
Safety-Critical Real-time Embedded

Software Development

Thiago Carvalho de Sousa

Alstom Transport Brazil – R&D Manager

University of São Paulo – Phd Candidate

June 15, 2011

Introduction

Safety-Critical systems are those systems whose failure

could result in loss of life, cause significant property

damage or cause damage to the environment. These

complex systems tend to have sufficient kinetic or potential

energy which can become uncontrollable and thus pose

a hazardous condition. Therefore, these systems

must be designed in such a way as to guarantee system

stability during all of the system operational modes.

Furthermore, when a fatal fault occurs, the system safely

shuts down.

Definition of

Real-time Embedded System

Micro-Controller(s)

System Under Control

Real-time Embedded System in its simplest form is depicted below:

Definition of

Critical Applications

• Computer based systems used in avionics, chemical

process, transport and nuclear power plants.

• A failure in the system endangers human lives

directly or through environment pollution and

Influence is on a large economic scale.

Definition

• Safety:

 Safety is a property of a system that it will not
endanger human life or the environment.

• Safety-Critical System:

 A system that is intended to achieve, on its own,
the necessary level of safety integrity for the
implementation of the required safety functions.

Developing Safety-Critical Systems

• To achieve the safety objective:

 - well-defined system safety requirements

 (hazards & risks analyzed)

 - quality management (auditing process)

 - design / system architecture (reliability analysis)

 - defined design/manufacture processes

 - certification and approval processes

 - known behaviour of the system in all conditions

Software Development

• To achieve the safety objective:

 - Safety requirements which address all system specifications

 - Quality Control Processes for Validation & Verification

 - Software Design Description

 - Certification and approval (according to a guideline)

 - Extensive software development testing

 (functional and code coverage)

 - Extensive system integration testing

 (control laws, software and hardware)

 - Complete set of documentation which supports the software

 development life cycle.

The Need For Certification

As the Embedded systems began to be used for the consumer

market, several certification standards for different industries

were developed:

IEC 880 - Nuclear Safety - 1986

IEC 601 - Medical Safety – 1996

CENELEC EN 50128 – Railway Safety - 2001

MISRA - Motor Industry Safety – UK 1994

IEC 61508 - Programmable Electronic Safety – Geneva 1998

RTCA DO-178B – Airborne Systems Safety - 1992

Risk Analysis

• Severity : - Catastrophic – multiple deaths >10

 - Critical – a death or severe injuries

 - Marginal – a severe injury

 - Insignificant – a minor injury

• Frequency Categories:

 Frequent 0,1 events/year

 Probable 0,01

 Occasional 0,001

 Remote 0,0001

 Improbable 0,00001

 Incredible 0,000001

Risk acceptability

Tolerable Hazard Rate (THR) – A hazard rate which

guarantees that the resulting risk does not exceed a

target individual risk.

SIL 4 = 10-9 < THR < 10-8

SIL 3 = 10-8 < THR < 10-7

SIL 2 = 10-7 < THR < 10-6

SIL 1 = 10-6 < THR < 10-5

SIL = Safety Integrity Level

Safety-Critical Software

Specification

Safety-Critical Software Design

Safety-Critical Software

Implementation

Safety-Critical Software Verification

V - Lifecycle model for SIL3

V - Lifecycle model for SIL4

X

X

X

Verification

Validation

Event-B

• State-transition model (like ASM, B, VDM, Z)

– set theory as mathematical language

• Refinement (based on action systems by Back)

– data refinement

– one-to-many event refinement

– new events (stuttering steps)

• Proof method

– Refinement proof obligations (POs) generated from
models

– Automated and interactive provers for POs

Access Control System

• Users are authorised to engage in activities

• User authorisation may be added or revoked

• Activities take place in rooms

• Users gain access to a room using a one-time
token provided they have authority to engage in
the room activities

• Tokens are issued by a central authority

• Tokens are time stamped

• A room gateway allows access with a token
provided the token is valid

Extracting the essence

• Access Control Policy: Users may be in a

room only if they are authorised to engage in
all activities that may take place in that room

• To express this we only require Users, Rooms,
Activities and relationships between them

• Abstraction: focus on key entities in the
problem domain

Diagrammatic Representation

USER ACTIVITY

ROOM

authorised

takeplace
location

Variables and Invariants

Variables of Event-B model
 @inv1 authorised ∈ User ↔ Activity // relation
 @inv2 takeplace ∈ Room ↔ Activity // relation

 @inv3 location ∈ User ⇸ Room // partial function

Access control invariant:
if user u is in room r,
then u must be authorised to engaged in all activities that can take
place in r
 @inv4 ∀u,r . u∈dom(location) ∧ location(u) = r ⇒
 takeplace[r] ⊆ authorised[u]

State snapshots as tables

Room Activity

r1 a1

r1 a2

r2 a1

takeplace

User Activity

u1 a1

u1 a2

u2 a2

authorised

User Room

u1 r1

u2 r2

u3

location

Event for entering a room

Enter ≙

when

 grd1 : u ∈ User

 grd2 : r ∈ Room

 grd3 : takeplace[r] ⊆ authorised[u]

then

 act1 : location(u) := r

end

Does this event maintain the security invariant?

Role of invariants and guards

• Invariants: specify properties of model variables
that should also remain true
– violation of invariant is undesirable

– use (automated) proof to verify invariant preservation

• Guards: specify conditions under which events
may occur
– should be strong enough to ensure invariants are

maintained

– but not so strong that they prevent desirable behaviour

Remove Authorisation

RemoveAuth(u,a) ≙

when

 grd1 : u ∈ User

 grd2 : a ∈ Activity

 grd3 : u ↦ a ∈ authorised

then

 act1 : authorised := authorised ∖ { u ↦ a }

end

Does this event maintain the security invariant?

