MAC439 Laboratório de Bancos de Dados

Aula 12 Introdução ao MongoDB (Parte 1)

21 de setembro de 2016

Profa. Kelly Rosa Braghetto

Slides baseados no material confecionado por Elaine Naomi Watanabe (elainew@ime.usp.br), aluna de mestrado do DCC-IME-USP

MongoDB

- Sistema gerenciador de banco de dados NoSQL
 - Modelo orientado a documentos
 - Esquema flexível (schemaless)
 - API de manipulação de dados em JavaScript
- Software livre, multiplataforma
- Criado em 2007
- Nome vem de "huMONGOus" capaz de lidar com enormes volumes de dados
- https://www.mongodb.com/

Popularidade entre os SGBDs

315 systems in ranking, September 2016

Sep 2016	Rank Aug 2016	Sep 2015	DBMS	Database Model	Score Sep Aug Sep 2016 2016 2015
1.	1.	1.	Oracle	Relational DBMS	1425.56 -2.16 -37.81
2.	2.	2.	MySQL	Relational DBMS	1354.03 -3.01 +76.28
3.	3.	3.	Microsoft SQL Server	Relational DBMS	1211.55 +6.51 +113.72
4.	↑ 5.	↑ 5.	PostgreSQL	Relational DBMS	316.35 +1.10 +30.18
5.	4 4.	4 4.	MongoDB 🖽	Document store	316.00 -2.49 +15.43
6.	6.	6.	DB2	Relational DBMS	181.19 -4.70 -27.95
7.	7.	↑ 8.	Cassandra 🖽	Wide column store	130.49 +0.26 +2.89
8.	8.	4 7.	Microsoft Access	Relational DBMS	123.31 -0.74 -22.68
9.	9.	9.	SQLite	Relational DBMS	108.62 -1.24 +0.97
10.	10.	10.	Redis	Key-value store	107.79 +0.47 +7.14

http://db-engines.com/en/ranking

Popularidade entre os Document Stores

42 systems in ranking, September 2016

Rank Sep Aug Sep			DBMS	Database Model	Score Sep Aug Sep	
-	2016 2016 2015				2016 2016	2015
1.	1.	1.	MongoDB 🖪	Document store	316.00 -2.49	+15.43
2.	2.	↑ 3.	Couchbase 🖪	Document store	28.54 +1.14	+2.28
3.	3.	1 4.	Amazon DynamoDB 🖪	Document store	27.42 +0.82	+7.43
4.	4.	↓ 2.	CouchDB	Document store	21.48 +0.42	-5.12
5.	5.	5.	MarkLogic	Multi-model 🚺	10.15 +0.11	-1.37
6.	6.	↑ 9.	OrientDB	Multi-model 📵	6.40 +0.43	+1.80
7.	7.	1 1.	RethinkDB	Document store	5.02 +0.27	+2.08
8.	8.	↓ 7.	Cloudant	Document store	4.48 -0.03	-0.47
9.	9.	4 6.	RavenDB	Document store	4.40 -0.04	-1.50
10.	10.	4 8.	GemFire	Document store	3.39 -0.03	-1.30

http://db-engines.com/en/ranking/document+store

Um BD no MongoDB

- Banco de dados = conjunto de coleções
- Coleção (*collection*) = conjunto de documentos
- Documento ≈ objeto em JSON

[Relembrar é viver] Tipos de dados do JSON

- Null
- Boolean true ou false
- String (codificação Unicode)
- Number (pode ter sinal, e também pode ser decimal ou científico)
- Object conjunto de itens do tipo chave-valor, onde cada chave é uma string única dentro do objeto
- Array lista ordenada de dados, possivelmente de tipos diferentes, delimitados por colchetes e separados por vírgulas

[Relembrar é viver] Exemplo de documento em JSON

```
"nome": "João", //string
"idade":21, //number
"eleitor":true, //boolean
"escolaridade": null, //null
"hobbies": ["tênis", "xadrez"], //array
"endereço":{
     "cidade": "São Paulo",
     "estado": "SP"
} //object/document
```

BSON – Binary JSON

- É um formato binário de seriação de documentos JSON
- É usado no MongoDB para o armazenamento e passagem de dados
- Possui extensões que permitem a representação de tipos de dados não existentes em JSON:
 - Date
 - Binary Data (binData) vetores de bytes
 - ObjectId identificador de um registro no MongoDB
 - 32-bit integer (int)
 - 64-bit integer (long)
 - Regular Expression (regex)
 - MaxKey, MinKey, Timestamp tipos usados internamente pelo MongoDB
 - ...

Identificação de objetos

- Todo documento em uma coleção deve ter, obrigatoriamente, um campo chamado _id que funciona como chave primária para o documento
 - O campo _id pode ser de qualquer tipo de dado
 - Mas se na criação de um objeto o campo _id não for definido,
 o MongoDB atribuirá um valor do tipo ObjectId para o campo

Identificação de objetos

- *ObjectIds* são "valores pequenos, ordenados, (provavelmente!) únicos e fáceis de se gerar"
- Um *ObjectId* ocupa 12 bytes:
 - 4 bytes para representar o timestamp da criação do ID
 - 3 bytes para o identificador da máquina onde o ID foi criado
 - 2 bytes para o identificador do processo que criou o ID
 - 3 bytes para um contador, iniciado com um valor aleatório

Para garantir escalabilidade, o MongoDB ...

- Não possui o conceito chaves estrangeiras
 - Mas é possível estabelecer ligações (relacionamentos) entre documentos por meio de atributos comuns
- Não possui suporte a operações de junção de coleções
- Não possui suporte a transações
 - Mas garante atomicidade em nível de documento nas operações de escrita

Principais componentes do MongoDB

- mongo: cliente do MongoDB (Mongo Shell)
- mongod : servidor do MongoDB
- mongod --replSet "nomeReplica": servidor de réplica do MongoDB
- mongod --configsvr: serviço de configuração do particionamento de dados (ele processa as consultas do cliente e determina a localização dos dados)
- mongos: serviço de roteamento de consultas do cliente para o serviço de configuração do cluster
- Lista de drivers: http://docs.mongodb.org/ecosystem/drivers/

Replicação / Particionamento no MongoDB

Métodos utilizados para a obtenção de escalabilidade horizontal:

- **Sharding** (particionamento de dados): o conjunto de dados é dividido em diferentes partes (shards) e essas partes são distribuídas em servidores distintos
- ReplicaSet (conjunto de réplicas): é um grupo de servidores (mongod) que hospedam/armazenam o mesmo conjunto de dados

Conexão com o MongoDB da Rede Linux

Nas aulas sobre o MongoDB, usaremos duas opções de clientes de conexão:

- MongoDB Shell (linha de comando)
- MongoClient (interface gráfica)

Cliente de conexão MongoDB Shell

- O MongoDB Shell vem no pacote core do MongoDB
- Ele já está instalado nas máquinas do CEC e da Rede Linux
- Para se conectar ao servidor de BD da Rede Linux via o MongoDB Shell, abra um terminal e execute o comando:

```
mongo --port 27017 -u <seu_login_rede_Linux> --ssl
-host mongodb.linux.ime.usp.br
--authenticationDatabase <seu login rede Linux> -p
```

Para efetuar a conexão, forneça a sua senha do MongoDB (que não necessariamente é a mesma da Rede Linux!)

Cliente de conexão MongoClient

- Baixe-o de http://www.mongoclient.com/
- Descompacte o arquivo e entre no diretório criado
- Execute o programa com o comando: ./mongoclient
- Entre no menu "Connect > Create New"
- Dados para a conexão com o servidor da Rede Linux:
 - Na aba "Connection"
 - Connection name: qualquer nome a sua escolha
 - Hostname: mongodb.linux.ime.usp.br
 - Port: 27017 → essa é a porta padrão do MongoDB
 - **DB Name:** <seu login rede Linux>
 - Na aba "Authentication"
 - User: <seu login rede Linux>
 - Password: [sua senha no MongoDB; não necessariamente a mesma da Rede Linux]
 - · Use SSL: true

Os exemplos/comandos que veremos a seguir introduzem o uso do MongoDB Shell

A API do MongoDB é baseada em JavaScript, assim pode-se...

Executar scripts js

```
for(i=0; i < 3; i++) {
   print ("hello, " + i);
}</pre>
```

Declarar variáveis

```
var test = "abc";
print (test);
test
```

Manipulador objetos JSON

```
dict = {"a":1, "b":2};
dict
dict.a
dict["a"]
w = "a"
dict[w]
```

Acessando o *help* em diferentes níveis

```
//geral
help;
//nível do banco de dados
db.help();
//nível de uma coleção
db.<nome coleção>.help();
//nível do comando find()
db.<nome coleção>.find().help();
//definição de uma função
db.<nome coleção>.find;
```

<nome_coleção> é o nome da coleção dentro do banco de dados
selecionado com use <nome_bd>

Alguns comandos úteis

show dbs — Lista todos os BDs do servidor mongod

use <nome bd> - Conecta (ou cria, se ainda não existir) o BD especificado

db – obtém ponteiro para BD atualmente em uso

show collections — Lista todas as coleções de BD atualmente em uso

quit() — sai do shell

Para trocar sua senha

Criação de coleções

- Pode-se incluir um documento em uma coleção; se a coleção não existe ainda, ela será automaticamente criada
 - O comando abaixo cria a coleção minha_nova_colecao com o documento {"a":1} dentro dela

```
db.minha_nova_colecao.insert({"a":1});
```

Ou pode-se criar uma coleção vazia

```
db.createCollection("minha_nova_colecao");
```

Organizando as coleções com namespaces

- Pode-se agrupar as coleções em namespaces
 - A notação com ponto é usada para designar a qual namespace pertence uma coleção
- Exemplos:

```
db.bcc.alunos.insert({"nusp":12345, "nome":"John Lennon"});
db.bcc.disciplinas.insert({"codigo":"MAC0439"});
ou
db.createCollection("bcc.alunos");
db.createCollection("bcc.disciplinas");
```

Criando uma coleção para testes

- Baixe o script "criacao colecao bios.js" disponível no Paca
- No mongo shell, execute:

```
load("criacao_colecao_bios.js");
```

Isso criará no BD em uso uma coleção chamada, com dados da biografia de personalidades da Computação (incluindo suas contribuições para a área e os prêmios que receberam)

Exemplo de documento da coleção "bios"

```
" id" : 6,
"name" : {
    "first" : "Guido",
    "last": "van Rossum" },
"birth": ISODate("1956-01-31T05:00:00Z"),
"contribs" : [ "Python" ],
"awards" : [
        "award": "Award for the Advancement of Free Software",
        "year" : 2001,
        "by" : "Free Software Foundation"
    },
        "award" : "NLUUG Award",
        "year" : 2003,
        "by" : "NLUUG"
```

No MongoDB, toda busca se dá no escopo de uma única coleção.

• Para listar todos os documentos da coleção bios:

```
db.bios.find();
```

 Para listar as personalidades da coleção que possuem primeiro nome "James":

```
db.bios.find({"name":{"first": "James", "last":"Gosling"}});
```

ou

```
db.bios.find({"name.first": "James", "name.last":"Gosling"});
```

• Formato mais geral da busca:

Coleção consultada

Condição de seleção dos documentos

```
db.bios.find(
    {"birth": {$gte: ISODate("1930-01-01T00:00:00Z")}},
    {"name":1, "contribs":1 }
).limit(5);
```

Modificador da resposta

Atributos da resposta (projeção)

https://docs.mongodb.com/manual/tutorial/query-documents/

Busca com condição OU – Exemplo

Seleciona os nomes e as contribuições das personalidades que ganharam um prêmio Turing ou que morreram antes dos anos 2000.

• Busca com condição **E** e **OU** - Exemplo

Seleciona os nomes e as contribuições das personalidades que nasceram depois dos anos 30 e que (ganharam um prêmio Turing ou que morreram antes dos anos 2000).

Operadores lógicos para condições de busca

Operadores lógicos são usados para unir cláusulas na condição de busca

- \$or
- \$and
- \$not
- \$nor devolve os documentos para os quais todas as cláusulas unidas pelo NOR são avaliadas como falsas

https://docs.mongodb.com/manual/reference/operator/query/#query-selectors

Operadores para condições de busca

- **\$gt** *greater than* (>)
- \$gte greater than or equal (>=)
- \$1t less than (<)
- **\$1te** less than or equal (<=)
- \$ne not equal (<>)
- \$in verifica a pertinência num conjunto de valores
- \$nin verifica a não pertinência num conjunto de valores

 Encontre as disciplinas que possuem código MAC426 ou MAC439

Operadores para condições de busca

- **\$exists** verifica a existência de atributos
- **\$elemMatch** compara elementos de vetores
- \$size compara tamanho de vetor
- \$regex "casa" com expressão regular
- •

 Encontre os nomes das personalidades que tiveram 3 contribuições para a Computação:

Encontre as disciplinas que contêm "MAC" no código:

Obs.: a opção 'i' é para ignorar a diferença entre maiúsculas e minúsculas.

 Encontre as disciplinas que contêm "MAC" como prefixo no código:

• Encontre as disciplinas que contêm "MAC" como **sufixo** no código:

- Mais sobre o uso de regex de JavaScript pode ser visto em:
 - http://www.w3schools.com/jsref/jsref_obj_regexp.asp

Modificadores de resultados de consulta - Exemplos

 Mostra a sexta disciplina (uma depois de 5) da lista de disciplinas ordenada descendentemente por código:

```
db.bcc.disciplinas.find().
    order({"codigo":-1}).limit(1).skip(5);
```

Remoção de coleções e BDs

Para apagar a coleção <nome_coleção>:

```
db.<nome_colecao>.drop();
```

Para apagar o banco de dados atualmente em uso:

```
db.dropDatabase();
```

Referências Bibliográficas

- Documentação do MongoDB
 - https://docs.mongodb.com/
- Tutoriais oficiais:
 - https://docs.mongodb.com/manual/
 - https://docs.mongodb.com/getting-started/shell/
- Tabela de mapeamento de SQL para MongoDB
 - http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
- Livros:
 - "MongoDB: The Definitive Guide, 2nd Edition Powerful and Scalable Data Storage", de Kristina Chodorow, Editora: O'Reilly Media
 - "MongoDB: Construa novas aplicações com novas tecnologias", de Fernando Boaglio, Editora: Casa do Código