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Introduction 

Safety-Critical systems are those systems whose failure  

could result in loss of life, cause significant property  

damage or cause damage to the environment.  These  

complex systems tend to have sufficient kinetic or potential  

energy which can become uncontrollable and thus pose  

a hazardous condition.  Therefore,  these systems 

must be designed in such a way as to guarantee system  

stability during all of  the system operational modes.   

Furthermore, when a fatal fault occurs, the system safely  

shuts down.  



Definition of   

Real-time Embedded System 

Micro-Controller(s) 

System Under Control 

Real-time Embedded System in its simplest form is depicted below: 

  



Definition of  

Critical Applications 

• Computer based systems used in avionics, chemical 

process, transport and nuclear power plants. 

• A failure in the system endangers human lives 

directly or through environment pollution and  

Influence is on a large economic scale. 



Definition 

• Safety: 

   Safety is a property of a system that it will not 
endanger human life or the environment. 

• Safety-Critical System:   

   A system that is intended to achieve, on its own, 
the necessary level of safety integrity for the 
implementation of the required safety functions. 

 



Developing Safety-Critical Systems 

• To achieve the safety objective: 

    - well-defined system safety requirements  

      (hazards & risks analyzed) 

    - quality management (auditing process) 

    - design  / system architecture (reliability analysis) 

    - defined design/manufacture processes  

    - certification and approval processes  

    - known behaviour of the system in all conditions 

 

 

  

 



Software Development 

• To achieve the safety objective: 

 - Safety requirements which address all system specifications 

 - Quality Control Processes for Validation & Verification 

 - Software Design Description  

 - Certification and approval  (according to a guideline) 

 - Extensive software development testing  

      (functional and code coverage) 

 - Extensive system integration testing  

       (control laws, software and hardware) 

 - Complete set of documentation which supports the software 

       development life cycle. 

 



The Need For Certification 

As the Embedded systems began to be used for the consumer  

market,  several certification standards for different industries 

were developed: 

 

IEC 880 -  Nuclear Safety - 1986 

IEC 601 -  Medical  Safety – 1996 

CENELEC EN 50128 – Railway Safety - 2001 

MISRA - Motor Industry Safety – UK 1994 

IEC 61508 - Programmable Electronic Safety – Geneva 1998 

RTCA DO-178B – Airborne Systems Safety - 1992 

 



Risk Analysis 

• Severity :      - Catastrophic – multiple deaths >10 

    - Critical – a death or severe injuries 

   - Marginal – a severe injury 

                         - Insignificant – a minor injury  

 

• Frequency Categories: 

 Frequent    0,1 events/year  

 Probable 0,01 

 Occasional 0,001 

 Remote 0,0001 

 Improbable 0,00001 

 Incredible 0,000001 

   

 



Risk acceptability 

Tolerable Hazard Rate (THR) – A hazard rate which 

guarantees that the resulting risk does not exceed a 

target individual risk. 

 

SIL 4 = 10-9  < THR < 10-8               

SIL 3 =  10-8  < THR < 10-7 

SIL 2 = 10-7  < THR < 10-6             

SIL 1 = 10-6  < THR < 10-5 

 

SIL  = Safety Integrity Level  

 

 

 

 

 



Safety-Critical  Software 

Specification 



Safety-Critical  Software Design 

 



Safety-Critical  Software 

Implementation 



Safety-Critical  Software Verification 

 



V - Lifecycle model for SIL3 



V - Lifecycle model for SIL4 

X 

X 

X 

Verification 

Validation 



Event-B 

 
• State-transition model (like ASM, B, VDM, Z) 

– set theory as mathematical language 

• Refinement  (based on action systems by Back) 

– data refinement 

– one-to-many event refinement 

– new events (stuttering steps) 

• Proof method 

– Refinement proof obligations (POs) generated from 
models 

– Automated and interactive provers for POs 

 



Access Control System 

 

• Users are authorised to engage in activities 

• User authorisation may be added or revoked 

• Activities take place in rooms 

• Users gain access to a room using a one-time 
token provided they have authority to engage in 
the room activities 

• Tokens are issued by a central authority 

• Tokens are time stamped 

• A room gateway allows access with a token 
provided the token is valid   



Extracting the essence 

 
• Access Control Policy: Users may be in a 

room only if they are authorised to engage in 
all activities that may take place in that room 

 

• To express this we only require Users, Rooms, 
Activities and relationships between them 

 

• Abstraction: focus on key entities in the 
problem domain  

 



Diagrammatic Representation 

 

USER ACTIVITY 

ROOM 

authorised 

takeplace 
location 



Variables and Invariants 

 

Variables of Event-B model 
  @inv1 authorised  ∈  User ↔ Activity // relation 
  @inv2 takeplace  ∈  Room ↔ Activity // relation 

  @inv3 location  ∈  User ⇸ Room // partial function 

 
Access control invariant:   
if user u is in room r,  
then u must be authorised to engaged in all activities that can take 
place in r 
  @inv4 ∀u,r .  u∈dom(location) ∧ location( u ) = r    ⇒    
     takeplace[ r ]  ⊆ authorised[ u ] 
 



State snapshots as tables 

 
Room Activity 

r1 a1 

r1 a2 

r2 a1 

takeplace 

User Activity 

u1 a1 

u1 a2 

u2 a2 

authorised 

User Room 

u1 r1 

u2 r2 

u3 

location 



Event for entering a room 

 

Enter   ≙     

when 

 grd1   :    u ∈ User  

 grd2   :    r ∈ Room  

 grd3   :    takeplace[ r ]   ⊆   authorised[ u ]   

then 

 act1   :    location(u)  :=  r  

end 

 

Does this event maintain the security invariant? 

 



Role of invariants and guards 

 

• Invariants: specify properties of model variables 
that should also remain true 
– violation of invariant is undesirable 

– use (automated) proof to verify invariant preservation 

 

• Guards: specify conditions under which events 
may occur 
– should be strong enough to ensure invariants are 

maintained 

– but not so strong that they prevent desirable behaviour 



Remove Authorisation 

 

RemoveAuth(u,a)   ≙     

when 

 grd1   :    u ∈ User  

 grd2   :    a ∈ Activity  

 grd3   :    u ↦ a  ∈  authorised  

then 

 act1   :    authorised := authorised  ∖  { u ↦ a }  

end 

 

Does this event maintain the security invariant? 


