Tabelas de Espalhamento (Tabelas Hash)

Kelly Rosa Braghetto

30 de março 2012

Operações em um Dicionário

Estrutura de Dados	Busca	Inserção/Remoção	
Vetor	não ordenado: $O(n)$	O(n)	
	ordenado: $O(\lg n)$	0(11)	
Listas Encadeadas	<i>O</i> (<i>n</i>)	$T(Busca) + \Theta(1)$	
Árvores AVL	<i>O</i> (lg <i>n</i>)	$O(\lg n)$	

Operações em um Dicionário

Estrutura de Dados	Busca	Inserção/Remoção	
Vetor	não ordenado: $O(n)$	O(n)	
	ordenado: $O(\lg n)$	• ()	
Listas Encadeadas	<i>O</i> (<i>n</i>)	$T(Busca) + \Theta(1)$	
Árvores AVL	$O(\lg n)$	<i>O</i> (lg <i>n</i>)	

⇒ Esses algoritmos de busca se baseiam em **comparações** feitas entre a chave buscada e as chaves dos elementos do dicionário.

Operações em um Dicionário

Estrutura de Dados	Busca	Inserção/Remoção	
Vetor	não ordenado: $O(n)$	O(n)	
	ordenado: $O(\lg n)$	• ()	
Listas Encadeadas	<i>O</i> (<i>n</i>)	$T(Busca) + \Theta(1)$	
Árvores AVL	$O(\lg n)$	$O(\lg n)$	

- ⇒ Esses algoritmos de busca se baseiam em **comparações** feitas entre a chave buscada e as chaves dos elementos do dicionário.
- ⇒ Mas esses são os melhores tempos de execução para buscas em dicionários que podemos ter?

Busca em um Dicionário

Exemplo: tabela de símbolos de um compilador

- Armazena informações sobre os identificadores de um código-fonte:
 - nomes de constantes
 - nomes de variáveis
 - nomes dos tipos de dados
 - nomes de funções

Identificador	Tipo	
max_Tam	constante inteira	
fila_cheia	variável do tipo boolean	
BuscaBinária	função	
:	:	
	•	

■ É usada nas diferentes fases de uma compilação (análise sintática, análise semântica, otimização, geração do código de máquina, etc.)

Busca em um Dicionário em Tempo Constante

É possível implementar estruturas de dados para dicionários nas quais a busca por um elemento pode ser executada [em média] em tempo constante (O(1)).

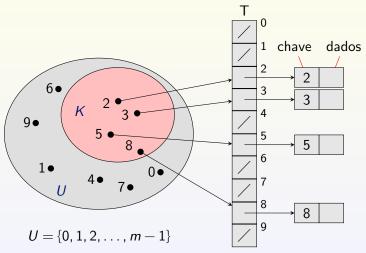
Hoje veremos duas estruturas com essa propriedade:

- Tabelas de Endereçamento Direto
- Tabelas de Espalhamento (= Tabelas *Hash*)

Algumas definições

- *U*: é o universo das chaves, ou seja, o conjunto de todas as possíveis chaves
- K: é conjunto das chaves efetivamente usadas (logo, $K \subseteq U$)

Tabelas de Endereçamento Direto



K: chaves usadas

Tabelas de Endereçamento Direto

Operações

Busca-Por-Endereçamento-Direto
$$(T, k)$$

return $T[k]$

$$\begin{aligned} \text{Insere-Por-Enderegamento-Direto}(\,T,x) \\ T[x.\textit{chave}] \leftarrow x \end{aligned}$$

Remove-Por-Endereçamento-Direto
$$(T, x)$$

 $T[x.chave] \leftarrow \text{NIL}$

 \Rightarrow As três operações têm tempo de execução O(1).

Tabelas de Endereçamento Direto

Problemas

- Dois elementos diferentes do dicionário não podem possuir um mesmo valor de chave.
- Se |U| é muito grande, manter a tabela T é impraticável.
- Quando |K| é muito menor que |U|, grande parte do espaço alocado para T é desperdiçado.

Exemplo: registros dos 5000 alunos de uma universidade

- O registro de um aluno contém:
 - Chave: número de matrícula do aluno (contendo 5 dígitos)
 - Demais dados: nome, endereço, etc.
- T[00000..99999] \Rightarrow apenas 5% das posições de T são usadas.

- Tabelas de Endereçamento Direto

Tabelas de Endereçamento Direto

Possível solução:

 \Rightarrow Usar uma tabela T[0..m-1], com m < |U|.

Novo problema:

 \Rightarrow Se não vamos ter mais em T uma posição "exclusiva" para cada valor de chave $k \in U$, como saberemos onde um elemento deve ser armazenado na tabela?

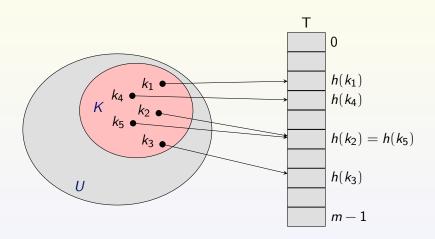
Tabelas de Espalhamento

- Quando o conjunto *K* é muito menor que *U*, uma estratégia melhor é usar uma **tabela de espalhamento**.
- Em uma tabela de espalhamento, um elemento com chave k é armazenado na posição h(k), onde h é uma função que mapeia as chaves em U em posições da tabela T[0..m-1]:

$$h: U \to \{0, 1, \ldots, m-1\}$$

■ Chamamos *h* de função hash (ou, função de espalhamento).

Tabelas de Espalhamento



Tabelas de Espalhamento

Colisões

- É possível haver colisões no mapeamento das chaves para posições em *T*.
- Uma colisão ocorre quando, para duas chaves distintas $k_1, k_2 \in U$,

$$h(k_1) = h(k_2)$$

- É possível diminuir a chance colisões por meio da escolha de uma "boa" função hash.
- Entretanto, é muito difícil evitar colisões completamente.

└─ Tabelas de Espalhamento └─ Colisões

Probabilidade de Colisões

Paradoxo do Aniversário

⇒ Em um grupo de apenas 23 pessoas, a probabilidade de que duas pessoas façam aniversário no mesmo dia é maior do que 50%.

Se uma função hash distribui os elementos de forma uniforme entre as posições da tabela, a probabilidade p de inserirmos n itens consecutivos sem colisão em uma tabela de tamanho m é:

$$\bar{p} = \frac{m-1}{m} \times \frac{m-2}{m} \times \ldots \times \frac{m-n+1}{m}$$

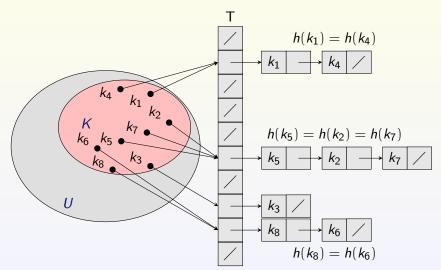
Logo, a probabilidade de colisão é: $p=1-ar{p}$.

Para m = 365, temos:

n	10	23	30	50	57
р	11,7%	50,7%	70,6%	97%	99%

└─Tratamento de Colisões

Tratamento de Colisões por Encadeamento



Tratamento de Colisões por Encadeamento

Operações

```
Busca-No-Encadeamento (T, k) buscar por um elemento com chave k na lista T[h(k)]
```

```
Insere-No-Encadeamento(T, x) inserir x no início da lista T[h(x.chave)]
```

```
REMOVE-NO-ENCADEAMENTO(T, x) remover x da lista T[h(x.chave)]
```

Tratamento de Colisões por Encadeamento

Análise do Tempo de Execução das Operações

- ⇒ Sob a suposição de que qualquer elemento do dicionário tem igual probabilidade de ser direcionado para qualquer posição da tabela, temos que:
 - O tamanho esperado para cada lista encadeada é $\frac{n}{m}$, onde n é o número de elementos armazenados na tabela e m é o tamanho da tabela.
 - As operações de busca, inserção e remoção consomem um tempo de execução $O(1 + \frac{n}{m})$, sendo que:
 - O(1) é o tempo para encontrar a posição na tabela (= tempo para o cálculo da função hash);
 - $\frac{n}{m}$ é o tempo para percorrer a lista encadeada.
- \Rightarrow Para um m próximo a n, o custo das operações se torna constante.

Funções Hash

Características

- As funções hash devem mapear chaves em números inteiros dentro do intervalo [0..m-1] (onde m é o tamanho da tabela).
- Uma função hash ideal é aquela que:
 - é simples de ser computada;
 - 2 "espalha" de forma uniforme as chaves do dicionário entre as posições da tabela.

Funções Hash - Método da Divisão

Neste método, a função hash é da forma:

$$h(k) = k \mod m$$

Características

- Método rápido (requer uma única operação: a divisão).
- Não é recomendado o uso de valores para m que sejam da forma $m=2^p$, para algum inteiro p. Caso contrário, a valor da função hash dependerá somente dos p bits de mais baixa ordem da chave. É desejável que a função hash leve em conta todos os bits da chave.
- Uma boa sugestão de valor para m é um número primo não muito próximo a uma potência de 2.

└─ Funções Hash

Funções Hash - Método da Multiplicação

Neste método, a função hash opera em dois passos:

- I A chave é multiplicada por uma constante A tal que 0 < A < 1 e depois extrai-se a parte racional da multiplicação (o que resulta em um número x tal que $0 \leqslant x < 1$)
- $\ge x$ é multiplicado por m e toma-se o piso do resultado, o que gera um número em [0..m-1].

$$h(k) = |m(kA \bmod 1)|$$

onde " $(kA \mod 1)$ " equivale à parte fracionária de kA $(= kA - \lfloor kA \rfloor)$.

Características

- Calculada de forma eficiente usando operações bit a bit.
- Uma grande vantagem do método é que ele independe do valor de *m*.

Na próxima aula...

Mais sobre tabelas de espalhamento:

- Endereçamento Aberto
- Hashing Perfeito

Exercícios

- 1 Suponha que um dicionário D é representado por uma tabela de enderecamento direto T de tamanho n. Descreva um procedimento que encontra o elemento com a major chave em D.
 - Qual é o desempenho do seu algoritmo no pior caso?
- 2 Implemente uma tabela de espalhamento usando uma função de hash definida pelo método da divisão. As chaves no seu dicionário serão 5000 números aleatoriamente gerados entre [00000..99999]. Teste sua tabela de espalhamento para diferentes valores apropriados para m. Para cada valor de m, informe o número de colisões que ocorreram em cada posição da tabela.

Referências para Estudo

- Projeto de Algoritmos [Ziviani], Capítulo 5
- Introduction to Algorithms [Cormen et al.], Capítulo 11
- Algorithms in C (Parts 1-4) [Sedgewick], Capítulo 14