Dados:

Modelo EER → Modelo Relacional

Mapeamento do modelo EER para o modelo relacional

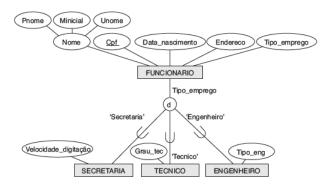
Novas etapas no algoritmo de mapeamento apresentado anteriormente:

- 8) mapeamento da especialização ou generalização
- 9) mapeamento de categorias

Mapeamento da especialização ou generalização

Considerações iniciais

 Converta cada especialização com m subclasses $\{S_1, S_2, \dots, S_m\}$ e superclasse C, com atributos $\{ch, a_1, a_2, \dots, a_n\}$ e ch é a chave primária, em uma ou mais relações usando uma das 4 opções de mapeamento mostradas a seguir.


Obs.: Denotaremos por Atrs(R) os atributos e ChP(R) a chave primária de uma relação ou entidade R.

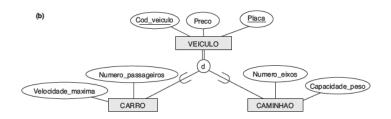
Mapeamento da especialização ou generalização

Opção A: múltiplas relações - superclasse e subclasses

- Crie um relação L para C com atributos Atrs(L) = Atrs(C) e ChP(L) = ch
- ▶ Crie uma relação L_i para cada subclasse S_i , $1 \le i \le m$, com atributos $Atrs(L_i) = \{ch\} \cup Atrs(S_i)$ e $ChP(L_i) = ch$.
- Essa opção funciona para qualquer especialização (total ou parcial, disjunta ou sobreposta)

Mapeamento de especialização – exemplo (opção A)

(a) **FUNCIONARIO**



Mapeamento da especialização ou generalização

Opção B: múltiplas relações – apenas relações de subclasse

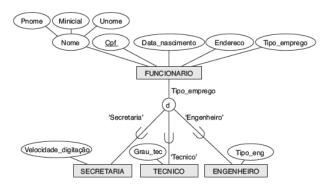
- ▶ Crie uma relação L_i para cada subclasse S_i , $1 \le i \le m$, com atributos $Atrs(L_i) = Atrs(S_i) \cup Atrs(C)$ e $ChP(L_i) = ch$.
- Essa opção só funciona para especializações totais
- Aplica-se melhor a especializações disjuntas (por quê?)

Mapeamento de generalização – exemplo (oção B)

CARRO

Id_veiculo	Placa	Preco	Velocidade_max	Numero_passageiros

CAMINHAO


Id_veiculo	Placa	Preco	Numero_eixos	Capacidade_peso			

Mapeamento da especialização ou generalização

Opção C: relação única com um atributo de tipo

- Crie uma única relação L com atributos Atrs(L) = Atrs(C) ∪ Atrs(S₁) ∪ ... ∪ Atrs(S_m) ∪ {t} e ChP(L) = ch
- ▶ t é o atributo de tipo (ou discriminador), que indica a qual subclasse a tupla pertence
- Essa opção só funciona para especializações disjuntas
- ► Tem o potencial para gerar muitos NULLs (se as subclasses possuírem muitos atributos)

Mapeamento de especialização – exemplo (opção C)

FUNCIONARIO


<u>Cpf</u> Pnome Minicial Unome Data_nascimento Endereco Tipo_emprego Velocidade_digitacao Grau_tec Tipo_eng

Mapeamento da especialização ou generalização

Opção D: relação única com atributos de múltiplos tipos

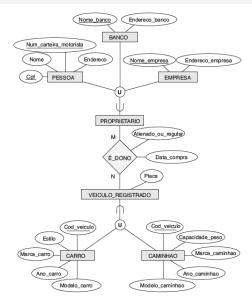
- Crie uma única relação L com atributos $Atrs(L) = Atrs(C) \cup Atrs(S_1) \cup ... \cup Atrs(S_m) \cup \{t_1, t_2, ..., t_m\}$ e ChP(L) = ch
- ► Cada t_i é um atributo **booleano** indicando se uma tupla pertence à subclasse S_i
- Essa opção funciona para especializações sobrepostas
- Tem o potencial para gerar muitos NULLs (se as subclasses possuírem muitos atributos)

Mapeamento de especialização – exemplo (opção D)

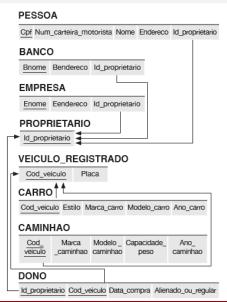
PECA

Descricao Tipo_fabr Num_desenho Data_fabricacao Num_lote Tipo_compr Nome_fornecedor Preco

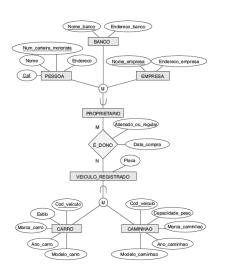
Mapeamento de categorias


Categoria com superclasses com chaves diferentes

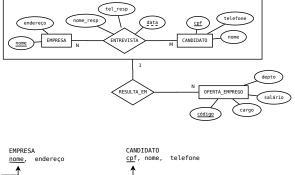
- Criar uma relação para a categoria
- Criar um novo atributo chave (uma chave substituta) para a relação da categoria
- ▶ Incluir a chave substituta como uma chave estrangeira em cada relação correspondente a uma superclasse da categoria


Categoria com superclasses com chaves iguais

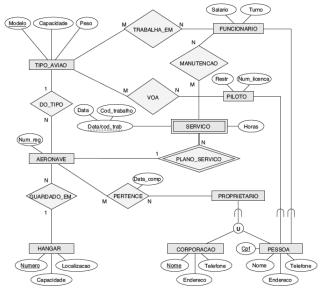
- Criar uma relação para a categoria
- Usar como chave primária para essa relação a chave primária das superclasses


Mapeamento de categorias – exemplo (modelo conceitual)

Mapeamento de categorias – exemplo (modelo relacional)



Mapeamento de categorias – exemplo completo



Mapeamento de agregados – exemplo


```
ENTREVISTA
nome empresa, cpf candidato, data, nome resp, tel resp
código, cargo, salário, depto, nome_empresa, cpf_candidato, data_entrevista
```

Exercício: passe do esquema EER para o esquema Relacional

Referências Bibliográficas

Mapeamento dos modelos ER e EER para o Relacional:

➤ Sistemas de Bancos de Dados (6ª edição), Elmasri e Navathe. Pearson, 2010. — Capítulo 9

Cenas dos próximos capítulos...

Linguagens de consulta do modelo relacional