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Abstract new global path is planned. Lumelsky [7] initially assumes
the environment to be devoid of obstacles and moves the
The task of planning trajectories for a mobile robot has robot directly toward the goal. If an obstacle obstructs the
received considerable attention in the research literature. path, the robot moves around the perimeter until the point
Most of the work assumes the robot has a complete ancon the obstacle nearest the goal is found. The robot then
accurate model of its environment before it begins to proceeds to move directly toward the goal again. Pirzadeh
move; less attention has been paid to the problem of[9] adopts a strategy whereby the robot wanders about the
partially known environments. This situation occurs for environment until it discovers the goal. The robot
an exploratory robot or one that must move to a goal repeatedly moves to the adjacent location with lowest cost
location without the benefit of a floorplan or terrain map. and increments the cost of a location each time it visits it to
Existing approaches plan an initial path based on known penalize later traverses of the same space. Korf [3] uses
information and then modify the plan locally or replan the initial map information to estimate the cost to the goal for
entire path as the robot discovers obstacles with its each state and efficiently updates it with backtracking costs
sensors, sacrificing optimality or computational efficiency as the robot moves through the environment.
respectively. This paper introduces a new algorithm, D*,
capable of planning paths in unknown, partially known, ~ While these approaches are complete, they are also
and changing environments in an efficient, optimal, and suboptimal in the sense that they do not generate the

complete manner. lowest cost path given the sensor information as it is
acquired and assuming all known, a priori information is
1.0 Introduction correct. It is possible to generate optimal behavior by

computing an optimal path from the known map
information, moving the robot along the path until either it

through a field of obstacles to a goal. Most of this work ~ '€aches the goal or its sensors detect a discrepancy
assumes that the environment is completely known before between the map and the enwrpnment, updating the m"f‘p'
the robot begins its traverse (see Latombe [4] for a good @Nd then replanning a new optimal path from the robot's
survey). The optimal algorithms in this literature search a current I_ocatmn to the goal. A_Ithoug_h this brute-force,
state space (e.g., visibility graph, grid cells) using the dis- _repl_a_nnlng aPproaCh IS optlmal, It can be grossly
tance transform [2] or heuristics [8] to find the lowest cost |neff|C|ent., particularly in expansive e.nV|ronm¢nts where
path from the robot's start state to the goal state. Cost cant€ 902l is far away and little map information exists.

be defined to be distance travelled, energy expended, timeZeIinsky [15] increases efficiency by using a quadjtree
exposed to danger, etc, [13] to represent free and obstacle space, thus reducing the

number of states to search in the planning space. For
Unfortunately, the robot may have partial or no natural terrain, however, the map can encode robot
information about the environment before it begins its traversability at each location ranging over a continuum,
traverse but is equipped with a sensor that is capable othus rendering quad-trees inappropriate or suboptimal.
measuring the environment as it moves. One approach tc
path planning in this scenario is to generate a “global
path using the known information and then attempt to
“locally” circumvent obstacles on the route detected by
the sensors [1]. If the route is completely obstructed, a

The research literature has addressed extensively the
motion planning problem for one or more robots moving

This paper presents a new algorithm for generating
optimal paths for a robot operating with a sensor and a map
of the environment. The map can be complete, empty, or
contain partial information about the environment. For
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regions of the environment that are unknown, the map t(X) = CLOSEDIf X is no longer on th@©PEN list. For
may contain approximate information, stochastic models each stat&X , D* maintains an estimate of the sum of the
for occupancy, or even a heuristic estimates. The arc costs fronX tas given by thgath costfunction
algorithm is functionally equivalent to the brute-force, h(G, X. Given the proper conditions, this estimate is
optimal replanner, but it is far more efficient. equivalent to the optimal (minimal) cost from stxte to
G, given by the implicit functiom(G, X . For each state
The algorithm is formulated in terms of an optimal on theOPEN list (i.e.,{ ¥ = OPEN ), th&eyfunction,
find-path problem within a directed graph, where the arcs kG, ), is defined to be equal to the minimumho6, X
are labelled with cost values that can range over a pefore modification and all values assumedht®, X
continuum. The robot's sensor is able to measure arc costssincex was placed on th@PEN  list. The key function
in the vicinity of the robot, and the known and estimated classifies a stat¢ on tl@PEN list into one of two types:
arc values comprise the map. Thus, the algorithm can be g RAISE state if k G X<h(G, X , and &OWER state if
used for any planning representation, including visibility kG, ¥ = h(G, X . D* usesRAISE states on thOPEN list
graphs [5] and grid cell structures. The paper describes to propagate information about path cost increases (e.g.,
the algorithm, illustrates its operation, presents informal due to an increased arc cost) amdWER states to
proofs of its soundness, optimality, and completeness, andpropagate information about path cost reductions (e.g.,
then concludes with an empirical comparison of the due to a reduced arc cost or new path to the goal). The

algorithm to the optimal replanner. propagation takes place through the repeated removal of
) states from th©PEN list. Each time a state is removed
2.0 The D* Algorithm from the list, it isexpandedo pass cost changes to its
The name of the algorithm, D*, was chosen because it neighbors. These neighbors are in turn placed on the
resembles A* [8], except that it dynamicin the sense OPEN list to continue the process.
that arc cost parameters can change during the problem-
solving process. Provided that robot motion is properly States on th@PEN list are sorted by their key function

coupled to the algorithm, D* generates optimal trajecto- ~ value. The parametds, .~ is defined torba(k X) for
ries. This section begins with the definitions and notation all X such thatt(X) = OPEN . The parametéf,

used in the algorithm, presents the D* algorithm, and represents an important threshold in D*: path costs less
closes with an illustration of its operation. than or equal t& ., are optimal, and those greater than

Kmin May not be optimal. The paramekgy, is defined to
2.1 Definitions be equal td,, prior to most recent removal of a state

The objective of a path planner is to move the robot from the OPEN list. If no states have been removig,
from some location in the world to a goal location, such  is undefined.
that it avoids all obstacles and minimizes a positive cost
metric (e.g., length of the traverse). The problem space
can be formulated as a setstétesdenoting robot loca-
tions connected bglirectional arcs each of which has an
associated cost. The robot starts at a particular state and
moves across arcs (incurring the cost of traversal) to other
states until it reaches tigoal state, denoted bg . Every
statex excepG haskmckpointerto a next statey
denoted byp(X) = Y . D* uses backpointers to represent
paths to the goal. The cost of traversing an arc from state
Y to stateX is a positive number given by #éine cost
functionc(X, V) . If Y does not have an arcxo , then
c(X Y) is undefined. Two states aivd amdghborsin

An ordering of states denoted by, X} is defined to
be asequencef b(X ,,) = X, for all i such thati<i<N
and X %X for all(ij) such thal<i<js<N . Thus, a
sequence defines a path of backpointers f\gm X;to . A
sequence(X; X} is defined to brmonotonicif
(t(X;) = CLOSED and h(G X)<h(G, X,,)) or
(t(X) = OPEN andk(G, X) <h(G, X, ,) ) for alli such
that1<i<N. D* constructs and maintains a monotonic
sequenc€éG % , representing decreasing current or lower-
bounded path costs, for each stdte that is or was on the
OPEN list. Given a sequence of stafes Xy , skte  is
anancestorof stateX; ifl<i<j<N and aescendanof

the space it(X, Y) oce(Y, X is defined. X if 1<j<i<N.
Like A* D* maintains anOPEN list of states. The For all two-state functions involving the goal state, the
’ following shorthand notation is useéX) =f(G, X)

OPEN list is used to propagate information about changes '~ ) X > ;
to the arc cost function and to calculate path costs to states-KeWise, for sequences the notatipr} ={G% s used.
in the space. Every state  has an associtgdX) The notatiorf(°) is used to refer to a function independent
such that(X) = NEW ifX has never been on theEN of its domain.

list, t(X) = OPEN if X is currently on theOPEN list, and



2.2 Algorithm Description cost are placed on th@PEN list, so that they will

The D* algorithm consists primarily of two functions: ~ Propagate the cost changes to their neighbors.
PROCESS STATENdMODIFY- COST.

PROCESS STATIS used to compute optimal path costs If X is a RAISE state, its path cost may not b_e optimal_.
to the goal, andlODIFY - COST is used to change the Bef_orex propagates cost _change_s to its neighbors, its
arc cost functior(®) and enter affected states on the optlr_nal neighbors are examme_d at lines L4 through L7 to
OPEN list. Initially, {°) is set toNEW for all statest{ Q see ifh(X) can be reduced. At lines L15 through_L18, cqst
is set to zero, an@  is placed on BEN list. The first Changes are propagatedN@w  states and immediate
function, PROCESS STATEIs repeatedly called until descendants in the same way aslfoOWER ~ states. If is
the robot's stateX , is removed from th@EN  list (i.e., 2Ple to lower the path cost of a state that is not an
t(X) = CLOSED) or a value of -1 is returned, at which immediate descendant (lines L20 and L24), s placed

point either the sequendex} has been computed or doesPack on theoPEN list for future expansion. It is shown in

not exist respectively. The robot then proceeds to follow th€ Next section that this action is required to avoid
the backpointers in the sequence until it either creating a closed loop in the backpointers. If the path cost

reaches the goal or discovers an error in the arc cost func-Of X iS able to be reduced by a suboptimal neighbor (lines
tion c(°) (e.g., due to a detected obstacle). The second 23 through L25), the neighbor is placed back on the
function, MODIFY— COST, is immediately called to cor- ~ OPEN list. Thus, the update is “postponed” until the
rectc(®) and place affected states on@REN list.yet  neighbor has an optimal path cost.

be the robot’s state at which it discovers an errat°n .

By calling PROCESS- STATEINtil it returnsc ;. 2h(Y) , Function: PROCESS-STATE ()
the cost changes are propagated to state  such that L1 X = MIN-STATH )

h(Y) = o(Y). At this point, a possibly new sequencé L2 if X = NULLthen return-1
has been constructed, and the robot continues to follow L3k , = GET- KMIN( ); DELETH ¥
the backpointers in the sequence toward the goal. L4 if k,<h(X) then
The algorithms for PROCESS STATE and >  foreachneighbor oK
MODIFY - COSTare presented below. The embedded L6 if h(Y) < kg @nAH(X) > h(Y) + (Y, ¥ then
routines areMIN —STATE , which returns the state on the L7 b(X) = Y; h(X) = h(Y) +c(Y, X
OPEN list with minimum K°) value ULL if the list is L8 if k4 = h(X) then

empty); GET— KMIN , which returng_ .~ for th@PEN L9 for each neighbov ok :
list (-1 if the list is empty) DELETH X , which deletes

. L10 if t(Y) = NEWor
stateX from theOPEN list and sets§ = CLOSED ; and B
INSERT X Q.. Which computesk(X) = h_ ., if L11 (b(v) = X andh(¥) #h(X) + (X ¥) ) or
t(X) = NEW, k(X = min(KX, h..,) if tX) = OPEN, and L12 (b(Y) # X andh(Y) > h(X) + ¢(X, V) ) then
kX) = min(h(X,h.) if tX) =CLOSED sets L13 b(Y) = X;INSERTY [ X+c(X V)
h(¥) = h,., andt(X) = OPEN, and places or re-positions L14 else
stateX on the@PEN list sorted b§?) . L15  for each neighbor ok

In functionPROCESS STATEt lines L1 through L3, L16 ift(v) = NEWor

the statex with the lowes®)  value is removed from the L17 (b(Y) = X andh(Y) # h(X) +c(X, V) ) then
OPEN list. If Xis a LOWERSstate (i.e.,k X= h(X) ), its L18 b(Y) = X;INSERTY b X+c(X VY)

path cost is optimal sindg€X) is equal to thelgld, At L19 else

lines L8 through L13, each neighber xf is examined [ oqg if b(Y) =X andh(Y)>h(X) +c(X, Y) then

to see if its path cost can be lowered. Additionally,

. . L INSERT X b )
neighbor states that aNEW  receive an initial path cost
value, and cost changes are propagated to each neighbol‘22 el§e
Y that has a backpointer % , regardless of whether the L23 if b(Y) # X andh(X) > h(¥) + (Y, ¥ and
new cost is greater than or less than the old. Since theselL24 t(Y) = CLOSEDandh(Y) >k, 4 then
states are descendantsxof , any change to the path cost cL.25 INSERTY b ¥

X affects their path costs as well. The backpointef of is | 26 returnGET- KMIN( )
redirected (if needed) so that the monotonic sequence
{Y} is constructed. All neighbors that receive a new path



In function MODIFY — COST, the arc cost function is

The planning space consists of a 50 x 50 gridedfs.

updated with the changed value. Since the path cost for Each cell represents a state and is connected to its eight

statey will changeX is placed on tllePEN  list. When
X is expanded vi®?ROCESS STATE, it computes a new
h(Y) = h(X)+c(X, Y) and placesr on th®PEN list.

neighbors via bidirectional arcs. The arc cost values are
small for theEMPTY cells and prohibitively large for the
OBSTACLEcells! The robot is point-sized and is

Additional state expansions propagate the cost to the equipped with a contact sensor. Figure 1 shows the results

descendants of

Function: MODIFY-COST (X, Y, cval)

L1 c(X Y = cval

L2 if t(X) = CLOSEDthenINSERT X b ¥
L3 returnGET- KMIN( )

2.3 lllustration of Operation

The role ofRAISE andLOWER states is central to the
operation of the algorithm. THRAISE states (i.e.,
k(X) <h(X)) propagate cost increases, anditbaVER
states (i.e.k(X) = h(X) ) propagate cost reductions. When
the cost of traversing an arc is increased, an affected
neighbor state is placed on td®EN list, and the cost
increase is propagated RAISE  states through all state
seguences containing the arc. ASR¥MSE states come
in contact with neighboring states of lower cost, these
LOWERSstates are placed on th@PEN  list, and they sub-
sequently decrease the cost of previously raised states
wherever possible. If the cost of traversing an arc is
decreased, the reduction is propagated G&/ER states
through all state sequences containing the arc, as well as
neighboring states whose cost can also be lowered.

Figure 1 Backpointers Based on Initial Propagation
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Figure 1 through Figure 3 illustrate the operation of the
algorithm for a “potential well” path planning problem.

of an optimal path calculation from the goal to all states in
the planning space. The two grey obstacles are stored in
the map, but the black obstacle is not. The arrows depict
the backpointer function; thus, an optimal path to the goal
for any state can be obtained by tracing the arrows from
the state to the goal. Note that the arrows deflect around
the grey, known obstacles but pass through the black,
unknown obstacle.

Figure 2 LOWER States Sweep into Well
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The robot starts at the center of the left wall and
follows the backpointers toward the goal. When it reaches
the unknown obstacle, it detects a discrepancy between
the map and world, updates the map, colors the cell light
grey, and enters the obstacle cell on OrREN list.
Backpointers are redirected to pull the robot up along the
unknown obstacle and then back down. Figure 2
illustrates the information propagation after the robot has
discovered the well is sealed. The robot’s path is shown in
black and the states on tilPEN  list in gréyAISE
states move out of the well transmitting path cost
increases. These states activVatBWER states around the

1. The arc cost value of OBSTACLE must be chosen to be
greater than the longest possible sequence of EMPTY cells so
that a simple threshold can be used on the path cost to determine
if the optimal path to the goal must pass through an obstacle.



“lip” of the well which sweep around the upper and lower optimal. This path is optimal, however, given the
obstacles and redirect the backpointers out of the well.  information the robot had when it acquired it.

Figure 3 Final Backpointer Configuration Figure 4: Path Planning with a Complete Map
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This process is complete when t®@WER  states reach
the robot’s cell, at which point the robot moves around the
lower obstacle to the goal (Figure 3). Note that after the
traverse, the backpointers are only partially updated.
Backpointers within the well point outward, but those in
the left half of the planning space still point into the well.
All states have a path to the goal, but optimal paths are
computed to a limited number of states. This effect
illustrates the efficiency of D*. The backpointer updates
needed to guarantee an optimal path for the robot are
limited to the vicinity of the obstacle.

Figure 4 illustrates path planning in fractally generated
terrain. The environment is 450 x 450 cells. Grey regions
are fives times more difficult to traverse than white
regions, and the black regions are untraversible. The black
curve shows the robot’s path from the lower left corner to
the upper right given a complete, a priori map of the
environment. This path is referred to @®niscient
optimal Figure 5 shows path planning in the same terrain
with an optimistic map (all white). The robot is equipped

with a circular field of view with a 20-cell radius. The Figure 6 illustrates the same problem using coarse map
map is updated with sensor information as the robot information, created by averaging the arc costs in each
moves and the discrepancies are entered oD REN listsquare region. This map information is accurate enough to

for processing by D*. Due to the lack of a priori map steer the robot to the correct side of the central

information, the robot drives below the large obstruction obstruction, and the resultant path is only 6% greater in
in the center and wanders into a deadend before cost than omniscient optimal.

backtracking around the last obstacle to the goal. The
resultant path is roughly twice the cost of omniscient



Figure 6: Path Planning with a Coarse-Resolution Map regardless of the pattern of access for functions
MODIFY- COSTandPROCESS STATE

For brevity, the proofs for the above three properties
are informal. See Stentz [14] for the detailed, formal
proofs. Consider Property 1 first. Whenever
PROCESS STATHRisits aNEW state, it assigng®) to
point to an existing state sequence and $€)s to
preserve monotonicity. Monotonic sequences are
subsequently manipulated by modifying the functions
t(°), h(°), k(°), andb(®°) . When a stat¢ is placed on the
OPEN list (i.e., {¥ = OPEN), k(X) is set toh(X)
preserve monotonicity for states with backpointerX to
Likewise, when a staté  is removed from the list,Hfap
values of its neighbors are increased if needed to preserve
monotonicity. The backpointer of a stateb()) , can only
be reassigned ts () <h(X) and if the sequefae
contains NnARAISE states. SindeY containsRIdSE
states, thén(°) value of every state in the sequence must
be less thah(Y) . Thu¥, cannot be an ancestwr of , and
a closed loop in the backpointers cannot be created.
3.0 Soundness, Optimality, and Therefore, once a sta’¥e  has been visited, the' sequence

Completeness {X} has been constructed. Subsequent modifications

o ensure that a sequen¢®} still exists.
After all statesx have been initializedt®) = NEW

andG has been entered onto ®REN list, the function Consider Property 2. Each time a state is inserted on or
PROCESS STATIG repeatedly invoked to construct removed from th@©PEN list, D* modifie$(°) values so
state sequences. The functid®DIFY- COST is thatk(X) < h(Y) + (Y, X for each pair of stat€%, Y)  such
invoked to make changes¢@)  and to seed these that X isOPEN andY isCLOSED. Thus, whenx is
changes on thePEN list. D* exhibits the following chosen for expansion (i.e, = k(X) ), tlEOSED
properties: neighbors ofX cannot redudgx)  beldy,, , nor can
the OPEN neighbors, since thekf®) values must be

Property 1: If t(X) #NEW, then the sequenceéX} is  greater thark ;. . States placed on GREN list during
constructed and is monotonic. the expansion oK must haw®) values greater than
k(X); thus,k_ ;. increases or remains the same with each
Property 2: When the valuek,,, returned by invocation of PROCESS STATE If states with(°)
PROCESS STATEquals or exceedb(X) , then values less than or equalitg, are optimal, then states
h(X) = o(X). with h(°) values between (inclusively) , amg,, are
optimal, since no states on td®EN list can reduce their
Property 3: If a path fromX toG exists, and the search path costs. Thus, states witft)  values less than or equal
space contains a finite number of statex} will be to k_,, are optimal. By inductionPROCESS STATE
constructed after a finite number of calls to constructs optimal sequences to all reachable states. If the
PROCESS STATE If a path does not exist, arc cost ¢(X Y is modified, the function
PROCESS STATH®iIll return -1 witht(X) = NEW. MODIFY- COSTplacesX onth®PEN list, after which
Kmin 1S l€ss than or equal tgX) . Since no state  with

Property 1 is a soundness property: once a state hasp(y)<n(x) can be affected by the modified arc cost, the
been visited, a finite sequence of backpointers to the goal property still holds.

has been constructed. Property 2 is an optimality property.

It defines the conditions under which the chain of Consider Property 3. Each time a state is expanded via
backpointers to the goal is optimal. Property 3 is a PROCESS STATHt places its’NEW neighbors on the
completeness property: if a path frotn  Go  exists, it OPEN list. Thus, if the sequencgX  exists, it will be
will be constructed. If no path exists, it will be reported in  constructed unless a state in the sequevice, , is never
a finite amount of time. All three properties hold selected for expansion. But once a state has been placed



on theOPEN list, itsK°) value cannot be increased.
Thus, due to the monotonicity &f .~ , the state  will
eventually be selected for expansion.

4.0 Experimental Results

D* was compared to the optimal replanner to verify its
optimality and to determine its performance improve-
ment. The optimal replanner initially plans a single path
from the goal to the start state. The robot proceeds to fol-
low the path until its sensor detects an error in the map.
The robot updates the map, plans a new path from the
goal to its current location, and repeats until the goal is
reached. An optimistic heuristic functigtX) is used to
focus the search, such thx) equals the “straight-line”
cost of the path fronx  to the robot’s location assuming
all cells in the path arEMPTY . The replanner repeatedly
expands states on tPEN list with the minimum
a(x) + h(X) value. Sincéy(X) is a lower bound on the
actual cost fronX to the robot for adl , the replanner is
optimal [8].

The two algorithms were compared on planning
problems of varying size. Each environment was square,
consisting of a start state in the center of the left wall and
a goal state in center of the right wall. Each environment
consisted of a mix of map obstacles (i.e., available to

robot before traverse) and unknown obstacles measurable

by the robot's sensor. The sensor used was
omnidirectional with a 10-cell radial field of view. Figure

7 shows an environment model with 100,000 states. The
map obstacles are shown in grey and the unknown
obstacles in black.

Table 1 shows the results of the comparison for
environments of size 1000 through 1,000,000 cells. The
runtimes in CPU time for a Sun Microsystems SPARC-10
processor are listed along with the speed-up factor of D*
over the optimal replanner. For both algorithms, the

reported runtime is the total CPU time for all replanning 51

needed to move the robot from the start state to the goal ) i !
h This paper presents D*, a provably optimal and effi-

state, after the initial path has been planned. For eac
environment size, the two algorithms were compared on
five randomly-generated environments, and the runtimes
were averaged. The speed-up factors for each

environment size were computed by averaging the speed-

up factors for the five trials.

The runtime for each algorithm is highly dependent on
the complexity of the environment, including the number,

for this result is that D* replans locally when it detects an
unknown obstacle, but the optimal replanner generates a
new global trajectory. As the environment increases in
size, the local trajectories remain constant in complexity,
but the global trajectories increase in complexity.

Figure 7: Typical Environment for Algorithm Comparison

Table 1: Comparison of D* to Optimal Replanner

Algorithm 1,000 10,000 100,000 1,000,000

Replanner 427 msec 14.45 sec 10.86 min 50.82 mip
D* 261 msec 1.69 sec 10.93 sec 16.83 sec|

Speed-Up 1.67 10.14 56.30 229.30

5.0 Conclusions

Summary

cient path planning algorithm for sensor-equipped robots.
The algorithm can handle the full spectrum of a priori map
information, ranging from complete and accurate map
information to the absence of map information. D* is a
very general algorithm and can be applied to problems in
artificial intelligence other than robot motion planning. In
its most general form, D* can handle any path cost opti-
mization problem where the cost parameters change dur-

size, and placement of the obstacles, and the ratio of mapind the search for the solution. D* is most efficient when

to unknown obstacles. The results indicate that as the
environment increases in size, the performance of D*
over the optimal replanner increases rapidly. The intuition

these changes are detected near the current starting point
in the search space, which is the case with a robot
equipped with an on-board sensor.



See Stentz [14] for an extensive description of related [6] Lumelsky, V. J., Mukhopadhyay, S., Sun, K., “Dynamic Path

applications for D*, including planning with robot shape,
field of view considerations, dead-reckoning error,

Planning in Sensor-Based Terrain Acquisition”, IEEE Transac-
tions on Robotics and Automation, Vol. 6, No. 4, August, 1990.

changing environments, occupancy maps, potential fields, [7] Lumelsky, V. J., Stepanov, A. A., “Dynamic Path Planning

natural terrain, multiple goals, and multiple robots.

5.2 Future Work
For unknown or partially-known terrains, recent

research has addressed the exploration and map building

problems [6][9][10][11][15] in addition to the path finding
problem. Using a strategy of raising costs for previously
visited states, D* can be extended to support exploration
tasks.

Quad trees have limited use in environments with cost

for a Mobile Automaton with Limited Information on the Envi-
ronment”, IEEE Transactions on Automatic Control, Vol. AC-
31, No. 11, November, 1986.

[8] Nilsson, N. J., “Principles of Artificial Intelligence”, Tioga
Publishing Company, 1980.

[9] Pirzadeh, A., Snyder, W., “A Unified Solution to Coverage
and Search in Explored and Unexplored Terrains Using Indirect
Control”, Proc. of the IEEE International Conference on Robot-
ics and Automation, May, 1990.

[10] Rao, N. S. V., “An Algorithmic Framework for Navigation
in Unknown Terrains”, IEEE Computer, June, 1989.

values ranging over a continuum, unless the environment [11] R0, N.S.V., Stoltzfus, N., lyengar, S. S., “A ‘Retraction’

includes large regions with constant traversability costs.
Future work will incorporate the quad tree representation
for these environments as well as those with binary cost

values (e.g.PBSTACLE andEMPTY ) in order to reduce
memory requirements [15].

Work is underway to integrate D* with an off-road

obstacle avoidance system [12] on an outdoor mobile

Method for Learned Navigation in Unknown Terrains for a Cir-
cular Robot,” IEEE Transactions on Robotics and Automation,
\ol. 7, No. 5, October, 1991.

[12] Rosenblatt, J. K., Langer, D., Hebert, M., “An Integrated
System for Autonomous Off-Road Navigation,” Proc. of the
IEEE International Conference on Robotics and Automation,
May, 1994.

[13] Samet, H., “An Overview of Quadtrees, Octrees and
Related Hierarchical Data Structures,” in NATO ASI Series, \Vol.

robot. To date, the combined system has demonstrated thEF4O, Theoretical Foundations of Computer Graphics, Berlin:

ability to find the goal after driving several hundred
meters in a cluttered environment with no initial map.
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