Álgebra Relacional

[MAC0426] Sistemas de Bancos de Dados [IBI5013] Bancos de Dados para Bioinformática Aula 9 A Álgebra Relacional (Parte 1)

Kelly Rosa Braghetto

DCC-IME-USP

29 de março de 2016

Sobre a Álgebra Relacional e o Cálculo Relacional

- ► São linguagens formais para o modelo relacional
- São a base da linguagem SQL
- Permitem a definição de expressões de recuperação de dados em relações

A Álgebra Relacional

Álgebra Relacional

- É considerada uma parte integral do modelo de dados relacional
- ▶ É usada como base para a implementação e otimização de consultas nos SGBDRs
- Suas operações podem ser divididas em dois grupos:
 - operações da teoria de conjuntos (matemática) união, intersecção, diferença de conjunto e produto cartesiano
 - operações específicas para BD relacionais seleção, projeção, junção, divisão

Seleção

- Operação usada para escolher um subconjunto das tuplas (linhas) de uma relação
- As tuplas selecionadas são as que satisfazem a condição de seleção
- Pode ser vista como uma partição horizontal da relação em dois conjuntos:
 - as tuplas que satisfazem a condição e são selecionadas
 - ▶ as tuplas que não satisfazem a condição e são descartadas

Seleção

Álgebra Relacional

É expressa como

 $\sigma_{<\text{condição de seleção}>}(R)$

onde

- ightharpoonup o símbolo σ indica o operador de seleção
- ▶ R é o resultado de uma expressão da álgebra relacional (que é sempre uma relação!)
 - A expressão mais simples desse tipo é apenas o nome de uma relação do banco de dados
- a condição de seleção é uma expressão booleana especificada sobre os atributos de R

Álgebra Relacional

Seleção - Exemplos

► Seleção das tuplas de FUNCIONARIO cujo departamento é 4:

$$\sigma_{\mathsf{Dnr}\,=\,4}(\mathsf{FUNCIONARIO})$$

Seleção das tuplas de FUNCIONARIO cujo salário é maior do que R\$ 30.000,00:

$$\sigma_{\text{Salario}} > 30.000 (\text{FUNCIONARIO})$$

Seleção

Álgebra Relacional

 A condição de seleção é uma expressão booleana composta por cláusulas no formato

- <atributo> nome de um atributo de R
- \triangleright <op. de comparação> =, <, <, >, > ou \neq
- <valor constante> um valor constante do domínio do atributo ao qual está sendo comparado

Obs.: Os operadores $<, \le, >, \ge$ só podem ser usados com atributos cujo domínio são conjuntos de valores ordenados (como números, datas, cadeias de caracteres, etc.). Para domínios de valores desordenados, apenas os operadores de comparação de igualdade $(=, \neq)$ podem ser usados.

Seleção – condição

- Cláusulas podem ser conectadas para formar uma condição por meio de operadores lógicos:
 - ▶ and, or, not
- ightharpoonup A condição de seleção não pode envolver mais de uma tupla ightarrow a operação de seleção é aplicada a cada tupla individualmente
- Ex: Seleção das tuplas de funcionários que ou trabalham no departamento 4 e ganham mais do que R\$25.000,00, ou trabalham no departamento 5 e ganham mais do que R\$ 30.000,00

 $\sigma_{(Dnr=4 \text{ AND Salario} > 25.000)}$ OR (Dnr = 5 AND Salario > 30.000) (FUNCIONARIO)

Relembrando o esquema do BD Empresa

FUNCIONARIO

LOCALIZACAO DEP

PROJETO

TRABALHA_EM

DEPENDENTE

Seleção - condição

FUNCIONARIO

Álgebra Relacional

Pnome	Minicial	Unome	Cpf	Datanasc	Endereco	Sexo	Salario	Cpf_supervisor	Dnr
João	В	Silva	12345678966	09-01-1965	Rua das Flores, 751, São Paulo, SP	М	30.000	33344555587	5
Fernando	Т	Wong	33344555587	08-12-1955	Rua da Lapa, 34, São Paulo, SP	М	40.000	8886655576	5
Alice	J	Zelaya	99988777767	19-01-1968	Rua Souza Lima, 35, Curitiba, PR	F	25.000	98765432168	4
Jennifer	s	Souza	98765432168	20-06-1941	Av. Arthur de Lima, 54, Santo André, SP	F	43.000	8886655576	4
Ronaldo	K	Lima	66688444476	15-09-1962	Rua Rebouças, 65, Piraoicaba, SP	М	38.000	33344555587	5
Joice	A	Leite	45345345376	31-07-1972	Av. Lucas Obes, 74, São Paulo, SP	F	25.000	33344555587	5
André	V	Pereira	98798798733	29-03-1969	Rua Timbira, 35, São Paulo, SP	M	25.000	98765432168	4
Jorge	E	Brito	88866555576	10-11-1937	Rua do Horto, 35, São Paulo, SP	М	55.000	NULL	1

$\sigma_{(\mathsf{Dnr}\,=\,4\;\mathsf{AND}\;\mathsf{Salario}\,>\,25.000)\;\mathsf{OR}\;(\mathsf{Dnr}\,=\,5\;\mathsf{AND}\;\mathsf{Salario}\,>\,30.000)}\big(\mathsf{FUNCIONARIO}\big)$

Resultado

Pnome	Minicial	Unome	<u>Cpf</u>	Datanasc	Endereco	Sexo	Salario	Cpf_supervisor	Dnr
Fernando	Т	Wong	33344555587	08-12-1955	Rua da Lapa, 34, São Paulo, SP	М	40.000	88866555576	5
Jennifer	S	Souza	98765432168	20-06-1941	Av. Arthur de Lima, 54, Santo André, SP	F	43.000	88866555576	4
Ronaldo	К	Lima	66688444476	15-09-1962	Rua Rebouças, 65, Piracicaba, SP	М	38.000	33344555587	5

Álgebra Relacional

Seleção - propriedades

► O operador de seleção é comutativo:

$$\sigma_{<\text{cond1}>}(\sigma_{<\text{cond2}>}(R)) = \sigma_{<\text{cond2}>}(\sigma_{<\text{cond1}>}(R))$$

 Uma sequência de operações de seleção pode ser substituída por uma única operação de seleção com condição conjuntiva (AND):

$$\sigma_{<\text{cond1}>}(\sigma_{<\text{cond2}>}(\dots(\sigma_{<\text{cond}n>}(R))\dots)) = \sigma_{<\text{cond1}>} \text{ AND } <\text{cond2}> \text{ AND } \dots \text{ AND } <\text{cond}_n>(R)$$

Seleção – exemplo

 Seleção das funcionárias que trabalham no departamento 4 e ganham mais do que R\$25.000,00

$$\sigma_{\text{Salario}} > 25.000 (\sigma_{\text{Dnr}} = 4(\sigma_{\text{Sexo}} = {}^{'}\text{F}'(\text{FUNCIONARIO})))$$

OII

$$\sigma_{\mathsf{Sexo}} = \mathsf{'F'} \; \mathsf{AND} \; \mathsf{Dnr} = \mathsf{4} \; \mathsf{AND} \; \mathsf{Salario} > 25.000 (\mathsf{FUNCIONARIO})$$

Projeção

Álgebra Relacional

- Operação que seleciona atributos (colunas) de uma relação, projetando a relação sobre esses atributos
- Pode ser vista como uma partição vertical da relação em duas relações:
 - uma relação tem os atributos necessários e contém o resultado da operação
 - ▶ a outra relação contém os atributos descartados

Projeção

Álgebra Relacional

► É expressa como

$$\pi_{<\text{lista de atributos}>}(R)$$

onde

- ightharpoonup o símbolo π expressa a operação de projeção
- ▶ R é uma expressão da álgebra relacional
- Resultado de uma projeção: uma relação que contém apenas os atributos especificados na lista de atributos>, exatamente na mesma ordem em que eles aparecem na lista
- Ex: Listar último nome, primeiro nome e salário de cada funcionário

 $\pi_{\text{Unome, Pnome, Salario}}(\text{FUNCIONARIO})$

Operações unária - Projeção

FUNCIONARIO

Pnome	Minicial	Unome	Cpf	Datanasc	Endereco	Sexo	Salario	Cpf_supervisor	Dnr
João	В	Silva	12345678966	09-01-1965	Rua das Flores, 751, São Paulo, SP	М	30.000	33344555587	5
Fernando	Т	Wong	33344555587	08-12-1955	Rua da Lapa, 34, São Paulo, SP	М	40.000	8886655576	5
Alice	J	Zelaya	99988777767	19-01-1968	Rua Souza Lima, 35, Curitiba, PR	F	25.000	98765432168	4
Jennifer	s	Souza	98765432168	20-06-1941	Av. Arthur de Lima, 54, Santo André, SP	F	43.000	88866555576	4
Ronaldo	K	Lima	66688444476	15-09-1962	Rua Rebouças, 65, Piraoicaba, SP	М	38.000	33344555587	5
Joice	A	Leite	45345345376	31-07-1972	Av. Lucas Obes, 74, São Paulo, SP	F	25.000	33344555587	5
André	V	Pereira	98798798733	29-03-1969	Rua Timbira, 35, São Paulo, SP	М	25.000	98765432168	4
Jorge	E	Brito	8886655576	10-11-1937	Rua do Horto, 35, São Paulo, SP	М	55.000	NULL	1

$\pi_{\mathsf{Unome,\ Pnome,\ Salario}}(\mathsf{FUNCIONARIO})$

Unome	Pnome	Salario
Silva	João	30.000
Wong	Fernando	40.000
Zelaya	Alice	25.000
Souza	Jennifer	43.000
Lima	Ronaldo	38.000
Leite	Joice	25.000
Pereira	André	25.000
Brito	Jorge	55.000

Resultado: Brito Jorge

Projeção

- Se a lista de atributos da projeção não contém atributos chave de R, a projeção pode resultar tuplas duplicadas
- A operação de projeção sempre remove as tuplas duplicadas do conjunto de resposta → o resultado da operação é sempre uma relação válida

lgebra Relacional **Op. Unárias** Op. Teoria dos Conjuntos Op. Binárias Bibliografia

Operações unárias

Projeção – exemplo de remoção de tuplas duplicadas

FUNCIONARIO

Pnome	Minicial	Unome	Cpf	Datanasc	Endereco	Sexo	Salario	Cpf_supervisor	Dnr
João	В	Silva	12345678966	09-01-1965	Rua das Flores, 751, São Paulo, SP	М	30.000	33344555587	5
Fernando	Т	Wong	33344555587	08-12-1955	Rua da Lapa, 34, São Paulo, SP	М	40.000	8886655576	5
Alice	J	Zelaya	99988777767	19-01-1968	Rua Souza Lima, 35, Curitiba, PR	F	25.000	98765432168	4
Jennifer	s	Souza	98765432168	20-06-1941	Av. Arthur de Lima, 54, Santo André, SP	F	43.000	88866555576	4
Ronaldo	K	Lima	66688444476	15-09-1962	Rua Rebouças, 65, Piracicaba, SP	М	38.000	33344555587	5
Joice	A	Leite	45345345376	31-07-1972	Av. Lucas Obes, 74, São Paulo, SP	F	25.000	33344555587	5
André	V	Pereira	98798798733	29-03-1969	Rua Timbira, 35, São Paulo, SP	М	25.000	98765432168	4
Jorge	E	Brito	8886655576	10-11-1937	Rua do Horto, 35, São Paulo, SP	М	55.000	NULL	1

π_{Sexo} , Salario (FUNCIONARIO)

Sexo	Salario
M	30.000
M	40.000
F	25.000
F	43.000
M	38.000
M	25.000
М	55.000

Resultado:

Álgebra Relacional

Projeção – propriedades

- A comutatividade não vale para a operação de projeção
- ▶ A propriedade a seguir vale quando ta1> ⊆ ta2>

$$\pi_{\leq lista1>}(\pi_{\leq lista2>}(R)) = \pi_{\leq lista1>}(R)$$

Se Sta1> ⊈ dista2>, então a expressão abaixo é incorreta

$$\pi_{< lista1>}(\pi_{< lista2>}(R))$$

Sequências de operações

Ex.: Recuperar o primeiro nome, o último nome e o salário de todos os funcionários que trabalham no departamento 5.

FUNCIONARIO

Álgebra Relacional

Pnome	Minicial	Unome	Cpf	Datanasc	Endereco	Sexo	Salario	Cpf_supervisor	Dnr
João	В	Silva	12345678966	09-01-1965	Rua das Flores, 751, São Paulo, SP	М	30.000	33344555587	5
Fernando	Т	Wong	33344555587	08-12-1955	Rua da Lapa, 34, São Paulo, SP	М	40.000	8886655576	5
Alice	J	Zelaya	99988777767	19-01-1968	Rua Souza Lima, 35, Curitiba, PR	F	25.000	98765432168	4
Jennifer	S	Souza	98765432168	20-06-1941	Av. Arthur de Lima, 54, Santo André, SP	F	43.000	88866555576	4
Ronaldo	K	Lima	66688444476	15-09-1962	Rua Rebouças, 65, Piracicaba, SP	М	38.000	33344555587	5
Joice	A	Leite	45345345376	31-07-1972	Av. Lucas Obes, 74, São Paulo, SP	F	25.000	33344555587	5
André	V	Pereira	98798798733	29-03-1969	Rua Timbira, 35, São Paulo, SP	М	25.000	98765432168	4
Jorge	E	Brito	88866555576	10-11-1937	Rua do Horto, 35, São Paulo, SP	М	55.000	NULL	1

$\pi_{\text{Pnome, Unome, Salario}}(\sigma_{\text{Dnr}=5}(\text{FUNCIONARIO}))$

Pnome	Unome	Salario
João	Silva	30.000
Fernando	Wong	40.000
Ronaldo	Lima	38.000
laine.	1 14	05.000

Resultado: Joice

Sequências de operações e a operação Renomear (\leftarrow)

- Às vezes, é conveniente desmembrar uma expressão complexa em expressões mais simples, que geram relações com resultados intermediários às quais podemos atribuir nomes.
- Exemplo:

$$\pi_{\text{Pnome, Unome, Salario}}(\sigma_{\text{Dnr}=5}(\text{FUNCIONARIO}))$$

equivale a

FUNCS_DEPT5
$$\leftarrow \sigma_{\mathsf{Dnr}=5}(\mathsf{FUNCIONARIO})$$

RESULTADO $\leftarrow \pi_{\mathsf{Pnome,\ Unome,\ Salario}}(\mathsf{FUNCS_DEPT5})$

Álgebra Relacional

- ► A operação de renomear pode ser usada também para renomear os atributos
- Ex. (os novos nomes de atributos aparecem entre parênteses):

TEMP
$$\leftarrow \sigma_{\mathsf{Dnr}=5}(\mathsf{FUNCIONARIO})$$

R(Prim_nome, Ult_nome, Salario) $\leftarrow \pi_{\mathsf{Pnome,\ Unome,\ Salario}}(\mathsf{TEMP})$

Existe também uma formalização da operação renomear como o operador unário ρ, que permite mudar o nome da relação, ou os nomes dos atributos, ou as duas coisas ao mesmo tempo:

$$\rho_S(R)$$
 ou $\rho_{(B_1,B_2,...,B_n)}(R)$ ou $\rho_{S(B_1,B_2,...,B_n)}(R)$

A operação renomear (\leftarrow)

TEMP $\leftarrow \sigma_{\mathsf{Dnr}=5}(\mathsf{FUNCIONARIO})$ R(Primeiro_nome, Ultimo_nome, Salario) $\leftarrow \frac{\pi_{\mathsf{Pnome, Unome, Salario}}(\mathsf{TEMP})$

Resultado:

Álgebra Relacional

Pnome	Minicial	Unome	Cpf	Datanasc	Endereco	Sexo	Salario	Cpf_supervisor	Dnr
João	В	Silva	12345678966	09-01-1965	Rua das Flores, 751, São Paulo, SP	М	30.000	33344555587	5
Fernando	Т	Wong	33344555587	08-12-1955	Rua da Lapa, 34, São Paulo, SP	М	40.000	88866555576	5
Ronaldo	К	Lima	66688444476	15-09-1962	Rua Rebouças, 65, Piracicaba, SP	М	38.000	33344555587	5
Joice	A	Leite	45345345376	31-07-1972	Av. Lucas Obes, 74, São Paulo. SP	F	25.000	33344555587	5

R

Primeiro_nome	Ultimo_nome	Salario
João	Silva	30.000
Fernando	Wong	40.000
Ronaldo	Lima	38.000
loine	Leite	25,000

Álgebra Relacional Op. Unárias Op. Teoria dos Conjuntos Op. Binárias Bibliografia

Operações da teoria dos conjuntos

União

- A expressão $R \cup S$ denota a relação formada pelas tuplas que estão ou em R, ou em S, ou em ambas
 - ► A operação de união elimina as tuplas duplicadas → o resultado é sempre uma relação válida

Intersecção

A expressão $R \cap S$ denota a relação formada pelas tuplas que estão tanto em R quanto S

Diferença (ou Subtração

A expressão R-S denota a relação formada pelas tuplas que estão em R mas não em S

Op. Binárias

Operações da teoria dos conjuntos

Exemplo da União

ALUNO

Pn	Un
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

PROFESSOR

Pnome	Unome
João	Silva
Rioardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Pn	Un
Susana	Yao
Ronaldo	Lima
José	Golçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto
João	Silva
Ricardo	Braga
Francisco	Leme

ALUNO ∪ PROFESSOR

Exemplo da Intersecção

ALUNO

Pn	Un
Susana	Yao
Ronaldo	Lima
José	Gonçaives
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

PROFESSOR

Pnome	Unome
João	Silva
Rioardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Pn	Un
Susana	Yao
Ronaldo	Lima

ALUNO ∩ PROFESSOR

Exemplo da Subtração

ALUNO

Pn	Un
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

PROFESSOR

Pnome	Unome
João	Silva
Rioardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Pn	Un
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Emeste	Cilharta

ALUNO - PROFESSOR

Exemplo da Subtração

ALUNO

PROFESS	OI
---------	----

Pn	Un
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

Pnome	Unome
João	Silva
Rioardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Pnome	Unome
João	Silva
Ricardo	Braga
Francisco	Leme

PROFESSOR - ALUNO

União, intersecção e diferença

- São operações binárias
- Só se aplicam a pares de relações que possuem o mesmo tipo de tuplas (propriedade chamada de compatibilidade de união ou compatibilidade de tipo)
- ▶ Duas relações $R(A_1, A_2, ..., A_n)$ e $S(B_1, B_2, ..., B_m)$ são compatíveis se n = m e se $dom(A_i) = dom(B_i)$ para $1 \le i \le n$
- ► Convenção: a relação resultante tem os mesmos nomes de atributo da primeira relação *R*

União e intersecção

São comutativas

$$R \cup S = S \cup R$$
$$R \cap S = S \cap R$$

São associativas

$$R \cup (S \cup T) = (S \cup R) \cup T$$
$$R \cap (S \cap T) = (S \cap R) \cap T$$

Subtração

Não é comutativa; ou seja, em geral R-S
eq S-R

$$R \cap S = ((R \cup S) - (R - S)) - (S - R) = R - (R - S)$$

Produto Cartesiano (ou Produto Cruzado)

- ► É uma operação binária
- Não requer compatibilidade de união entre as relações envolvidas
- ▶ O produto cartesiano entre duas relações $R(A_1, A_2, ..., A_n)$ e $S(B_1, B_2, ..., B_m)$ é denotado por

$$R \times S$$

- Resultado: relação Q com as tuplas formadas a partir da combinação de cada uma das tuplas em R com cada uma das tuplas em S
- \triangleright Q tem n+m atributos; $Q(A_1,A_2,\ldots,A_n,B_1,B_2,\ldots,B_m)$
- ▶ Se $|R| = n_s$ e $|S| = n_s$, então $|Q| = n_s \times n_s$

Álgebra Relacional

Operações da teoria dos conjuntos

Produto Cartesiano (ou Produto Cruzado)

Α	В
1	2
3	4

Relação R

Relação S

Α	R.B	S.B	С	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

Resultado $R \times S$

Produto Cartesiano – com renomeação antes do produto

Relação R

В	C	D
2	5	6
4	7	8
9	10	11

Relação S

Resultado $R \times \rho_{S(X,C,D)}(S)$

Op. Binárias

Operação Produto Cartesiano (ou Produto Cruzado)

- A operação é particularmente útil quando seguida de uma operação de seleção, para recuperar informações sobre entidades que se relacionam no BD
- Ex: Listar o nome dos dependentes de cada funcionária

```
FUNC MULHERES \leftarrow \sigma_{Sexo='F'} (FUNCIONARIO)
FUNC NOMES \leftarrow \pi_{Pnome,Unome,Cpf}(FUNC MULHERES)
FUNC DEPENDENTES ← FUNC NOMES × DEPENDENTES
DEPENDENTE PARTIC \leftarrow \sigma_{\mathsf{Cpf}=\mathsf{Fcpf}(\mathsf{FUNC}\ \mathsf{DEPENDENTES})}
\mathsf{RESULTADO} \leftarrow \pi_{Pnome,Unome,Nome,lependente}(\mathsf{DEPENDENTE\_PARTIC})
```

FUNCIONARIO

DEPENDENTE

Operações relacionais binárias

Junção (ou Junção Theta)

- É usada para combinar duplas relacionadas de duas relações
- Operação muito importante em BDs relacionais possibilita processar relacionamentos

Operações relacionais binárias

Junção (ou Junção Theta)

Forma geral da junção sobre duas relações $R(A_1, A_2, ..., A_n)$ e $S(B_1, B_2, ..., B_m)$:

$$R\bowtie_{<\text{condição de junção}>} S$$

- ▶ Resultado: relação Q com n + m atributos; Q(A₁, A₂,..., A_n, B₁, B₂,..., B_m)
- Para toda tupla t resultante da combinação de uma tupla de R com uma de S, se t satisfaz a condição de junção, então $t \in Q$
- A <condição de junção> é definida sobre os atributos de R
 e S e é avaliada para todas as combinações de tuplas possíveis

Op. Binárias

Operações relacionais binárias

Junção (ou Junção Theta)

- Forma geral da <condição de junção>:
 - <condição1> AND <condição2> AND ... AND <condiçãop>
 - onde cada <condiçãok> tem a forma A_i op B_i e
 - A; é um atributo de R
 - ▶ B_i é um atributo de S
 - ► A_i e B_i têm o mesmo domínio
 - **op** é um dos operadores de comparação $(=,<,\leq,>,\geq ou\neq)$

Álgebra Relacional

Junção (ou Junção Theta)

Α	В
1	2
3	4

Relação R

Α	R.B	S.B	С	D
1	2	2	5	6
3	4	4	7	8

Resultado $R \bowtie_{R,B=S,B} S$

В	С	D
2	5	6
4	7	8
9	10	11

Relação S

Α	R.B	S.B	С	D
1	2	4	7	8
1	2	9	10	11
3	4	9	10	11

Resultado $R \bowtie_{RB < SB} S$

Operações relacionais binárias

Álgebra Relacional

Junção (ou Junção Theta)

Ex.: Recuperar o nome do gerente de cada departamento.

DEP_GER
$$\leftarrow$$
 DEPARTAMENTO $\bowtie_{\mathsf{Cpf_gerente}} = \mathsf{Cpf}$ FUNCIONARIO RESULTADO $\leftarrow \pi_{\mathit{Dnome},\mathit{Pnome}}$, U_{nome} (DEP_GER)

Operações relacionais binárias

Álgebra Relacional

Junção (ou Junção Theta)

Não aparecem no resultado de uma junção:

- Tuplas cujos valores dos atributos não satisfazem a condição de junção
- Tuplas que possuem NULL como valor para algum atributo de junção (ou seja, para um atributo que aparece na condição de junção)

Se nenhuma combinação de tuplas satisfizer a condição de junção, o resultado da operação será uma relação vazia.

Op. Binárias

Operações relacionais binárias

Variações de Junção

- ► Equijunção a condição de junção envolve apenas comparações de igualdade
 - ▶ As tuplas do resultado sempre contêm 1 ou mais pares de atributos com valores idênticos
- ► Junção natural (expressa pelo operador *) equivale a uma equijunção, seguida da remoção dos atributos desnecessários
 - Essa operação requer que cada par de atributos de junção tenham o mesmo nome nas duas relações; se isso não acontecer, é preciso renomear os atributos de uma das relações antes de aplicar a junção natural

Operações relacionais binárias

Equijunção e Junção natural

Α	В
1	2
3	4

Relação R

Resultado da equijunção $R\bowtie_{R.B=S.B} S$

В	С	D
2	5	6
4	7	8
9	10	11

Op. Binárias

Relação S

Resultado da junção natural R * S

Operações relacionais binárias

Junção Natural

 Ex.: Combinar cada tupla de PROJETO com a tupla de DEPARTAMENTO que controla o projeto

```
PROJETO\_DEP \leftarrow PROJETO * \\ \rho_{(Dnome,Dnum,Cpf\_gerente,Data\_inicio\_gerente)} (DEPARTAMENTO)
```

$$\{\sigma, \pi, \cup, \rho, -, \times\}$$

- Qualquer uma das outras operações relacionais podem ser expressas como uma sequência de operações do conjunto acima
- Exemplos:

Álgebra Relacional

- ▶ Intersecção: $R \cap S \equiv (R \cup S) ((R S) \cup (S R))$
- ▶ Junção: $R \bowtie_{< \text{condição}} \equiv \sigma_{< \text{condição}}(R \times S)$

Referências Bibliográficas

- ► Sistemas de Bancos de Dados (6ª edição), Elmasri e Navathe. Pearson, 2010. – Capítulo 6
- ▶ Database Systems The Complete Book, Garcia-Molina, Ulmann e Widom. Prentice Hall, 2002. – Capítulo 5

Cenas dos próximos capítulos...

Álgebra Relacional

Mais sobre linguagens de consulta

- Álgebra relacional (continuação)
- ► Cálculo de tuplas e de domínio

Bibliografia