
ChapterChapterChapter

Chapter

111

1

DesigningDesigningDesigning

Designing

Interfaces:Interfaces:Interfaces:

Interfaces:

AAA

A

RandomRandomRandom

Random

NumberNumberNumber

Number

LibraryLibraryLibrary

Library

ANDANDAND

AND

SUCHSUCHSUCH

SUCH

AAA

A

WALLWALLWALL

WALL

ASASAS

AS

III

I

WOULDWOULDWOULD

WOULD

HAVEHAVEHAVE

HAVE

YOUYOUYOU

YOU

THINKTHINKTHINK

THINK

THATTHATTHAT

THAT

HADHADHAD

HAD

INININ

IN

ITITIT

IT

AAA

A

CRANNIEDCRANNIEDCRANNIED

CRANNIED

HOLE,HOLE,HOLE,

HOLE,

OROROR

OR

CHINKCHINKCHINK

CHINK

THROUGHTHROUGHTHROUGH

THROUGH

WHICHWHICHWHICH

WHICH

THETHETHE

THE

LOVERS,LOVERS,LOVERS,

LOVERS,

PYRAMUSPYRAMUSPYRAMUS

PYRAMUS

ANDANDAND

AND

THISBETHISBETHISBE

THISBE

DIDDIDDID

DID

WHISPERWHISPERWHISPER

WHISPER

OFTEN,OFTEN,OFTEN,

OFTEN,

VERYVERYVERY

VERY

SECRETLYSECRETLYSECRETLY

SECRETLY





Shakespeare,Shakespeare,Shakespeare,

Shakespeare,

AAA

A

MidsummerMidsummerMidsummer

Midsummer

NightNightNight

Night

’’’

’

sss

s

Dream,Dream,Dream,

Dream,

1595-15961595-15961595-1596

1595-1596

OBJECTIVESOBJECTIVESOBJECTIVES

OBJECTIVES

 To appreciate the principal criteria used to evaluate the design of an interface.
 To discover how paograms can simulate random behavior through the use of pseudo-

random
 To understand the behavior of the library function rand.
 To learn how you can use arithmetic operations to change the range of the pseudo-

random number sequence.
 To recognize the common types of interface entries.
 To learn the syntactic rules and conventions required to write an interface header file.
 To be able to use the facilities provided by the random.h interface.

III

I

n Chapter 7, you introduced to the concept of an interface. Moreover, working with

the graphics.h interface gave you a chance to think about what goes into an interface and
how to use one in your programming. But to understand interfaces fully, you must also
learn how to implement them. This chapter gives you a chance to design a new interface
together with its underlying implementation.

Depending on how broadly you view the problem, writing an interface can be either
very simple or extremely challenging. If you consider only C’s syntax and structure, there
are not many new rules to learn. You already know how to write comments and function
prototypes, which are the principal components of an interface. As is true with algorithms,
however, the challenge comes not in coding the interface but in designing it. The important
question is not so much how to write an interface but rather how to write a good one.

Designing a good interface is a subtle problem that requires you to balance many
competing design criteria. This chapter examines those criteria and illustrates their
application. To make the illustrations concrete, this chapter also walks you through the
development of a library package that provides access to a simple random number
abstraction.

1-11-11-1

1-1

InterfaceInterfaceInterface

Interface

designdesigndesign

design

Programming is hard because programs reflect the complexity of the problems they
solve. As long as we use computers to solve problems of ever-increasing sophistication, the
process of programming will need to become more sophisticated as well.

Writing a program to solve a large or difficult problem forces you to manage an
enormous amount of complexity. There algorithms to design, special cases to consider,
user requirements to meet, and innumerable details to get right. To make programming
manageable, you must reduce the complexity of the programming process as much as
possible.

In Chapter 5, you learned how to use functions and procedures to reduce some of the
complexity. Interfaces offer a similar reduction in programming complexity but at a higher
level of detail. A function gives its caller access to a set of steps that together implement a
single operation. An interface gives its client access to a set of functions that together
implement a programming abstraction. The extent to which the interface simplifies the
programming process, however, depends largely on how well it is designed.

To design an effective interface, you must balance several criteria. In general, you
should try to develop interfaces that are

 Unified. A single interface should define a consistent abstraction with a clear unifying
theme. If a function does not fit within that theme, it should be defined in a separate
interface.

 Simple. To the extent that the underlying implementation is itself complex, the
interface must seek to hide that complexity from the client.

 Sufficient. When clients use an abstraction, the interface must provide sufficient
functionality to meet their needs. If some critical operation is missing from an
interface, clients may decide to abandon it and develop their own, more powerful
abstraction. As important as simplicity is, the designer must avoid simplifying an
interface to the point that it becomes useless.

 General . A well-designed interface to should be flexible enough to meet the needs of
many different clients. An interface that performs a narrowly defined set of operations
for one client is not as useful as one that can be used in many different situations .

 Stable. The functions defined in an interface should continue to have precisely the
same structure and effect, even if the underlying implementation changes. Making
changes in the behavior of an interface forces clients to change their programs, which
compromises the value of interface.

The sections that follow discuss each of these criteria in detail.

TheTheThe

The

importanceimportanceimportance

importance

ofofof

of

aaa

a

unifyingunifyingunifying

unifying

themethemetheme

theme

Unity gives strength.





Aesop,Aesop,Aesop,

Aesop,

TheTheThe

The

BundleBundleBundle

Bundle

ofofof

of

Sticks,Sticks,Sticks,

Sticks,

sixthsixthsixth

sixth

centurycenturycentury

century

B.C.B.C.B.C.

B.C.

A central feature of a well-designed interface is that it presents a unif ied and
consistent abstraction. In part, this criterion implies that the functions within a library
should be chosen so that they reflect a coherent theme. For example, the math library
consists of mathematical functions, the standard I/O library provides functions to perform
input and output, and the graphics library provides functions for drawing pictures on the
screen. Each function exported by these interfaces fits the purpose of that interface. For
example, you would not expect to find sqrt in the graphics.h interface, even though graphical
applications will often call sqrt to compute the length of a diagonal line. The sqrt function
fits much more naturally into the framework of the math library.

The principle of a unifying theme also influences the design of the functions within a
library interface. The functions within an interface should behave in as consistent a way as
possible. Differences in the ways its functions work make using an interface much harder
for the client. For example , all the functions in the graphics library use coordinates
specified in inches and angles specified in degrees. If the implementor of the library had
decided to add a function that required a different unit of measurement, clients would have
to remember what units to use for each function. Similarly, the functions DrawLine and
DrawArc in the graphics library were each designed so that drawing begins at the current
position of the pen. Doing so means that the underlying conceptual model has a consistent
structure that makes it easier to understand the library and its operation.

SimplicitySimplicitySimplicity

Simplicity

andandand

and

thethethe

the

principleprincipleprinciple

principle

ofofof

of

informationinformationinformation

information

hidinghidinghiding

hiding

Embrace simplicity.





Lao-tzu,Lao-tzu,Lao-tzu,

Lao-tzu,

TheTheThe

The

WayWayWay

Way

ofofof

of

Lao-tzu,Lao-tzu,Lao-tzu,

Lao-tzu,

ca.ca.ca.

ca.

550550550

550

B.CB.CB.C

B.C

Because a primary goal of using interfaces is to reduce the complexity of the
programming process, it makes sense that simplicity is a desirable criterion in the design of
an interface of an interface. In general, an interface should be as easy to use as possible.
The underlying implementation may perform extremely intricate operations, but the client
should nonetheless be able to think about those operations in a simple, more abstract way.

To a certain extent, an interface acts as a reference guide to a particular library
abstraction. When you want to know how to use the math library, you go to the math.h

interface to find out how to do so. The interface contains precisely the information that you,
as a client, need to know—and no more. For clients, getting too much information can be

as bad as getting to little, because additional detail is likely to make the interface more
difficult to understand. Often, the real value of an interface lies not in the information it
reveals but rather in the information it hides.

When you design an interface, you should try to protect the client from as many of the
complicating details of the implementation as possible. In that respect, it is perhaps best to
think of an interface not primarily as a communication channel between the client and the
implementation, but instead as a wall that divides them.

Like the wall that divided the lovers Pyramus and Thisbe in Greek mythology, the
wall representing an interface has a small chink that allows the client and the
implementation th communicate. The main purpose of the wall, however, is to keep the two
sides apart. Because we conceive of it as lying at the border of the abstraction represented
by the library, an interface is sometimes called an abstractionabstractionabstraction

abstraction

boundaryboundaryboundary

boundary

. Ideally, all the
complexity involved in the realization of a library lies on the implementation side of the
wall. The interface is successful if it keeps that complexity away from the client side.
Keeping details confined to the implementation domain is called informationinformationinformation

information

hidinghidinghiding

hiding

.
The principle of information hiding has important practical implications for interface

design. When you write an interface, you should be sure you don’t reveal details of the
implementation, even in the commentary. Especially if you are writing an interface and an
implementation at the same time, you may be tempted to document in your interface all the
clever ideas you used to write the implementation. Try to resist that temptation. The
interface is written for the benefit of the client and should contain only what the client
needs to know.

Similarly, you should design the functions in an interface so that they are as simple as
possible. If you can reduce the number of arguments or find a way to eliminate confusing
special cases, it will be easier for the client to understand how to use those functions.
Moreover, it is usually good practice to limit the total number of functions exported by
interface, so that the client does not become lost in a mass of functions, unable to make
sense of the whole.

MeetingMeetingMeeting

Meeting

thethethe

the

needsneedsneeds

needs

ofofof

of

youryouryour

your

clientsclientsclients

clients

Everything should be as simple as possible, but no simpler.





attributedattributedattributed

attributed

tototo

to

AlbertAlbertAlbert

Albert

EinsteinEinsteinEinstein

Einstein

Simplicity is only part of the story. You can easily make an interface simple just by
throwing away any parts of it that are hard or complicated. There is a good chance you will
also make the interface useless. Sometimes clients need to perform tasks that have some
inherent complexity. Denying your clients the tools they require just to make the interface
simpler is not an effective strategy. Your interface must provide sufficient functionality to
serve the clients ’ needs. Learning to strike the right balance between simplicity and
completeness in interface design is one of the fundamental challenges in programming.

In many case, the clients of an interface are concerned not only with whether a

interface

client implementation

particular function is available but also with the efficiency of the underlying
implementation. For example, if a programmer is developing a system for air-traffic
control and needs to call functions provided by a library interface, those functions must
return the correct answer quickly. Late answers may be just as devastating as wrong
answers.

For the most part, efficiency is a concern for the implementation rather than the
interface. Even so, you will often find it valuable to think about implementation strategies
while you are designing the interface itself. Suppose, for example, that you are faced with a
choice of two designs. If you determine that one of them would be much easier to
implement efficiency, it makes sense—assuming there are no compelling reasons to the
contrary—to choose that design.

TheTheThe

The

advantagesadvantagesadvantages

advantages

ofofof

of

generalgeneralgeneral

general

toolstoolstools

tools

Give us the tolls and we will finish the job.





WinstonWinstonWinston

Winston

Churchill,Churchill,Churchill,

Churchill,

radioradioradio

radio

address,address,address,

address,

194119411941

1941

An interface that is perfectly adapted to a particular clients ’s needs may not be useful
to others. A good library abstraction serves the needs of many different clients. To do so, it
must be general enough to solve a wide range of problems and not be limited to one highly
specific purpose. By choosing a design that offers your clients flexibility in how they use
the abstraction, you can create interfaces that are widely used.

The desire to ensure that an interface remains general has an important practical
implication. When you are writing a program, you will often discover that you need a
particular tool. If you decide that the tool is important enough to go into a library, you then
need to change your mode of thought. When you design the interface for that library, you
have to forget about the application that cause you to want the tool in the first place and
instead design such a tool for the most general possible audience.

You encountered the need for this shif t in perspective in the section on “Looking for
common patterns” in Chapter 7. From the perspective of a client, you needed a function to
draw windows for a house. To build the tool, however, you had to think more generally.
The result was the function DrawGrid, which can be used in many deferent situations.

TheTheThe

The

valuevaluevalue

value

ofofof

of

stabilitystabilitystability

stability

People change and forget to tell each other. Too bad—causes so many
mistakes





LillianLillianLillian

Lillian

Hellman,Hellman,Hellman,

Hellman,

ToysToysToys

Toys

ininin

in

thethethe

the

Attic,Attic,Attic,

Attic,

195919591959

1959

Interfaces have another property that makes them critically important to programming:
they tend to be stable over long periods of time. Stable interfaces can dramatically simplify

the problem of maintaining large programming systems by establishing clear boundaries of

responsibility. As long as the interface does not change, both implementors and clients are
relative ly free to make changes on their own side of the abstraction boundary.

For example, suppose that you are the implementor of the math library. In the course
of your work, you discover a clever new algorithm for calculating the sqrt function that cuts
in half the time required to calculate a square root .If you can say to your clients that you
have a new implementation of sqrt that works just as it did before, only faster, they will
probably be pleased. If, on the other hand, you were to say that the name of the function
had changed or that its use involved certain new restrictions, your clients would be
justif iably annoyed. To use your “improved” implementation of square root, they would be
forced to change their programs. Changing programs is a time-consuming, error-prone
activity, and many clients would happily give up the extra efficiency for the convenience of
being able to leave their programs alone.

Interface, however, simplify the task of program maintenance only if they remain
stable. Programs change frequently as new algorithms are discovered or as the
requirements of applications change. Throughout such evolution, however, the interfaces
must remain as constant as possible. In a well-designed system, changing the details of an
implementation is a straightforward process. The complexity involved in making that
change is localized on the implementation side of the abstraction boundary. On the other
hand, changing an interface often produces a global upheaval that requires changing every
program that depends on it. Thus, interface changes should be undertaken very rarely and
then only with the active participation of clients.

Some interface changes, however, are more drastic than others. For example, adding
an entirely new function to an interface is usually a relative ly straightforward process, since
no clients already depend on that function. Changing an interface in such a way that
existing programs will continue to run without modification is called extendingextendingextending

extending

the
interface. If you find that you need to make evolutionary changes over the lifetime of an
interface, it is usually best to make those changes by extension.

1-21-21-2

1-2

GeneratingGeneratingGenerating

Generating

randomrandomrandom

random

numbersnumbersnumbers

numbers

bybyby

by

computercomputercomputer

computer

To illustrate the foregoing principles of interface design, the rest of this chapter
focuses on the problem of how to write programs that make seemingly random choices.
Being able to simulate random behavior is necessary, for example, if you want to write a
computer game that involves flipping a coin or rolling a die, but is also useful in more
practical contexts.

Getting programs to behave in a random way involves a certain amount of complexity.
For the benefit of client programmers, you want to hide that complexity behind an interface.
In this chapter, you will have the opportunity to focus your attention on that interface from

each of the possible perspectives—those of the interface designer, the implementor, and the
client.

DeterministicDeterministicDeterministic

Deterministic

versusversusversus

versus

nondeterministicnondeterministicnondeterministic

nondeterministic

behaviorbehaviorbehavior

behavior

Until now, all programs described in this text have behaved deterministicallydeterministicallydeterministically

deterministically

, which
means that their actions are completely predictable given any set of input values. The
behavior of such programs is repeatable. If a program produces one result when you run it
today, it will produce the same result tomorrow.

In some programming applications, such as games or simulations, it is important that
the behavior of your programs not be so predictable. For example, a computer game that
always had the same outcome would be boring. In order to build a program that behaves
randomly, you need some mechanism for representing a random process, such as flipping a
coin or tossing a die, in the context of your programs. Programs that simulate such random
events are called nondeterministicnondeterministicnondeterministic

nondeterministic

programs.

RandomRandomRandom

Random

versusversusversus

versus

pseudo-randompseudo-randompseudo-random

pseudo-random

numbersnumbersnumbers

numbers

Partly because early computers were used primarily for numerical applications, the
idea of generating randomness using a computer is often expressed in terms of being able
to generate a randomrandomrandom

random

numbernumbernumber

number

in a particular range. From a theoretical perspective, a
number is random if there is no way to determine in advance what value it will have among
a set of equally probable possibilities. For example, rolling a die generates a random
number between 1 and 6. If the die is fair, there is no way to predict which number will
come up. The six possible values are equally likely.

Although the idea of a random number makes intuitive sense, it is a difficult notion to
represent inside a computer. Computers operate by following a sequence of instructions in
memory and therefore function in a deterministic mode. How is it possible to generate
unpredictable results by following a deterministic set of rules? If a number is generated by
a deterministic process, any user should be able to work through that same set of rules and
anticipate the computer’s response.

Yet computers do in fact use a deterministic procedure to generate what we call
random numbers. This strategy works because, even though the user could, in theory,
follow the same set of rules and anticipate the computer’s response, no one actually bothers
to do so. In most practical applications, it doesn’t matter if the numbers are truly random;
all that matters is that the numbers appear to be random. For numbers to appear random,
they should (1) behave like random numbers form a statistical point of view and (2) be
sufficiently difficult to predict in advance that no user would bother. “Random” numbers
generated by an algorithmic process inside a computer are referred to as pseudo-randompseudo-randompseudo-random

pseudo-random

numbersnumbersnumbers

numbers

to underscore the fact that no truly random activity is involved.

GeneratingGeneratingGenerating

Generating

pseudo-randompseudo-randompseudo-random

pseudo-random

numbersnumbersnumbers

numbers

ininin

in

ANSIANSIANSI

ANSI

CCC

C

The ANSI C library includes a function rand that produces pseudo-random numbers as
part of the stdlib.h interface. The prototype for rand as given in the interface is

int rand (void)

which indicates that rand takes no arguments and returns an integer that is a pseudo-random

value—a different result is returned on each call to rand . The result of rand is guaranteed to
be nonnegative and no larger than the constant RAND-MAX, which is also defined in the stdlib.h

interface. Thus each time rand is called, it returns a different integer between 0 and
RAND_MAX, inclusive.

The value of RAND_MAX, depends on the computer system. In the typical Macintosh
environment, RAND_MAX is 32,767. On a typical Unix workstation, it is 2,147,483,647.
When you write programs that work with random numbers, you should not make any
assumptions about the precise value of RAND_MAX. Instead, your programs should be
prepared to use whatever value of RAND_MAX the system defines. If you are careful in doing
so, you can take a program that works on one system and recompile it so that it works on
another.

Running the program randtest.c given in Figure 8-1 shown how rand behaves.

FIGUREFIGUREFIGURE

FIGURE

8-18-18-1

8-1

randtest.crandtest.crandtest.c

randtest.c

/*
* File: randtest.c
* -------------------
* This program tests the ANSI rand function.
*/

#include <stdio.h>
#include <stdlib.h>
#include “genlib.h ”

/*
* Constants
* -------------
* Ntrials – Number of trials
*/

#define NTrials 10

/* Main program */

main ()
{

int i, r;
printf(“On this computer, RAND_MAX= %d.\n”, RAND_MAX);
printf(“Here are the results of %dcalls to rand:\n” , NTrials);
for (i = 0; i < NTrials; i++) {

r = rand ();
printf (“%10d\n”, r);

}
}

On the computer in my office, randtest.c generates the following output:

You can see that the program is generating numbers, all of which are positive and
none of which is greater than 32,767, which the sample run shows as the value of RAND_MAX

for this computer system. Because these are pseudo-random numbers, you know that there
must be some pattern, but it is unlike ly that you can discern one. From your point of view,
the numbers appear to be random, because you don’t know what the underlying pattern is.

ChangingChangingChanging

Changing

thethethe

the

rangerangerange

range

ofofof

of

randomrandomrandom

random

numbersnumbersnumbers

numbers

The rand library function gives you a mechanism for generating pseudo-random
numbers, but it rarely gives you precisely the range of values you need to fit a particular
application. It generates numbers that are uniformly distributed over the range between 0
and RAND_MAX. Depending on your application, you are like ly to want is a number that falls
in some other range, usually much smaller. For example, if you are trying to simulate
flipping a coin, you need to convert this large range of random number possibilities into a
range containing only two outcomes: heads and tails. Similarly, if you are trying to
represent rolling a die, then you need to convert the pseudo-random number returned by
rand into numbers between 1 and 6, inclusive.

To make this sort of conversion, you need to reinterpret each random number
produced by rand so that it covers a different range. The rand function generates numbers
that lie somewhere on the number line between 0 and RAND_MAX:

If you want to simulate a coin toss, you can divide this line up so that half of it represents
heeds and the other half represents tails:

You could easily use this insight to develop the cointest.c program shown in Figure 8-2,
which simulates tossing a coin.

FIGUREFIGUREFIGURE

FIGURE

8-28-28-2

8-2

cointest.ccointest.ccointest.c

cointest.c

/*

On this computer, RAND_MAX = 32767.
Here are the results of 10 calls to rand:

346
130

10982
1090

11656
7117

17595
6415

22948
31126

０ RAND_MAX

headsheadsheads

heads

tailstailstails

tails

COMMONCOMMONCOMMON

COMMON

PITFALLSPITFALLSPITFALLS

PITFALLS

When converting the
result of rand to a more
restric ted range of
integers, do not try to
use the remainder
operator. The only
random property that
you are allowed to
count on when using
rand is the position of
the result along the
number line.

* File: cointest.c
* -------------------
* This program simulates flipping a coin.
*/

#include <stdio.h>
#include <stdlib.h>
#include “genlib.h ”

/*
* Constants
* -------------
* Ntrials – Number of trials
*/

#define NTrials 10

/* Main program */

main ()
{

int i;

for (i = 0; i < NTrials; i++) {
if (rand () <= RAND_MAX / 2) {

printf (“Heads\n");
} else {

printf (“Tails\n”);
}

}
}

This program prints out either the string “Heads” or the string “Tails”, with each
outcome occurring approximately 50 percent of the time,. If you test the program, you get
the following sample run:

There is a reasonable mixture of heads and tails, and you can discern no easily detectable
pattern.

In thinking about how to convert the result of rand into two possibilities, many new
programmers may be tempted to adopt what seems initially like a simpler approach—using
the remainder operator. If you divide the result of rand by 2 and take the remainder, the
result is either 0 or 1. In a program, you could define 0 to be heads and 1 to be tails. This
strategy is dangerous because there is no guarantee that the result of rand will be randomly
distributed between even and odd numbers. The only guarantee is that the magnitude of the
result will be randomly distributed along the number line between 0 and RAND-MAX.

One common implementation of rand provides a vivid illustration of how serious an
error this approach to generating random numbers can be. On many computer systems, the

Heads

Heads
Heads

Heads

Heads

Heads

Tails
Heads

Tails

Tails

rand function is implemented in such a way that the result alternates between even and odd
values. The results are still randomly scattered on the number line in terms of how far along
the line they fall. Even so, a program that uses the remainder operator to simulate a coin
flip ends up generating heads and tails in a strictly alternating pattern.

What about simulating a die roll? If you use the strategy of the cointest.c example, all
you need to do is overlay the outcomes

on the number line

Suppose you tried to handle this task in a brute-force way be following the structure of the
cointest.c example. The result of doing so is shown in Figure 8-3.

FIGUREFIGUREFIGURE

FIGURE

8-38-38-3

8-3

FirstFirstFirst

First

attemptattemptattempt

attempt

atatat

at

RollDieRollDieRollDie

RollDie

int RollDie (void)
{

if (rand () < RAND_MAX / 6) {
return (1);

} else if (rand () < RAND_MAX* 2 / 6) {
return (2);

} else if (rand () < RAND_MAX* 3 / 6) { ThisThisThis

This

implementationimplementationimplementation

implementation

return (3); containscontainscontains

contains

severalseveralseveral

several

errorserrorserrors

errors

} else if (rand () < RAND_MAX* 4 / 6) {
return (4);

} else if (rand () < RAND_MAX* 5 / 6) {
return (5);

} else {
return (6);

}
}

Unfortunately, this implementation of the RollDie function has a few serious problems.
Because they are the sort of problems you might run into in your own coding, they are
worth considering closely.

The first problem in the code is that you have made an assumption that was easy and
natural to make although nonetheless unwarranted in the context1. The program was
supposed to express the following English idea:

 If the random number generated is less than 1/6 of the maximum, return the
value1.

 Otherwise, if the number is less than 2/6 of the maximum, return the value 2.
 Otherwise, if the number is less than 3/6 of the maximum, return the value 3, and

so on.

1 In his book, Zen and the Art of Motorcycle Maintenance, Robert Pirsig calls this sort of error—one
in which a seemingly reasonable assumption leads to false conclusions—a gumption trap. Gumption traps
come up often in programming, and Pirsig’s book offers at least as many useful insights to debugging
programs as it does to repairing motorcycles.

０ RAND_MAX

２１ 3 ４ 5 ６

COMMONCOMMONCOMMON

COMMON

PITFALLSPITFALLSPITFALLS

PITFALLS

When you call a func tion
that produces a pseudo-
random number, it is
impor tan t to remember
that the func tion will
generate a different value
each time it is called. If
you want to keep track of
a particular value, you
mus t store the result of
the func tion in a variable.

The problem is that your code doesn’t quite capture this idea. By repeatedly calling the
function rand, you will generate a new random number in each of the if statements. The
structure of the function depends on the assumption that the random number remains the
same each time. To see that this is in fact the case, look at the buggy implementation of
RollDie and try to understand under what conditions it will rerun the answer 2. In order for
the function to return 2, the first if statement must come out FALSE and the second one must
come out TRUE. The condition in the first if statement is FALSE five times out of six. The
second if statement is written so that it returns TRUE one third of the time, because the call to
rand returns an entirely new random value. In statistics, the probability of two independent
events occurring is the product of the individual probabilities, so the probability that RollDie
returns 2 is

18
5

3
1

6
5



Five chances out of 18 is almost twice as large as one chance in six, meaning that the RollDie

function is much more like ly to return 2 than it should be. To solve at least this one problem ,
you need to declare a variable to hold the result of the call to rand and then test that variable

in each line, as shown in Figure 8-4.

FIGUREFIGUREFIGURE

FIGURE

8-48-48-4

8-4

SecondSecondSecond

Second

attemptattemptattempt

attempt

atatat

at

RollDieRollDieRollDie

RollDie

int RollDie (void)
{

int r;

if (r < RAND_MAX / 6) {
return (1);

} else if (r < RAND_MAX* 2 / 6) {
return (2);

} else if (r < RAND_MAX* 3 / 6) {
return (3);

} else if (r < RAND_MAX* 4 / 6) { ThisThisThis

This

implementationimplementationimplementation

implementation

return (4); isisis

is

stillstillstill

still

incorrect.incorrect.incorrect.

incorrect.

} else if (r < RAND_MAX* 5 / 6) {
return (5);

} else {
return (6);

}
}

Unfortunately, this implementation is still buggy. The second problem, however, is
more subtle. On most systems, RAND_MAX is given the value it has for a reason. The usual
value chosen for RAND_MAX is not merely the maximum possible result for the rand function,
but also the largest positive value that the system can represent using type int. This
limitation causes a serious problem in the proposed implementation of RollDie , because the
program is written in such a way that intermediate results may be larger than the maximum
integer size. Even though the final result of

RAND_MAX

fits in a value of type int, C’s rules of precedence indicate that RAND_MAX is first multiplied
by 2 and then divided by 6. Generating an integer outside of the allowable range is called

an arithmeticarithmeticarithmetic

arithmetic

overflowoverflowoverflow

overflow

. If such an overflow occurs, the program will not produce the
intended answer. You can fix this problem by writing

RAND_MAX / 6 * 2

There is, however, a better approach.
The real problem with the RollDie implementation is that the procedure is much too

complicated. The code tests for each of the six possible outcomes as a separate case. What
you need is some mathematical insight that will allow you to eliminate the special cause
altogether.

Look once more at the geometric problem. What you need to do is to convent the
number line

into the discrete intervals

This time, rather than using if statements, it makes more sense to use arithmetic operations
to accomplish the task. Before deciding how arithmetic operations apply o this situation,
however, it is useful to generalize the problem so that your solution technique can serve a
wider variety of applications.

GeneralizingGeneralizingGeneralizing

Generalizing

thethethe

the

problemproblemproblem

problem

To simulate rolling a die, you generate a random integer between 1 and 6. If you want
a program to “pick a card, and card” you want it to choose a number between 1 and 52. To
model a European roulette wheel, you would want it to pick a number between 0 and 36. In
general, what you need is not a function that chooses a number between 0 and RAND_MAX

but one that chooses a random integer between two limits that you supply. The function you
need might be defined using the following prototype:

int RandomIn teger (int low, int high)

In other words, if you give this function two integers, it will return a random integer that
lies between those endpoints, including each endpoint in the range. Thus, to simulate a roll
of a die, you would call

RandomIn teger (1, 6)

and , for a spin of the European roulette wheel, you would call

RandomIn teger (0, 36)

Such a general tool has many uses, and it will be to your advantage to put this tool in a
library so that you can use it again and again.

You already know how to generate a random number in the interval 0 to RAND_MAX. To

０ RAND_MAX

２１ 3 ４ 5 ６

convert this to a random number in a more restricted range, you can use the following four-
step process:

1. Normalize the integer result from rand by converting it into a floating-point
number d in the range 0≤d<1.

2. Scale the value d by multiplying it by the size of the desired range, so that it
spans the correct number of integers.

3. Truncate the number back to an integer by throwing away any fraction. This step
gives you a random integer with a lower bound of 0.

4. Translate the integer so that the range begins at the desired lower bound.

To normalize the value, you first need to convert your result to a double and then divide it
by the number of elements in the range. The numbers run from 0 to RAND_MAX, inclusive, so
that the number of possible outcomes is RAND_MAX plus 1 (there are RAND_MAX values
between 1 and RAND_MAX, and you also need to account for the value 0).

As noted in the section on “Assignment statements” in Chapter 2, you can use a type
cast to specify an explicit conversion from one type to another. Type casts are written by
enclosing the name of the desired new type in parentheses and writing it before the value to
be converted .In this case, for example, you can convert the result of rand into a number d

between 0 and 1 by writing:

d = (double) rand () / ((double) RAND_MAX+ 1);

The numerator in this fraction must be less than the denominator so that the end result will
always be strictly less than 1. Therefore, at the end of this process, you have a random real
number that is at least 0 but always strictly less than 1. In mathematics, a range of real
numbers that can be equal to one endpoint but not he other is called a half-openhalf-openhalf-open

half-open

intervalintervalinterval

interval

.
In diagrams, the endpoint that is not included in the range is indicated using an open circle.
Thus the range of possibilities for the variable d is diagrammed as follows:

The next step is to scale this value so that the range stretches to cover the correct number of
integers. For example, to simulate the die roll, you need to multiply the value by 6, so that
the new scaled range looks like this:

Note that here are six integers covered by the range: the integers 0, 1, 2, 3, 4, and 5. The
value 6 itself lies outside of the range of possibilities, since the value d can never be as large
as 1.

In the general case, you wan to multiply the normalized random number by the
number of elements in the range, which is given by the expression

(high – low + 1)

The “extra” 1 in this expression is necessary because the range is inclusive and therefore

０ 1

２１ 3 ４ 5 ６0

contains both endpoints. Subtraction gives the distance between two integers, which is one
less than the number of integers contained in the inclusive range. There are six outcomes
for a die roll—1, 2, 3, 4, 5, and 5—but 6 minus 1 is only 5. To compute the number of
outcomes, you need to subtract the smallest value from the largest and then add 1.

Next, you truncate the real number black to an integer. In C, if you convert a double to
an int using a type cast, the conversion is done by throwing away any fractional part. Thus,
if you take a real number that you know to be greater than or equal to 0 but strictly less than
6, you will get one of the integers 0, 1, 2, 3, 4, or 5.

The last step in the process is to translate the result so that it lies in the desired range.
You have the correct number of integer outcomes; the only problem is than they start at 0.
To obtain the correct set of possibilities, you simply add the value of the lower bound.

You can put all of these steps together and write the implementation o the function
RandomIn teger as follows:

int RandomIn teger (int low, int high)
{

int k;
double d;

d = (double) rand () / ((double) RAND_MAX+ 1);
k = (int) (d * (high – low + 1);
return (low + k);

}

1-31-31-3

1-3

SavingSavingSaving

Saving

toolstoolstools

tools

ininin

in

librarieslibrarieslibraries

libraries

The ReandomInteger function is useful enough that you should put it in a library. The first
step in this process is to create an interface. Once you complete the interface, you then
write a corresponding implementation in a separate file. In most cases, the files used for an
interface and its implementation have the same name except for the file type. Thus, if the
interface is named random.h , you would ordinarily use random.h as the name of the
implementation file.

TheTheThe

The

contentscontentscontents

contents

ofofof

of

ananan

an

interfaceinterfaceinterface

interface

The basic structure of an interface is illustrated by the graphics.h example introduced in
Chapter 7. Like all the interfaces introduced in this text, graphics.h consists primarily of
comments written for the benefit of clients who use that library. These comments are a
critical part of the interface and should never be neglected when you are designing one.

A single definition exported by an interface to its clients is called an interfaceinterfaceinterface

interface

entryentryentry

entry

.
Interface entries come in several different forms, of which the following are the most
common:

 Function prototypes. As interface must contain the prototype of every function it
makes available to the client.

 Constant definitions. As interface will often use #define to define a constant that

the clients will need to know. For example, the stdlib.h interface defines the
constant RAND_MAX to tell its clients the maximum value returned by the rand

function.
 Type definitions. Although you do not yet know how to define new types

yourself, it is useful to know that interfaces often define new types for use by
clients. For example, the genlib.h interface defines the types bool and string . Defining
types in an interface is an extremely important technique in modern programming.
You will see several examples of interfaces that export types beginning in
Chapter 9.

In addition to these entries and their associated comments, every interface you write should
contain three lines that are used to help the compiler keep track of the interfaces it has read.
After the initial comments, but before any of the actual entries, every interface should
contain the lines

#ifnde f _name_h
#define _neme_h

where name is the name of the interface file. The last line
of the interface must be

#endif

In complicated programs, a single interface may be
included many times through a variety of paths. So that the
complier will not read through the same interface each time,
the line

#ifnde f _name_H

cause the compiler to skip all of the text up to the #endif line
if the symbol _name_h has been previously defined. On the
first time through the interface it hasn’t, so the compiler
goes on reading. Immediately thereafter, however, the
compiler encounters the line

#define _name_h

which defines the symbol _name_h. if the compiler should later start to read the same
interface, _name_h will already have been defined, and the compiler knows that it can ignore
the entire contents of the interface.

Whether or not you understand precisely how this technique works, the rule is clear.
Whenever you write an interface, you must include the #ifndef , #define , and #endif lines, as
shown in the syntax box. This sort of stylized pattern that is included every time you write
a particular type of file is often called boilerplateboilerplateboilerplate

boilerplate

. These lines are the boilerplate for
interfaces. You don’t really need to understand them; you just need to make sure that they
are always there.

In addition to the boilerplate, a interface will sometimes need to include other
interfaces using thee same #include lines that you have already used in your own programs,

SYNTAXSYNTAXSYNTAX

SYNTAX

forforfor

for

ananan

an

interfaceinterfaceinterface

interface

filefilefile

file

#ifnde f _name_h
#define _name_h
any required #include lines
interface entries
#endif

Where:
name is the name of the library.
the #include lines section is used only if the interface

itself requir es other libraries and consis ts of
standard #include lines

interface entries represen ts the function prototypes,
constants, and types exported by the library

Comments should appear throughou t the interface to
prov ide clients with the informa tion they need to use the
library .

The rules for when such lines are required are discussed in the section on “Including header
files in an interface” late in this chapter.

WritingWritingWriting

Writing

thethethe

the

random.h interfaceinterfaceinterface

interface

If you apply the rules from the preceding section to the problem of writing the random.h

interface, you should realize that your first responsibility is to write an initial comment
explaining what the library provides and who might use it. After the comment, you must
include the boilerplate for interfaces, which in this case is

#ifnde f _random_h
#define _random_h

The next thing to write in the random.h interface is a comment about the RandomIn teger

procedure:

/*
* Function: RandomIn teger
* Usage: n = RandomIn teger (low, high);
* ---
* This function returns a random integer in the range
* low to high, inclusive.
*/

This comment provides the client with the information necessary to use the function. The
usage line, for example, illustrates a sample call to the function, which is often particularly
helpful to the client. The comment also contains an English description of what the function
does but no discussion of how the function does it.

The next component of the interface is the prototype for the function itself :

int RandomIn teger (int low, int high);

This line is the only one in the interface that has any real signif icance to the compiler; the
others are either comments or boilerplate.

The last line in the interface is simple the #endif line that is part of the boilerplate for
interface.

The portion of the random.h interface discussed so far appears in Figure 8-5. As noted in
the caption, the interface in Figure 8-5 is only a preliminary version. Later in the chapter,
new functions are added to this interface that extend its capabilities.

FIGUREFIGUREFIGURE

FIGURE

8-58-58-5

8-5

PreliminaryPreliminaryPreliminary

Preliminary

versionversionversion

version

ofofof

of

random.hrandom.hrandom.h

random.h

/*
* File: random.h
* -------------------
* This file contains a preliminary version of a library
* interface to produce pseudo-random numbers.
*/

#ifnde f _random_h
#define _random_h

/*
* Function: RandomIn teger
* Usage: n = RandomIn teger (low, high);
*--
* This function returns a random integer in the range
* low to high, inclusive.
*/

int RandomIn teger (int low, int high);

#endif

TheTheThe

The

random.hrandom.hrandom.h

random.h

implementationimplementationimplementation

implementation

The implementation for the ranndom.h interface goes in a separate file, random.c . For the
interface as it now exists, the corresponding implementation file is shown in Figure 8-6.

FIGUREFIGUREFIGURE

FIGURE

8-68-68-6

8-6

PreliminaryPreliminaryPreliminary

Preliminary

versionversionversion

version

ofofof

of

random.crandom.crandom.c

random.c

/*
* File: random.c
* -------------------
* This file implements the preliminary random.h interface.
*/

#include <stdio.h>
#inlcude <stdlib.h>

#include “genlib.h ”
#include “random.h”

/*
* Function: RandomIn teger
* ----------------------------------
* This function firs t obtains a random integer in
* the range [0…RAND_MAX] by applying four steps:
* (1) Generate a real number between 0 and 1.
* (2) Scale it to the appropriate range size.
* (3) Truncate the value to an integer.
* (4) Transla te it to the appropriate starting point.
*/

int RandomIn teger (int low, int high)
{

int k;
double d;

d = (double) rand () / ((double) RAND_MAX+1);
k = (int) (d * (high –low + 1);
return (low + k);

}

The implementation begins with an initial comment, which is simply a reference to the
interface. The next section lists the #include files required for the compilation. You always
want stdio.h and genlib.h , and you need stdlib.h so that you have access to the function rand .
Finally, every implementation needs to include its own interface so the compiler can check
the prototypes against the actual definitions.

After the #include lines, the next section consists of the implementations of the
functions exported by the interface, along with any comments that would be useful to the
programmers who may need to maintain this program in the future.

Like all other forms of expository writing, comments must be written so that they take
account of their audience. When you write comments, you must put yourself in the role of
the reader so that you can understand what information that reader will want to see.
Comments in the .c file have a different audience than their counterparts in the .h file. The
comments in the implementation are written for another implementor who may have to
modify the implementation in some way. They therefore must explain how the
implementation works and provide any details that late maintainers would want to know.
Comments in the interface, on the other hand, are written for the client. A client should
never have to read the comments inside the implementation. The comments in the interface
should be sufficient.

ConstructingConstructingConstructing

Constructing

aaa

a

clientclientclient

client

programprogramprogram

program

You can test the random.c implementation by writing the program dicetest.c shown in
Figure 8-7. The main program makes use of your new random number library, so you need
to include the line

#include “random.h”

in the dicetest.c file so that it can use the RandomIn teger function.

FIGUREFIGUREFIGURE

FIGURE

8-78-78-7

8-7

dicetestdicetestdicetest

dicetest

.c.c.c

.c

/*
* File: dicetest.c
* ----------------------
* This program simulates rolling a die.
*/

#include <stdio.h>
#include “genlib.h ”
#include “random.h”

/*
* Constants
* -------------
* Ntrials – Number of trials
*/

#define Ntrials 10

/* Function prototypes */

int RollDie (void);

/* Main programm */

main ()
{

int i;

for (i = 0; i <NTrials; i++) {
printf (“%d\n”, RollDie ());

}
}

/*
* Function: RollDie
* Usage: die = RollDie ();
* ------------------------------
* This function gener ates and returns a random integer in the
* range 1 to 6, represen ting the roll of a six-sided die.
*/

int RollDie (void)
{

return (RandomInteger (1, 6);
}

Let’s quickly test the program to make sure that it works. Running the program gives
the following result:

Once again, the numbers are all in the correct range and appear random. The number 2
comes up more often than the others, but it is statistically possible that the number 2 will
come up four times by pure chance. Even so, you might want to investigate by running the
pogrom again. This time it gives:

The disturbing observation is not simple that the number 2 came up just as many times on
this second run. The entire result is exactly the same. In fact, every time you run this
program, you get precisely the same result. This behavior on the part of your test program
does not bode well for the prospect of writing interesting computer games.

InitializingInitializingInitializing

Initializing

thethethe

the

randomrandomrandom

random

numbernumbernumber

number

generatorgeneratorgenerator

generator

The fact that the dicetest.c program produces the same sequence of numbers each time

4
2
2
4
6
2
5
2
3
1

4
2
2
4
6
2
5
2
3
1

is not because of any bug in the implementation of RandomIn teger . This behavior comes
instead from the definition of the rand function in the standard ANSI libraries. Unless the
caller takes specific action to change the standard mode of operation, the rand function
always returns the same sequence of values on every execution of a program that calls it.
Thus, every program presented so far in this chapter will have exactly the same effect each
time it is run.

At first glance, you may find it hard to see any reason why rand might behave as it does,
particularly since the rand function exists to simulate a nondeterministic process. As the
stdlib.h interface is defined, the behavior of rand is entirely deterministic. There is, however,
an extremely good reason to define rand in this way: Programs that behave deterministically
are easier to debug.

To illustrate this fact, suppose you have just written a program to play an intricate
game, such as Monopoly. As is always the case with newly written programs, the odds are
good your program has a few bugs. In a complex program, bugs can be relative ly obscure,
in the sense that they only occur in rare situations. Suppose that you’ve been playing the
game and find that the program starts behaving in a bizarre way, but you weren’t alert
enough to pay attention to all the relevant symptoms. You would like to run the program
again and watch more carefully this time.

If the program is running in a nondeterministic way, a second run of the program will
behave differently from the first. Bugs that showed up the first time may not occur on the
second pass. In general, it is extremely difficult to reproduce the conditions that cause a
program to fail if the program is behaving in a truly random fashion. If, on the other hand,
the program is operating deterministically, it will do the same thing each time it is run. This
behavior makes it possible for you to recreate a problem. During the debugging phase, the
rand function is doing the right thing by returning the same sequence of values every time.

Even if the system definition of rand has advantages for debugging, it is still important
to be able to change that behavior once the program is working. Understanding how to
make this change, however, requires knowing a little more about the implementation of rand .

The ANSI libraries generate pseudo-random numbers by keeping track of the last
number generated. Each time random is called, it takes the last number and performs a
series of calculations using that number to produce the next one. Because you don’t know
what those calculations are, it is best to think of the entire operation as a black box where
old numbers go in on one side and new pseudo-random numbers pop out on the other.

The randtest.c program described in the section on “Generating pseudo-random numbers
in ANSI C” earlier in this chapter provides an illustration of the internal operation of rand .
On the computer in my office, the first 10 calls to rand generate the numbers shown in this
sample run:

On this computer, RAND_MAX = 32767.
Here are the results of 10 calls to rand:
16838
5758
10113
17515
31051
5627
23010
7419
16212
4086

COMMONCOMMONCOMMON

COMMON

PITFALLSPITFALLSPITFALLS

PITFALLS

When you write a
program that works with
random numbers, it is
usually best to debug it
withou t calling Randomize .
When the program
seems to be working well,
you can inser t a call to
Randomize in the main
program, after which the
program will change its
behavior from one run to
another.

The first call to rand produces the number 16838. The next call corresponds to putting
16838 into one end of the black box representing the internal implementation and having
5758 pop out on the side:

Similarly, on the next call to rand , the implementation puts 5758 into the black box,
which returns 10113:

This same process is repeated on each call to rand . The computation inside the black box is
designed so that (1) the numbers are uniformly distributed over the legal range, and (2)
the sequence goes on for a long time before it begins to repeat.

But what about the first call to rand—the one that returns 16838? The implementation
must have a starting point. There must be an integer, s, that goes into the black box and
produces 16838:

This initial value—the value that is used to get the entire process started—is called a seedseedseed

seed

for the random number generator. The ANSI library implementation sets the initial seed to
a constant value every time a program is started so that it always produces the same
sequence. You can change the sequence by setting the seed to a different value. To do so,
you need to call the function srand , which takes the new seed as an argument. To make sure
the value of the new seed changes for each run of the program, the standard approach is to
sue the value of the internal system clock as the initial seed. Because the time keeps
changing, the random number sequence will change as well.

You can retriever the current value of the system clock by calling the function time,
which is defined in the ANSI library interface time.h , and then converting the result to an
integer. This technique allows you to write the following statement, which has the effect of
initializing the pseudo-random number generator to some unpredictable point:

srand ((int) time (NULL));

Although it requires only a single line, the operation to set the random seed to an
unpredictable value based on the system clock is relative ly obscure. If this line were to
appear in the client program, the client would have to understand the concept of a random
number seed, the time function, and the meaning of the mysterious constant NULL. To make
things simpler for the client, it would be much better to give this operation a simple name
like Randomize and add it to the random number library. If you make this change, all the
client needs to do is call

Randomize ();

which is certainly easier to explain.
The implementation of Randomize is simply

16838
blackblackblack

black

boxboxbox

box

5758

5758
blackblackblack

black

boxboxbox

box

10113

s
blackblackblack

black

boxboxbox

box

16838

void Randomize (void)
{

srand ((int) time (NULL));
}

1-41-41-4

1-4

EvaluatingEvaluatingEvaluating

Evaluating

thethethe

the

designdesigndesign

design

ofofof

of

thethethe

the

random.h interfaceinterfaceinterface

interface

As part of the process of designing an interface, you should keep in mind the general
principles guiding such design. In the case of the evolving random.h interface, for example, it
is important to consider how well the current interface meets the five basic criteria outlined
earlier in this chapter:

 Is it unified? The two functions, RandomIn teger and Randomize, both fit under the unifying
theme of providing access to a random number abstraction. Thus, the interface is unif ied.

 Is it simple? Although you have not had much opportunity to use the functions and see if
they are in fact simple to use, the dicetest.c program gives some evidence that they are.
Moreover, it is clear that the interface hides considerable complexity. Calling RandomIn teger

frees the client form having to worry about the internal steps of normalization, scaling,
truncation and translation, since all those operations are performed by the implementation.
Similarly, the Randomize function protects the client form all the internal details of seeding
the random number generator. Thus, the interface certainly provides some measure of
simplif ication.

 Is it sufficient? This question is always difficult to answer because it raises the companion
question: sufficient for what? Though you probably cannot anticipate the needs for all
clients, it is a good idea to try. The current version of the package is useful of clients who
need random integers, but some clients would require other operations, such as some
means of simulating random real numbers over a continuous range. The possibility
suggests that some further design work may be required to meet this need.

 Is it general? The issue of generality is closely linked with that of sufficiency, but also
includes the question of whether the interface design unconsciously incorporates any
assumptions that are really in the domain of a particular client, thereby reducing its utility
to others. For example, if the interface were defined to include functions that simulated a
die roll, as opposed to allowing the client to build such functions on top of RandomIn teger ,
that interface would like ly be too narrow in its design. As it stands, however, the functions
in the interface seem to meet the criterion of generality.

 Is it stable? The issue of stability is not so much a question for the design phase as for the
long-term maintenance cycle of the package as a whole. The important question at this
point is whether the interface design promotes long-term stability in some way. In general,
an interface that satisfies the other requirements can probably remain stable, although
preserving such stability requires good discipline on the part of those who are in charge of
maintaining the library.

Thus, the only pending concern is that the random.h interface does not provide and the
functions that clients are likely to need. In particular, the analysis of the design in the
preceding section suggests that providing random real numbers would increase the utility

of the random number library for some clients. It is therefore worth defining an additional
function, presumable called RandomR eal to go along with RandomIn teger, that provides the
necessary capability.

GeneratingGeneratingGenerating

Generating

randomrandomrandom

random

realrealreal

real

numbersnumbersnumbers

numbers

As it happens, you have already used the rand function to generate a random real
number as part of the implementation of RandomIn teger . The first step in the process of
generating a random integer was to generate a random floating-point number between 0
and 1. To implement the RandomR eal function, one approach would be to do the same
calculation and return the result. Such a design, however, violates to some extent the
unifying principles that give the library consistency. Designed with that approach,
RandomR eal would take no arguments and return a floating-point value in a preset range. The
RandomIn teger function behaves differently. It takes two arguments and returns a value in the
range defined by those inputs. For consistency, it is probably best that RandomR eal have the
same basic design. If it does, clients who know how RandomIn teger works can correctly
predict the structure of RandomR eal. Thus, RandomR eal should have the following prototype:

double RandomR eal (double low, double high);

The implementation essentially consists of the first two lines of the implementation of
RandomIn teger , except that the scaling factor is now the actual distance between the endpoints
instead of the number of integers contained in the at range. Thus the implementation of
RandomR eal is

double RandomR eal (double low, double high)
{

double d;

d= (double) rand () / ((double) RAND_MAX+ 1);
return (low + d * (high – low));

}

SimulatingSimulatingSimulating

Simulating

aaa

a

probabilisticprobabilisticprobabilistic

probabilistic

eventeventevent

event

In addition to random real numbers, there is another type of random variable that
might be useful to include in a general abstraction for simulating random behavior.
Suppose you are writing a program in which you want a certain ever to occur with random
probability. For example, suppose that your program is intended to model an assembly line
on which there is a defect that occurs, on average, in 1 out of every 1000 parts that travel
down the line. In terms of the simulation, another way to think about this situation is that
each part has a 1 in 1000 chance of being defective. In mathematics and statistics,
probabilities are represented as numbers between 0 and 1, so the probability of a defect in
this example is .001 (1/1000).

In this example, the outcome has only two possibilities: either there is a defect or there
isn’t. The fact that there are two outcomes that represent the presence or absence of a

COMMONCOMMONCOMMON

COMMON

PITFALLSPITFALLSPITFALLS

PITFALLS

Each interface mus t
include any header files
that are necessary for
the compiler to
understand the
interface itself. An
interface does not,
however, include
header files that are
only required by the
underlying
implemen tation. Those
header files are
included only in the .c
file that implemen ts the
interface.

condition suggests that it would be appropriate to represent the situation using a Boolean
value. The value TRUE is used to signify that a defect has been detected, which should occur
with probability .001.

In situations of this sort, it is helpful to have a predicate function that returns TRUE

with some specified probability. If you had access to such a function, which might be
named RandomChance , you could represent the assembly line example using the following
code:

if (RandomChace (.001)) {
printf (“A defect has occurred.\n”);

}

The advanta ge of this implementation over the one presented in the section on “Changing
the range of random numbers” earlier in this chapter is that this one does not require the
client to understand the operation of the rand function itself. The client can instead rely only
on the functions defined in the higher-level random.h interface. The existence of the rand

function can then be considered as a detail of concern only in the implementation.
The prototype and implementation for the RandomChance function are each very simple.

The prototype, which becomes part of the interface, is

bool RandomChance (doulbe p);

You can easily write the implementation in terms of RandomR eal like this:

bool RandomChance (double p);
{

return (RandomReal (0, 1) < p);
}

IncludingIncludingIncluding

Including

headerheaderheader

header

filesfilesfiles

files

ininin

in

ananan

an

interfaceinterfaceinterface

interface

Adding RandomChance to the random.h interface, however, brings up an important issue.
Randomchance is a predicate function and therefore returns a result of type bool. As noted in
the section on “Boolean data” in Chapter 4, the type bool is not actually a part of C but is
instead defined in the genlib.h interface. For the compiler to interpret correctly the prototype
for RandomChance when it reads through the random.h interface, it needs access to the
definition of bool in genlib.h .

To provide the compiler with the information it requires you need to include the genlib.h
header file as part of the interface. Thus, right after the boilerplate lines

#ifnde f _random_h
#define _random_h

the random.h header file must include the line

#include “genlib.h ”

which instructs the compiler to read the definitions in genlib.h . The compiler will therefore
have read the definition for bool by the time it reaches the prototype for RandomChance later
in the file.

Each interface must include only those header files that are required to compile the
interface itself and not the corresponding implementation. For example, the
implementation file random.c needs access to stdlib.h and time.h in order to use functions like
rand , srand, and time . These functions, however, appear only in the implementation, not in the
interface. Thus, the random.h interface does not need to include these header files ever
though the random.c implementation does. By contrast, the type bool appears explicitly in the
random.h interface, which means that the interface must include genlib.h.

CompletingCompletingCompleting

Completing

thethethe

the

implementationimplementationimplementation

implementation

ofofof

of

thethethe

the

random-numberrandom-numberrandom-number

random-number

packagepackagepackage

package

All that remains to complete the definition of the random.h interface and the
corresponding random.c implementation is to add the new functions defined in the last few
sections to the preliminary versions of these files given in Figure 8-5 and 8-6, along with
enough commentary to allow clients to understand the interface. Because all the sections of
code have been shown individually, the complete versions of the interface and
implementation do not appear in this chapter but in Appendix B.

1-51-51-5

1-5

UsingUsingUsing

Using

thethethe

the

random-numberrandom-numberrandom-number

random-number

packagepackagepackage

package

Now that you have a random-number package, you can use it as often as you want.
Whenever you decide to write a new computer game or any other application that involves
random numbers, you’ll have a set of tools you can use without having to remember the
underlying details. All you need to do to use the random number library is to include the
header file random.h in you program and make sure the library is available when you compile
and run the program.

FIGUREFIGUREFIGURE

FIGURE

8-88-88-8

8-8

crapscrapscraps

craps

.c.c.c

.c

/*
* File: craps.c
* -----------------
* This program plays the dice game called craps. For a discussion
* of the rules of carps, please see the GiveInstructions function.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h”
#include “strlib.h ”

/* Function prototypes */

void GiveInstructions (void);
void playCrapsGame (void);
int RollTwoDice (void);
bool GetYesOrNo (string promp t);

/* Main program */

main ()
{

Randomize ();
if (GetYesOrNo (“Would you like instructions? “)) {

GiveInstructions ();
}
while (TRUE) {

playCrapsGame ();
if (!GetYesOrNO (“Would you like to play again? “)) break;

}
}

/*
* Function: GiveInstructions
* Usage: GiveInstructions ();
* -----------------------------------
* This function welcomes the player to the game and gives
* instructions on the rules to craps.
*/

void GiveInstructions (void)
{

printf (“Welcome to the craps table!\n\n ”);
printf (“To play craps, you start by rolling a pair of dice\n”);
printf (“ and looking at the total. If the total is 2, 3, or\n”);
printf (“12, that’s called ‘crapping out’ and you lose. If\n”);
printf (“you roll a 7 or an 11, that’s called a ‘natural’ an\n”);
printf (“you win. If you roll any other number, that number\n”);
printf (“becomes your ‘point’ and you keep on rolling until\n”);
printf (“you roll your point again (in which case you win”);
printf (“or a 7 (in which case you lose).\n”);

}

/*
* Function: playCrapsGame
* Usage: playCrapsGame ();
* -----------------------------------
* This function plays one game of craps.
*/

void playCrapsGame (void)
{

int total, point;

printf (“\nHere we go!\n”);
total = RollTwoDice ();
if (total == 7 || total == 11) {

printf (“Tha t’s a natural. You win.\n”);
} else if (total == 2 || total == 3 || total == 12) {

printf (“ Tha t’s craps. You lose.\n”);
} else {

point = total;
printf (“Your point is %d.\n”, point);
while (TRUE) {

total = RollTwoDice ();
if (total == point) {

printf (“You made your point. You win.\n”);
break;

} else if (total == 7) {
printf (“Tha t’s a seven. You lose. \n”);
break;

}
}

}

}

/*
* Function: RollTwoDice
* Usage: total = RollTwoDice ();
* ---------------------------------------
* This function rolls two dice and returns their sum. As part
* Of the implementation, the result is displayed on the screen.
*/

int RollTwoDice (void)
{

int d1, d2, total;

printf (Rolling the dice…\n”);
d1 = RandomIn teger (1, 6);
d2 = RandomIn teger (1, 6);
total = d1 + d2;
printf (“You rolled %dand %d -- that ‘s %d.\n”, d1, d2, total);
return (total);

}

/*
* Function: GetYesOrNo
* Usage: if (GetYesOrNo (promp t))…
* ---
* This function asks the user the question indicated by promp t
* and waits for a yes/no response. If the use answers “yes”
* or “no” , the program returns TRUE or FALSE accordingly .
* If the user gives any other response, the program asks
* the question again.
*/

bool GetYesOrNo (string promp t)
{

string answer;

while (TRUE) {
printf (%s”, promp t);
answer = GetLine ();
if (StringEqual (answer, “yew”)) return (TRUE);
if (StringEqual (answer, “no”)) return (FALSE);
printf (“Please answer yes or no.\n”);

}
}

To illustrate the use of the package, a program called craps.c is shown in Figure 8-8.
This program simulates the casino game of craps, which is played as follows. You start by
rolling two six-sided dice and looking at the total. The game then breaks down into the
following cases based on that first roll:

 You roiled a 2, 3, or 12. Rolling these numbers on your first roll is called crapping out
and means theta you lose.

 You roiled a 7 or an 11. When either of these numbers comes up on your first roll, it is
called a natural, and you win.

 You rolled one of the other numbers (4, 5, 6, 8, 9, or 10). In this case, the number you
rolled is called you point, and you continue to roll the dice until either you roll your
point a second time, in which case you win, or you roll a 7, in which case you lose. If
you roll any other number (including 2, 3, 11, and 12, which are no longer treated

specially), you just keep on rolling until your point or a 7 appears.

The program itself is a straightforward translation of the English rules into C code. As
you look through the raps.c program, you should notice the following features:

 The program includes the interface random.h so it can use the functions in that library.
Moreover, the program uses only the functions in that library and never calls rand (or
srand or time) directly. The random number sequence is initialized by calling Randomize ,
and each die roll is generated by a call to RandomIn teger .

 The program is broken up into units that successively indicate greater detail. This
decomposition helps to highlight the program structure and makes it possible for you
to understand how the pieces fit together.

 The problem of rolling two dice comes up at several points in the program, so the
combined action of simulating the roll of two dice, displaying the result, and
remembering the total is encapsulated into the function RollTwoDice, which can be used
in other contexts as well.

SUMMARYSUMMARYSUMMARY

SUMMARY

In this chapter, you have had the chance to consider the process of writing an interface
and its corresponding implementation. At one level, you have learned about the syntactic
structure of an interface and the components it contains. You have also learned several
more general principles of interface design—principles that will prove extremely important
as you begin to solve larger tasks. Finally, you had the opportunity to see those design
principles as they were applied to the construction of the random.h interface.

Important points introduced in this chapter include:

 The challenge of constructing an interface lies in the design of hte interface rather than
its coding.

 A well-designed interface must be unified, simple, sufficient , general, and stable.
Since these criteria sometimes conflict with each other, you must learn to strike an
appropriate balance in your interface design.

 All the functions defined in an interface should fit a unifying theme and be as
consistent as possible in their behavior.

 A main purpose of an interface is to keep the complexity of the implementation away
from its clients. This principle is called information hiding.

 The abstraction represented by an interface must be powerful enough to satisfy the
needs of its clients.

 An interface that is designed to be general enables many different clients to use the
same library package.

 Clients must be able to rely on the stability of the interfaces they use. Changing an
interface is a serious matter and not one to be undertaken lightly. On the other hand,
maintaining a stable interface allows the implementor considerable freedom to change
the underlying implementation.

 Programs can simulate random behavior by using an algorithmic process to generate a
sequence of numbers that appears to be random. The numbers in such a sequence are
called pseudo-random numbers .

 The ANSI library defines a function rand that returns a pseudo-random number
between 0 and RAND_MAX.

 You can change the range of the pseudo-random numbers by applying simple
arithmetic operations.

 The definitions exported by an interface are called interface entries. The most
common interface entries are function prototype, constant definitions, and type
definitions. The interface should also contain comments for each entry so the client
can understand how to use that entry.

 To ensure that the compiler reads an interface only once, every interface should
include these lines before the first interface entry:

#ifnde f _name_h
#define _name_h

and this line at the end of the interface file:

#endif

 Unless you take special action, the rand function generates the same sequence of
random numbers every time the program is run. To generate an unpredictable
sequence, you must change the initial random-number seed. When you are using the
random.h interface, the easiest way to set the seed is by calling the function Randomize .

 Each interface must include any header files that are necessary for the compiler to
understand the interface itself . An interface should not include header files that are
required only by the underlying implementation.

 If you want to work with pseudo-random numbers in your programs, you should use
the random.h interface, which exports the functions Randomize, RandomIn teger , RandomR eal ,
and RandomChance . Using this interface is much simpler than working directly with rand.

REVIEWREVIEWREVIEW

REVIEW

QUESTIONSQUESTIONSQUESTIONS

QUESTIONS

1. True or false: The hardest thing about writing an interface is following all of C’s
syntactic rules.

2. What are the five criteria for good interface design listed in this chapter?
3. What is an abstraction boundary?
4. Why is it important for an interface to be stable?
5. What is meant by the term pseudo-random number?
6. On most computers, how is the value of RAND_MAX chosen?
7. What four steps are necessary to convert the result of rand into an integer value with a

different range?
8. How would you use RandomIn teger to generate a pseudo-random number between 1 and

100?
9. By executing each of the statements by hand, determine whether RandomIn teger works

with negative arguments. What are the possible results of calling the function
RandomIn teger (-5, 5)?

10. Could you use the multiple assignment statement

d1 = d2 = RandomIn teger (1, 6);

to simulate the process of rolling two dice?
11. What are the three most common interface entries?
12. If you were defining an interface named magic.h, what would the interface boilerplate

look like? What is the purpose of these lines?
13. True or false: the rand function ordinarily generates the same sequence of random

numbers every time a program is run.
14. What is meant by the term seed in the context of random numbers?
15. What suggestion does this chapter offer for debugging a program involving random

numbers?
16. What functions are defined in the final version of the random.h interface? In what

context would you use each function?

PROGRAMMINGPROGRAMMINGPROGRAMMING

PROGRAMMING

EXERCISESEXERCISESEXERCISES

EXERCISES

1. Run the randtest.c program on your computer system. What is the value of RAND_MAX on
your machine?

2. Write a program that displays a random even number between 2 and 100.

3. Write a program that displays a random seven-digit phone number. The output should
adhere to the following rules, which apply in the United States:

 The output contains a hyphen between the third and fourth digit, as in 555-1968.
 Neither of the first two digits is 0 or 1. This rule has actually been dropped in

many parts of the United States, but you should nevertheless apply it for the
purpose of this problem. Thus your program might generate the number 781-
9902 but not the number 718-9902.

4. Write a program that displays the name of a card randomly chose from a complete
deck of 52 playing cards. Each card consists of a rand (ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack,
queen, king) and a suit (clubs, diamonds, hearts, spades). Your program should

display the complete name of the card, as shown in the following sample run:

5. Heads…
Heads…
Heads…
A weaker man might be moved to re-examine his faith, if in nothing else at least in the

Queen of Spades

law of probability.





RosencrantzRosencrantzRosencrantz

Rosencrantz

andandand

and

GuildensternGuildensternGuildenstern

Guildenstern

AreAreAre

Are

Dead,Dead,Dead,

Dead,

TomTomTom

Tom

Stoppard,Stoppard,Stoppard,

Stoppard,

196719671967

1967

Write a program that simulates flipping a coin repeatedly and continues until three
consecutive heads are tossed. At that point, your program should display the total number
of coin flips that were made. The following is one possible sample run of the program:

6. Although it is often easiest to think of random numbers in the context of games of
chance, they have other, more practical uses in computer science and mathematics. For
example, you can use random numbers to generate a rough approximation of the
constantлby writing a simple program that simulates a dart board. Imagine that you
have a dart board hanging on your wall. It consists of a circle painted on a square
backdrop, as in the following diagram:

What happens if you throw a whole bunch of darts completely randomly, ignoring any
darts that miss the board altogether? Some of the darts will fall inside the painted
circle, but some will be outside the circle in the white corners of the square. Because
you threw the darts randomly, the ratio of the number of darts that landed inside the
circle to the total number of darts hitting the sequare should be approximately equal to
the ratio between the two areas. The ratio of the areas is independent of the actual size
of the dart board, as illustrated by the following formula:

To simulate this process in a program, imagine that the dart board is drawn on the
standard coordinate plane introduced in the section on “The underlying model for
graphics.h” in Chapter 7, with its center at the origin and a radius of 1 unit. The process
of throwing a dart randomly at the square can be modeled by generating two random
number, x and y, each of which lies between –1 and 1. This (x, y) point always lies

tails
heads
heads
tails
tails
heads
tails
heads
heads
heads
It took 10 flips to get heads 3 consecutive times.

darts falling inside the circle
darts falling inside the circle

 area of the circle
area of the square 44 2

2 


r
r

122  yx

somewhere inside the square. The point (x, y) lies inside the circle if

This condition, however, can be simplif ied considerably by squaring each side of the

inequality, which gives the following more efficient test:

If you perform this simulation many times and compute the fraction of darts that fall
within the circle, The result will be somewhere in the neighborhood ofл/4.

Write a program that simulates throwing 10,000 darts and then uses the
simulation technique described in this exercise to generate and display an approximate
value ofл . Don’t worry if your answer is correct only in the first few digits. The
strategy used in this problem is not particularly accurate, even through it occasionally
proves useful as a technique for making rough approximations. In mathematics, this
technique is called Monte Carlo integration, after the capital city of Monaco.

7. Albert Einstein said that “I shall never believe that God plays dice with the world.”
Despite Einstein’s metaphysical objections, the current models of physics, and
particularly of quantum theory, are based on the idea that nature does indeed involve
random processes. A radioactive atom, for example, does not decay for any specific
reason that we mortals understand. Instead, that atom has a random probability of
decaying within a period of time. Sometimes it does, sometimes it doesn’t, and there
is no way to know for sure.

Because physicists consider radioactive decay a random process, it is not
surprising that random numbers can be used to simulate that process. Suppose you
start with a collection of atoms, each of which has a certain probability of decaying in
any unit of time. You can then approximate the decay process by taking each atom in
turn and deciding randomly whether it decays, considering the probability.

Write a program that simulates the decay of a sample that contains 10,000 atoms
of radioactive material, where each atom has a 50 percent chance of decaying in a year.
The output of your program should be a table showing the year and the number of
atoms remaining, such as the table shown in this sample run:

As the numbers indicate, roughly half the atoms in the sample decay each year. In

122  yx

Year Atoms left
------ -------------

0 10000
1 4969
2 2464
3 1207
4 627
5 311
6 166
7 89
8 40
9 21
10 8
11 4
12 1
13 0

physics, the conventional way to express this observation is to say that the sample has
a half-lifeof one year.

8. As computers become more common in schools, it is important to find way to use the
machines to aid in the teaching process. This need has led to the development of an
educational software industry that has produced many programs that help teach
concepts to children.

As an example of an educational application, write a program that poses a series
of simple arithmetic problems for a student to answer, as illustrated by the following
sample run:

Your program should meet these requirements:

 It should ask a series of five questions. As with any such limit, the number of
questions should be coded as a #define constant so that it can easily be changed.

 Each question should consist of a single addition or subtraction problem
involving just two numbers, such as “What is 2 + 3?” or “What is 11 – 7?”. The
type of problem—addition or subtraction—should be chosen randomly for each
question.

 To make sure the problems are appropriate for students in the first or second
grade, none of the numbers involved, including the answer, should be less than 1
or greater than 20. This restriction means that your program should never ask
questions like “What is 11 + 13?” or “What is 4 – 7?” because the answers are
outside the legal range. Within these constraints, your program should choose the
numbers randomly.

 The program should give the student three chances to answer each question. If
the student gives the correct answer, your program should indicate that fact in
some properly congratulatory way and go on to the next question. If the student
does not get the answer in three tries, the program should give the answer and go
on to another problem.

9. Even though the program in exercise 8 was designed to offer encouragement when the
student responds correctly, the monotonous repetition of a sentence like “That’s the
answer!” has the opposite effect after a while. To add variety to the interaction,
modify your solution to exercise 8 so that it randomly chooses among four or five

Welcome to Math Quiz!
What is 14 + 2? 161616

16





Tha t’s the answer!
What is 17 – 15? 171717

17





Tha t’s incorrect. Try a differen t answer: 151515

15





Tha t’s incorrect. Try a differen t answer: 333

3





No, the answer is 2.
What is 20 – 16? 444

4





Tha t ‘s the answer!
What is 9 + 4? 111111

11





Tha t’s incorrect. Try a differen t answer: 131313

13





Tha t ‘s the answer!
What is 11 – 1? 101010

10





Tha t’s the answer!

different messages when the student gets the right answer, as illustrated in this sample

run:

10. Using the graphics library presented in Chapter 7, write a program that draws a set of
10 circles with different sizes and positions. Each circles should have a randomly
chose radius between 0.05 and 0.5 inches and should be positioned at a random
location in the drawing window, subject to the condition that the entire circle must fit
inside the window without extending past the edge. The following sample run shows
one possible outcome:

11. Imagine that you live in a well-planned city laid out so that its streets and avenues
form blocks that are precisely square, as in this diagram:

Suppose your office is located at the northeast corner of the map and you want to walk
to your home in the southwest corner. Even if you don’t want to back track or go out of
your way, there are still many possible routes for getting home. At each intersection,
you can choose randomly to go west or south. When you reach the southern or western
edge of the map, you can just head home along that roadway. For example, the colored

Welcome to Math Quiz!
What is 14 + 2? 161616

16





Correct!
What is 17 – 15? 222

2





You got it. The answer is 2.
What is 20 – 16? 444

4





You got it. The answer is 4.
What is 9 + 4? 131313

13





Tha t’s incorrect. Try a differen t answer: 131313

13





Correct!
What is 11 – 1? 101010

10





Tha t’s the answer!

line in the following diagram shows one random route:

Write a program that uses the graphics library to trace out a random path through the
city. You should start by moving the pen to the intersection in the upper right corner.
From there, you draw a line either horizontally or vertically to get yourself to the next
intersection, choosing the direction at random. Continue this process until you get
home, making sure you don’t run off the map.

Your program should not try to draw the entire map; it is enough just to show the
path. If you want more practice using the graphics library, however, you could try to
draw the entire figure shown in the example showing the random path. The make the
heavy line for the random path, you need to draw two straight lines, one of each side
of the actual grid lines.

12. In casinos from Monte Carlo to Las Vegas, one of the most common gambling devices
is the slot machine —the “one-armed bandit.” A typical slot machine has three wheels
that spin around behind a narrow window. Each wheel is marked with the following
symbols: CHERRY, LEMON, ORANGE, PLUM, BELL, and BAR. The window, however, allows
you to see only one symbol on each wheel at a time. For example, the window might
show the following configuration:

If you put a silver dollar into a slot machine and pull the handle on its side, the wheels
spin around and eventually come to rest in some new configuration. If the
configuration matches one of a set of winning patterns printed on the front of the slot
machine, you get back some money. If not, you’re out a dollar. The following table
shows a typical set of winning patterns, along with their associated payoffs:

BAR BAR BAR pays $250
BELL BELL BELL/BAR pays $20
PLLUM PLUM PLUM/BAR pays $14
ORANGE ORANGE ORANGE/BAR pays $10

BELL ORANG
E

BAR

CHERRY CHERRY CHERRY pays $7
CHERRY CHERRY - pays $5
CHERRY - - pays $2

The notation BELL/BAR means that either a BELL or a BAR can appear in that position, and
the dash means that any symbol at all can appear. Thus, getting a CHERRY in the first
position is automatically good for two dollars, no matter what appears on the other
wheels. Note that there is never any payoff for the LEMON symbol, even if you happen
to line them up three of them.

Write a program that simulates playing a slot machine. Your program should
provide the user with an initial stake of $50 and then let the user play until either the
money runs out or the user decides to quit. During each round, your program should
take away a dollar, simulate the spinning of the wheels, evaluate the result, and pay
the user any appropriate winnings. For example, a user might be lucky enough to see
the following sample run:

Even though doing so is not realistic (and would make the slot machine unprofitable
for the casino), you should assume that each of the six symbols is equally likely on
each wheel.

13. Chapter 7 defined several general functions for creating graphical figures that are
useful enough to put into a separate library. These include DrawBox, DrawCenteredBOx,
DrawCenteredCircle , DrawTriangle , and DrawGrid. Define a new interface gfigures.h that exports
those five functions, and write the corresponding gfigures.h file to implement that
interface. Rewrite the house.c program (Figure 7-7) so that it uses your new interface.

14. The calendar.c program in Chapter 5 includes several functions that are general enough
to consider including in a library. It is easy to imagine, for example, that clients other

Would you like instructions? no
You have $50. Would you like to play? yesyesyes

yes





PLUM LEMON LEMON -- you lose
You have $49. Would you like to play? yesyesyes

yes





PLUM BAR LEMON -- you lose
You have $48. Would you like to play? yesyesyes

yes





BELL LEMON ORANGE -- you lose
You have $47. Would you like to play? yesyesyes

yes





CHERRY CHERRY ORANGE -- you win $5
You have $51. Would you like to play? yesyesyes

yes





LEMON ORANGE BAR -- you lose
You have $50. Would you like to play? yesyesyes

yes





PLUM BELL PLUM -- you lose
You have $49. Would you like to play? yesyesyes

yes





BELL BELL BELL -- you win $20
You have $68. Would you like to play? yesyesyes

yes





CHERRY PLUM LEMON -- you win $2
You have $69. Would you like to play? yesyesyes

yes





ORANGE BAR PLUM -- you lose
You have $68. Would you like to play? yesyesyes

yes





ORANGE PLUM BELL -- you lose
You have $67. Would you like to play? yesyesyes

yes





BAR BAR BAR -- you win $250
You have $316. Would you like to play? nonono

no





