Python for Informatics

Exploring Data

Charles Severance

Python for Informatics

Exploring Information

Version 0.0.3

Charles Severance

©Nole

BY SA

Copyright © 2009, 2010 Charles Severance.

Printing history:

December 2009: Begin to producePython for Informatics: Exploring Informatioby re-mixing
Think Python: How to Think Like a Computer Scientist

June 2008: Major revision, changed title tdhink Python: How to Think Like a Computer Scientist

August 2007: Major revision, changed title thlow to Think Like a (Python) Programmer

April 2002: First edition ofHow to Think Like a Computer Scientist

This work is licensed under a Creative Commons Attribution-Share Alik&J8ported License. This
license is available ateativecommons.org/licenses/by-sa/3.0/

The original form of this book isALEX source code. Compiling thigsIeX source has the effect
of generating a device-independent representation of a textbookh whait be converted to other
formats and printed.

The BTEX source for théThink Python: How to Think Like a Computer Scientistsion of this book
is available fromhttp://www.thinkpython.com

The BTpX source for thePython for Informatics: Exploring Informatiomersion of the book is
available (for the moment) fronhttp://source.sakaiproject.org/contrib//csev/trunk/

pyinf/

The cover images were provided by Dr. Lada Adamic and are used ®iithigsion.

Preface

Python for Informatics: Remixing an Open Book

It is quite natural for academics who are continuously toldpublish or perish” to want
to always create something from scratch that is their owshfrereation. This book is
an experiment in not starting from scratch, but insteadniieing” the book titledThink
Python: How to Think Like a Computer Scientigitten by Allen B. Downey, Jeff Elkner
and others.

In December of 2009, | was preparing to te&iB02 - Networked Programmingat the
University of Michigan for the fifth semester in a row and dksd it was time to write a
Python textbook that focused on exploring data instead @étstanding algorithms and ab-
stractions. My goal in SI502 is to teach people life-longadaandling skills using Python.
Few of my students were planning to be be professional coenpuogrammers. Instead,
they planned be librarians, managers, lawyers, biolggestsnomists, etc. who happened
to want to skillfully use technology in their chosen field.

| never seemed to find the perfect data-oriented Python bookn§ course so | set out
to write just such a book. Luckily at a faculty meeting threeeks before | was about to
start my new book from scratch over the holiday break, Dr.l Rikash showed me the
Think Pythonbook which he had used to teach his Python course that semdisie a
well-written Computer Science text with a focus on shontecli explanations and ease of
learning.

As the copyright holder oThink Python Allen has given me permission to change the
book’s license from the GNU Free Documentation License &rtiore recent Creative
Commons Attribution — Share Alike license. This follows angeal shift in open doc-
umentation licenses moving from the GFDL to the CC-BY-SA.(iWikipedia). Using
the CC-BY-SA license maintains the book’s strong copyieftiition while making it even
more straightforward for new authors to reuse this mateddhey see fit.

The overall book structure has been changed to get to doitegadelysis problems as
quickly as possible and have a series of running examplesxardises about data analysis
from the very beginning.

The first 10 chapters are similar to tAdink Pythonbook but there have been some
changes. Nearly all number-oriented exercises have bedacesl with data-oriented ex-
erises. Topics are presented in the order to needed to baildasingly sophisticated data

Vi Chapter 0. Preface

analysis solutions. Some topics likg andcatch are pulled forward and presented as
part of the chapter on conditionals while other conceptsfilnctions are left until they are
needed to handle program complexity rather introduced asady lesson in abstraction.
The word “recursion” does not appear in the book at all.

In chapters 10-14, nearly all of the material is brand neayging on real-world uses and
simple examples of Python for data analysis including aatorg tasks on your computer,
retrieving data across the network, scraping web pagestar dsing web services, parsing
XML data, and creating and using databases using StrucQuedy Language.

Chapters 15-19 are included with very little change ffbinmk Python | do not cover these

chapters in my one-semester technology literacy courselude them primarily because
students may use them as reference to get a deeper undergtahflinctions, methods,

and objects. They also give students a nice view into theskafidcomputational thinking

that is needed to develop more sophosticated programs aablesbits of code. My hope
is that these chapters become more valuable as studentgthsa Beyond the course.

The ultimate goal of all of these changes is a shift from a QatempScience to an Infor-
matics focus is to only include topics into a first technolatpss that can be applied even
if one chooses not to become a professional programmer.

Students who find this book interesting and want to furth@tae probably should look at
the Think Pythorbook. Because there is a lot of overlap between the two babldents
will quickly pick up skills in the additional areas of commg in general which are covered
in Think Python And given that the books have a similar writing style andrags have
identical text and examples, you should be able to pick ugethew topics with a minimum
of effort.

| feel that this book serves an example of why open materials@aimportant to the future
of education, and want to thank Allen B. Downey and Cambridgeersity Press for their
forward looking decision to make the book available undespen Copyright. | hope they
are pleased with the results of my efforts and | hope that ieu¢ader are pleased with
our collective efforts.

Charles Severance
www.dr-chuck.com
July 25, 2011

Charles Severance is a Clinical Associate Professor at tinetsity of Michigan School
of Information.

Preface for “Think Python”

The strange history of “Think Python”
(Allen B. Downey)

In January 1999 | was preparing to teach an introductorynaraging class in Java. | had
taught it three times and | was getting frustrated. The faihate in the class was too high
and, even for students who succeeded, the overall levehiéament was too low.

vii

One of the problems | saw was the books. They were too big, twithmuch unnecessary
detail about Java, and not enough high-level guidance dmwto program. And they all

suffered from the trap door effect: they would start out easyceed gradually, and then
somewhere around Chapter 5 the bottom would fall out. Thaestis would get too much
new material, too fast, and | would spend the rest of the sempiking up the pieces.

Two weeks before the first day of classes, | decided to writ@wy book. My goals were:

« Keep it short. It is better for students to read 10 pages tizamead 50 pages.

» Be careful with vocabulary. | tried to minimize the jargomdadefine each term at
first use.

 Build gradually. To avoid trap doors, | took the most difficopics and split them
into a series of small steps.

« Focus on programming, not the programming language. uded the minimum
useful subset of Java and left out the rest.

| needed a title, so on a whim | chos®w to Think Like a Computer Scientist

My first version was rough, but it worked. Students did thelieg, and they understood
enough that | could spend class time on the hard topics, theesting topics and (most
important) letting the students practice.

| released the book under the GNU Free Documentation Licemisieh allows users to
copy, modify, and distribute the book.

What happened next is the cool part. Jeff Elkner, a high sdkacher in Virginia, adopted
my book and translated it into Python. He sent me a copy ofraisstation, and | had the
unusual experience of learning Python by reading my own book

Jeff and | revised the book, incorporated a case study bys@heiyers, and in 2001 we
releasedHow to Think Like a Computer Scientist: Learning with Pythalso under the

GNU Free Documentation License. As Green Tea Press, | pndithe book and started
selling hard copies through Amazon.com and college boaksi®ther books from Green
Tea Press are availablegatenteapress.com

In 2003 | started teaching at Olin College and | got to teadih@tyfor the first time. The
contrast with Java was striking. Students struggled lessned more, worked on more
interesting projects, and generally had a lot more fun.

Over the last five years | have continued to develop the bawmkecting errors, improving
some of the examples and adding material, especially eseexcln 2008 | started work on
a major revision—at the same time, | was contacted by an eglitGambridge University
Press who was interested in publishing the next edition.dGimaing!

I hope you enjoy working with this book, and that it helps yearh to program and think,
at least a little bit, like a computer scientist.

viii Chapter 0. Preface

Acknowledgements for “Think Python”
(Allen B. Downey)

First and most importantly, | thank Jeff Elkner, who tratestbmy Java book into Python,
which got this project started and introduced me to what hawetl out to be my favorite
language.

| also thank Chris Meyers, who contributed several sectioi$ow to Think Like a Com-
puter Scientist

And | thank the Free Software Foundation for developing tiNUG-ree Documentation
License, which helped make my collaboration with Jeff and$ossible.

| also thank the editors at Lulu who worked bBlow to Think Like a Computer Scientist

| thank all the students who worked with earlier versionshis book and all the contribu-
tors (listed in an Appendix) who sent in corrections and stjgns.

And | thank my wife, Lisa, for her work on this book, and GreeraPress, and everything
else, too.

Allen B. Downey
Needham MA

Allen Downey is an Associate Professor of Computer Scietdbe Franklin W. Olin
College of Engineering.

Contents

Preface %
1 Why should you learn to write programs? 1
1.1 Creativity and motivation 2
1.2 Computer hardware architecture 3
1.3 Understanding programming 4
1.4 The Python programming language 5
1.5 Whatisaprogram? e e 6
1.6 Whatisdebugging? 7
1.7 Building “sentences”inPython 9
1.8 Thefirstprogram 11
1.9 Debugging 11
1.10 Glossary v o e e e e 12
111 EXErCiSES o e 13
2 Variables, expressions and statements 15
21 Valuesandtypes. e 15
22 Variables. 16
2.3 Variablenamesandkeywords oL 17
2.4 Statements 18
2.5 Operatorsandoperands i 8 1
2.6 EXPressions e 19

Contents

2.7 Orderofoperations 20
2.8 Modulusoperator 20
2.9 Stringoperations 21
2.10 Askingtheuserforinput 21
211 Comments 22
2.12 Choosing mnemonic variablenames 23
213 Debugging e 24
214 GloSSary 25
215 EXercises 26
Conditional execution 29
3.1 Booleanexpressions. 9 2
3.2 Logicaloperators 30
3.3 Conditionalexecution 30
3.4 Alternative execution 31

3.5 Chainedconditionals 13
3.6 Nestedconditionals 23
3.7 Catching exceptions usingtryandexcept. 32
3.8 Short circuit evaluation of logical expressions 34
39 Debugging. 35
310 Glossary e 36
311 EXErCiSES o 37
Functions 39
41 Functioncalls 39
4.2 Built-infunctions 93
4.3 Typeconversionfunctions 40
44 Randomnumbers 41
4.5 Optional parameters 14
4.6 Glossary e 42

Contents Xi
4.7 Mathfunctions 42
4.8 Addingnewfunctions 43
49 Definitionsanduses 45
410 Flowofexecution 45
4,11 Parametersandarguments 46.
4.12 Fruitful functions and void functions 47
4,13 Whyfunctions? 48
414 Debugging 49
415 Glossary e 49
416 EXErCiSES o 50

5 lteration 51
5.1 Updatingvariables 51
5.2 Thewhile statement 51
53 Infiniteloops 52
5.4 “Infinite loops”andoreak L L 53
5.5 Finishing iterations witkontinue oL 55
5.6 Definite loopsusinér o 55
5.7 Looppatterns e e 56
58 Debugging. 59
5.9 Glossary e 59
5,10 EXEerCiSeS o i 60

6 Strings 61
6.1 Astringisasequence 61
6.2 Getting the length of astringusitep 62
6.3 Traversal through a string withf@ loop 62
6.4 Stringslices 63
6.5 Stringsareimmutable L 46
6.6 Searching 65

Xii

Contents

6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

Files
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

Lists
8.1
8.2
8.3
8.4
8.5
8.6

Looping and counting
Thein operator
String comparison
string methods
Parsing strings

Format operator
Debugging.
Glossary

Exercises

Persistence.

Opening files

Text files and lines

Reading files

Searching through a file
Letting the user choose the file name
Usingtry, catch,
Writingfiles
Debugging.
Glossary

Exercises

A listis a sequence
Lists are mutable
Traversing a list

List operations

Listslices

List methods

Contents Xiii
8.7 Deletingelements 93
8.8 Listsandstrings 94
89 Parsinglines 95
8.10 Objectsandvalues 96
8.11 Aliasing 97
8.12 Listarguments. 97
8.13 Debugging 99
8.14 Glossary e 102
8.15 EXErCiSES i i 103

9 Dictionaries 105
9.1 Dictionaryasasetofcounters 107
9.2 Dictionariesandfiles oo L. 081
9.3 Looping and dictionaries 109
9.4 Advancedtextparsing. 101
9.5 Debugging 112
9.6 Glossary 113
9.7 EXercises 113

10 Tuples 115
10.1 Tuplesareimmutable o o0 151
10.2 Comparingtuples 611
10.3 Tupleassignment 711
10.4 Dictionariesandtupleso 119
10.5 Multiple assignment with dictionaries 119
10.6 Themostcommonwords v 120
10.7 Usingtuples as keys indictionaries121
10.8 Sequences: strings, lists, and tuples—Oh My!122
10.9 Debugging e 123
10.10 Glossary o e 124
10.11 EXErCiSES . . . o v v i it i e e 125

Xiv Contents

11 Automating common tasks on your computer 127
11.1 Filenamesandpaths 7 12
11.2 Example: Cleaning up a photo directory128
11.3 Commandlinearguments 331
11.4 PIpesS o e e 135
115 GloSsary e 135
11.6 EXErCiSES i 136

12 Networked programs 139
12.1 HyperText Transport Protocol -HTTP139
12.2 The World's Simplest Web Browser 140
12.3 Retrieving web pageswithllib 0. 141
12.4 Parsing HTML and scrapingtheweb 142
125 Glossary 144
12.6 EXErCISES i e 145

13 Using Web Services 147
13.1 eXtensible Markup Language-XML 147
13.2 Parsing XML 148
13.3 Loopingthroughnodes 491
13.4 Application Programming Interfaces (API) 149
13.5 Twitterwebservices 501
13.6 Handling XML datafroman APl 52
13.7 Glossary 154
13.8 EXErCISES o e 154

14 Using databases and Structured Query Language (SQL) 155
141 Whatisadatabase? 155
14.2 Databaseconcepts. 551

14.3 SQLite Database Browser e 156

Contents

15

16

14.4
145
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13

Creating adatabasetable
Structured Query Language (SQL) summary
Spidering Twitter usinga database
Basicdatamodeling
Programming with multiple tables
Threekindsofkeys
Using JOIN toretrievedata
sSummary ... e
Debugging

Glossary

Advanced functions

151
15.2
15.3
154
155
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13

Returnvalues
Tuplesasreturnvalues
Variable-length argumenttuples
Variables and parametersarelocal
Globalvariables
Incremental development
Composition
Stackdiagrams
Boolean functions
Optional parameters
Debugging
Glossary e

Exercises

Classes and objects

16.1
16.2
16.3

User-definedtypes
Attributes

Rectangles

XVi

Contents

17

18

16.4
16.5
16.6
16.7
16.8
16.9

Classes and functions

17.1
17.2
17.3
17.4
17.5
17.6
17.7

Classes and methods

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12

Instances as return values
Objects are mutable
Copying
Debugging.
Glossary

Exercises

Prototyping versus planning
Debugging
Glossary

Exercises

Object-oriented features
Printing objects

Another example
A more complicated example
The init method
The__str __method
Operator overloading

Type-based dispatch

Polymorphism

Debugging.
Glossary

Exercises

Contents XVii

19 Inheritance 221
19.1 Cardobjects e 221
19.2 Classattributes 222
19.3 Comparingcards 223
19.4 Decks 225
19.5 Printingthedeck o 522
19.6 Add, remove, shuffleandsort 226
19.7 Inheritance. 122
19.8 Classdiagrams e 228
19.9 Debugging 229
19.10 Glossary e 230
19.11 EXErCISES . . . o o i i i e 231

A Debugging 235
Al SYyntaxerrors e 235
A2 RUNIMEEITOrS e e e e 237
A3 SemantiCerrors 240

B Contributor List 243

XViii Contents

Chapter 1

Why should you learn to write
programs?

Writing programs (or programming) is a very creative and relivey activity. You can
write programs for many reasons ranging from making youndj\o solving a difficult
data analysis problem to having fun to helping someone else s problem. This book
assumes thatveryoneneeds to know how to program and that once you know how to
program, you will figure out what you want to do with your newfal skills.

We are surrounded in our daily lives with computers rangiognflaptops to cell phones.
We can think of these computers as our “personal assistautitg’can take care of many
things on our behalf. The hardware in our current-day commguis essentially built to
continuously ask us the question, “What would you like me tmext?”.

What What What
Next? (Next? Next? @
What What What
Next? (Next? (Next? PDA

Programmers add and operating system and a set of applisatiche hardware and we
end up with a Personal Digital Assistant that is quite hdlphd calable of helping many
different things.

Our computers are fast and have vast amounts of memory atdi lmewery helpful to us

if we only knew the language to speak to explain to the conmpubet we would like it to
“do next”. If we knew this language we could tell the computedo tasks on our behalf
that were repetitive. Interestingly, the kinds of thingsngmuters can do best are often the
kinds of things that we humans find boring and mind-numbing.

For example, look at the first three paragraphs of this clhaptd tell me the most com-
monly used word and how many times the word is used. While yae able to read and

2 Chapter 1. Why should you learn to write programs?

understand the words in a few seconds, counting them is alpadsful because is is not
the kind of problem that human minds are designed to solveaomputer the opposite
is true, reading and understanding text from a piece of pagdeard for a computer to do
but counting the words and telling you how many times the misstd word was used is
very easy for the computer:

python words.py
Enter file:words.txt
to 16

Our “personal information analysis assistant” quicklydtak that the word “to” was used
sixteen times in the first three paragraphs of this chapter.

This very fact that computers are good at things that humemsat is why you need to
become skilled at talking “computer language”. Once youldais new language, you can
delegate mundane tasks to your partner (the computerjntgmore time for you to do the
things that you are uniquely suited for. You bring creagiviihtuition, and inventiveness to
this partnership.

1.1 Creativity and motivation

While this book is not intended for professional programmprsfessional programming

can be a very rewarding job both financially and personallyildihg useful, elegant, and

clever programs for others to use is a very creative activfigur computer or Personal

Digital Assistant (PDA) usually contains many differenbgrams from many different

groups of programmers, each competing for your attentiohaterest. They try their best

to meet your needs and give you a great user experience imabegs. In some situations,
when you choose a piece of software, the programmers amlgiommpensated because
of your choice.

If we think of programs as the creative output of groups ofgpaomers, perhaps the
following figure is a more sensible version of our PDA:

R
Fac) (Be) (B @

For now, our primary motivation is not to make money or pleasd-users, but instead
for us to be more productive in handling the data and infoionathat we will encounter

in our lives. When you first start, you will be both the prograemrand end-user of your
programs. As you gain skill as a programmer and programnaaly fnore creative to you,
your thoughts may turn toward developing programs for ather

1.2. Computer hardware architecture 3

1.2 Computer hardware architecture

Before we start learning the language we speak to give ictstns to computers to develop
software, we need to learn a small amount about how compatersuilt. If you were to
take apart your computer or cell phone and look deep insoewould find the following
parts:

Software
Central O“

Input Processing
Output Unit Network
Devices

Main s q

Memory econdary

Memory

The high-level definitions of these parts are as follows:

« TheCentral Processing Unit(or CPU) is that part of the computer that is built to be
obsessed with “what is next?”. If your computer is rated @t@igahertz, it means
that the CPU will ask “What next?” three billion times per sedoYou are going to
have to learn how to talk fast to keep up with the CPU.

« TheMain Memory is used to store information that the CPU needs in a hurry. The
main memory is nearly as fast as the CPU. But the informatiored in the main
memory vanishes when the computer is turned off.

» The Secondary Memoryis also used to store information, but it is much slower
than the main memory. The advantage of the secondary memtmgtiit can store
information even when there is no power to the computer. EMesnof secondary
memory are disk drives or flash memory (typically found in USiBks and portable
music players).

e The Input and Output Devices are simply our screen, keyboard, mouse, micro-
phone, speaker, touchpad, etc. They are all of the ways weatttwith the com-
puter.

» These days, most computers also haweavork Connection to retrieve informa-
tion over a network. We can think of the network as a very sltae@to store and
retrieve data that might not always be “up”. So in a sensenéteork is a slower
and at times unreliable form &econdary Memory

4 Chapter 1. Why should you learn to write programs?

While most of the detail of how these components work is béstdeeomputer builders, it
helps to have a some terminology so we can talk about thefeeatif parts as we write our
programs.

As a programmer, your job is to use and orchestrate each sé ttesources to solve the
problem that you need solving and analyze the data you neg@ pkogrammer you will
mostly be “talking” to the CPU and telling it what to do nexibrBetimes you will tell the
CPU to use the main memory, secondary memory, network, anphug/output devices.

Software

Central O

Input Processing
Output Unit Network

Devices

Main

Memory Secondary

Memory

You =—>»

You need to be the person who answers the CPU’s “What next&tigue But it would be

very uncomfortable to shrink you down to 5mm tall and insen ynto the computer just
so you could issue a command three billion times per secoadnsead, you must write
down your instructions in advance. We call these storedungbns gorogram and the act

of writing these instructions down and getting the instiutd to be corregbrogramming.

1.3 Understanding programming

In the rest of this book, we will try to turn you into a personawis skilled in the art

of programming. In the end you will be programmer — perhaps not a professional
programmer but at least you will have the skills to look at éaflaformation analysis

problem and develop a program to solve the problem.

In a sense, you need two skills to be a programmer:

« First you need to know the programming language (Pythomu-need to know the
vocabulary and the grammar. You need to be able spell thesaiorthis new lan-
guage properly and how to construct well-formed “sentehicehis new languages.

« Second you need to “tell a story”. In writing a story, you dmne words and sen-
tences to convey an idea to the reader. There is a skill ami@hstructing the story

1.4. The Python programming language 5

and skill in story writing is improved by doing some writingaggetting some feed-
back. In programming, our program is the “story” and the probyou are trying to
solve is the “idea”.

Once you learn one programming language such as Python, Yidind/it much easier to
learn a second programming language such as JavaScripttorite new programming
language has very different vocabulary and grammar but gagdearn problem solving
skills, they will be the same across all programming langsag

You will learn the “vocabulary” and “sentences” of Pythoretty quickly. It will take
longer for you to be able to write a coherent program to solbeaad new problem. We
teach programming much like we teach writing. We start regdind explaining programs
and then we write simple programs and then write increaginginplex programs over
time. At some point you “get your muse” and see the patterngooam own and can see
more naturally how to take a problem and write a program toles that problem. And
once you get to that point, programming becomes a very pitasa creative process.

We start with the vocabulary and structure of Python prograBe patient as the simple
examples remind you of when you started reading for the firss.t

1.4 The Python programming language

The programming language you will learn is Python. Pythoarisexample of aigh-
level language other high-level languages you might have heard of are G, €erl, Java,
Ruby, and JavaScript. At times, we will include a few exarap&the JavaScript language
to help cement the basic grammar ideas using two differestdbularies”.

There are alstow-level languagessometimes referred to as “machine languages” or “as-
sembly languages.” Loosely speaking, computers can ordgugg programs written in
low-level languages. So programs written in a high-levablzage have to be processed
before they can run. This extra processing takes some titmehvis a small disadvantage
of high-level languages.

However, the advantages are enormous. First, it is muckre@sprogram in a high-level
language. Programs written in a high-level language tadstlme to write, they are shorter
and easier to read, and they are more likely to be correctorfiedigh-level languages
are portable, meaning that they can run on different kinds of computets féw or no
modifications. Low-level programs can run on only one kindafputer and have to be
rewritten to run on another.

Due to these advantages, almost all programs are writteiginlavel languages. Low-
level languages are used only for a few specialized apicsit

Two kinds of programs process high-level languages into-lemel languages:inter-
preters andcompilers. An interpreter reads a high-level program and executessgning
that it does what the program says. It processes the progtatie @t a time, alternately
reading lines and performing computations.

6 Chapter 1. Why should you learn to write programs?

%
SOURCE INTERPRETER OUTPUT
CODE .

———a

A compiler reads the program and translates it completeigrbehe program starts run-
ning. In this context, the high-level program is called Hoeirce code and the translated
program is called thebject code machine codeor the executable Once a program is
compiled, you can execute it repeatedly without furthemgtation.

SOURCE COMPILER OBJECT EXECUTOR OUTPUT
CODE —| cope |

Python is considered an interpreted language becauserPythgrams are executed by an
interpreter. There are two ways to use the interpretéeractive modeandscript mode.
In interactive mode, you type Python programs and the ingéep prints the result:

>> 1+ 1
2
>>>

The chevrony>>, is theprompt the interpreter uses to indicate that it is ready. If you type
1 + 1, theinterpreter replied. The chevron is the Python interpreter’s way of asking you,
“What do you want me to do next?”. You will notice that as soorPgthon finishes one
statement it immediately is ready for you to type anothdaestant.

Typing commands into the Python interpreter is a great wagxperiment with Python’s
features, but it is a bad way to type in many commands to sofdera complex problem.
When we want to write a program, we use a text editor to writdPython instructions into
a file, which is called a&cript. By convention, Python scripts have names that end with

To execute the script, you have to tell the interpreter theenaf the file. In a UNIX or
Windows command window, you would typgthon dinsdale.py . In other development
environments, the details of executing scripts are differ&ou can find instructions for
your environment at the Python Websgitghon.org

Working in interactive mode is convenient for testing snpédices of code because you can
type and execute them immediately. But for anything mora th&ew lines, you should
save your code as a script so you can modify and execute ieifutbre.

1.5 Whatis a program?

A program is a sequence of instructions that specifies how to perforranapatation.
The computation might be something mathematical, suchlamga system of equations

1.6. What is debugging? 7

or finding the roots of a polynomial, but it can also be a syntbobmputation, such as
searching and replacing text in a document or (strangelygimocompiling a program.

The details look different in different languages, but a fesgic instructions appear in just
about every language:

input: Get data from the keyboard, a file, or some other device, pgulhecessary.
output: Display data on the screen or send data to a file or other device

sequential execution: Perform statements one after another in the order they amuan
tered in the script.

conditional execution: Check for certain conditions and execute or skip a sequehce o
statements.

repeated execution: Perform some set of statements repeatedly, usually witle s@ma-
tion.

reuse: Write a set of instructions once and give them a name and these tbose instruc-
tions as needed throughout your program.,

Believe it or not, that’s pretty much all there is to it. Evgmpgram you've ever used, no
matter how complicated, is made up of instructions that oty much like these. So you
can think of programming as the process of breaking a laayaptex task into smaller and
smaller subtasks until the subtasks are simple enough tetfermed with one of these
basic instructions.

That may be a little vague, but we will come back to this topkeew we talk aboualgo-
rithms.

1.6 What is debugging?

Programming is error-prone. For whimsical reasons, pragiag errors are calledugs
and the process of tracking them down is calliethugging

Three kinds of errors can occur in a program: syntax errorgjme errors, and semantic
errors. Itis useful to distinguish between them in orderack them down more quickly.

1.6.1 Syntax errors

Python can only execute a program if the syntax is correbgretise, the interpreter dis-
plays an error messag8yntaxrefers to the structure of a program and the rules about that
structure. For example, parentheses have to come in mgtphirs, sl + 2) is legal,
but8) is asyntax error.

In English readers can tolerate most syntax errors, whiafnyswe can read certain abstract
poetry. Python is not so forgiving. If there is a single syn&ror anywhere in your

8 Chapter 1. Why should you learn to write programs?

program, Python will display an error message and quit, andwill not be able to run
your program. During the first few weeks of your programmiageer, you will probably
spend a lot of time tracking down syntax errors. As you gaipeeience, you will make
fewer errors and find them faster.

1.6.2 Runtime errors

The second type of error is a runtime error, so called bedheserror does not appear until
after the program has started running. These errors areallsoexceptionsbecause they
usually indicate that something exceptional (and bad) bapéned.

Runtime errors are rare in the simple programs you will se¢herfirst few chapters, so it
might be a while before you encounter one.

1.6.3 Semantic errors

The third type of error is theemantic error. If there is a semantic error in your program,
it will run successfully in the sense that the computer woll generate any error messages,
but it will not do the right thing. It will do something elsep&cifically, it will do what you
told it to do but not what you meant for it to do.

The problem is that the program you wrote is not the programwanted to write. The
meaning of the program (its semantics) is wrong. Ident@ysemantic errors can be tricky
because it requires you to work backward by looking at th@uuof the program and
trying to figure out what it is doing.

1.6.4 Experimental debugging

One of the most important skills you will acquire is debuggiilthough it can be frus-
trating, debugging is one of the most intellectually richallenging, and interesting parts
of programming.

In some ways, debugging is like detective work. You are aworterd with clues, and you
have to infer the processes and events that led to the rgsuitsee.

Debugging is also like an experimental science. Once yoa Aavdea about what is going
wrong, you modify your program and try again. If your hypatisewas correct, then you
can predict the result of the modification, and you take aclieger to a working program.
If your hypothesis was wrong, you have to come up with a new #seSherlock Holmes

pointed out, “When you have eliminated the impossible, whateemains, however im-
probable, must be the truth.” (A. Conan Doylée Sign of Four

For some people, programming and debugging are the sante thlrat is, programming
is the process of gradually debugging a program until it deleast you want. The idea is
that you should start with a program that deesnethingand make small modifications,
debugging them as you go, so that you always have a workirgygm

1.7. Building “sentences” in Python 9

For example, Linux is an operating system that containsstiods of lines of code, but it
started out as a simple program Linus Torvalds used to explha Intel 80386 chip. Ac-
cording to Larry Greenfield, “One of Linus’s earlier projgatas a program that would
switch between printing AAAA and BBBB. This later evolved ltinux.” (The Linux
Users’ GuideBeta Version 1).

Later chapters will make more suggestions about debuggidgtner programming prac-
tices.

1.7 Building “sentences” in Python

The rules (or grammar) of Python are simpler and more prelaethe rules of a natural
language that we use to speak and write.

Natural languagesare the languages people speak, such as English, Spardshrearch.
They were not designed by people (although people try to saEmme order on them);
they evolved naturally.

Formal languagesare languages that are designed by people for specific apphs. For
example, the notation that mathematicians use is a formglikage that is particularly good
at denoting relationships among numbers and symbols. Glitege a formal language to
represent the chemical structure of molecules. And mosbitaptly:

Programming languages are formal languages that have beeredigned to
express computations.

Formal languages tend to have strict rules about syntaxeXanple, 3- 3= 6 is a syntac-
tically correct mathematical statement, but 3- 3$6 is not.H20O is a syntactically correct
chemical formula, butZzis not.

Syntax rules come in two flavors, pertainingttikensand structure. Tokens are the basic
elements of the language, such as words, numbers, and clestéments. One of the
problems with 3 = 3$6 is that $ is not a legal token in mathematics (at leastraasfa
know). Similarly,»Zzis not legal because there is no element with the abbrewiztzo

The second type of syntax error pertains to the structurestdtament; that is, the way the
tokens are arranged. The statement=33$6 is illegal because even thoughand= are
legal tokens, you can'’t have one right after the other. Sirlyil in a chemical formula the
subscript comes after the element name, not before.

Exercise 1.1 Write a well-structured English sentence with invalid tokémnit. Then write
another sentence with all valid tokens but with invalid stase.

When you read a sentence in English or a statement in a formgliége, you have to
figure out what the structure of the sentence is (althoughiataral language you do this
subconsciously). This process is calfmtsing.

10 Chapter 1. Why should you learn to write programs?

For example, when you hear the sentence, “The penny drdppedunderstand that “the
penny” is the subject and “dropped” is the predicate. Oneehave parsed a sentence, you
can figure out what it means, or the semantics of the sentekesuming that you know
what a penny is and what it means to drop, you will understhadyeneral implication of
this sentence.

Although formal and natural languages have many featuresrimmon—tokens, structure,
syntax, and semantics—there are some differences:

ambiguity: Natural languages are full of ambiguity, which people de#hy using con-
textual clues and other information. Formal languages asigded to be nearly or
completely unambiguous, which means that any statemerxzasly one meaning,
regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstaysilinatural
languages employ lots of redundancy. As a result, they dem aferbose. Formal
languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If | sayh&Tpenny
dropped,” there is probably no penny and nothing droppiffigrmal languages mean
exactly what they say.

People who grow up speaking a natural language—everyonen-adtee a hard time ad-
justing to formal languages. In some ways, the differendsvéen formal and natural
language is like the difference between poetry and progenmbte so:

Poetry: Words are used for their sounds as well as for their meanimdjitze whole poem
together creates an effect or emotional response. Amgiguitot only common but
often deliberate.

Prose: The literal meaning of words is more important, and the $tmgccontributes more
meaning. Prose is more amenable to analysis than poetryilbaften ambiguous.

Programs: The meaning of a computer program is unambiguous and litena can be
understood entirely by analysis of the tokens and structure

Here are some suggestions for reading programs (and othrealftanguages). First, re-
member that formal languages are much more dense than Iniatgaages, so it takes
longer to read them. Also, the structure is very importamit §s usually not a good idea
to read from top to bottom, left to right. Instead, learn toggethe program in your head,
identifying the tokens and interpreting the structure.aliin the details matter. Small er-
rors in spelling and punctuation, which you can get away withatural languages, can
make a big difference in a formal language.

1This idiom means that someone realized something after a pefrimzhfusion.

1.8. The first program 11

1.8 The first program

Traditionally, the first program you write in a new languagealled “Hello, World!” be-
cause all it does is display the words, “Hello, World!” In Rgh, it looks like this:

print ' Hello, World! '

This is an example of print statement?, which doesn’t actually print anything on paper.
It displays a value on the screen. In this case, the resuieigvords

Hello, World!

The quotation marks in the program mark the beginning andétit text to be displayed;
they don't appear in the result.

Some people judge the quality of a programming languagedsgithplicity of the “Hello,
World!” program. By this standard, Python does about as agfossible.

1.9 Debugging

Itis a good idea to read this book in front of a computer so yanutey out the examples as
you go. You can run most of the examples in interactive modeif lyou put the code into
a script, it is easier to try out variations.

Whenever you are experimenting with a new feature, you shivyltb make mistakes.
For example, in the “Hello, world!” program, what happengdiu leave out one of the
guotation marks? What if you leave out both? What if you sp@it wrong?

This kind of experiment helps you remember what you readsd helps with debugging,
because you get to know what the error messages mean. Ités teetnake mistakes now
and on purpose than later and accidentally.

Programming, and especially debugging, sometimes bringstmng emotions. If you are
struggling with a difficult bug, you might feel angry, desplent or embarrassed.

There is evidence that people naturally respond to compateif they were peopleWhen
they work well, we think of them as teammates, and when theyhstinate or rude, we
respond to them the same way we respond to rude, obstingiéepeo

Preparing for these reactions might help you deal with th@me approach is to think of
the computer as an employee with certain strengths, likedsarad precision, and particular
weaknesses, like lack of empathy and inability to grasp th@icture.

Your job is to be a good manager: find ways to take advantadgedfttengths and mitigate
the weaknesses. And find ways to use your emotions to engalg¢hsiproblem, without
letting your reactions interfere with your ability to workectively.

2In Python 3.0print is a function, not a statement, so the syntapriis('Hello, World!") . We will get
to functions soon!

3See Reeves and Nadhe Media Equation: How People Treat Computers, Televjsiod New Media Like
Real People and Places

12 Chapter 1. Why should you learn to write programs?

Learning to debug can be frustrating, but it is a valuabl# giat is useful for many activi-
ties beyond programming. At the end of each chapter therdébagging section, like this
one, with my thoughts about debugging. | hope they help!

1.10 Glossary

central processing unit: The heart of any computer. It is what runs the software that we
write; also called “CPU” or “the processor”.

main memory: Stores programs and data. Main memory loses its informatioen the
power is turned off.

secondary memory: Stores programs and data and retains its information evem wte
power is turned off. Generally slower than main memory. Epi@s of secondary
memory include disk drives and flash member in USB sticks.

problem solving: The process of formulating a problem, finding a solution, exgress-
ing the solution.

high-level language: A programming language like Python that is designed to bg feas
humans to read and write.

low-level language: A programming language that is designed to be easy for a ctampu
to execute; also called “machine code” or “assembly langtiag

machine code: The lowest level language for software which is the languhge is di-
rectly executed by the central processing unit (CPU).

portability: A property of a program that can run on more than one kind ofpgar.

interpret: To execute a program in a high-level language by translatioge line at a
time.

compile: To translate a program written in a high-level language @nltmw-level language
all at once, in preparation for later execution.

source code: A program in a high-level language before being compiled.
object code: The output of the compiler after it translates the program.
executable: Another name for object code that is ready to be executed.

prompt: Characters displayed by the interpreter to indicate thiatriéady to take input
from the user.

script: A program stored in a file (usually one that will be interpcte

interactive mode: A way of using the Python interpreter by typing commands asqules-
sions at the prompt.

script mode: A way of using the Python interpreter to read and executersiants in a
script.

1.11. Exercises 13

program: A set of instructions that specifies a computation.
algorithm: A general process for solving a category of problems.
bug: An error in a program.

debugging: The process of finding and removing any of the three kinds of@mming
errors.

syntax: The structure of a program.

syntax error: An error in a program that makes it impossible to parse (aacktbre im-
possible to interpret).

exception: An error that is detected while the program is running.
semantics: The meaning of a program.

semantic error: An error in a program that makes it do something other thant wiea
programmer intended.

natural language: Any one of the languages that people speak that evolvedaligtur

formal language: Any one of the languages that people have designed for specifi
poses, such as representing mathematical ideas or congpatgams; all program-
ming languages are formal languages.

token: One of the basic elements of the syntactic structure of aramoganalogous to a
word in a natural language.

parse: To examine a program and analyze the syntactic structure.

print statement: An instruction that causes the Python interpreter to displaalue on
the screen.

1.11 Exercises

Exercise 1.2Use a web browser to go to the Python Websitthon.org . This page
contains information about Python and links to Pythonteslgpages, and it gives you the
ability to search the Python documentation.

For example, if you entegrint in the search window, the first link that appears is the
documentation of therint statement. At this point, not all of it will make sense to you,
but it is good to know where it is.

Exercise 1.3 Start the Python interpreter and typelp() to start the online help utility.
Or you can typenelp(' print ') to get information about thgrint statement.

If this example doesn’t work, you may need to install addiibPython documentation or
set an environment variable; the details depend on youratipgrsystem and version of
Python.

14 Chapter 1. Why should you learn to write programs?

Exercise 1.4 Start the Python interpreter and use it as a calculator. dPsglsyntax for
math operations is almost the same as standard mathenradtedion. For example, the
symbols+, - and/ denote addition, subtraction and division, as you wouldeekpThe
symbol for multiplication is.

If you run a 10 kilometer race in 43 minutes 30 seconds, whgbig average time per
mile? What is your average speed in miles per hour? (Hintethez 1.61 kilometers in a
mile).

Chapter 2

Variables, expressions and
statements

2.1 Values and types

A value is one of the basic things a program works with, like a lettea mumber. The
values we have seen so far &re, and' Hello, World!

These values belong to differetypes 2 is an integer, antdHello, World! ' is astring,
so-called because it contains a “string” of letters. Youd(#me interpreter) can identify
strings because they are enclosed in quotation marks.

Theprint statement also works for integers. We use fiithon command to start the
interpreter.

python
>>> print 4
4

If you are not sure what type a value has, the interpreterelapdu.

>>> type(' Hello, World! ')
<type 'str '>

>>> type(17)

<type ‘'int '>

Not surprisingly, strings belong to the typte and integers belong to the typg . Less
obviously, numbers with a decimal point belong to a typeechfloat , because these
numbers are represented in a format cafledting-point.

>>> type(3.2)
<type ' float ' >

16 Chapter 2. Variables, expressions and statements

What about values likel7' and' 3.2 ' ? They look like numbers, but they are in quotation
marks like strings.

>>> type(' 17")
<type ‘'str '>
>>> type(' 3.2")
<type 'str '>

They're strings.

When you type a large integer, you might be tempted to use caenlretaveen groups of
three digits, as i1,000,000 . This is not a legal integer in Python, but it is legal:

>>> print 1,000,000
100

Well, that's not what we expected at all! Python interprg00,000 as a comma-
separated sequence of integers, which it prints with spaetgeen.

This is the first example we have seen of a semantic error:athe rins without producing
an error message, but it doesn’t do the “right” thing.

2.2 Variables

One of the most powerful features of a programming langusigjeel ability to manipulate
variables. A variable is a name that refers to a value.

An assignment statementreates new variables and gives them values:

>>> message = ' And now for something completely different
>>>n = 17
>>> pi = 3.1415926535897931

This example makes three assignments. The first assigna@ tstra new variable named
message ; the second assigns the intedé&rto n; the third assigns the (approximate) value
of ttopi .

A common way to represent variables on paper is to write theenaith an arrow pointing
to the variable’s value. This kind of figure is calledtate diagrambecause it shows what
state each of the variables is in (think of it as the varigbstate of mind). This diagram
shows the result of the previous example:

message —= 'And now for something completely different’

n— 17

pi —= 3.1415926535897931

To display the value of a variable, you can use a print staté¢me

2.3. Variable names and keywords 17

>>> print n
17

>>> print pi
3.14159265359

The type of a variable is the type of the value it refers to.

>>> type(message)
<type 'str '>
>>> type(n)

<type ‘"int '>
>>> type(pi)

<type ' float ' >

2.3 \Variable names and keywords

Programmers generally choose names for their variablésthaneaningful—they docu-
ment what the variable is used for.

Variable names can be arbitrarily long. They can contaih biters and numbers, but they
have to begin with a letter. It is legal to use uppercaserkttrit it is a good idea to begin
variable names with a lowercase letter (you'll see why)ater

The underscore characten can appear in a name. It is often used in names with multiple
words, such asy_nameor airspeed_of unladen_swallow

If you give a variable an illegal name, you get a syntax error:

>>> T76trombones = ' big parade
SyntaxError: invalid syntax

>>> more@ = 1000000
SyntaxError: invalid syntax

>>> class = ' Advanced Theoretical Zymurgy
SyntaxError; invalid syntax

76trombones is illegal because it does not begin with a lett@eore@is illegal because it
contains an illegal characte®) But what's wrong wittclass ?

It turns out thafclass is one of Python’keywords. The interpreter uses keywords to
recognize the structure of the program, and they cannotdx asvariable names.

Python reserves 31 keyworder its use:

and del from not while
as elif global or with
assert else if pass yield
break except import print

1in Python 3.0exec is no longer a keyword, butonlocal is.

18 Chapter 2. Variables, expressions and statements

class exec in raise
continue finally is return
def for lambda try

You might want to keep this list handy. If the interpreter gdans about one of your
variable names and you don’t know why, see if it is on this list

2.4 Statements

A statementis a unit of code that the Python interpreter can execute. &Ve Been two
kinds of statements: print and assignment.

When you type a statement in interactive mode, the intenpextecutes it and displays the
result, if there is one.

A script usually contains a sequence of statements. If tker®re than one statement, the
results appear one at a time as the statements execute.

For example, the script

print 1
X =2
print x

produces the output

1
2

The assignment statement produces no output.

2.5 Operators and operands

Operators are special symbols that represent computations like iadditnd multiplica-
tion. The values the operator is applied to are cadlperands

The operators, -, *,/ and** perform addition, subtraction, multiplication, divisiamd
exponentiation, as in the following examples:

20+32 hour-1 hour*60+minute minute/60 52 (5+9)%(15-7)

In some other languag€sjs used for exponentiation, but in Python it is a bitwise aper
called XOR. | won't cover bitwise operators in this book, jou can read about them at
wiki.python.org/moin/BitwiseOperators

The division operator might not do what you expect:

2.6. Expressions 19

>>> minute = 59
>>> minute/60
0

The value ofminute is 59, and in conventional arithmetic 59 divided by 60 is G3® not
0. The reason for the discrepancy is that Python is perfayiitdor division?.

When both of the operands are integers, the result is alsotegein floor division chops
off the fraction part, so in this example it rounds down toozer

If either of the operands is a floating-point number, Pytherigrms floating-point division,
and the result is #oat

>>> minute/60.0
0.98333333333333328

2.6 Expressions

An expressionis a combination of values, variables, and operators. Aevaluby itself
is considered an expression, and so is a variable, so tleevialh are all legal expressions
(assuming that the variab¥ehas been assigned a value):

17
X
x + 17

If you type an expression in interactive mode, the integrevaluatesit and displays the
result:

>> 1+ 1
2

But in a script, an expression all by itself doesn’t do anygthiThis is a common source of
confusion for beginners.

Exercise 2.1 Type the following statements in the Python interpretert®what they do:

xX X O
+ 1l

5
1
Now we can use a text editor to place the same statements filéo(ae. make a script)

and run it. What is the output? Modify the script by transfargieachexpressiorinto a
print statement and then run it again.

2|n Python 3.0, the result of this division iflaat . The new operatdf performs integer division.

20 Chapter 2. Variables, expressions and statements

2.7 Order of operations

When more than one operator appears in an expression, theareealuation depends
on therules of precedence For mathematical operators, Python follows mathematical
convention. The acronyfAREMDAS is a useful way to remember the rules:

» Parentheses have the highest precedence and can be usecktaricexpression to
evaluate in the order you want. Since expressions in pageathare evaluated first,
2 * (3-1) is 4, and(1+1)**(5-2) is 8. You can also use parentheses to make an
expression easier to read, agriinute * 100) / 60 , evenifit doesn’t change the
result.

< Exponentiation has the next highest precedenc@dal is 3, not 4, and*1**3
is 3, not 27.

« Multiplication andDivision have the same precedence, which is higher fdition
and Subtraction, which also have the same precedence2*$d is 5, not 4, and
6+4/2 is 8, not 5.

« Operators with the same precedence are evaluated frorolgfiht. So in the ex-
pressiordegrees / 2 * pi , the division happens first and the result is multiplied
by pi . To divide by 21, you can reorder the operands or use parentheses.

2.8 Modulus operator

Themodulus operatorworks on integers and yields the remainder when the firstaoyer
is divided by the second. In Python, the modulus operatoperaent sign%). The syntax
is the same as for other operators:

>>> quotient = 7 / 3
>>> print quotient

2

>>> remainder = 7 % 3
>>> print remainder

1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly usefulr é@mple, you can check
whether one number is divisible by another-«if6 yis zero, therx is divisible byy.

Also, you can extract the right-most digit or digits from anmher. For examples % 10
yields the right-most digit of (in base 10). Similarlx % 100 yields the last two digits.

2.9. String operations 21

2.9 String operations

The+ operator works with strings, but it is not addition in the hexhatical sense. Instead
it performsconcatenation which means joining the strings by linking them end-to-end
For example:

first = ' throat
second = ' warbler
print first + second

The output of this program throatwarbler

The* operator also works on strings; it performs repetition. &oample,” Spam *3 is
' SpamSpamSpar. If one of the operands is a string, the other has to be anenteg

This use of+ and* makes sense by analogy with addition and multiplicatiorst dg4*3

is equivalent tal+4+4 , we expect Spam *3 to be the same asSpam +' Spant +' Spanl ,
and itis. On the other hand, there is a significant way in whidhg concatenation and rep-
etition are different from integer addition and multipliicen. Can you think of a property
that addition has that string concatenation does not?

2.10 Asking the user for input

Sometimes we would like to take the value for a variable frbmuser via their keyboard.
Python provides a built-in function calleéw_input that gets input from the keyboatd
When this function is called, the program stops and waitsHeruser to type something.
When the user pressegturn or Enter, the program resumes aralv_input returns what
the user typed as a string.

>>> input = raw_input()
Some silly stuff
>>> print input
Some silly stuff

Before getting input from the user, it is a good idea to pript@mpt telling the user what
to input.raw_input can take a prompt as an argument:

>>> name = raw_input(' What...is your name?\n ")
What...is your name?

Arthur, King of the Britons!

>>> print name

Arthur, King of the Britons!

The sequenca at the end of the prompt representsaavline, which is a special character
that causes a line break. That's why the user’s input apedosv the prompt.

If you expect the user to type an integer, you can try to cdrilierreturn value tit using
theint() function:

3In Python 3.0, this function is namémput .

22 Chapter 2. Variables, expressions and statements

>>> prompt = ' What...is the airspeed velocity of an unladen swallow?\n
>>> speed = raw_input(prompt)

What...is the airspeed velocity of an unladen swallow?

17

>>> int(speed)

17

>>> int(speed) + 5

22

But if the user types something other than a string of digits, get an error:

>>> speed = raw_input(prompt)

What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
>>> int(speed)

ValueError: invalid literal for int()

We will see how to handle this kind of error later.

2.11 Comments

As programs get bigger and more complicated, they get mdfieuii to read. Formal
languages are dense, and it is often difficult to look at agoagacode and figure out what
it is doing, or why.

For this reason, itis a good idea to add notes to your programlain in natural language
what the program is doing. These notes are catlmshments and they start with thé
symbol:

compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You lsanpait comments at the end
of a line:

percentage = (minute * 100) / 60 # percentage of an hour
Everything from the# to the end of the line is ignored—it has no effect on the program

Comments are most useful when they document non-obviotgrésaof the code. It is
reasonable to assume that the reader can figuravbatthe code does; it is much more
useful to explairwhy.

This comment is redundant with the code and useless:
v=5 # assign 5 to v

This comment contains useful information that is not in tbhdec

2.12. Choosing mnemonic variable names 23

v=>5 # velocity in meters/second.

Good mnemonic variable names can reduce the need for comntentiong hames can
make complex expressions hard to read, so there is a tradeoff

2.12 Choosing mnemonic variable names

As long as you follow the simple rules of variable naming, audid reserved words, you
have a lot of choice when you name your variables. In the Ipégi this choice can be
confusing both when you read a program and when you write gaur programs. For
example, the following three programs are identical in ®eahwhat they accomplish, but
very different when you read them and try to understand them.

a = 350

b = 12.50
c=a*b
print ¢

hours = 35.0

rate = 12.50

pay = hours * rate
print pay

x1g93z9ahd = 35.0

x193z9afd = 12.50

x1g3p9afd = x1g3z9ahd * x1g3z9afd
print x1g3p9afd

The Python interpreter sees all three of these progranexastly the saméut humans
see and understand these programs quite differently. Heim#rmost quickly understand
theintent of the second program because the programmer has chosehlearames that
reflect the intent of the programmer regarding what datalweilstored in each variable.

We call these wisely-chosen variable names “mnemonic bieriaames”. The word
mnemoni¢ means “memory aid”. We choose mnemonic variable names o Uere-
member why we created the variable in the first place.

While this all sounds great, and it is a very good idea to usenmaméc variable names,
mnemonic variable names can get in the way of a beginning-gnoger’s ability to parse
and understand code. This is because beginning progranmaezanot yet memorized the
reserved words (there are only 31 of them) and sometimeahtas which have names that
are too descriptive start to look like part of the language laot just well-chosen variable
names.

Take a quick look at the following Python sample code whiapbthrough some data. We
will cover loops soon, but for now try to just puzzle throughat'this means:

4Seehttp://en.wikipedia.org/wiki/Mnemonic for an extended description of the word “mnemonic”.

24 Chapter 2. Variables, expressions and statements

for word in words:
print word

What is happening here? Which of the tokens (for, word, in) etie reserved words and
which are just variable names? Does Python understand atdaruental level the notion
of words? Beginning programmers have trouble separatiraf warts of the codenust
be the same as this example and what parts of the code areysihmgites made by the
programmer.

The following code is equivalent to the above code:

for slice in pizza:
print slice

It is easier for the beginning programmer to look at this cadd know which parts are
reserved words defined by Python and which parts are simpisgthla names chosen by
the programmer. It is pretty clear that Python has no funddaheinderstanding of pizza
and slices and the fact that a pizza consists of a set of onex sfices.

But if our program is truly about reading data and lookingvimrds in the datepizza and
slice are very un-mnemonic variable names choosing them as lan@mes distracts
from the meaning of the program.

After a pretty short period of time, you will know the most caoron reserved words and
you will start to see the reserved words jumping out at you:

for word in words :
print word

The parts of the code that are defined by PytHon (in , print , and:) are in bold and
the programmer chosen variablesid andwords) are not in bold. Many text editors are
aware of Python syntax and will color reserved words diffiélseto give you clues to keep
your variables and reserved words separate. After a whilewith begin to read Python
and quickly determine what is a variable and what is a resemard.

2.13 Debugging

At this point the syntax error you are most likely to make isilkegal variable name,
like class andyield , which are keywords, ooddjob andUS$, which contain illegal
characters.

If you put a space in a variable name, Python thinks it is twerapds without an operator:

>>> pad name = 5
SyntaxError: invalid syntax

For syntax errors, the error messages don't help much. Th& ommmon messages
are SyntaxError: invalid syntax andSyntaxError: invalid token , heither of
which is very informative.

2.14. Glossary 25

The runtime error you are most likely to make is a “use befa&’dhat is, trying to use
a variable before you have assigned a value. This can happeu spell a variable name
wrong:

>>> principal = 327.68
>>> interest = principle * rate
NameError; name ' principle

is not defined
Variables names are case sensitive,&k®X is not the same datex

At this point the most likely cause of a semantic error is th@eo of operations. For
example, to evaluatéi, you might be tempted to write

>>> 10/ 20 * pi

But the division happens first, so you would geg®, which is not the same thing! There is
no way for Python to know what you meant to write, so in thisecasu don't get an error
message; you just get the wrong answer.

2.14 Glossary
value: One of the basic units of data, like a number or string, thabgtam manipulates.

type: A category of values. The types we have seen so far are istéiyeeint), floating-
point numbers (typéoat), and strings (typstr).

integer: A type that represents whole numbers.

floating-point: A type that represents numbers with fractional parts.
string: A type that represents sequences of characters.

variable: A name that refers to a value.

mnemonic: A memory aid. We often give variables mnemonic names to hetpmember
what is stored in the variable.

statement: A section of code that represents a command or action. Sthéastatements
we have seen are assignments and print statements.

assignment: A statement that assigns a value to a variable.

state diagram: A graphical representation of a set of variables and theegalhey refer
to.

keyword: A reserved word that is used by the compiler to parse a prggyaon cannot
use keywords lik¢f , def , andwhile as variable names.

operator: A special symbol that represents a simple computation lidtan, multipli-
cation, or string concatenation.

26 Chapter 2. Variables, expressions and statements

operand: One of the values on which an operator operates.
floor division: The operation that divides two numbers and chops off theifrapart.

modulus operator: An operator, denoted with a percent si@f), (that works on integers
and yields the remainder when one number is divided by anothe

expression: A combination of variables, operators, and values thatasgmts a single re-
sult value.

evaluate: To simplify an expression by performing the operations iteoto yield a single
value.

rules of precedence:The set of rules governing the order in which expressionsiving
multiple operators and operands are evaluated.

concatenate: To join two operands end-to-end.

comment: Information in a program that is meant for other programnieranyone read-
ing the source code) and has no effect on the execution ofrtiggam.

2.15 Exercises

Exercise 2.2 Write a program that useaw_input to prompt a user for their name and
then welcomes them.

Enter your name: Chuck
Hello Chuck

Exercise 2.3 Write a program to prompt the user for hours and rate per hocornapute
gross pay.

Enter Hours: 35
Enter Rate: 2.75
Pay: 96.25

We won't worry about making sure our pay has exactly two digiter the decimal place
for now. If you want, you can play with the built-in Pytheound function to properly
round the resulting pay to two decimal places.

Exercise 2.4 Assume that we execute the following assignment statements

width = 17
height = 12.0

For each of the following expressions, write the value ofdkression and the type (of the
value of the expression).

1. width/2
2. width/2.0

2.15. Exercises 27

3. height/3
4.1 +2*5
Use the Python interpreter to check your answers.

Exercise 2.5Write a program which prompts the user for a Celsius temperatwnvert
the temperature to Fahrenheit and print out the convertageeature.

28

Chapter 2. Variables, expressions and statements

Chapter 3

Conditional execution

3.1 Boolean expressions

A boolean expressions an expression that is either true or false. The followixgneples
use the operatar=, which compares two operands and produlges if they are equal and
False otherwise:

>> 5 == §
True
>>> 5 == §
False

True andFalse are special values that belong to the typel ; they are not strings:

>>> type(True)

<type ' bool ' >
>>> type(False)
<type ' bool ' >

The== operator is one of theomparison operators the others are:

X =y # x is not equal to y

X >y # x is greater than y

X<y # x is less than y

X >=y # x is greater than or equal to y
X <=y # x is less than or equal to y

Although these operations are probably familiar to you,Rlgghon symbols are different
from the mathematical symbols. A common error is to use daiegual sign<£) instead
of a double equal sigre€). Remember that is an assignment operator ane is a com-
parison operator. There is no such thing-aor =>.

30 Chapter 3. Conditional execution

3.2 Logical operators

There are thredogical operators and, or, andnot . The semantics (meaning) of these
operators is similar to their meaning in English. For exampl> 0 and x < 10 is true
only if x is greater than @ndless than 10.

n%2 == 0 or n%3 == 0 is true if eitherof the conditions is true, that is, if the number is
divisible by 2or 3.

Finally, thenot operator negates a boolean expressiompsdx > y) istrueifx > y is
false, that is, i is less than or equal to

Strictly speaking, the operands of the logical operatoosishbe boolean expressions, but
Python is not very strict. Any nonzero number is interpreggdtrue.”

>>> 17 and True
True

This flexibility can be useful, but there are some subtletiie that might be confusing.
You might want to avoid it (unless you know what you are doing)

3.3 Conditional execution

In order to write useful programs, we almost always need Hil@yato check conditions
and change the behavior of the program accordingbnditional statementsgive us this
ability. The simplest form is th# statement:

if x>0 :

print ' x is positive '
The boolean expression after tlie statement is called theondition. We end theif
statement with a colon character (:) and the line(s) afeeiftstatement are indented. If the
logical condition is true, then the indented statement geg¢suted. If the logical consition
is false, the indented statement is skipped.

if statements have the same structure as function definitiolos doops. The statement
consists of a header line that ends with the colon charagtdol{owed by an indented
block. Statements like this are calledmpound statementsecause they stretch across
more than one line.

There is no limit on the number of statements that can appetirei body, but there has
to be at least one. Occasionally, it is useful to have a bodly no statements (usually
as a place keeper for code you haven't written yet). In thaécgou can use thgass
statement, which does nothing.

if x<0:
pass # need to handle negative values!

3.4. Alternative execution 31

3.4 Alternative execution

A second form of theéf statement islternative execution in which there are two pos-
sibilities and the condition determines which one gets etext The syntax looks like
this:

if X%2 == 0 :

print ' x is even
else :

print ' x is odd '

If the remainder when is divided by 2 is 0, then we know thatis even, and the program
displays a message to that effect. If the condition is fdlse second set of statements is
executed. Since the condition must be true or false, exactyof the alternatives will be
executed. The alternatives are callmdnches because they are branches in the flow of
execution.

3.5 Chained conditionals

Sometimes there are more than two possibilities and we neeel timan two branches. One
way to express a computation like that isteained conditional

if x <y

print ' x is less than y '
elif x > vy:

print ' x is greater than y '
else:

print ' x and y are equal

elif is an abbreviation of “else if.” Again, exactly one branchlwe executed. There is
no limit on the number oélif statements. If there is atse clause, it has to be at the
end, but there doesn't have to be one.

if choice == "a':
print ' Bad guess'
elif choice == "b':
print ' Good guess'
elif choice == "¢

print ' Close, but not correct

Each condition is checked in order. If the first is false, th&tris checked, and so on. If
one of them is true, the corresponding branch executes,rendgtatement ends. Even if
more than one condition is true, only the first true brancltetes.

32 Chapter 3. Conditional execution

3.6 Nested conditionals

One conditional can also be nested within another. We coale kvritten the trichotomy
example like this:

if x ==
print ' x and y are equal '
else:
if x <y
print ' x is less than y '
else:

print ' x is greater than y '

The outer conditional contains two branches. The first braonitains a simple statement.
The second branch contains anotiferstatement, which has two branches of its own.
Those two branches are both simple statements, althougletldd have been conditional
statements as well.

Although the indentation of the statements makes the streieipparentiested condition-
als become difficult to read very quickly. In general, it is a gadea to avoid them when
you can.

Logical operators often provide a way to simplify nestedditanal statements. For ex-
ample, we can rewrite the following code using a single cool;

if 0 <x:
if x < 10:
print ' x is a positive single-digit number.

Theprint statement is executed only if we make it past both conditgrsm we can get
the same effect with thend operator:

if 0 <x and x < 10:
print ' x is a positive single-digit number.

3.7 Catching exceptions using try and except

Earlier we saw a code segment where we usedahenput andint functions to read
and parse an integer number entered by the user. We also sawdazherous doing this
could be:

>>> speed = raw_input(prompt)

What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
>>> int(speed)

ValueError: invalid literal for int()

>>>

3.7. Catching exceptions using try and except 33

When we are executing these statements in the Python interpne get a new prompt
from the interpreter, think “oops” and move on to our nextestzent.

However if this code is placed in a Python script and thisreoczurs, your script imme-
diately stops in its tracks with a traceback. It does not etethe following statement.

Here is a sample program to convert a Fahrenheit tempernatar€elsius temperature:

inp = raw_input(' Enter Fahrenheit Temperature: ")
fahr = float(inp)

cel = (fahr - 32.0) * 5.0 / 9.0

print cel

If we execute this code and give it invalid input, it simplylgawith an unfriendly error
message:

python fahren.py
Enter Fahrenheit Temperature:72
22.2222222222

python fahren.py
Enter Fahrenheit Temperature:fred
Traceback (most recent call last):
File “fahren.py", line 2, in <module>
fahr = float(inp)
ValueError: invalid literal for float(): fred

There is a conditional execution structure built into Pythio handle these types of ex-
pected and unexpected errors called “try / except”. Theddégt andexcept is that you
know that some sequence of instruction(s) may have a proatehyou want to add some
statements to be executed if an error occurs. These extesrstats (the except block) is
ignored if there is no error.

You can think of thetry andexcept feature in Python as an “insurance policy” on a
sequence of statements.

We can rewrite our temperature converter as follows:

inp = raw_input(' Enter Fahrenheit Temperature: ")
try:
fahr = float(inp)
cel = (fahr - 32.0) * 5.0 / 9.0
print cel
except:
print ' Please enter a number

Python starts by executing the sequence of statements irythblock. If all goes well,
it skips theexcept block and proceeds. If an exception occurs inttiie block, Python
jumps out of thedry block and executes the sequence of statements iextept block.

34 Chapter 3. Conditional execution

Handling an exception withiay statement is calledatchingan exception. In this exam-
ple, theexcept clause prints an error message. In general, catching aptixegives you
a chance to fix the problem, or try again, or at least end thgrpro gracefully.

3.8 Short circuit evaluation of logical expressions

When Python is processing a logical expression suchas 2 and (xly) > 2, iteval-
uates the expression from left-to-right. Because of thendigfin of and, if x is less than 2,
the expressior >= 2 isFalse and so the whole expressiorFigse regardless of whether
(xly) > 2 evaluates tdrue orFalse .

When Python detects that there is nothing to be gained by &uaduthe rest of a logical
expression, it stops its evaluation and does not do the ctatipus in the rest of the logical
expression. When the evaluation of a logical expressiorsdtepause the overall value is
already known, it is calledhort-circuiting the evaluation.

While this may seem like a fine point, the short circuit behaléads to a clever tech-
nique called theyuardian pattern. Consider the following code sequence in the Python
interpreter:

>>> X = 6

>>>y = 2

>>> x >= 2 and (xly) > 2
True

>>>x =1

>>>y =0

>>> x >= 2 and (xly) > 2
False

>>> X = 6

>>> y = 0

>>> x >= 2 and (xfy) > 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
>>>

The third calculation failed because Python was evaludtifyyy andy was zero which
causes a runtime error. But the second examplendidail because the first part of the
expressiox >= 2 evaluated té-alse sothe(xly) was not ever executed due to tieort
circuit rule and there was no error.

We can construct the logical expression to strategicadgg@bguard evaluation just before
the evaluation that might cause an error as follows:

>>> x = 1
>>>y =0
>>> x> 2 and y = 0 and (xly) > 2

3.9. Debugging 35

False

>>> X = 6

>>>y =0

>>>x > 2 and y = 0 and (xly) > 2
False

>>> x >= 2 and (xfy) > 2 and y = 0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
>>>

In the first logical expression, >= 2 is False so the evaluation stops at thed. In the
second logical expression>= 2 is True buty != 0 isFalse so we never reacfxly)

In the third logical expression, tlye!= 0 isafterthe(xly) calculation so the expression
fails with an error.

In the second expression, we say thdat 0 acts as guard to insure that we only execute
(xly) if y is non-zero.

3.9 Debugging

The traceback Python displays when an error occurs congaliosof information, but it
can be overwhelming, especially when there are many fram#seostack. The most useful
parts are usually:

* What kind of error it was, and

* Where it occurred.

Syntax errors are usually easy to find, but there are a fewhgstcWhitespace errors can
be tricky because spaces and tabs are invisible and we ateaiggmoring them.

>>> x = 5

>>> y =6
File "<stdin>", line 1

y==6

SyntaxError: invalid syntax

In this example, the problem is that the second line is iretbbl one space. But the error
message points tp, which is misleading. In general, error messages indicdtergvthe
problem was discovered, but the actual error might be eanlithe code, sometimes on a
previous line.

The same is true of runtime errors. Suppose you are tryingnepate a signal-to-noise
ratio in decibels. The formula ISNRy, = 10l0g;o(Psignal/Pnoise)- In Python, you might
write something like this:

36 Chapter 3. Conditional execution

import math

signal_power = 9

noise_power = 10

ratio = signal_power / noise_power
decibels = 10 * math.log10(ratio)
print decibels

But when you run it, you get an error message

Traceback (most recent call last):
File "snr.py", line 5, in ?
decibels = 10 * math.log10(ratio)
OverflowError: math range error

The error message indicates line 5, but there is nothing gvrath that line. To find the
real error, it might be useful to print the value mfio , which turns out to be 0. The
problem is in line 4, because dividing two integers does fttigision. The solution is to
represent signal power and noise power with floating-pahies.

In general, error messages tell you where the problem waewdised, but that is often not
where it was caused.

3.10 Glossary
boolean expression:An expression whose value is eitliene or False .

comparison operator: One of the operators that compares its operandst=, >, <, >=,
and<=.

logical operator: One of the operators that combines boolean expressamds:or , and
not .

conditional statement: A statement that controls the flow of execution depending on
some condition.

condition: The boolean expression in a conditional statement thatrrdetes which
branch is executed.

compound statement: A statement that consists of a header and a body. The headier en
with a colon (:). The body is indented relative to the header.

body: The sequence of statements within a compound statement.
branch: One of the alternative sequences of statements in a conalititatement.

chained conditional: A conditional statement with a series of alternative brasch

1in Python 3.0, you no longer get an error message; the divigienator performs floating-point division even
with integer operands.

3.11. Exercises 37

nested conditional: A conditional statement that appears in one of the brandhesodher
conditional statement.

traceback: A list of the functions that are executing, printed when acegtion occurs.

short circuit: When Python is part-way through evaluating a logical expoessnd stops
the evaluation because Python knows the final value for theesgion without need-
ing to evaluate the rest of the expression.

guardian pattern: Where we construct a logical expression with additional carispns
to take advantage of the short circuit behavior.

3.11 Exercises

Exercise 3.1 Rewrite your pay computation to give the employee 1.5 tirhesburly rate
for hours worked above 40 hours.

Enter Hours: 45
Enter Rate: 10
Pay: 475.0

Exercise 3.2 Rewrite your pay program usingy andexcept so that your program han-
dles non-numeric input gracefully by printing a message exiting the program. The
following shows two executions of the program:

Enter Hours: 20
Enter Rate: nine
Error, please enter numeric input

Enter Hours: forty
Error, please enter numeric input

Exercise 3.3 Write a program to prompt for a score between 0.0 and 1.0. Kd¢bee is out
of range print an error. If the score is between 0.0 and 1i6t @grade using the following
table:

Score Grade

> 0.9 A
> 0.8 B
> 0.7 C
> 0.6 D
<= 0.6 F

Enter score: 0.95
A

Enter score: perfect
Bad score

38 Chapter 3. Conditional execution

Enter score: 10.0
Bad score

Enter score: 0.75
C

Enter score: 0.5
F

Run the program repeatedly as shown above to test the vatifberent values for input.

Chapter 4

Functions

4.1 Function calls

In the context of programming,fanction is a named sequence of statements that performs
a computation. When you define a function, you specify the nantethe sequence of
statements. Later, you can “call” the function by name. Weeladready seen one example
of afunction call:

>>> type(32)
<type ‘'int '>
The name of the function iype . The expression in parentheses is calledaigment

of the function. The argument is a value or variable that vegpaissing into the function as
input ot the function. The result, for thgpe function, is the type of the argument.

It is common to say that a function “takes” an argument antlfres” a result. The result
is called thereturn value.

4.2 Built-in functions

Python provides a number of important built-in functionatttve can use without needing
to provide the function definition. In a sense, the creatoBython wrote a set of functions
to solve common problems and included them in Python for uséo

Themax andmin functions give us the largest and smallest values in a éspectively:

>>> max(' Hello world ")
"w
>>> min(' Hello world ")

>>>

40 Chapter 4. Functions

The max function tells us the “largest character” in the string (@¥hiurns out to be the
letter “w”) and themin function shows us the smallest character which turns outta b
space.

Another very common built-in function is then function which tells us how many items
are in its argument. If the argumentlém is a string, it returns the number of characters
int he string.

>>> len(' Hello world ')
11
>>>

These functions are not limited to looking at strings, thegy operate on any set of values
as we will see in later chapters.

4.3 Type conversion functions

Python also provides built-in functions that convert valfil®m one type to another. The
int function takes any value and converts it to an integer, iit,or complains otherwise:

>>> int(' 32")

32

>>> int(' Hello ')

ValueError: invalid literal for int(): Hello

int can convert floating-point values to integers, but it doesnind off; it chops off the
fraction part:

>>> int(3.99999)
3

>>> int(-2.3)

-2

float converts integers and strings to floating-point numbers:

>>> float(32)

32.0

>>> float(' 3.14159 ')
3.14159

Finally, str converts its argument to a string:
>>> str(32)

1 32!

>>> str(3.14159)

' 3.14159

4.4. Random numbers 41

4.4 Random numbers

Given the same inputs, most computer programs generateuithe gutputs every time, so
they are said to bdeterministic. Determinism is usually a good thing, since we expect
the same calculation to yield the same result. For somecagtans, though, we want the
computer to be unpredictable. Games are an obvious exabytlthere are more.

Making a program truly nondeterministic turns out to be rmesasy, but there are ways
to make it at least seem nondeterministic. One of them is @calgorithms that generate
pseudorandomnumbers. Pseudorandom numbers are not truly random betteysare
generated by a deterministic computation, but just by legkit the numbers it is all but
impossible to distinguish them from random.

Therandom module provides functions that generate pseudorandom ersnwhich | will
simply call “random” from here on).

The functionrandom returns a random float between 0.0 and 1.0 (including 0.0diLt Q).
Each time you caltandom , you get the next number in a long series. To see a sample, run
this loop:

import random

for i in range(10):
X = random.random()
print X

The functionrandint takes parametetsw andhigh and returns an integer betwelew
andhigh (including both).

>>> random.randint(5, 10)
5
>>> random.randint(5, 10)
9

To choose an element from a sequence at random, you cahaise :

>>>t = [1, 2, 3
>>> random.choice(t)
2

>>> random.choice(t)
3

The random module also provides functions to generate random valwes frontinuous
distributions including Gaussian, exponential, gammd,afew more.

4.5 Optional parameters

We have seen built-in functions and methods that take abhlarisumber of arguments. It
is possible to write user-defined functions with optiongluanents, too. For example, here
is a function that prints the most common words in a histogram

42 Chapter 4. Functions

def print_most_common(hist, hum=10)
t = most_common(hist)
print ' The most common words are:
for freq, word in t[0:numj:
print word, "\t ', freq

The first parameter is required; the second is optional.default value of numis 10.
If you only provide one argument:

print_most_common(hist)

num gets the default value. If you provide two arguments:

print_most_common(hist, 20)

numgets the value of the argument instead. In other words, ttiera argumenoverrides
the default value.

If a function has both required and optional parametershaltequired parameters have to
come first, followed by the optional ones.

4.6 Glossary

deterministic: Pertaining to a program that does the same thing each tiniast given
the same inputs.

pseudorandom: Pertaining to a sequence of numbers that appear to be rarmdrare
generated by a deterministic program.

4.7 Math functions

Python has a matmodule that provides most of the familiar mathematical functioBe-
fore we can use the module, we have to import it:

>>> import math

This statement createsn@odule objectnamed math. If you print the module object, you
get some information about it:

>>> print math
<module ' math' from " /usr/lib/python2.5/lib-dynload/math.so ">

The module object contains the functions and variables eleéfin the module. To access
one of the functions, you have to specify the name of the neodald the name of the
function, separated by a dot (also known as a period). Thisdbis callecdot notation.

4.8. Adding new functions 43

>>> ratio = signal_power / noise_power
>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7
>>> height = math.sin(radians)

The first example computes the logarithm base 10 of the sigrabise ratio. The math
module also provides a function called that computes logarithms base

The second example finds the sineasfians . The name of the variable is a hint ttsat
and the other trigonometric functior§ , tan , etc.) take arguments in radians. To convert
from degrees to radians, divide by 360 and multiply loy 2

>>> degrees = 45

>>> radians = degrees / 360.0 * 2 * math.pi
>>> math.sin(radians)

0.707106781187

The expressiomath.pi gets the variabl@i from the math module. The value of this
variable is an approximation af accurate to about 15 digits.

If you know your trigonometry, you can check the previousuteBy comparing it to the
square root of two divided by two:

>>> math.sqrt(2) / 2.0
0.707106781187

4.8 Adding new functions

So far, we have only been using the functions that come withd?y but it is also possible
to add new functions. Aunction definition specifies the name of a new function and the
sequence of statements that execute when the functionéslc@lnce we define a function,
we can reuse the function over and over throughout our pnagra

Here is an example:

def print_lyrics():
print "I " m a lumberjack, and I ' m okay."
print ' 1 sleep all night and | work all day. '

def is a keyword that indicates that this is a function definitidhe name of the function
is print_lyrics . The rules for function names are the same as for variablegaletters,
numbers and some punctuation marks are legal, but the fiasacter can’'t be a number.
You can't use a keyword as the name of a function, and you draudid having a variable
and a function with the same name.

The empty parentheses after the name indicate that thigsidandoesn’t take any argu-
ments. Later will build functions that take arguments a& tinputs.

44 Chapter 4. Functions

The first line of the function definition is called theeader, the rest is called théody.
The header has to end with a colon and the body has to be intdeBteconvention, the
indentation is always four spaces (see Section 4.14). Ttg &an contain any number of
statements.

The strings in the print statements are enclosed in douldtequSingle quotes and double
guotes do the same thing; most people use single quotesteramgses like this where a
single quote (which is also an apostrophe) appears in timg str

If you type a function definition in interactive mode, thedrygreter prints ellipses.() to
let you know that the definition isn’t complete:

>>> def print_lyrics():
print "l "m a lumberjack, and | ' m okay."
print "| sleep all night and | work all day. '

To end the function, you have to enter an empty line (this tswecessary in a script).
Defining a function creates a variable with the same name.

>>> print print_lyrics

<function print_lyrics at Oxb7e99e9c>

>>> print type(print_lyrics)

<type ' function ' >

The value ofprint_lyrics is afunction object, which has typé function '
The syntax for calling the new function is the same as forthnifunctions:

>>> print_lyrics()
' m a lumberjack, and | ' m okay.
| sleep all night and | work all day.

Once you have defined a function, you can use it inside anéithetion. For example, to
repeat the previous refrain, we could write a function chiépeat_lyrics

def repeat_lyrics():
print_lyrics()
print_lyrics()

And then callrepeat_lyrics

>>> repeat_lyrics()

' m a lumberjack, and | ' m okay.
| sleep all night and | work all day.
I'm a lumberjack, and I ' m okay.

| sleep all night and | work all day.

But that’s not really how the song goes.

4.9. Definitions and uses 45

4.9 Definitions and uses

Pulling together the code fragments from the previous eecthe whole program looks
like this:

def print_lyrics():
print "I ''m a lumberjack, and I ' m okay."
print ' | sleep all night and | work all day.

def repeat_lyrics():
print_lyrics()
print_lyrics()

repeat_lyrics()

This program contains two function definitiongrint_lyrics and repeat_lyrics
Function definitions get executed just like other statesdnit the effect is to create func-
tion objects. The statements inside the function do not getwged until the function is
called, and the function definition generates no output.

As you might expect, you have to create a function before yayuexecute it. In other
words, the function definition has to be executed before thetiime it is called.

Exercise 4.1 Move the last line of this program to the top, so the functiafi appears
before the definitions. Run the program and see what errosagesyou get.

Exercise 4.2Move the function call back to the bottom and move the definitof
print_lyrics after the definition ofepeat_lyrics . What happens when you run this
program?

4.10 Flow of execution

In order to ensure that a function is defined before its firet yeu have to know the order
in which statements are executed, which is calledlthe of execution

Execution always begins at the first statement of the prog&tatements are executed one
at a time, in order from top to bottom.

Functiondefinitionsdo not alter the flow of execution of the program, but rementbat
statements inside the function are not executed until thetion is called.

A function call is like a detour in the flow of execution. Inatkof going to the next
statement, the flow jumps to the body of the function, execaliehe statements there, and
then comes back to pick up where it left off.

That sounds simple enough, until you remember that oneifumcan call another. While
in the middle of one function, the program might have to exedue statements in another
function. But while executing that new function, the pragranight have to execute yet
another function!

46 Chapter 4. Functions

Fortunately, Python is good at keeping track of where itaseach time a function com-
pletes, the program picks up where it left off in the functtbat called it. When it gets to
the end of the program, it terminates.

What's the moral of this sordid tale? When you read a program,dan’t always want
to read from top to bottom. Sometimes it makes more senseuiffgtbow the flow of
execution.

4.11 Parameters and arguments

Some of the built-in functions we have seen require argusaeldr example, when you
call math.sin you pass a number as an argument. Some functions take moreitlea
argumentmath.pow takes two, the base and the exponent.

Inside the function, the arguments are assigned to vagalslbedparameters Here is an
example of a user-defined function that takes an argument:

def print_twice(bruce):
print bruce
print bruce

This function assigns the argument to a parameter named . When the function is
called, it prints the value of the parameter (whatever itisge.

This function works with any value that can be printed.

>>> print_twice(' Spam)
Spam

Spam

>>> print_twice(17)

17

17

>>> print_twice(math.pi)
3.14159265359
3.14159265359

The same rules of composition that apply to built-in funeti@lso apply to user-defined
functions, so we can use any kind of expression as an arguorenint_twice

>>> print_twice(' Spam ' *4)
Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_twice(math.cos(math.pi))
-1.0

-1.0

The argument is evaluated before the function is calledy sloe examples the expressions
' Spam ' *4 andmath.cos(math.pi) are only evaluated once.

4.12. Fruitful functions and void functions 47

You can also use a variable as an argument:

>>> michael = ' Eric, the half a bee.
>>> print_twice(michael)

Eric, the half a bee.

Eric, the half a bee.

The name of the variable we pass as an argummiochdel) has nothing to do with the
name of the parametelr(ice). It doesn’t matter what the value was called back home (in
the caller); here iprint_twice , we call everybodyruce .

4.12 Fruitful functions and void functions

Some of the functions we are using, such as the math functyaeld results; for lack of a
better name, | call therfruitful functions . Other functions, likerint_twice , perform
an action but don’t return a value. They are called functions.

When you call a fruitful function, you almost always want tostomething with the result;
for example, you might assign it to a variable or use it as @igah expression:

X = math.cos(radians)
golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displidngsresult:

>>> math.sqrt(5)
2.2360679774997898

But in a script, if you call a fruitful function and do not seothe result of the function in a
variable, the return value vanishes into the mist!

math.sqrt(5)

This script computes the square root of 5, but since it doessore the result in a variable
or display the result, it is not very useful.

Void functions might display something on the screen or renrae other effect, but they
don't have a return value. If you try to assign the result taidable, you get a special value
calledNone.

>>> result = print_twice(' Bing ')
Bing

Bing

>>> print result

None

The valueNone is not the same as the strih@lone’ . It is a special value that has its own
type:

48 Chapter 4. Functions

>>> print type(None)
<type ' NoneType' >

To return a result from a function, we use tteturn statement in our function. For
example, we could make a very simple function caléedtwo that adds two numbers
together and return a result.

def addtwo(a, b):
added = a + b
return added

X = addtwo(3, 5)
print x

When this script executes, thent statement will print out “8” because thddtwo func-
tion was called with 3 and 5 as arguments. Within the functien parametera andb
were 3 and 5 respectively. The function computed the sumeofitlo numbers and placed
it in the local function variable nameatided and used theeturn statement to send the
computed value back to the calling code as the function tregith was assigned to the
variablex and printed out.

4.13 Why functions?

It may not be clear why it is worth the trouble to divide a prgrinto functions. There
are several reasons:

« Creating a new function gives you an opportunity to nameagrof statements,
which makes your program easier to read, understand andjdebu

« Functions can make a program smaller by eliminating répettode. Later, if you
make a change, you only have to make it in one place.

« Dividing a long program into functions allows you to debig fparts one at a time
and then assemble them into a working whole.

» Well-designed functions are often useful for many prograr®nce you write and
debug one, you can reuse it.

Throughout the rest of the book, we often will use a functiefirdtion to explain a concept.
Part of the skill of creating and using functions is to haveiaction properly capture an
idea such as “find the smallest value in a list of values”. tate will show you code that
finds the smallest in a list of values and we will present itdo ys a function namedin
which takes a list of values as its argument and returns tiadleshvalue in the list.

4.14. Debugging 49

4.14 Debugging

If you are using a text editor to write your scripts, you migim into problems with spaces
and tabs. The best way to avoid these problems is to use spediasively (no tabs). Most
text editors that know about Python do this by default, bmisalon't.

Tabs and spaces are usually invisible, which makes themtbatdbug, so try to find an
editor that manages indentation for you.

Also, don't forget to save your program before you run it. 8atavelopment environments
do this automatically, but some don't. In that case the @mogyou are looking at in the
text editor is not the same as the program you are running.

Debugging can take a long time if you keep running the saneeyiact, program over and
over!

Make sure that the code you are looking at is the code you arérg. If you're not sure,
put something likeorint ' hello ' at the beginning of the program and run it again. If
you don'’t seehello , you're not running the right program!

4.15 Glossary

function: A named sequence of statements that performs some usefatiope Functions
may or may not take arguments and may or may not produce d.resul

function definition: A statement that creates a new function, specifying its naaeam-
eters, and the statements it executes.

function object: A value created by a function definition. The name of the fiamcis a
variable that refers to a function object.

header: The first line of a function definition.
body: The sequence of statements inside a function definition.
parameter: A name used inside a function to refer to the value passed asggament.

function call: A statement that executes a function. It consists of thetfonamame fol-
lowed by an argument list.

argument: A value provided to a function when the function is called.isTvalue is as-
signed to the corresponding parameter in the function.

return value: The result of a function. If a function call is used as an eggpi@n, the
return value is the value of the expression.

fruitful function: A function that returns a value.
void function: A function that doesn’t return a value.

import statement: A statement that reads a module file and creates a moduletobjec

50 Chapter 4. Functions

module object: A value created by aimport statement that provides access to the data
and code defined in a module.

dot notation: The syntax for calling a function in another module by spgod the mod-
ule name followed by a dot (period) and the function name.

composition: Using an expression as part of a larger expression, or argtateas part of
a larger statement.

flow of execution: The order in which statements are executed during a program r

4.16 Exercises

Exercise 4.3 Rewrite your pay computation with time-and-a-half for diree and create
a function calleccomputepay which takes two parameterso(irs andrate).

Enter Hours: 45

Enter Rate: 10

Pay. 475.0

Exercise 4.4 Rewrite the grade program from the previous chapter usingetion called
computegrade that takes a score as its parameter and returns a grade agja str

Score Grade

> 0.9 A
> 0.8 B
> 0.7 C
> 0.6 D
<= 0.6 F

Program Execution:

Enter score: 0.95
A

Enter score: perfect
Bad score

Enter score: 10.0
Bad score

Enter score: 0.75
C

Enter score: 0.5
F

Run the program repeatedly to test the various differentesafor input.

Chapter 5

lteration

5.1 Updating variables

One of the most common forms of multiple assignment isatate, where the new value
of the variable depends on the old.

X = x+1
This means “get the current valuexgfadd one, and then updatevith the new value.”

If you try to update a variable that doesn’t exist, you getmarebecause Python evaluates
the right side before it assigns a valuecto

>>> X = x+1
NameError: name

x' is not defined

Before you can update a variable, you havénitalize it, usually with a simple assign-
ment:

>>> X
>>> X

0
x+1

Updating a variable by adding 1 is called merement; subtracting 1 is called decre-
ment.

5.2 Thewhile statement

Computers are often used to automate repetitive tasks.a®egeédentical or similar tasks
without making errors is something that computers do wall people do poorly. Because
iteration is so common, Python provides several languaaferfes to make it easier.

One form of iteration in Python is thehile statement. Here is a simple program that
counts down from five and then says “Blastoff!”.

52 Chapter 5. lteration

n=>5

while n > 0:
print n
n=n-l

print ' Blastoffl

You can almost read thehile statement as if it were English. It means, “Whiles greater
than 0, display the value ofand then reduce the valuemby 1. When you get to 0, exit
the while statement and display the wdldstoffl ~ ”

More formally, here is the flow of execution fomdile statement:

1. Evaluate the condition, yieldingue or False .

2. If the condition is false, exit thehile statement and continue execution at the next
statement.

3. If the condition is true, execute the body and then go baskep 1.

This type of flow is called #oop because the third step loops back around to the top. Each
time we execute the body of the loop, we call itiration. For the above loop, we would
say, “It had five iterations” which means that the body of a&f thop was executed five
times.

The body of the loop should change the value of one or morabias so that eventually
the condition becomes false and the loop terminates. We¢heallariable that changes each
time the loop executes and controls when the loop finishearagion variable. Id there

is no iteration variable, the loop will repeat forever, iéisg in aninfinite loop.

5.3 Infinite loops

An endless source of amusement for programmers is the @ligerthat the directions on
shampoo, “Lather, rinse, repeat,” are an infinite loop beedhere is nieration variable
telling you how many times to execute the loop.

In the case ofountdown , we can prove that the loop terminates because we know that th
value ofn is finite, and we can see that the valuenajets smaller each time through the
loop, so eventually we have to get to 0. Other times a loop gooisly infinite because it
has no iteration variable at all.

In other cases, it is not so easy to tell. The code below defirfesiction that takes an
positive number as its parameter and computes a differedt & sequence. Remember
that the percent sign is thmodulo operator which gives us the remainder if a division
were performed.

def sequence(n):
while n 1= 1:
print n, # Use comma to suppress newline

5.4. “Infinite loops” and break 53

if n%2 == 0: # n is even
n=n2

else: # nis odd
n = n*3+1

XXX The condition for this loop i1 = 1 1, so the loop will continue untit is 1, which
makes the condition false.

Each time through the loop, the program outputs the valueasfd then checks whether it
is even or odd. If it is evem is divided by 2. If it is odd, the value af is replaced with
n*3+1 . For example, if the argument passedé¢quence is 3, the resulting sequence is 3,
10,5, 16, 8, 4, 2, 1.

Sincen sometimes increases and sometimes decreases, there igmasqgtroof thah will
ever reach 1, or that the program terminates. For some planticalues ofi, we can prove
termination. For example, if the starting value is a poweaf, then the value af will be
even each time through the loop until it reaches 1. The pvavixample ends with such a
sequence, starting with 16.

>>> def sequence(n):

while n = 1:
print n,
if n%2 == 0: # n is even
n=n2
else: # nis odd
n = n*3+1

>>> sequence(3)

310516842

>>> sequence(16)

16 8 4 2

>>> sequence(50)

50 25 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2

You can try this sequence with a variety of integer or floafdoint numbers as the argu-
ment. Since the main loop repeatedly divides a number byawargument in the billions
converges to one in relatively few steps. It is more fun tdlitrgting point arguments such
as 12.45 as it takes more iterations before the sequencergasto one.

The hard question is whether we can prove that this programirtates forall positive
valuesof n. So faf, no one has been able to proveitdisprove it!

5.4 “Infinite loops” and break

Sometimes you don’t know it’s time to end a loop until you gaif vay through the body.
In that case you can write an infinite loop on purpose and tiserthebreak statement to

1Remember thdt is the operator for 'not equal’.
2Seewikipedia.org/wiki/Collatz_conjecture

54 Chapter 5. lteration

jump out of the loop.

This loop is obviously atinfinite loop because the logical expression on tidle state-
ment is simply the logical constafitue :

n =10

while True:
print n,
n=n-1

print ' Done! '

If you make the mistake and run this code, you will learn glyi¢low to stop a runaway
Python process on your system or find where the power-ofbbu#t on your computer.
This program will run forever or until your battery runs owdause the logical expression
at the top of the loop is always true by virtue of the fact that éxpression is the constant
valueTrue .

While this is a dysfunctional infinite loop, we can still uséstpattern to build useful loops
as long as we carefully add code to the body of the loop to eitipliexit the loop using
break when we have reached the exit condition.

For example, suppose you want to take input from the usertheti typedone . You could
write:

while True:
line = raw_input(>
if line == " done' :
break
print line
print ' Done!'

The loop condition idrue , which is always true, so the loop runs repeatedly until ti hi
the break statement.

Each time through, it prompts the user with an angle bradke¢he user typeslone, the
break statement exits the loop. Otherwise the program echoeswdrahe user types and
goes back to the top of the loop. Here’s a sample run:

> hello there
hello there
> finished
finished

> done
Done!

This way of writingwhile loops is common because you can check the condition anywhere
in the loop (not just at the top) and you can express the stogitton affirmatively (“stop
when this happens”) rather than negatively (“keep going thdt happens.”).

5.5. Finishing iterations with continue 55

5.5 Finishing iterations with continue

Sometimes you are in an iteration of a loop and want to finighcilrrent iteration and
immediately jump to the next iteration. In that case you camthecontinue statement to
skip to the next iteration without finishing the body of thejdfor the current iteration.

Here is an example of a loop that copies its input until the tygees “done”, but treats lines
that start with the hash character as lines not to be pritied 0f like Python comments).

while True:
line = raw_input(> 1)
if line[0] == " #
continue
if line == " done' :
break
print line
print ' Done!'

Here is a sample run of this new program wdtimtinue added.

> hello there

hello there

> # don't print this
> print this!

print this!

> done

Done!

All the lines are printed except the one that starts with thshhsign because when the
continue is executed, it ends the current iteration and jumps badkdwliile statement
to start the next iteration, thus skipping thret statement.

5.6 Definite loops usindor

Sometimes we want to loop throughsat of things such as a list of words, the lines in a
file or a list of numbers. When we have a list of things to loomtiyh, we can construct
a definiteloop using aor statement. We call thehile statement amdefiniteloop be-
cause it simply loops until some condition becorRalse whereas théor loop is looping
through a known set of items so it runs through as many itaratas there are items in the
set.

The syntax of dor loop is similar to thevhile loop in that there is or statementand a
loop body:

friends = [" Joseph', 'Glenn', ' Sally ']
for friend in friends:

print ' Happy New Year: ', friend
print ' Done!’

56 Chapter 5. lteration

Translating thigor loop to English is not as direct as tvile , but if you think of friends
as aset it goes like this: “Run the statements in the body of the &mp once for each
friendin the set named friends.”.

In Python terms, the variabligends is a lisf of three strings and thfer loop goes
through the list and executes the body once for each of tlee #trings in the list resulting
in this output:

Happy New Year: Joseph
Happy New Year: Glenn
Happy New Year: Sally
Done!

Looking at thefor loop, for andin are reserved Python keywords, afénd and
friends are variables.

for friend in friends
print 'Happy New Year', friend

In particular, friend is theiteration variable for the for loop. The variabldriend
changes for each iteration of the loop and controls wherfaheloop completes. The
iteration variable steps successively through the three strings stored ifighds vari-
able.

5.7 Loop patterns

Often we use a for or while loop to go through a list of itemshar tontents of a file and we
are looking for something such as the largest or smallegevail the data we scan through.

These loops are generally constructed by:

« Initialize one or more variables before the loop starts.

» Perform some computation on each item in the loop body,iplgsshanging the
variables in the body of the loop

« At the end of the loop, the variables contain the informatiee are looking for
We will use a list of numbers to demonstrate the concepts andtaiction of these loop

patterns.

5.7.1 Counting and summing loops

For example, to count the number of items in a list, we woulierthe followingfor loop:

3We will examine lists in more detail in a later chapter

5.7. Loop patterns 57

count = 0

for iterval in [3, 41, 12, 9, 74, 15]:
count = count + 1

print ' Count. ', count

We set the variableount to zero before the loop starts, then we writa loop to run
through the list of numbers. Oiteration variable is namedervar and while we do not
useitervar in the loop, it does control the loop and cause the loop bodyetexecuted
once for each of the values in the list.

In the body of the loop, we add one to the current valueoafit for each of the values in
the list. While the loop is executing, the valuewfiint is the number of values we have
seen “so far”.

Once the loop completes, the valuecolint is the total number of items. The total number
“falls in our lap” at the end of the loop. We construct the lsipthat we have what we
want when the loop finishes.

Another similar loop that computes the total of a set of nursleas follows:

total = 0

for iterval in [3, 41, 12, 9, 74, 15].
total = total + iterval

print ' Total: ', total

In this loop wedo use theteration variable . Instead of simply adding one to theunt as

in the previous loop, we add the actual number (3, 41, 12, &i¢he running total during
each loop iteration. If you think about the variald&l , it contains the “running total of
the values so far”. So before the loop stawtal is zero because we have not yet seen any
values, during the looftal is the running total, and at the end of the Idojal is the
overall total of all the values in the list.

As the loop executestal accumulates the sum of the elements; a variable used this way
is sometimes called aaccumulator.

Neither the counting loop nor the summing loop are partitylaseful in practice because
there are built-in functionken() andsum() that compute the number of items in a list and
the total of the items in the list respectively.

5.7.2 Maximum and minimum loops
To find the largest value in a list or sequence, we constrctatiowing loop:

largest = None
print ' Before: ', largest
for iterval in [3, 41, 12, 9, 74, 15]:
if largest == None or largest < iterval:
largest = iterval
print ' Loop: ', iterval, largest
print ' Largest. ', largest

58 Chapter 5. lteration

When the program executes, the output is as follows:

Before: None
Loop: 3 3
Loop: 41 41
Loop: 12 41
Loop: 9 41
Loop: 74 74
Loop: 15 74
Largest: 74

The variabldargest is best thought of as the “largest value we have seen so faforg
the loop, we sefargest to the constanilone. None is a special constant value which we
can store in a variable to mark the variable as “empty”.

Before the loop starts, the largest value we have seen seNané since we have not yet
seen any values. While the loop is executinggrifest is None then we take the first value
we see as the largest so far. You can see in the first iteratiemwhe value otterval is
3, sincelargest is None, we immediately sdtrgest to be 3.

After the first iterationjargest is no longerNone, so the second part of the compound
logical expression that checlesgest < iterval triggers only when we see a value that
is larger than the “largest so far”. When we see a new “everiarglue we take that new
value forlargest . You can see in the program output theagest progresses from 3 to
41to 74.

At the end of the loop, we have scanned all of the values andatiablelargest now
does contain the largest value in the list.

To compute the smallest number, the code is very similar e small change:

smallest = None
print ' Before: ', smallest
for iterval in [3, 41, 12, 9, 74, 15]:
if smallest == None or iterval < smallest:
smallest = iterval
print ' Loop: ', iterval, smallest
print ' Smallest: ', smallest

Again,smallest is the “smallest so far” before, during, and after the loopaeses. When
the loop has completedmallest contains the minimum value in the list.

Again as in counting and summing, the built-in functionex() andmin() make writing
these exact loops unnecessary.

The following is a simple version of the Python builtfin() function:

def min(values):
smallest = None
for value in values:

5.8. Debugging 59

if smallest == None or value < smallest:
smallest = iterval
return smallest

In the function version of the smallest code, we removedfaheprint statements so as
to be equivalent to thmin function which is already built-in to Python.

5.8 Debugging

As you start writing bigger programs, you might find yoursgiénding more time debug-
ging. More code means more chances to make an error and naaesgbr bugs to hide.

One way to cut your debugging time is “debugging by bisectiBor example, if there are
100 lines in your program and you check them one at a time, ildvake 100 steps.

Instead, try to break the problem in half. Look at the middléhe program, or near it, for
an intermediate value you can check. Adgtiat statement (or something else that has a
verifiable effect) and run the program.

If the mid-point check is incorrect, the problem must be ia finst half of the program. If
it is correct, the problem is in the second half.

Every time you perform a check like this, you halve the nundidines you have to search.
After six steps (which is much less than 100), you would berdtwone or two lines of
code, at least in theory.

In practice it is not always clear what the “middle of the piag” is and not always possible
to check it. It doesn’'t make sense to count lines and find thetaridpoint. Instead, think
about places in the program where there might be errors awgphhere it is easy to put
a check. Then choose a spot where you think the chances aretabsame that the bug
is before or after the check.

5.9 Glossary

multiple assignment: Making more than one assignment to the same variable during t
execution of a program.

update: An assignment where the new value of the variable dependseooid.
initialize: An assignment that gives an initial value to a variable thiithe updated.
increment: An update that increases the value of a variable (often by.one
decrement: An update that decreases the value of a variable.

iteration: Repeated execution of a set of statements using either esiexfunction call
or a loop.

60 Chapter 5. lteration

counter: A variable used in a loop to count the number of times somgthisppened.
We initialize a counter to zero and then increment the cowrdeh time we want to
“count” something.

accumulator: A variable used in a loop to add up or accumulate a result.

infinite loop: A loop in which the terminating condition is never satisfiedfar which
there is no termination condition.

5.10 Exercises

Exercise 5.1 Write a program which reads list of numbers until “done” isezatl. Once
“done” is entered, print out the total, count, and averagiehumbers. If the user enters
anything other than a number, detect their mistake usyngandcatch and print an error
message and skip to the next number.

Enter a number: 4

Enter a number: 5

Enter a number: bad data
Invalid input

Enter a number: 7

Enter a number: done
Average: 5.33333333333

Exercise 5.2 Write another program that prompts for a list of numbers asabaod at the
end prints out both the maximum and minimum of the numbers.

Chapter 6

Strings

6.1 A stringis a sequence

A string is asequenceof characters. You can access the characters one at a tiiméheit
bracket operator:

>>> fruit = ' banana'
>>> |etter = fruit[1]

The second statement extracts the character at indexqgroditirom thefruit variable
and assigns it tetter variable.

The expression in brackets is callediadex. The index indicates which character in the
sequence you want (hence the name).

But you might not get what you expect:

>>> print letter
a

For most people, the first letter bbanana' is b, nota. But in Python, the index is an
offset from the beginning of the string, and the offset offir& letter is zero.

>>> letter = fruit[0]
>>> print letter
b

Sob is the Oth letter (“zero-eth”) df banana' , a is the 1th letter (“one-eth”), andis the
2th (“two-eth”) letter.

You can use any expression, including variables and opstade an index, but the value
of the index has to be an integer. Otherwise you get:

>>> |etter = fruit[1.5]
TypeError: string indices must be integers

62 Chapter 6. Strings

6.2 Getting the length of a string usingen

len is a built-in function that returns the number of characies string:

>>> fruit = ' banana'
>>> |en(fruit)
6

To get the last letter of a string, you might be tempted to trpsthing like this:

>>> length = len(fruit)
>>> last = fruit[length]
IndexError: string index out of range

The reason for thmdexError is that there is no letter ihanana’ with the index 6. Since
we started counting at zero, the six letters are numbered0 T get the last character,
you have to subtract 1 frotangth :

>>> last = fruit[length-1]
>>> print last
a

Alternatively, you can use negative indices, which courtkiard from the end of the
string. The expressiofiuit[-1] yields the last letterruit[-2] yields the second to
last, and so on.

6.3 Traversal through a string with afor loop

A lot of computations involve processing a string one chizraat a time. Often they start
at the beginning, select each character in turn, do songetbiit, and continue until the
end. This pattern of processing is callettaversal. One way to write a traversal is with a
while loop:

index = 0

while index < len(fruit):
letter = fruit[index]
print letter
index = index + 1

This loop traverses the string and displays each letter medol itself. The loop condition
isindex < len(fruit) , S0 wherindex is equal to the length of the string, the condition
is false, and the body of the loop is not executed. The lastacher accessed is the one
with the indexien(fruit)-1 , which is the last character in the string.

Exercise 6.1 Write awhile loop that starts at the last character in the string and witsks
way backwards to the first character in the string, printiagheletter on a separate line,
except backwards.

6.4. String slices 63

Another way to write a traversal is withfer loop:

for char in fruit:
print char

Each time through the loop, the next character in the stagsigned to the variahiear .
The loop continues until no characters are left.

The following example shows how to use concatenation @aidition) and dor loop to
generate an abecedarian series (that is, in alphabetaai)oin Robert McCloskey’s book
Make Way for Ducklingsthe names of the ducklings are Jack, Kack, Lack, Mack, Nack,
Ouack, Pack, and Quack. This loop outputs these names in orde

prefixes = ' JKLMNOPQ
suffix = " ack’

for letter in prefixes:
print letter + suffix

The output is:

Jack

Kack
Lack

Mack
Nack
Oack
Pack
Qack

Of course, that's not quite right because “Ouack” and “Quark misspelled.

6.4 String slices

A segment of a string is calledsdice Selecting a slice is similar to selecting a character:

>>> s = ' Monty Python '
>>> print s[0:5]

Monty

>>> print s[6:13]

Python

The operatofn:m] returns the part of the string from the “n-eth” charactethi® ‘tm-eth”
character, including the first but excluding the last. Thebdwior is counterintuitive, but
it might help to imagine the indices pointifzetweernthe characters, as in the following
diagram:

64 Chapter 6. Strings

ut—""phanana’

index 0 1 2 3 4 5 6
If you omit the first index (before the colon), the slice staat the beginning of the string.
If you omit the second index, the slice goes to the end of thiegst

>>> fruit = ' banana'
>>> fruit[:3]

' ban
>>> fruit[3]]
"ana

If the first index is greater than or equal to the second thatressanempty string, repre-
sented by two quotation marks:

>>> fruit = ' banana'
>>> fruit[3:3]

An empty string contains no characters and has length 0,tbat than that, it is the same
as any other string.

Exercise 6.2 Given thaffruit is a string, what doefuit[:] mean?

6.5 Strings are immutable

It is tempting to use thE operator on the left side of an assignment, with the intentio
changing a character in a string. For example:

>>> greeting = ' Hello, world!
>>> greeting[0] = "J
TypeError: object does not support item assignment

The “object” in this case is the string and the “item” is theudrcter you tried to assign.

For now, anobject is the same thing as a value, but we will refine that definitadarl An
item is one of the values in a sequence.

The reason for the error is that strings arenutable, which means you can’'t change an
existing string. The best you can do is create a new strirtgstaavariation on the original:

>>> greeting = ' Hello, world!

>>> new_greeting = 'J' + greeting[1]
>>> print new_greeting

Jello, world!

This example concatenates a new first letter onto a sligeeefing . It has no effect on
the original string.

6.6. Searching 65

6.6 Searching

What does the following function do?

def find(word, letter):
index = 0
while index < len(word):
if word[index] == letter:
return index
index = index + 1
return -1

In asensdind is the opposite of thg operator. Instead of taking an index and extracting
the corresponding character, it takes a character and fiedsmitlex where that character
appears. If the character is not found, the function rettrns

This is the first example we have seen oftarn statement inside a loop. Word[index]
== letter , the function breaks out of the loop and returns immediately

If the character doesn't appear in the string, the loop exitsnally at the bottom and
returns-1.

This pattern of computation—traversing a sequence andmiatuwhen we find what we
are looking for—is a called search

Exercise 6.3Modify find so that it has a third parameter, the indexwiord where it
should start looking.

6.7 Looping and counting

The following program counts the number of times the ledtappears in a string:

word = ' banana'
count = 0
for letter in word:
if letter == "a':
count = count + 1
print count

This program demonstrates another pattern of computasibedcacounter. The variable
count isinitialized to 0 and then incremented each tima@nfound. When the loop exits,
count contains the result—the total numberass.

Exercise 6.4 Encapsulate this code in a function nangednt , and generalize it so that it
accepts the string and the letter as arguments.

Exercise 6.5 Rewrite this function so that instead of traversing thengtrit uses the three-
parameter version dihd from the previous section.

66 Chapter 6. Strings

6.8 Thein operator

The wordin is a boolean operator that takes two strings and refiruesif the first appears
as a substring in the second:

>>> 'a' in 'banana’
True

>>> "seed' in ' banana'
False

6.9 String comparison

The comparison operators work on strings. To see if twogtrare equal:

if word == ' banana' :
print " All right, bananas.

Other comparison operations are useful for putting worddphabetical order:

if word < ' banana':
print ' Your word, ' + word + ', comes before banana.
elif word > ' banana' :
print ' Your word,
else:
print " All right, bananas.

+ word + ', comes after banana.

Python does not handle uppercase and lowercase letterartteevgay that people do. All
the uppercase letters come before all the lowercase lgdtiers

Your word, Pineapple, comes before banana.

A common way to address this problem is to convert stringsdtaadard format, such as
all lowercase, before performing the comparison. Keepithatind in case you have to
defend yourself against a man armed with a Pineapple.

6.10 string methods

Strings are an example of Pythobjects. An object contains both data (the actual string
itself) as well asmethodswhich are effectively functions which are built into the ebf
and available to aninstanceof the object.

Python has a function calledir that lists the methods available for an object. Type
function shows the type of an object and tlire function shows the available methods.
>>> stuff = ' Hello world
>>> type(stuff)

6.10. string methods 67

<type ‘'str '>
>>> dir(stuff)

[' capitalize ', "center ', 'count ', 'decode’', 'encode"’,
"endswith ', 'expandtabs ', 'find ', 'format ', 'index ',
"isalnum ', 'isalpha ', 'isdigit ', 'islower ', 'isspace ',
"istitte ', 'isupper ', 'join ', "ljust ', 'lower ', 'lstrip ',
" partition ', 'replace ', 'rfind ', 'rindex ', 'rust ',

' rpartition “,otrsplit o, trstrip ', tsplit ", ! splitines .

' startswith ', 'strip ', 'swapcase', 'title ', 'translate ',

"upper ', "Zfill "]
>>> help(str.capitalize)
Help on method_descriptor:

capitalize(...)
S.capitalize() -> string

Return a copy of the string S with only its first character
capitalized.
>>>

While thedir function lists the methods, and you can hsfp to get some simple doc-
umentation on a method, a better source of documentatiostifimg methods would be
docs.python.org/library/string.html

Calling amethodis similar to calling a function—it takes arguments and nesia value—
but the syntax is different. We call a method by appendingrikthod name to the variable
name using the period as a delimiter.

For example, the methagbper takes a string and returns a new string with all uppercase
letters:

Instead of the function syntaxper(word) , it uses the method syntavord.upper()

>>> word = ' banana’

>>> new_word = word.upper()
>>> print new_word

BANANA

This form of dot notation specifies the name of the methupder , and the name of the
string to apply the method taord . The empty parentheses indicate that this method takes
no argument.

A method call is called aimmvocation; in this case, we would say that we are invoking
upper on theword .

As it turns out, there is a string method nanfed that is remarkably similar to the
function we wrote:

>>> word = ' banana'’

68 Chapter 6. Strings

>>> index = word.find("a')
>>> print index
1

In this example, we invokéind onword and pass the letter we are looking for as a param-
eter.

Actually, thefind method is more general than our function; it can find subg$rinot just
characters:

>>> word.find(' na')
2

It can take as a second argument the index where it shoutd star

>>> word.find('na', 3)
4

One common task is to remove white space (spaces, tabs, negwrom the beginning
and end of a string using tis&rip method:

>>> line = Here we go
>>> line.strip()
' Here we go'

Some methods such amrtswith return boolean values.

>>> line = ' Please have a nice day
>>> line.startswith(' Please ')

True

>>> line.startswith("p')

False

You will note thatstartswith requires case to match so sometimes we take a line and
map it all to lowercase before we do any checking usingaluer method.

>>> line = ' Please have a nice day
>>> line.startswith("p')
False

>>> line.lower()

' please have a nice day
>>> line.lower().startswith(p')
True

In the last example, then methtoder is called and then we ustrtswith check to see
if the resulting lowercase string starts with the letter.“%'s long as we are careful with
the order, we can make multiple method calls in a single esgioe.

Exercise 6.6 There is a string method calledunt that is similar to the function in the pre-
vious exercise. Read the documentation of this methafbatpython.org/library/

string.html and write an invocation that counts the number of times ttierl@ occurs
in' banana' .

6.11. Parsing strings 69

6.11 Parsing strings

Often, we want to look into a string and find a substring. Famegle if we were presented
a series of lines formatted as follows:

From stephen.marquard@ uct.ac.za Sat Jan 5 09:14:16 2008

And we wanted to pull out only the second half of the addressu@t.ac.za) from each
line. We can do this by using thied method and string slicing.

First, we will find the position of the at-sign in the stringadn we will find the position of
the first spacafterthe at-sign. And then we will use string slicing to extraa frortion of
the string which we are looking for.

>>> data = ' From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

>>> atpos = datafind(' @)
>>> print atpos
21

>>> sppos = data.find(
>>> print sppos

31

>>> host = data[atpos+1:sppos]
>>> print host

uct.ac.za

>>>

,atpos)

We use a version of thind method which allows us to specify a position in the string
where we wanfind to start looking. When we slice, we extract the characters flane
beyond the at-sign through upbat not includingthe space character”.

The documentation for thénd method is available adocs.python.org/library/
string.html

6.12 Format operator

Theformat operator, %allows us to construct strings, replacing parts of the g&riwith
the data stored in variables. When applied to integéisthe modulus operator. But when
the first operand is a stringpis the format operator.

The first operand is théormat string, which contains one or mor®rmat sequences
which specify how the second operand is formatted. Thetrésalstring.

For example, the format sequeridéd means that the second operand should be formatted
as an integerd(stands for “decimal”):

>>> camels = 42
>>> ' %d % camels
"4

70 Chapter 6. Strings

The result is the string42' , which is not to be confused with the integer valize

A format sequence can appear anywhere in the string, so yowemcded a value in a
sentence:

>>> camels = 42
>>> ' | have spotted %d camels.
" | have spotted 42 camels. '

% camels

If there is more than one format sequence in the string, thergbargument has to be a
tuple. Each format sequence is matched with an element ofighe, in order.

The following example uses%d to format an integer, %d to format a floating-point
number (don’t ask why), and%s to format a string:

>>> ' |n %d years | have spotted %g %s. ' % (3, 0.1, ' camels ')
"In 3 years | have spotted 0.1 camels. '

The number of elements in the tuple has to match the numberiat sequences in the
string. Also, the types of the elements have to match thedbsmquences:

>>> ' %d %d %d % (1, 2)

TypeError: not enough arguments for format string
>>> ' %d %' dollars '

TypekError: illegal argument type for built-in operation

In the first example, there aren’t enough elements; in thersgdhe element is the wrong
type.

The format operator is powerful, but it can be difficult to u¥eu can read more about it
atdocs.python.org/lib/typesseq-strings.html|

6.13 Debugging

A skill that you should cultivate as you program is alwaysiaghkourself, “What could go
wrong here?” or alternatively, “What crazy thing might ouendo to crash our (seemingly)
perfect program?”.

For example, look at the program which we used to demonstnatehile loop in the
chapter on iteration:

while True:
line = raw_input(>
if line[0] == "#
continue
if line == ' done' :
break
print line

print ' Done!'

6.13. Debugging 71

Look what happens when the user enters an empty line of input:

> hello there
hello there
> # don' t print this
> print this!
print this!
>
Traceback (most recent call last):
File "copytildone.py”, line 3, in <module>
if line[0] == "H#

The code works fine until it is presented an empty line. Thendls no zeroth character
so we get a traceback. There are two solutions to this to niaéHree “safe” even if the
line is empty.

One possibility is to simply use thgtartswith ~ method which returnBalse if the string
is empty.

if line.startswith("#)

Another way to safely write thé statement using thguardian pattern and make sure
the second logical expression is evaluated only where feexeleast one character in the
string.:

if len(line) > 0 and line[0] == " #

Another common source of problems is when you hand-cortsimdex values to move
through a sequence. It can be quite tricky to get the beginaimd end of the traversal
right.

Here is a function that is supposed to compare two words andnr&rue if one of the
words is the reverse of the other, but it contains two errors:

def is_reverse(wordl, word2):
if len(wordl) != len(word2):
return False

0
len(word2)

i
j

while j > 0:
if word1[i] != word2]j]:
return False
i+1
-1

i
j

return True

72 Chapter 6. Strings

The firstif statement checks whether the words are the same lengttt, ifa@an return
False immediately and then, for the rest of the function, we canmm&sthat the words are
the same length. This is another example of the guardiaarpatt

i andj are indices: traversesvordl forward whilej traversesvord2 backward. If we
find two letters that don’t match, we can retli@se immediately. If we get through the
whole loop and all the letters match, we retdrne .

If we test this function with the words “pots” and “stop”, wepect the return valu@rue ,
but we get an IndexError:

>>> is reverse(' pots ', 'stop ')

File "reverse.py", line 15, in is_reverse
if word1][i] != word2]j]:
IndexError: string index out of range

For debugging this kind of error, my first move is to print theues of the indices imme-
diately before the line where the error appears.

while j > 0:
print i, # print here

if word1[i] != word2][j]:
return False

i =i+l

j=J1

Now when | run the program again, | get more information:

>>> s reverse(' pots ', 'stop ')
04

IndexError: string index out of range

The first time through the loop, the value pfis 4, which is out of range for the
string' pots ' . The index of the last character is 3, so the initial valuejfahould be
len(word2)-1

If | fix that error and run the program again, | get:

>>> is reverse(' pots ', 'stop ')
03
12
21
True

This time we get the right answer, but it looks like the loofyaan three times, which is
suspicious. To get a better idea of what is happening, itefuli$o draw a state diagram.
During the first iteration, the frame fég reverse looks like this:

6.14. Glossary 73

wordl —= ’pots’ word2 —= 'stop’

i—=0 i—=3

| took a little license by arranging the variables in the fesamd adding dotted lines to show
that the values af andj indicate characters wordl andword? .

Exercise 6.7 Starting with this diagram, execute the program on papeangimg the values
of i andj during each iteration. Find and fix the second error in thigfion.

6.14 Glossary

object: Something a variable can refer to. For now, you can use “thggw “value”
interchangeably.

sequence:An ordered set; that is, a set of values where each value idifidel by an
integer index.

item: One of the values in a sequence.

index: Aninteger value used to select an item in a sequence, sucthasacter in a string.

slice: A part of a string specified by a range of indices.

empty string: A string with no characters and length 0, represented by tuwatagion
marks.

immutable: The property of a sequence whose items cannot be assigned.

traverse: To iterate through the items in a sequence, performing dasiraperation on
each.

search: A pattern of traversal that stops when it finds what it is logkior.

counter: A variable used to count something, usually initialized éoazand then incre-
mented.

method: A function that is associated with an object and called udimighotation.
invocation: A statement that calls a method.

format operator: An operator,% that takes a format string and a tuple and generates a
string that includes the elements of the tuple formattedpasifed by the format
string.

format string: A string, used with the format operator, that contains fdregguences.

format sequence: A sequence of characters in a format string, e that specifies how
a value should be formatted.

flag: A boolean variable used to indicate whether a conditiorvie.tr

74 Chapter 6. Strings

6.15 Exercises

Exercise 6.8 Write some code to parse lines of the form:
X-DSPAM-Confidence: 0.8475

Usefind and string slicing to extract the portion of the string aftex colon character and
then use thdoat function to convert the extracted string into a floating poinmber.

Exercise 6.9 A string slice can take a third index that specifies the “step;%that is,
the number of spaces between successive characters. Aiztegf & means every other
character; 3 means every third, etc.

>>> fruit = ' banana'
>>> fruit[0:5:2]
" bnn

A step size of -1 goes through the word backwards, so the[slide generates a reversed
string.

Exercise 6.10Read the documentation of the string methoddoes.python.org/lib/
string-methods.html . You might want to experiment with some of them to make sure
you understand how they worktrip andreplace are particularly useful.

The documentation uses a syntax that might be confusing. d@mple, in
find(sub[, start[, end]]) , the brackets indicate optional arguments. s8b is re-
quired, butstart is optional, and if you includetart , thenend is optional.

Exercise 6.11The following functions are alhtendedio check whether a string contains
any lowercase letters, but at least some of them are wrong.edeh function, describe
what the function actually does (assuming that the pararsetestring).

def any_lowercasel(s):
for ¢ in s:
if c.islower():
return True
else:
return False

def any_lowercase2(s):
for ¢ in s
if ' c" .islower():
return ' True'
else:
return ' False '
def any_lowercase3(s):
for c in s
flag = c.islower()

6.15. Exercises 75

return flag

def any_lowercase4(s):
flag = False
for ¢ in s
flag = flag or c.islower()
return flag

def any_lowercase5(s):
for c in s
if not c.islower():
return False
return True

Exercise 6.12ROT13 is a weak form of encryption that involves “rotatingich letter in
a word by 13 placés To rotate a letter means to shift it through the alphabeapping
around to the beginning if necessary, so 'A shifted by 3 isabd 'Z’ shifted by 1 is'A.

Write a function calledotate_ word that takes a string and an integer as parameters and
returns a new string that contains the letters from the waigstring “rotated” by the given
amount.

For example, “cheer” rotated by 7 is “jolly” and “melon” ro¢al by -10 is “cubed”.

You might want to use the built-in functioresd , which converts a character to a numeric
code, ancthr , which converts numeric codes to characters.

Potentially offensive jokes on the Internet are sometinmesded in ROT13. If you are not
easily offended, find and decode some of them.

1seewikipedia.org/wiki/ROT13

76

Chapter 6. Strings

Chapter 7

Files

7.1 Persistence

So far, we have learned how to write programs and communimaténtentions to the
Central Processing Unitusing conditional execution, functions, and iteratione Neve
learned how to create and use data structures iMtia Memory . The CPU and memory
are where our software works and runs. It is where all of thanking” happens.

But if you recall from our hardware architecture discussjance the power is turned off,
anything stored in either the CPU or main memory is erasedipg30 now, our programs
have just been transient fun exercises to learn Python.

Software

| " Central
npu Processin
Output Unit 9 Network
Devices

Main

Secondar
Memory Memory y

In this chapter, we start to work witBecondary Memory (or files). Secondary memory
not erased even when the power is turned off. Or in the caseUSB flash drive, the
data can we write from our programs can be removed from thtersyand transported to
another system.

78 Chapter 7. Files

We will primarily focus on reading and writing text files suah those we create in a text
editor. Later we will see how to work with database files wrach binary files, specifically
designed to be read and written through database software.

7.2 Opening files

When we want to read or write a file (say on your hard drive), wat firustopenthe file.
Opening the file communicates with your operating systentciwknows where the data
for each file is stored. When you open a file, you are asking tleeatipg system to find
the file by name and make sure the file exists. In this exammeypen the filenbox.txt
which should be stored in the same folder that you in when yart ython. You can
download this file fronwww.py4inf.com/code/mbox.txt

>>> fhand = open(' mbox.txt ')
>>> print fhand
<open file ' mbox.txt

, mode 'r' at 0x1005088b0>

If the open is successful, the operating system returns fikeehandle. The file handle
is not the actual data contained in the file, but instead it‘isaamdle” that we can use to
read the data. You are given a handle if the requested filésexil you have the proper
permissions to read the file.

If the file does not existopen will fail with a traceback and you will not get a handle to
access the contents of the file:

>>> fhand = open(' stuff.txt ")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or directory: ' stuffixt

Later we will usetry andexcept to deal more gracefully with the situation where we
attempt to open a file that does not exist.

7.3 Textfiles and lines

Atext file can be thought of as a sequence of lines, much likglzdn string can be through
of as a sequence of characters. For example, this is a sampltext file which records
mail activity from various individuals in an open sourcejpad development team:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14;16 2008
Return-Path: <postmaster@collab.sakaiproject.org>

Date: Sat, 5 Jan 2008 09:12:18 -0500

To: source@collab.sakaiproject.org

From: stephen.marquard@uct.ac.za

Subject: [sakai] svn commit: 39772 - content/branches/

7.3. Textfiles and lines 79

Details: http://source.sakaiproject.org/viewsvn/?vie w=rev&rev=39772

The entire file is mail interactions is available fremww.py4inf.com/code/mbox.txt and

a shortened version of the file is available framw.py4inf.com/code/mbox-short.txt

These files are in a standard format for a file containing ipleltnail messages. The lines
which start with “From ” separate the messages and the litéshwstart with “From:” are
part of the messages. For more information, eseeikipedia.org/wiki/Mbox

To break the file into lines, there is a special characterréyaiesents the “end of the line”
called thenewline character.

In Python, we represent theewline character as a backslash-n in string constants. Even
though this looks like two characters, it is actually a singharacter. When we look at the
variable by entering “stuff” in the interpreter, it shows the \n in the string, but when

we useprint to show the string, we see the string broken into two lineshigyrtewline
character.

>>> stuff = ' Hello\nWorld! '
>>> stuff

' Hello\nworld!
>>> print stuff

Hello

World!

>>> stuff = ' X\nY'
>>> print stuff

X

Y

>>> |en(stuff)

3

You can also see that the length of the stfibdnY ' isthreecharacters because the newline
character is a single character.

So when we look at the lines in a file, we needrtaginethat there is a special invisible
character at the end of each line that marks the end of thedilhed the newline.

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008\n

Return-Path: <postmaster@collab.sakaiproject.org>\n

Date: Sat, 5 Jan 2008 09:12:18 -0500\n

To: source@collab.sakaiproject.org\n

From: stephen.marquard@uct.ac.za\n

Subject: [sakai] svn commit: 39772 - content/branches/\n

Details: http://source.sakaiproject.org/viewsvn/?vie w=rev&rev=39772\n

So the newline character separates the characters in thidilines.

80 Chapter 7. Files

7.4 Reading files

While thefile handle does not contain the data for the file, it is quite easy to cansh
for loop to read through and count each of the lines in afile:

fhand = open(' mbox.txt ')
count = 0
for line in fhand:;

count = count + 1

print ' Line Count: ', count

python open.py
Line Count: 132045

We can use the file handle as the sequence ifooutoop. Ourfor loop simply counts the
number of lines in the file and prints them out. The rough tietitn of thefor loop into
English is, “for each line in the file represented by the filadia, add one to theount
variable.”

The reason that thepen function does not read the entire file is that the file might bigeq
large with many gigabytes of data. Thpen statement takes the same amount of time
regardless of the size of the file. Tlee loop actually causes the data to be read from the
file.

When the file is read usingfer loop in this manner, Python takes care of splitting the data
in the file into separate lines using the newline charactgthd® reads each line through
the newline and includes the newline as the last charactdreitine variable for each
iteration of thefor loop.

Because the for loop reads the data one line at a time, it d@reefly read and count the
lines in very large files without running out of main memorystore the data. The above
program can count the lines in any sized file using very littklemory since each line is
read, counted, and then discarded.

If you know the file is relatively small compared to the sizeyofir main memory, you can
read the whole file into one string using tlkad method on the file handle.

>>> fhand = open(' mbox-shortixt ')
>>> inp = fhand.read()

>>> print len(inp)

94626

>>> print inp[:20]

From stephen.marquar

In this example, the entire contents (all 94,626 charactdithe file mbox-short.txt are

read directly into the variabliep . We use string slicing to print out the first 20 characters
of the string data stored inp .

When the file is read in this manner, all the characters inntydil of the lines and newline
characters are one big string in the variailp. Remember that this form of thapen

7.5. Searching through a file 81

function should only be used if the file data will fit comfortalin the main memory of
your computer.

If the file is too large to fit in main memory, you should writewy@rogram to read the file
in chunks using ér orwhile loop.

7.5 Searching through a file

When you are searching through data in a file, it is a very compattern to read through
a file, ignoring most of the lines and only processing linegcwimeet a particular criteria.
We can combine the pattern for reading a file with stringthodsto build simple search
mechanisms.

For example, if we wanted to read a file and only print out linddch started with the
prefix “From:”, we could use the string methathrtswith to select only those lines with
the desired prefix:

fhand = open(' mbox-short.txt ')
for line in fhand:
if line.startswith(" From: ") :
print line

When this program runs, we get the following output:

From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From: zgian@umich.edu

From: rjlowe@iupui.edu

The output looks great since the only lines we are seeindnasetwhich start with “From:”,
but why are we seeing the extra blank lines? This is due tdrikisible newline character.
Each of the lines ends with a newline, sopiiet statement prints the string in the variable
line which includes a newline and thennt addsanothemewline, resulting in the double
spacing effect we see.

We could use line slicing to print all but the last charadbert,a simpler approach is to use
therstrip method which strips whitespace from the right side of a gtas follows:

fhand = open(' mbox-short.txt ')
for line in fhand:
line = line.rstrip()
if line.startswith(" From: ") :
print line

82 Chapter 7. Files

When this program runs, we get the following output:

From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From: zgian@umich.edu

From: rjlowe@iupui.edu

From: zgian@umich.edu

From: rjlowe@iupui.edu

From: cwen@iupui.edu

As your file processing programs get more complicated, yoy went to structure your
search loops usingpntinue . The basic idea of the search loop is that you are looking for
“interesting” lines and effectively skipping “uninterew” lines. And then when we find
an interesting line, we do something with that line.

We can structure the loop to follow the pattern of skippingntaresting lines as follows:

fhand = open(' mbox-short.txt ')
for line in fhand:

line = line.rstrip()

Skip ' uninteresting lines

if not line.startswith(" From: ") :
continue

Process our 'interesting ' line

print line

The output of the program is the same. In English, the urastarg lines are those which
do not start with “From:”, which we skip usingpntinue . For the “interesting” lines (i.e.
those that start with “From:”) we perform the processingluse lines.

We can use thénd string method to simulate a text editor search which findssiwhere
the search string is anywhere in the line. Sificeé looks for an occurrence of a string
within another string and either returns the position ofdtrang or -1 if the string was not
found, we can write the following loop to show lines which tain the string “@uct.ac.za”
(i.e. they come from the University of Capetown in South édi

fhand = open(' mbox-short.txt ')
for line in fhand:
line = line.rstrip()
if line.find(' @uctac.za ') == -1:
continue
print line

Which produces the following output:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
X-Authentication-Warning: set sender to stephen.marquar d@uct.ac.za using -f
From: stephen.marquard@uct.ac.za

7.6. Letting the user choose the file name 83

Author: stephen.marquard@uct.ac.za

From david.horwitz@uct.ac.za Fri Jan 4 07:02:32 2008

X-Authentication-Warning: set sender to david.horwitz@u ct.ac.za using -f
From: david.horwitz@uct.ac.za

Author: david.horwitz@uct.ac.za

7.6 Letting the user choose the file name

We really do not want to have to edit our Python code every tiveewant to process a
different file. It would be more usable to ask the user to etiterfile name string each
time the program runs so they can use our program on difféiteatwithout changing the
Python code.

This is quite simple to do by reading the file name from the wsengraw_input as
follows:

fname = raw_input(' Enter the file name: ")
fhand = open(fname)
count = 0
for line in fhand:
if line.startswith(" Subject: ") :

count = count + 1
print ' There were ', count, ' subject lines in ", fname

We read the file name from the user and place it in a variableeddmame and open that
file. Now we can run the program repeatedly on different files.

python search6.py
Enter the file name: mbox.txt
There were 1797 subject lines in mbox.txt

python search6.py
Enter the file name: mbox-short.txt
There were 27 subject lines in mbox-short.txt

Before peeking at the next section, take a look at the abovgr@am and ask yourself,
“What could go possibly wrong here?” or “What might our friepdiser do that would
cause our nice little program to ungracefully exit with a&back, making us look not-so-
cool in the eyes of our users?”.

7.7 Usingtry, catch, and open

| told you not to peek. This is your last chance.

What if our user types something that is not a file name?

84 Chapter 7. Files

python search6.py
Enter the file name: missing.txt
Traceback (most recent call last):
File "search6.py", line 2, in <module>
fhand = open(fname)
IOError: [Errno 2] No such file or directory: " missing.txt
python search6.py
Enter the file name: na na boo boo
Traceback (most recent call last):
File "search6.py", line 2, in <module>
fhand = open(fname)
IOError: [Errno 2] No such file or directory: "na na boo boo'

Do not laugh, users will eventually do every possible thihgytcan do to break your
programs — either on purpose or with malicious intent. As &enaf fact, an important
part of any software development team is a person or grolgdd@uality Assurance (or
QA for short) whose very job it is to do the craziest thingsgilole in an attempt to break
the software that the programmer has created.

The QA team is responsible for finding the flaws in programsigefve have delivered the
program to the end-users who may be purchasing the softwa@gyng our salary to write
the software. So the QA team is the programmer’s best friend.

So now that we see the flaw in the program, we can elegantly tigifitg thetry /except
structure. We need to assume thatdpen call might fail and add recovery code when the
open fails as follows:

frame = raw_input(' Enter the file name: ")
try:
fhand = open(fname)
except:
print ' File cannot be opened: ', fname
exit()
count = 0
for line in fhand:
if line.startswith(' Subject: ') :

count = count + 1
print ' There were ', count, ' subject lines in ', fname

Theexit function terminates the program. It is a function that we gt never returns.
Now when our user (or QA team) types in silliness or bad file @snwe “catch” them and
recover gracefully:

python search7.py
Enter the file name: mbox.txt
There were 1797 subject lines in mbox.txt

7.8. Writing files 85

python search7.py
Enter the file name: na na boo boo
File cannot be opened: na na boo boo

Protecting thepen call is a good example of the proper usarpf andexcept in a Python
program. We use the term “Pythonic” when we are doing somgtthie “Python way”. We
might say that the above example is the Pythonic way to opde.a fi

Once you become more skilled in Python, you can engage imte2peith other Python
programmers to decide which of two equivalent solutionspoadlem is “more Pythonic”.
The goal to be “more Pythonic” captures the notion that paogning is part engineering
and part art. We are not always interested in just making gungework, we also want our
solution to be elegant.

7.8 Writing files

To write a file, you have to open it with mode/ as a second parameter:

>>> fout = open('outputtxt ', "w)
>>> print fout
<open file 'outputtxt ', mode 'w at Oxb7eb2410>

If the file already exists, opening it in write mode clearsthgtold data and starts fresh, so
be careful! If the file doesn't exist, a new one is created.

Thewrite method of the file handle object puts data into the file.

>>> |inel = ' This here 's the wattle,\n
>>> fout.write(linel)

Again, the file object keeps track of where it is, so if you eaile again, it adds the new
data to the end.

We must make sure to manage the ends of lines as we write tdethey gxplicitly inserting
the newline character when we want to end a line. plr@ statement automatically
appends a newline, but tgite method does not add the newline automatically.

>>> |ine2 = ' the emblem of our land.\n
>>> fout.write(line2)

When you are done writing, you have to close the file to make thatethe last bit of data
is physically written to the disk so it will not be lost if th@wer goes off.

>>> fout.close()

We could close the files which we open for read as well, but webesa little sloppy if we
are only opening a few files since Python makes sure that afi &fes are closed when the
program ends. When we are writing files, we want to explicitbse the files so as to leave
nothing to chance.

86 Chapter 7. Files

7.9 Debugging

When you are reading and writing files, you might run into peoi$ with whitespace.
These errors can be hard to debug because spaces, tabs éindsare normally invisible:

>>>s="12t3\n4
>>> print S

12 3

4

The built-in functionrepr can help. It takes any object as an argument and returnsg stri
representation of the object. For strings, it represenitesface characters with backslash
sequences:

>>> print repr(s)
"12¢t3n4

This can be helpful for debugging.

One other problem you might run into is that different systerse different characters to
indicate the end of a line. Some systems use a newline, eagiesn . Others use a return
character, representéd. Some use both. If you move files between different systems,
these inconsistencies might cause problems.

For most systems, there are applications to convert fronfiayn@at to another. You can find
them (and read more about this issueviipedia.org/wiki/Newline . Or, of course,
you could write one yourself.

7.10 Glossary
text file: A sequence of characters stored in permanent storage liaedadhive.
newline: A special character used in files and strings to indicate ideog a line.

catch: To prevent an exception from terminating a program usingtrthe and except
statements.

Quality Assurance: A person or team focused on insuring the overall quality affensare
product. QA is often involved in testing a product and idiirtig problems before
the product is released.

Pythonic: A technique that works elegantly in Python. “Using try andept is the
Pythonicway to recover from missing files.”.

7.11 Exercises

Exercise 7.1 Write a program to read through a file and print the contentbefite (line
by line) all in upper case. Executing the program will looKaltows:

7.11. Exercises 87

python shout.py

Enter a file name: mbox-short.txt

FROM STEPHEN.MARQUARD@UCT.AC.ZA SAT JAN 5 09:14:16 2008
RETURN-PATH: <POSTMASTER@COLLAB.SAKAIPROJECT.ORG>
RECEIVED: FROM MURDER (MAIL.UMICH.EDU [141.211.14.90])

BY FRANKENSTEIN.MAIL.UMICH.EDU (CYRUS V2.3.8) WITH LMTPA;
SAT, 05 JAN 2008 09:14:16 -0500

You can download the file fromww.py4inf.com/code/mbox-short.txt

Exercise 7.2 Write a program to loop through a mailbox-format file and looklfines of
the form:

X-DSPAM-Confidence: 0.8475

When you encounter a line that starts with “X-DSPAM-Confidehgull apart the line to
extract the floating point number on the line. Count thesesliand the compute the total of
the spam confidence values from these lines. When you reaamthef the file, print out
the average spam confidence.

Enter the file name: mbox.txt
Average spam confidence: 0.894128046745

Enter the file name: mbox-short.txt
Average spam confidence: 0.750718518519

Exercise 7.3 Sometimes when programmers get bored or want to have a hinotliey

add a harmlesgaster Eggto their program én.wikipedia.org/wiki/Easter_egg_

(media)). Modify the program that prompts the user for the file naméhso it prints a

funny message when the user types in the exact file name 'nacbhdp’. The program
should behave normally for all other files which exist and'terist. Here is a sample
execution of the program:

python egg.py
Enter the file name: mbox.txt

There were 1797 subject lines in mbox.txt

python egg.py
Enter the file name: missing.tyxt

File cannot be opened: missing.tyxt

python egg.py
Enter the file name: na na boo boo

NA NA BOO BOO TO YOU - You have been punikd!

We are not encouraging you to put Easter Eggs in your progrdhisis just an exercise.

88

Chapter 7. Files

Chapter 8

Lists

8.1 Alistis a sequence

Like a string, dist is a sequence of values. In a string, the values are chasaitex list,
they can be any type. The values in list are ca&@mentsor sometimegems.

There are several ways to create a new list; the simplestisdinse the elements in square
brackets[(and]):

[10, 20, 30, 40]

[* crunchy frog , 'ram bladder ', ' lark vomit ']

The first example is a list of four integers. The second is adisthree strings. The
elements of a list don’'t have to be the same type. The follgvlist contains a string, a
float, an integer, and (Io!) another list:

['spam', 2.0, 5, [10, 20]]
A list within another list isnested

A list that contains no elements is called an empty list; yao create one with empty
brackets|] .

As you might expect, you can assign list values to variables:

>>> cheeses = [' Cheddar', ' Edam , ' Gouda']
>>> numbers = [17, 123]

>>> empty = []

>>> print cheeses, numbers, empty

[' Cheddar ', 'Edanl, ' Gouda'] [17, 123] []

90 Chapter 8. Lists

8.2 Lists are mutable

The syntax for accessing the elements of a list is the samer a€essing the characters
of a string—the bracket operator. The expression inside thekkts specifies the index.
Remember that the indices start at O:

>>> print cheeses[0]
Cheddar

Unlike strings, lists are mutable. When the bracket opergppears on the left side of an
assignment, it identifies the element of the list that willssigned.

>>> numbers = [17, 123]
>>> numbers[l] = 5

>>> print numbers

[17, 5]

The one-eth element ofimbers , which used to be 123, is now 5.

You can think of a list as a relationship between indices dadhents. This relationship
is called amapping; each index “maps to” one of the elements. Here is a statealiag
showingcheeses , numbers andempty :

list

cheeses —= 0 —= ’'Cheddar’
1 — 'Edam’
2 —= 'Gouda’

list

numbers —= 00— 17

list

empty —=

Lists are represented by boxes with the word “list” outsided #he elements of the list
inside. cheeses refers to a list with three elements indexed 0, 1 andugibers contains
two elements; the diagram shows that the value of the sedentkat has been reassigned
from 123 to 5.empty refers to a list with no elements.

List indices work the same way as string indices:

« Any integer expression can be used as an index.

8.3. Traversing a list 91

« If you try to read or write an element that does not exist, getianindexError

« If an index has a negative value, it counts backward fronetiteof the list.

Thein operator also works on lists.

>>> cheeses = [' Cheddar', 'Edam , ' Gouda']
>>> ' Edanl in cheeses

True

>>> ' Brie ' in cheeses

False

8.3 Traversing a list

The most common way to traverse the elements of a list is with doop. The syntax is
the same as for strings:

for cheese in cheeses:
print cheese

This works well if you only need to read the elements of the Bt if you want to write
or update the elements, you need the indices. A common way tioad is to combine the
functionsrange andlen :

for i in range(len(numbers)):
numbers[i] = numbers[i] * 2

This loop traverses the list and updates each elentemntreturns the number of elements

in the list. range returns a list of indices from 0 to— 1, wheren is the length of the list.
Each time through the lodpgets the index of the next element. The assignment statement
in the body uses to read the old value of the element and to assign the new.value

A for loop over an empty list never executes the body:

for x in empty:
print ' This never happens.

Although a list can contain another list, the nested ligit@bunts as a single element. The
length of this list is four:

["spam', 1, ['Brie ', 'Roquefort ', 'Polle Veq '] [1, 2, 3]]

8.4 List operations

The+ operator concatenates lists:

92 Chapter 8. Lists

>>> a =1, 2, 3]
>>> b = [4, 5, 6]
>>c=a+hbh
>>> print ¢

[1, 2, 3, 4, 5, 6]

Similarly, the* operator repeats a list a given number of times:

>>> [0] * 4

[0, 0, 0, 0]

>>>[1, 2,3 *3
123123123

The first example repeald four times. The second example repeats thgljsg, 3]
three times.

8.5 Listslices

The slice operator also works on lists:

>>t=["'a, 'b, 'c, "d, e, "]

>>> {[1:3]

['b, e

>>> {[:4]

[a", "b', *c¢', "d]

>>> {[3]

["d, "e", "f']

If you omit the first index, the slice starts at the beginnifigou omit the second, the slice
goes to the end. So if you omit both, the slice is a copy of thelevlist.

>>> {[]

[lal’Ib','C',ldl’leI,'f']

Since lists are mutable, it is often useful to make a copyregberforming operations that
fold, spindle or mutilate lists.

A slice operator on the left side of an assignment can updattie elements:

>>t=["'a, 'b, 'c, "d, e, "]
>> 13l = "x', "y

>>> print t

[Ta', "x', 'y, td, e,]

8.6 List methods

Python provides methods that operate on lists. For exarappend adds a new element
to the end of a list:

8.7. Deleting elements 93

>>>t:['a','b','C']

>>> tappend('d')

>>> print t

[*a", "b", "c', "d']

extend takes a list as an argument and appends all of the elements:
>>tl=["a, 'b, 'c]

>>0=["'d, 'e']

>>> tl.extend(t2)

>>> print tl

[*a", "b", "c', "d, "e']

This example leave?2 unmodified.

sort arranges the elements of the list from low to high:
>>t=["'d, 'c, e, 'b, "a]

>>> t.sort()

>>> print t
["a', "b', 'c', "d, "e']

Most list methods are void; they modify the list and retdiome. If you accidentally write
t = t.sort() , you will be disappointed with the result.

8.7 Deleting elements

There are several ways to delete elements from a list. If ymwithe index of the element
you want, you can usgop:

>>t=["'a, 'b, 'c']
>>> x = tpop(l)

>>> print t

e,]

>>> print X

b

pop modifies the list and returns the element that was removegoufdon’t provide an
index, it deletes and returns the last element.

If you don't need the removed value, you can useddieoperator:
>>t=["'a, 'b, 'c']
>>> del t[1]

>>> print t
[l al , 1 Cl]

If you know the element you want to remove (but not the indga) can useemove :

94 Chapter 8. Lists

>>>t:['a','b','C']
>>> tremove('b')

>>> print t

[I al , 1 cl]

The return value fromemove is None.

To remove more than one element, you candgsewith a slice index:
>>>t:[laI"b',lcl7ldllle"|fl]

>>> del t[1:5]

>>> print t
[rar, 1)

As usual, the slice selects all the elements up to, but naidintg, the second index.

8.8 Lists and strings

A string is a sequence of characters and a list is a sequenaduefs, but a list of characters
is not the same as a string. To convert from a string to a lishafacters, you can uks

>>> s = ' spam’
>>> t = ist(s)
>>> print t

[I S| , 1 pl , ' a' ,] m]
Becausdist is the name of a built-in function, you should avoid usingstaavariable
name. | also avoitl because it looks too much like So that's why | usé.

Thelist function breaks a string into individual letters. If you wam break a string into
words, you can use theplit method:

>>> s = ' pining for the fjords '

>>> t = s.split()

>>> print t

['pining ', "for ', "the', 'fiords ']
>>> print [2]

the

Once you have usesplit to break the string into a list of tokens, you can use the index
operator (square bracket) to look at a particular word inite

You can calkplit with an optional argument calleddelimiter specifies which characters
to use as word boundaries. The following example uses a Inyphea delimiter:

>>> g = ' spam-spam-spam '
>>> delimiter = N

>>> s split(delimiter)

['spam', ' spam', 'spam']

8.9. Parsing lines 95

join is the inverse ofplit . It takes a list of strings and concatenates the elemgis.

is a string method, so you have to invoke it on the delimitel gass the list as a parameter:
>>>t =1 'pining ', "for ', '"the', 'fiords ']

>>> delimiter = t
>>> delimiter.join(t)

' pining for the fiords '

In this case the delimiter is a space characteljpiso puts a space between words. To
concatenate strings without spaces, you can use the emipty, 8t , as a delimiter.

8.9 Parsing lines

Usually when we are reading a file we want to do something tdities other than just
printing the whole line. Often we want to find the “interegtilines” and therparse the
line to find some interestingart of the line. What if we wanted to print out the day of the
week from those lines that start with “From .

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Thesplit method is very effective when faced with this kind of problaie can write a
small program that looks for lines where the line starts iitom ” and thersplit those
lines and then print out the third word in the line:

fhand = open(' mbox-shorttxt ')
for line in fhand:
line = line.rstrip()
if not line.startswith(" From ') : continue
words = line.split()
print words[2]

We also use the contracted form of the statement where we put tleentinue on the
same line as thi . This contracted form of thi# functions the same as if thentinue
were on the next line and indented.

The program produces the following output:

Sat
Fri
Fri
Fri

Later, we will learn increasingly sophisticated technigjf@ picking the lines to work on
and how we pull those lines apart to find the exact bit of infation we are looking for.

96 Chapter 8. Lists

8.10 Objects and values

If we execute these assignment statements:

' banana'
' banana'

a
b

We know thata andb both refer to a string, but we don’t know whether they refeth®
samestring. There are two possible states:

a —= 'banana’ a~

‘banana’
b —= ’banana’ b —

In one casea andb refer to two different objects that have the same value. énsécond
case, they refer to the same object.

To check whether two variables refer to the same object, gowse thés operator.

>>> a = ' banana'
>>> p = ' banana'
>>> ais b

True

In this example, Python only created one string object, aritdd&andb refer to it.
But when you create two lists, you get two objects:

>>> a = [1, 2, 3]

>>> b =1, 2, 3]

>>> ais b
False

So the state diagram looks like this:

a—=11,2 3]
b—=1[1,2 3]

In this case we would say that the two lists atgiivalent, because they have the same ele-
ments, but noidentical, because they are not the same object. If two objects ar&geéen
they are also equivalent, but if they are equivalent, theynat necessarily identical.

Until now, we have been using “object” and “value” intercgaably, but it is more precise
to say that an object has a value. If you exeaute [1,2,3] , a refers to a list object
whose value is a particular sequence of elements. If anbgihéas the same elements, we
would say it has the same value.

8.11. Aliasing 97

8.11 Aliasing

If a refers to an object and you assign= a, then both variables refer to the same object:

>>> a =[1, 2, 3]
>>ph = a

>>> b is a

True

The state diagram looks like this:

a\

> [123]

The association of a variable with an object is calle@farence In this example, there
are two references to the same object.

An object with more than one reference has more than one reoweg say that the object
is aliased

If the aliased object is mutable, changes made with one affast the other:

>>> p[0] = 17
>>> print a
[17, 2, 3]

Although this behavior can be useful, it is error-prone. &meral, it is safer to avoid
aliasing when you are working with mutable objects.

For immutable objects like strings, aliasing is not as muich problem. In this example:

' banana'
' banana'

a
b

It almost never makes a difference whethemdb refer to the same string or not.

8.12 List arguments

When you pass a list to a function, the function gets a referémthe list. If the function
modifies a list parameter, the caller sees the change. Forpealelete_head removes
the first element from a list:

def delete_head(t):
del t[0]

Here's how it is used:

98 Chapter 8. Lists

>>> letters = ['a', 'b', 'c¢']

>>> delete_head(letters)

>>> print letters

['b, e

The parameter and the variabldetters are aliases for the same object. The stack dia-
gram looks like this:

list

__main__ letters —|
0——="2a

N
el R

2——=1C

lelete_head t

Since the list is shared by two frames, | drew it between them.

It is important to distinguish between operations that fydiits and operations that create
new lists. For example, trewpend method modifies a list, but theoperator creates a new
list:

>>> t1 = [1, 2]

>>> {2 = tl.append(3)
>>> print t1

[1, 2, 3]

>>> print t2

None

>>> 13 = t1 + [3]
>>> print t3

[1, 2, 3]

>>> {2 is t3
False

This difference is important when you write functions the¢ aupposed to modify lists.
For example, this functiodoes notlelete the head of a list:

def bad_delete_head(t):
t = 1] # WRONG!

The slice operator creates a new list and the assignmentsha&éer to it, but none of that
has any effect on the list that was passed as an argument.

An alternative is to write a function that creates and refurmew list. For examplégil
returns all but the first element of a list:

def tail(t):
return t[1:]

This function leaves the original list unmodified. Here'sshibis used:

8.13. Debugging 99

>>> letters = ['a', 'b', 'c¢']

>>> rest = tail(letters)

>>> print rest

[| b| , 1 c:]

Exercise 8.1 Write a function callecthop that takes a list and modifies it, removing the

first and last elements, and retuifme.

Then write a function calledhiddle that takes a list and returns a new list that contains all
but the first and last elements.

8.13 Debugging

Careless use of lists (and other mutable objects) can ldadgcours of debugging. Here
are some common pitfalls and ways to avoid them:

1. Don't forget that most list methods modify the argumerd agturnNone. This is
the opposite of the string methods, which return a new stimdyleave the original
alone.

If you are used to writing string code like this:
word = word.strip()

It is tempting to write list code like this:

t = t.sort() # WRONG!

Becauseort returnsNone, the next operation you perform withis likely to fail.

Before using list methods and operators, you should readidbamentation care-
fully and then test them in interactive mode. The methodsapetators that lists
share with other sequences (like strings) are documentiedsapython.org/lib/
typesseq.html . The methods and operators that only apply to mutable segsen
are documented dbcs.python.org/lib/typesseq-mutable.html .

2. Pick an idiom and stick with it.

Part of the problem with lists is that there are too many waysgd things. For
example, to remove an element from a list, you canpoage remove , del , or even a
slice assignment.

To add an element, you can use #ppend method or the+ operator. But don't
forget that these are right:

t.append(x)
t=1t+ [

And these are wrong:

100 Chapter 8. Lists

t.append([x]) # WRONG!
t = t.append(x) # WRONG!
t+ [X] # WRONG!
t=1t+x # WRONG!
Try out each of these examples in interactive mode to makeyaur understand what
they do. Notice that only the last one causes a runtime afreigther three are legal,
but they do the wrong thing.

3. Make copies to avoid aliasing.
If you want to use a method likeort that modifies the argument, but you need to
keep the original list as well, you can make a copy.
orig = t[]
t.sort()
In this example you could also use the built-in functemmted , which returns a
new, sorted list and leaves the original alone. But in thaégau should avoid using
sorted as a variable name!

4. Lists,split , and files

When we read and parse files, there are many opportunitiectueter input that
can crash our program so it is a good idea to revisitghardian pattern when
it comes writing programs that read through a file and look&dineedle in the
haystack”.

Lets revisit our program that is looking for the day of the Wweea the from lines of
our file.:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Since we are breaking this line into words, we could dispenik the use of
startswith and simply look at the first word of the line to determine if we &-
terested in the line at all. We can usmtinue to skip lines that don’t have “From”
as the first word as follows:

fhand = open(' mbox-short.txt ')

for line in fhand:
words = line.split()
if words[0] != " From' : continue
print words|[2]

This looks much simpler and we don’t even need to dorsti® to remove the
newline at the end of the file. But is it better?

python search8.py
Sat
Traceback (most recent call last):
File "search8.py", line 5, in <module>
if words[0] != " From' : continue
IndexError; list index out of range

8.13. Debugging 101

It kind of works and we see the day from the first line (Sat) bettthe program fails
with a traceback error. What went wrong? What messed-up dasedaur elegant,
clever and very Pythonic program to fail?

You could stare at it for a long time and puzzle through it d¢ sesmeone for help,
but the quicker and smarter approach is to agdr statement. The best place to
add the print statement is right before the line where thgham failed and print out
the data that seems to be causing the failure.

Now this approach may generate a lot of lines of output bugadtlyou will imme-
diately have some clue as to the problem at hand. So we addtaopthe variable
words right before line five. We even add a prefix “Debug:” to the lsewe can
keep our regular output separate from our debug output.

for line in fhand:
words = line.split()
print ' Debug: ', words
if words[0] != " From' : continue
print words|[2]

When we run the program, a lot of output scrolls off the scragrabthe end, we
see our debug output and the traceback so we know what happesidbefore the

traceback.

Debug: [' X-DSPAM-Confidence: ', ' 0.8475 ']
Debug: [' X-DSPAM-Probability: ', "0.0000 ']
Debug:]

Traceback (most recent call last):
File "search9.py", line 6, in <module>
if words[0] != " From' : continue
IndexError: list index out of range

Each debug line is printing the list of words which we get whensplit the line
into words. When the program fails the list of words is enfpty If we open the file
in a text editor and look at the file, at that point it looks aléofws:

X-DSPAM-Result: Innocent

X-DSPAM-Processed: Sat Jan 5 09:14:16 2008
X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000

Details: http://source.sakaiproject.org/viewsvn/?vie w=rev&rev=39772

The error occurs when our program encounters a blank linecdDfse there are
“zero words” on a blank line. Why didn't we think of that when were writing the
code. When the code looks for the first wonb(d[0]) to check to see if it matches
“From”, we get an “index out of range” error.

This of course is the perfect place to add sayunardian code to avoid checking the

first word if the first word is not there. There are many waysrtuigct this code, we
will choose to check the number of words we have before we &adke first word:

102 Chapter 8. Lists

fhand = open(' mbox-short.txt ')
count = 0
for line in fhand:
words = line.split()
print ' Debug: ', words
if len(words) == 0 : continue
if words[0] != " From' : continue
print words[2]

First we commented out the debug print statement insteashadving it in case our
moadification fails and we need to debug again. Then we addedi@i@gn statement
that checks to see if we have zero words, and if so, weorgmue to skip to the
next line in the file.

We can think of the twaontinue statements as helping us refine the set of lines
which are “interesting” to us and which we want to process esanore. A line
which has no words is “uninteresting” to us so we skip to thd fiee. A line which
does not have “From” as its first word is uninteresting to us/eskip it.

The program as modified runs successfully so perhaps it ieatorOur guardian
statement does make sure that teds[0] will never fail, but perhaps it is not
enough. When we are programming, we must always be thinkinpat might go
wrong?”.

Exercise 8.2Figure out which line of the above program is still not prdper
guarded. See if you can construct a text file which causesrtbgram to fail and
then modify the program so that the line is properly guardeditast it to make sure
it handles your new text file.

Exercise 8.3 Rewrite the guardian code in the above example withoutitwstate-
ments. Instead use a compound logical expression usingnthéogical operator
with a singleif statement.

8.14 Glossary

list: A sequence of values.

element: One of the values in a list (or other sequence), also cakeust
index: An integer value that indicates an element in a list.

nested list: A list that is an element of another list.

list traversal: The sequential accessing of each element in a list.

object: Something a variable can refer to. An object has a type antla.va
equivalent: Having the same value.

identical: Being the same object (which implies equivalence).

8.15. Exercises 103

reference: The association between a variable and its value.
aliasing: A circumstance where two or more variables refer to the sajexb

delimiter: A character or string used to indicate where a string shoalsidtit.

8.15 Exercises

Exercise 8.4 Download a copy of the file frormww.py4inf.com/code/romeo.txt

Write a program to open the fitemeo.txt and read it line by line. For each line, split the
line into a list of words using thsplit ~ function.

For each word, check to see if the word is already in a lishéfword is not in the list, add
it to the list.

When the program completes, sort and print the resulting sviordlphabetical order.
Enter file: romeo.txt

[*Arise ", "But', "It', "Juliet ', "Whd, 'already ',
"and', 'breaks ', 'east', 'envious ', 'fair ', 'grief ',
"is', "kl ', "light ', "moon, 'pale', 'sick ', 'soft ',
"sun', '"the', 'through ', "what', ' window",

"with ', ' yonder ']

Exercise 8.5Write a program to read through the mail box data and when yallifie
that starts with “From”, you will split the line into words g thesplit ~ function. We are
interested in who sent the message which is the second wdftedfrom line.

From stephen.marquard@uct.ac.za Sat Jan 5 09:14;16 2008

You will parse the From line and print out the second word fmrteFrom line and then you
will also count the number of From (not From:) lines and pduat a count at the end.

This is a sample good output with a few lines removed:

python fromcount.py

Enter a file name: mbox-short.txt
stephen.marquard@uct.ac.za
louis@media.berkeley.edu
zgian@umich.edu

[...some output removed...]

ray@media.berkeley.edu

cwen@iupui.edu

cwen@iupui.edu

cwen@iupui.edu

There were 27 lines in the file with From as the first word

104 Chapter 8. Lists

Chapter 9

Dictionaries

A dictionary is like a list, but more general. In a list, the positions (@.kndices) have to
be integers; in a dictionary the indices can be (almost) wpg.t

You can think of a dictionary as a mapping between a set ofedfwhich are callekeys)
and a set of values. Each key maps to a value. The associatdey and a value is called
akey-value pair or sometimes aitem.

As an example, we’ll build a dictionary that maps from Enlglis Spanish words, so the
keys and the values are all strings.

The functiondict creates a new dictionary with no items. Becadist is the name of a
built-in function, you should avoid using it as a variablenea

>>> eng2sp = dict()
>>> print eng2sp

{

The squiggly-bracketd} , represent an empty dictionary. To add items to the dictigna
you can use square brackets:

>>> eng2sp['one'] = 'uno

This line creates an item that maps from the keg’ to the valué uno' . If we print the
dictionary again, we see a key-value pair with a colon betvtbe key and value:

>>> print eng2sp
{*one': "uno'}

This output format is also an input format. For example, yan create a new dictionary
with three items:

>>> eng2sp = { 'one': "uno', 'two': 'dos', 'three ': 'tres '}

But if you printeng2sp , you might be surprised:

106 Chapter 9. Dictionaries

>>> print eng2sp
{*one': "uno', 'three ': "tres ', "two': 'dos'}

The order of the key-value pairs is not the same. In fact, if fype the same example
on your computer, you might get a different result. In gehdfree order of items in a
dictionary is unpredictable.

But that's not a problem because the elements of a dicticsr@pever indexed with integer
indices. Instead, you use the keys to look up the correspgnailues:

>>> print eng2sp[' two']
' dos'

The key'two’ always maps to the valuedos' so the order of the items doesn’t matter.
If the key isn’t in the dictionary, you get an exception:

>>> print eng2sp[' four ']
KeyError: ' four '

Thelen function works on dictionaries; it returns the number of keyue pairs:

>>> len(eng2sp)
3

Thein operator works on dictionaries; it tells you whether sorimgttappears as keyin
the dictionary (appearing as a value is not good enough).

>>> ' one' in eng2sp
True
>>> ' Uno
False

in eng2sp

To see whether something appears as a value in a dictionamycgn use the method
values , which returns the values as a list, and then uséntheperator:

>>> vals = eng2sp.values()
>>> 'uno' in vals
True

Thein operator uses different algorithms for lists and dictigegr For lists, it uses a
search algorithm, as in Section 6.6. As the list gets lonthersearch time gets longer in
direct proportion. For dictionaries, Python uses an athoricalled ehashtablethat has a
remarkable property; thie operator takes about the same amount of time no matter how
many items there are in a dictionary. | won't explain how thpbssible, but you can read
more about it atvikipedia.org/wiki/Hash_table

Exercise 9.1 Write a function that reads the wordswiords.txt ~ and stores them as keys
in a dictionary. It doesn’t matter what the values are. Themgan use th&n operator as
a fast way to check whether a string is in the dictionary.

9.1. Dictionary as a set of counters 107

9.1 Dictionary as a set of counters

Suppose you are given a string and you want to count how mamgsteach letter appears.
There are several ways you could do it:

1. You could create 26 variables, one for each letter of thleadet. Then you could tra-
verse the string and, for each character, increment thesonding counter, proba-
bly using a chained conditional.

2. You could create a list with 26 elements. Then you couldredreach character to
a number (using the built-in functiasrd), use the number as an index into the list,
and increment the appropriate counter.

3. You could create a dictionary with characters as keys aundters as the correspond-
ing values. The firsttime you see a character, you would adtéarto the dictionary.
After that you would increment the value of an existing item.

Each of these options performs the same computation, bataabem implements that
computation in a different way.

An implementation is a way of performing a computation; some implementatioes a
better than others. For example, an advantage of the digtiomplementation is that we
don’'t have to know ahead of time which letters appear in tHagand we only have to
make room for the letters that do appear.

Here is what the code might look like:

def histogram(s):
d = dict()
for ¢ in s:
if ¢ not in d:
dc] = 1
else:
dic] += 1
return d

The name of the function isistogram, which is a statistical term for a set of counters (or
frequencies). The= operator is aincrement operator and in the above example, we add
one to the value stored ic] .

The first line of the function creates an empty dictionaryefin loop traverses the string.
Each time through the loop, if the charaatds not in the dictionary, we create a new item
with key ¢ and the initial value 1 (since we have seen this letter orite)is already in the
dictionary we incremertc] .

Here’s how it works:

>>> h = histogram(' brontosaurus ‘')
>>> print h
{*ra': 1, 'b':1, '0:2 'n:1 “‘'s':2 ‘'r':2 ‘'u:2 ‘t':1}

108 Chapter 9. Dictionaries

The histogram indicates that the lett&r’s and' b' appear once€;o0' appears twice, and
SO0 on.

Exercise 9.2 Dictionaries have a method callget that takes a key and a default value. If
the key appears in the dictionaggt returns the corresponding value; otherwise it returns
the default value. For example:

>>> h = histogram(
>>> print h

{*a': 1}

>>> hget('a', 0)
1

>>> hget('b', 0)
0

a')

Useget to write histogram more concisely. You should be able to eliminateithestate-
ment.

9.2 Dictionaries and files

One of the common uses of a dictionary is to count the occoerenf words in
a file with some written text. Lets start with a very simple fié words taken
from the text ofRomeo and Juliethanks tohttp://shakespeare.mit.edu/Tragedy/
romeoandjuliet/romeo_juliet.2.2.html

For the first set of examples, we will use a shortened and Hiegplrersion of the text with
no punctuation. Later we will work with the text of the scenigwpunctuation included.

But soft what light through yonder window breaks
It is the east and Juliet is the sun

Arise fair sun and kill the envious moon

Who is already sick and pale with grief

We will write a Python program to read through the lines of fiteg break each line into
a list of words, and then loop through each of the words inithes land count each word
using a dictionary.

You will see that we have twéor loops. The outer loop is reading the lines of the file
and the inner loop is iterating through each of the words anplrticular line. This is an
example of a pattern calletested loopshecause one of the loops is theterloop and the
other loop is thennerloop.

Because the inner loop executes all of its iterations eawd tine outer loop makes a single
iteration, we think of the inner loop as iterating “more ddy¢ and the outer loop as
iterating more slowly.

The combination of the two nested loops ensures that we ailhtevery word on every
line of the input file.

9.3. Looping and dictionaries 109

frame = raw_input(' Enter the file name: ")
try:
fhand = open(fname)
except:
print ' File cannot be opened: ', fname
exit()

counts = dict()
for line in fhand:
words = line.split()
for word in words:
if word not in counts:
counts[word] = 1
else:
countsfword] += 1

print counts

When we run the program, we see a raw dump of all of the countssarted hash order.
(theromeo.txt file is available atvww.py4inf.com/code/romeo.txt)

python countl.py

Enter the file name: romeo.txt

{*and': 3, ‘'envious ': 1, ‘already ': 1, ‘'fair ': 1

"is': 3, ‘'through ': 1, ‘'pale': 1, ‘yonder': 1,
"what': 1, ‘'sun':2, 'Whd:1, 'But':1 'moon: 1,
"window': 1, ‘sick ': 1, ‘"east':1 ‘'breaks ': 1,

"grief ': 1, "with': 1, ‘light ':1, "It':1 *'Arise ': 1,
"kl ':1, "the':3, ‘'soft ':1, 'Juliet ': 1}

It is a bit inconvenient to look through the dictionary to fithet most common words and
their counts, so we need to add some more Python code to geé wtput that will be
more helpful.

9.3 Looping and dictionaries

If you use a dictionary as the sequence ifora statement, it traverses the keys of the
dictionary. For examplegrint_hist prints each key and the corresponding value:

def print_hist(h):
for ¢ in h:
print ¢, h[c]

Here’s what the output looks like:

>>> h = histogram(' parrot ')
>>> print_hist(h)

110 Chapter 9. Dictionaries

o~ —-"-T o
= PN

Again, the keys are in no particular order.

If you want to print the keys in alphabetical order, you firsika a list of the keys in the
dictionary using thé&eys method available in dictionary objects, and then sort tsathd
loop through the sorted list, looking up each key printinglay/value pairs in sorted order
as follows as follows:

def print_sorted_hist(h):

Ist = h.keys()

Ist.sort()

for ¢ in Ist:
print ¢, h[c]

Here’s what the output looks like:

>>> h = histogram(' parrot ')
>>> print_sorted_hist(h)

al

0
p1l
r2
t1

So now the keys are in alphabetical order.

9.4 Advanced text parsing

In the above example using the fiteneo.txt , we made the file as simple as possible by
removing any and all punctuation by hand. The real text h@sdbpunctuation as shown
below:

But, soft! what light through yonder window breaks?
It is the east, and Juliet is the sun.

Arise, fair sun, and kill the envious moon,

Who is already sick and pale with grief,

Since the Pythonplit ~ function looks for spaces and treats words as tokens sepavgt
spaces, we would treat the words “soft!” and “soft"diferentwords and create a separate
dictionary entry for each word.

Also since the file has capitalization, we would treat “whatdd@wWho” as different words
with different counts.

9.4. Advanced text parsing 111

We can solve both these problems by using the string metbads , punctuation , and
translate . Thetranslate is the most subtle of the methods. Here is the documentation
for translate

string.translate(s, table[, deletechars))

Delete all characters from s that are in deletechars (if pr@3, and then translate the
characters using table, which must be a 256-character gtdiving the translation for
each character value, indexed by its ordinal. If table is Bothen only the character
deletion step is performed.

We will not specify thetable but we will use thedeletechars ~ parameter to delete all
of the punctuation. We will even let Python tell us the listcbfaracters that it considers
“punctuation”;

>>> import string
>>> string.punctuation
"R\ (), [<=>?@ 0] Y

We make the following modifications to our program:

import string # New Code
fname = raw_input(' Enter the file name: ")
try:
fhand = open(fname)
except:
print ' File cannot be opened: ', fname
exit()

counts = dict()
for line in fhand:
line = line.translate(None, string.punctuation) # New Cod e
line = line.lower() # New Code
words = line.split()
for word in words:
if word not in counts:
counts[word] = 1
else:
countsfword] += 1

print counts

We usetranslate to remove all punctuation aridwer to force the line to lowercase.
Otherwise the program is unchanged. Note for Python 2.5 arlibe ttranslate does
not accepione as the first parameter so use this code for the translate call:

print a.translate(string.maketrans(,), string.punctuation

112 Chapter 9. Dictionaries

Part of learning the “Art of Python” or “Thinking Pythonidgl is realizing that Python
often has built-in capabilities for many common data-asiglproblems. Over time, you
will see enough example code and read enough of the docutioenta know where to
look to see if someone has already written something thaesgéur job much easier.

The following is an abbreviated version of the output:

Enter the file name: romeo-full.txt

{"swearst ': 1, 'all ':6, 'afeard ': 1, 'leave ': 2, 'these': 2,
"kinsmen ' : 2, "what': 11, ‘'thinkst ': 1, ‘'love ': 24, ‘cloak ': 1,
a': 24, ‘orchard ':2, ‘light ':5 ‘'lovers ':2, 'romeo': 40,
"maiden’ : 1, ' whiteupturned " : 1, ‘juliet ': 32, ‘' gentleman ': 1,

it .22, 'leans ': 1, ‘'canst': 1, ‘having ': 1 ..}

Looking through this output is still unwieldy and we can usgh®n to gives us exactly
what we are looking for, but to do so, we need to learn abouidhuples. We will pick
up this example once we learn about tuples.

9.5 Debugging

As you work with bigger datasets it can become unwieldy taiddly printing and check-
ing data by hand. Here are some suggestions for debuggpg datasets:

Scale down the input: If possible, reduce the size of the dataset. For exampleiptb-
gram reads a text file, start with just the first 10 lines, ohwfite smallest example
you can find. You can either edit the files themselves, orébattodify the program
so it reads only the first lines.

If there is an error, you can reduago the smallest value that manifests the error,
and then increase it gradually as you find and correct errors.

Check summaries and types:Instead of printing and checking the entire dataset, con-
sider printing summaries of the data: for example, the nurobigems in a dictionary
or the total of a list of numbers.

A common cause of runtime errors is a value that is not the tjgie. For debugging
this kind of error, it is often enough to print the type of aual

Write self-checks: Sometimes you can write code to check for errors automatidaor
example, if you are computing the average of a list of numbyeng could check that
the result is not greater than the largest element in thedikss than the smallest.
This is called a “sanity check” because it detects resudtsdre “insane.”

Another kind of check compares the results of two differemhputations to see if
they are consistent. This is called a “consistency check.”

Pretty print the output: Formatting debugging output can make it easier to spot am.err

Again, time you spend building scaffolding can reduce theetyou spend debugging.

9.6. Glossary 113

9.6 Glossary
dictionary: A mapping from a set of keys to their corresponding values.
key: An object that appears in a dictionary as the first part of auaye pair.

value: An object that appears in a dictionary as the second part efyavéllue pair. This
is more specific than our previous use of the word “value.”

key-value pair: The representation of the mapping from a key to a value.

item: Another name for a key-value pair.

implementation: A way of performing a computation.

hashtable: The algorithm used to implement Python dictionaries.

hash function: A function used by a hashtable to compute the location folya ke
lookup: A dictionary operation that takes a key and finds the corneding value.
histogram: A set of counters.

nested loops: When there is one or more loops “inside” of another loop. Teinoop
runs to completion each time the outer loop runs once.

9.7 Exercises

Exercise 9.3Write a program that categorizes each mail message by whiglofitne
week the commit was done. To do this look for lines which statth “From”, then look
for the third word and then keep a running count of each of thesaf the week. At the
end of the program print out the contents of your dictionargér does not matter).

Sample Line:
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Sample Execution:

python dow.py

Enter a file name: mbox-short.txt
{*Fri *:20, 'Thu':6, "'Sat': 1}

Exercise 9.4 Write a program to read through a mail log, and figure out whothadnost
messages in the file. The program looks for “From” lines akégsahe second parameter
on those lines as the person who sent the mail.

The program creates a Python dictionary that maps the Ssiadleiress to the total number
of messages for that person.

After all the data has been read the program looks througtithienary using a maximum
loop to find who has the most messages and how many messagestba has.

114 Chapter 9. Dictionaries

Enter a file name: mbox-short.txt
cwen@iupui.edu 5

Enter a file name: mbox.txt
zgian@umich.edu 195

Exercise 9.5 This program records the domain name (instead of the addndese the
message was sent from instead of who the mail came froml{eewhole e-mail address).
At the end of the program print out the contents of your ditaigy.

python schoolcount.py

Enter a file name: mbox-short.txt

{' media.berkeley.edu ': 4, 'wuctac.za ': 6, 'umichedu ': 7,
' gmail.com ': 1, 'caretcamacuk ': 1, 'iupuiedu ': 8}

Chapter 10

Tuples

10.1 Tuples are immutable

Atuple is a sequence of values much like a list. The valugsgdto a tuple can be any type,
and they are indexed by integers. The important differeadhat tuples aranmutable.
Tuples are alsaomparable andhashableso we can sort lists of them and use tuples as
key values in Python dictionaries.

Syntactically, a tuple is a comma-separated list of values:
>>>t:‘alylblllcl7‘dlyle'

Although it is not necessary, it is common to enclose tupteparentheses to help use
quickly identify tuples when we look at Python code:

>>>t:(lalllbl’ICI,IdI,lel)
To create a tuple with a single element, you have to includdittal comma:

>>tl =('a')
>>> type(tl)
<type 'tuple '>

Without the comma Python tregtsa') as a string in parentheses:
>>> 2 =("'a")

>>> type(t2)
<type ‘'str '>

Another way to construct a tuple is the built-in functiaple . With no argument, it creates
an empty tuple:

>>> t = tuple()
>>> print t

0

116 Chapter 10. Tuples

If the argument is a sequence (string, list or tuple), thalted the call totuple is a tuple
with the elements of the sequence:

>>> t = tuple(' lupins ")
>>> print t
(I Il 1] ' ul 1 ' p']

Becauseduple is the name of a constructor, you should avoid using it asialarname.

i , nn , 1 Sl)
Most list operators also work on tuples. The bracket opeiatiexes an element:
>>>t:(laI’ lblv lcl7 Id', lel)

>>> print t[0]
-

And the slice operator selects a range of elements.

>>> print [1:3]

(I bl , ' CI)

But if you try to modify one of the elements of the tuple, you ge error:
>>> 0] = A

TypeError: object doesn 't support item assignment

You can’t modify the elements of a tuple, but you can replawetople with another:

>>>t=("A) + 1]
>>> print t
("A, 'b", "c', "d, 'e")

10.2 Comparing tuples

The comparison operators work with tuples and other se@seython starts by compar-
ing the first element from each sequence. If they are equadeis on to the next element,
and so on, until it finds elements that differ. Subsequemhefds are not considered (even
if they are really big).

>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)
True

Thesort function works the same way. It sorts primarily by first eleméut in the case
of a tie, it sorts by second element, and so on.

This feature lends itself to a pattern calle&U for

Decorate a sequence by building a list of tuples with one or more sors kgeceding the
elements from the sequence,

10.3. Tuple assignment 117

Sort the list of tuples uring the Python built-sort , and

Undecorate by extracting the sorted elements of the sequence.

For example, suppose you have a list of words and you wantrtdarsam from longest to
shortest:

def sort_by_length(words):
t = list()
for word in words:
t.append((len(word), word))

t.sort(reverse=True)

res = list()

for length, word in t;
res.append(word)

return res

The first loop builds a list of tuples, where each tuple is adymeceded by its length.

sort compares the first element, length, first, and only consitterssecond element to
break ties. The keyword argumenterse=True tellssort to go in decreasing order.

The second loop traverses the list of tuples and builds afligtords in descending order
of length.

10.3 Tuple assignment

One of the unique syntactic features of the Python langusagjeei ability to have a tuple
on the left hand side of an assignment statement. This ajjowdo assign more than one
variable at a time when the left hand side is a sequence.

In this example we have a two element list (which is a seqUesuee assign the first and
second elements of the sequence to the variabéegly in a single statement.

>>>m = [' have',
>>> X, Yy = m

>>> X

' have'

>>> y

' fun
>>>

fun']

It is not magic, Pythomoughlytranslates the tuple assignment syntax to be the following:

1python does not translate the syntax literally. For exanpled try this with a dictionary it will not work as
might expect.

118 Chapter 10. Tuples

>>>m =[] "have', 'fun']
>>> x = m[0]

>>> y = m[l]

>>> X

" have'

>>> y

' fun
>>>

Stylistically when we use a tuple on the left hand side of #ggnment statement, we omit
the parentheses, but the following is an equally valid synta

>>>m = ['have',
>>> (X, y) = m

>>> X

' have'

>>> y

' fun
>>>

fun ']

A particularly clever application of tuple assignment aifous toswapthe values of two
variables in a single statement:

>>>a, b =0Db a

Both sides of this statement are tuples, but the left sidetigole of variables; the right
side is a tuple of expressions. Each value on the right sidssfgned to its respective
variable on the left side. All the expressions on the righesare evaluated before any of
the assignments.

The number of variables on the left and the number of valuethemight have to be the
same:

>>>a, b=1 23
ValueError: too many values to unpack

More generally, the right side can be any kind of sequenaingstlist or tuple). For
example, to split an email address into a user name and a dpyaai could write:

>>> addr = ' monty@python.org
>>> uname, domain = addr.split(‘@)

The return value fronsplit is a list with two elements; the first element is assigned to
uname, the second tdomain .

>>> print uname
monty

>>> print domain
python.org

10.4. Dictionaries and tuples 119

10.4 Dictionaries and tuples

Dictionaries have a method callégeims that returns a list of tuples, where each tuple is a
key-value paff.

>>>d ={"a:10, 'b':1, 'c':22}
>>> t = d.items()

>>> print t

("a", 10), ("¢, 22, ("b", 1)

As you should expect from a dictionary, the items are in néigaer order.

However, since the list of tuples is a list, and tuples arepanaible, we can now sort the list
of tuples. Converting a dictionary to a list of tuples is a vi@yus to output the contents of
a dictionary sorted by key:

>>>d={"a:10, 'b':l, ‘'c':22}
>>> t = d.items()

>>> t

("a', 10), ("¢, 22), ("b", 1)
>>> t.sort()

>>>

[((*a', 10), ("b'", 1), ('c', 22)]

The new list is sorted in ascending alphabetical order bkéyevalue.

10.5 Multiple assignment with dictionaries

Combiningitems , tuple assignment arfdr , you can see a nice code pattern for traversing
the keys and values of a dictionary in a single loop:

for key, val in d.items():
print val, key

This loop has twateration variables becauséems returns a list of tuples ariy, val
is a tuple assignment that successively iterates through @fathe key/value pairs in the
dictionary.

For each iteration through the loop, b&dy andvalue are advanced to the next key/value
pair in the dictionary (still in hash order).

The output of this loop is:

= N O
o 0O o

2This behavior is slightly different in Python 3.0.

120 Chapter 10. Tuples

Again in hash key order (i.e. no particular order).

If we combine these two techniques, we can print out the cdsitef a dictionary sorted by
thevaluestored in each key/value pair.

To do this, we first make a list of tuples where each tupl@akie, key) . Theitems
method would give us a list ¢key, value) tuples—but this time we want to sort by value
not key. Once we have constructed the list with the valuetipies, it is a simple matter
to sort the list in reverse order and print out the new, sditéd

>>>d={"a:10, 'b':1, 'c':22}

>>> | = list()

>>> for key, val in d.items() :
l.append((val, key))

>>> |

(@0, *a"), (22, "c'), (1, b))

>>> |.sort(reverse=True)

>>> |

(22, "c') (10, "a') (L, b))

>>>

By hand-constructing the list of tuples to have the valuehaditst element of each tuple,
we can sort the list of tuples and get our dictionary contsaotted by value.

10.6 The most common words

Coming back to our running example of the text fr&ameo and Juliect 2, Scene 2, we
can augment our program to use this technique to print thentest common words in the
text as follows:

import string
fhand = open(' romeo-full.txt ")
counts = dict()
for line in fhand:
line = line.translate(None, string.punctuation)
line = line.lower()
words = line.split()
for word in words:
if word not in counts:
counts[word] = 1
else:
countsfword] += 1

Sort the dictionary by value
Ist = list()
for key, val in counts.items():

10.7. Using tuples as keys in dictionaries 121

Ist.append((val, key))
Ist.sort(reverse=True)

for key, val in Ist[:10] :
print key, val

The first part of the program which reads the file and computegiictionary that maps
each word to the count of words in the document is unchangad.ifBtead of simply

printing outcounts and ending the program, we construct a lisfvaf, key) tuples and

then sort the list in reverse order.

Since the value is first, it will be used for the comparisond Eithere is more than one
tuple with the same value, it will look at the second elemémt key) so tuples where the
value is the same will be further sorted by the alphabetimdioof the key.

At the end we write a nicéor loop which does a multiple assignment iteration andtprin
out the ten most common words by iterating through a slicaefist (st[:10]).

So now the output finally looks like what we want for our wordduency analysis.

61 i

42 and
40 romeo
34 to

34 the
32 thou
32 juliet
30 that
29 my
24 thee

The fact that this relatively complex data parsing and asislyan be done with a relatively
easy-to-understand 19 line Python program is one reasorPytinn is a good choice as a
language for exploring information.

10.7 Using tuples as keys in dictionaries

Because tuples ateshableand lists are not, if we want to create@ampositekey to use
in a dictionary we must use a tuple as the key.

We would encounter a composite key if we wanted to createephelne directory that maps
from last-name, first-name pairs to telephone numbers. rAggythat we have defined the
variableslast , first andnumber, we could write a dictionary assignment statement as
follows:

directory[last,firstf = number

122 Chapter 10. Tuples

The expression in brackets is a tuple. We could use tuplgrassnt in afor loop to
traverse this dictionary.

for last, first in directory:
print first, last, directory[lastfirst]

This loop traverses the keys directory , which are tuples. It assigns the elements of
each tuple tdast andfirst , then prints the name and corresponding telephone number.

There are two ways to represent tuples in a state diagram. nidre detailed version
shows the indices and elements just as they appear in a list. eample, the tuple
(' Cleese ', " John') would appear:

tuple

0 —= ’'Cleese’

1 ——= 'John’

But in a larger diagram you might want to leave out the det&és example, a diagram of
the telephone directory might appear:

dict

('Cleese’, 'John’) ——= '08700 100 222’
('Chapman’, ‘Graham’) —= '08700 100 222’
(ldle’, 'Eric’) —= '08700 100 222’

(Gilliam’, 'Terry’) —= '08700 100 222’
('Jones’, 'Terry’) —= '08700 100 222’
(Palin’, 'Michael’) —= 08700 100 222’

Here the tuples are shown using Python syntax as a graphisahand.

The telephone number in the diagram is the complaints lin¢hi® BBC, so please don’t
call it.

10.8 Sequences: strings, lists, and tuples—Oh My!

| have focused on lists of tuples, but almost all of the ex@®ih this chapter also work
with lists of lists, tuples of tuples, and tuples of lists. &eid enumerating the possible
combinations, it is sometimes easier to talk about seqesitgequences.

In many contexts, the different kinds of sequences (striigts and tuples) can be used
interchangeably. So how and why do you choose one over tleesith

To start with the obvious, strings are more limited than pdexuences because the ele-
ments have to be characters. They are also immutable. Ifged the ability to change the

10.9. Debugging 123

characters in a string (as opposed to creating a hew stging)might want to use a list of
characters instead.

Lists are more common than tuples, mostly because they aiabiauBut there are a few
cases where you might prefer tuples:

1. Insome contexts, likeraturn ~ statement, it is syntactically simpler to create a tuple
than a list. In other contexts, you might prefer a list.

2. If you want to use a sequence as a dictionary key, you havegt@an immutable type
like a tuple or string.

3. If you are passing a sequence as an argument to a funcsiog, twples reduces the
potential for unexpected behavior due to aliasing.

Because tuples are immutable, they don’t provide methdds dort and reverse ,

which modify existing lists. However Python provides théltein functionssorted and
reversed , which take any sequence as a parameter and return a newitlisth& same
elements in a different order.

10.9 Debugging

Lists, dictionaries and tuples are known genericallydata structures; in this chapter

we are starting to see compound data structures, like lfdigpbes, and dictionaries that
contain tuples as keys and lists as values. Compound datdwsts are useful, but they
are prone to what | calhape errors that is, errors caused when a data structure has the
wrong type, size or composition or perhaps you write some odl forget the shape of
your data and introduce an error.

For example, if you are expecting a list with one integer agiyé¢ you a plain old integer
(notin a list), it won't work.

When you are debugging a program, and especially if you arkiagpon a hard bug, there
are four things to try:

reading: Examine your code, read it back to yourself, and check thsays what you
meant to say.

running: Experiment by making changes and running different vessi@ften if you dis-
play the right thing at the right place in the program, thebpem becomes obvious,
but sometimes you have to spend some time to build scaffpldin

ruminating: Take some time to think! What kind of error is it: syntax, rumsi, semantic?
What information can you get from the error messages, or fimenoutput of the
program? What kind of error could cause the problem you'reng@eWhat did you
change last, before the problem appeared?

retreating: At some point, the best thing to do is back off, undoing recf@inges, until
you get back to a program that works and that you understahdn Jou can start
rebuilding.

124 Chapter 10. Tuples

Beginning programmers sometimes get stuck on one of theéisé@ias and forget the oth-
ers. Each activity comes with its own failure mode.

For example, reading your code might help if the problem ygagdraphical error, but not if
the problem is a conceptual misunderstanding. If you damdeustand what your program
does, you can read it 100 times and never see the error, lgettauerror is in your head.

Running experiments can help, especially if you run smathpte tests. But if you run

experiments without thinking or reading your code, you nifgltl into a pattern | call

“random walk programming,” which is the process of makingdam changes until the
program does the right thing. Needless to say, random walgramming can take a long
time.

You have to take time to think. Debugging is like an experitabscience. You should have
at least one hypothesis about what the problem is. If therénar or more possibilities, try
to think of a test that would eliminate one of them.

Taking a break helps with the thinking. So does talking. léyexplain the problem to
someone else (or even yourself), you will sometimes find thewar before you finish
asking the question.

But even the best debugging techniques will fail if theretatemany errors, or if the code
you are trying to fix is too big and complicated. Sometimeshtest option is to retreat,
simplifying the program until you get to something that we&dand that you understand.

Beginning programmers are often reluctant to retreat ksctwey can't stand to delete a
line of code (even if it's wrong). If it makes you feel betteopy your program into another

file before you start stripping it down. Then you can pastepikees back in a little bit at a

time.

Finding a hard bug requires reading, running, ruminating, sometimes retreating. If you
get stuck on one of these activities, try the others.

10.10 Glossary
tuple: Animmutable sequence of elements.

hashable: A type that has a hash function. Immutable types like intggtrats and strings
are hashable; mutable types like lists and dictionariesate

comparable: A type where one value can be checked to see if it is greatar tbss than
or equal to another value of the same type. Types which arg@amble can be put
in a list and sorted.

tuple assignment: An assignment with a sequence on the right side and a tupkiaibles
on the left. The right side is evaluated and then its elemardgsassigned to the
variables on the left.

singleton: A list (or other sequence) with a single element.

10.11. Exercises 125

gather: The operation of assembling a variable-length argumee tup
scatter: The operation of treating a sequence as a list of arguments.

DSU: Abbreviation of “decorate-sort-undecorate,” a patteat thvolves building a list of
tuples, sorting, and extracting part of the result.

data structure: A collection of related values, often organized in listgtidinaries, tuples,
etc.

shape (of a data structure): A summary of the type, size and composition of a data struc-
ture.

10.11 Exercises

Exercise 10.1Revise a previous program as follows: Read and parse thetHnoes and
pull out the addresses from the line. Count the number of agessfrom each person using
a dictionary.

After all the data has been read print the person with the swamits by creating a list of
(count, email) tuples from the dictionary and then sortimgltst in reverse order and print
out the person who has the most commits.

Sample Line:
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Enter a file name: mbox-short.txt
cwen@iupui.edu 5

Enter a file name: mbox.txt
zgian@umich.edu 195

Exercise 10.2This program counts the distribution of the hour of the dayefach of the
messages. You can pull the hour from the “From” line by findimg time string and then
splitting that string into parts using the colon characténce you have accumulated the
counts for each hour, print out the counts, one per lineeddsy hour as shown below.

Sample Execution:

python timeofday.py

Enter a file name: mbox-short.txt
04 3

06
07
09
10
11
14

PO WNRE R

126 Chapter 10. Tuples

Exercise 10.3Write a function callednost frequent that takes a string and prints the
letters in decreasing order of frequency. Find text sanfpbes several different languages
and see how letter frequency varies between languages. &empur results with the
tables atvikipedia.org/wiki/Letter_frequencies

Chapter 11

Automating common tasks on
your computer

Up to now, we have focused on writing programs that read tkeeidaa single file. Python
can also read data from a network, database, or even loolkghrall the folders on your
computer.

In this chapter, we will write programs that scan scan throygur computer and perform
some operation on each file. Files are organized into direstdalso called “folders”).
Simple Python scripts can make short work of simple taskisrthest be done to hundreds
or thousands of files spread across a directory tree or ydine @omputer.

To walk through all the directories and files in a tree weassgalk and afor loop. This
is similar to howopen allows us to write a loop to read the contents of a fiteket allows
us to write a loop to read the contents of a network connectiodurlib allows us to
open a web document and loop through its contents.

11.1 File names and paths

Every running program has a “current directory,” which ie tefault directory for most
operations. For example, when you open a file for readindndPviooks for it in the current
directory.

The os module provides functions for working with files and direts (s stands for
“operating system”)os.getcwd returns the name of the current directory:

>>> import 0s
>>> cwd = o0s.getcwd()
>>> print cwd
fhome/dinsdale

128 Chapter 11. Automating common tasks on your computer

cwd stands focurrent working directory . The result in this example Isome/dinsdale
which is the home directory of a user nantisdale

A string like cwd that identifies a file is called a path.rélative path starts from the current
directory; anabsolute pathstarts from the topmost directory in the file system.

The paths we have seen so far are simple file names, so theglatige to the current
directory. To find the absolute path to a file, you canassgath.abspath

>>> 0s.path.abspath(" memo.txt ')
' lhome/dinsdale/memo.txt '

0s.path.exists checks whether a file or directory exists:

>>> 0s.path.exists(" memo.txt ')

True

If it exists, os.path.isdir checks whether it's a directory:
>>> 0s.path.isdir(' memo.txt ')

False

>>> os.path.isdir(' music ')

True

Similarly, os.path.isfile checks whether it’s a file.

os.listdir returns a list of the files (and other directories) in the gid@ectory:

>>> 0s.listdir(cwd)
[* music ", ' photos

, " memo.txt ']

11.2 Example: Cleaning up a photo directory

Some time ago, | built a bit of Flickr-like software that ra@s photos from my cellphone
and stored those photos on my server. | wrote this beforé&rixisted and kept using it
after Flickr existed because | wanted to keep original copfamy images forever.

I would also send a simple one-line text description in the 8Message or the subject
line of the E-Mail message. | stored these messages in alext the same directory as
the image file. | came up with a directory structure based emtbnth, year, day and time
the photo was taken. The following would be an example of tiraing for one photo and

its existing description:

12006/03/24-03-06_2018002.jpg
/2006/03/24-03-06_2018002.txt

After seven years, | had a lot of photos and captions. Oveydaes as | switched cell
phones, sometimes my code to extract the caption from theagesvould break and add
a bunch of useless data on my server instead of a caption.

11.2. Example: Cleaning up a photo directory 129

| wanted to go through these files and figure out which of thefiies were really captions
and which were junk and then delete the bad files. The firsgttdrdo was to get a simple
inventory of how many text files | had in of the sub-foldersngsihe following program:

import 0s
count = 0
for (dirname, dirs, files) in os.walk(L)
for filename in files:
if filename.endswith(ixt ')
count = count + 1

print ' Files: ', count
python txtcount.py
Files: 1917

The key bit of code that makes this possible is dhavalk library in Python. When we
call os.walk and give it a starting directory, it will “walk” through allfdhe directories
and sub-directories recursively. The string “.” indicat@start in the current directory and
walk downward. As it encounters each directory, we get thiedges in a tuple in the body
of thefor loop. The first value is the current directory name, the séa@bue is the list
of sub-directories in the current directory, and the thiatlre is a list of files in the current

directory.

We do not have to explicitly look into each of the sub-direiete because we can count on
os.walk to visit every folder eventually. But we do want to look at lkedite, so we write

a simplefor loop to examine each of the files in the current directory. Weck each file
to see if it ends with “.txt” and then count the number of filbsough the whole directory
tree that end with the suffix “.txt".

Once we have a sense of how many files end with “.txt”, the nExigtto do is try to
automatically determine in Python which files are bad andctviiles are good. So we
write a simple program to print out the files and the size ohdde:

import 0s
from os.path import join
for (dirname, dirs, files) in os.walk(L)
for filename in files:
if filename.endswith(axt ')
thefile = os.path.join(dirname,filename)
print os.path.getsize(thefile), thefile

Now instead of just counting the files, we create a file namedmgatenating the directory
name with the name of the file within the directory usasgath.join . Itis important to
useos.path.join instead of string concatenation because on Windows we usekallash

(\) to construct file paths and on Linux or Apple we use a forwéasdts() to construct file
paths. Thes.path.join knows these differences and knows what system we are running
on and it does the proper concatenation depending on thensySto the same Python code
runs on either Windows or UNIX-style systems.

130 Chapter 11. Automating common tasks on your computer

Once we have the full file name with directory path, we useothgath.getsize utility
to get the size and print it out, producing the following atitp

python txtsize.py

18 ./2006/03/24-03-06_2303002.txt
22 ./2006/03/25-03-06_1340001.txt
22 ./2006/03/25-03-06_2034001.txt

2565 ./2005/09/28-09-05_1043004.txt
2565 ./2005/09/28-09-05_1141002.txt

2578 ./2006/03/27-03-06_1618001.txt
2578 ./2006/03/28-03-06_2109001.txt
2578 ./2006/03/29-03-06_1355001.txt

Scanning the output, we notice that some files are pretty ahdra lot of the files are pretty
large and the same size (2578 and 2565). When we take a lookwataf these larger files
by hand, it looks like the large files are nothing but a genbitiof identical HTML that
came in from mail sent to my system from my T-Mobile phone:

<html>
<head>
<title>T-Mobile</title>

Skimming through the file, it looks like there is no good infation in these files so we
can probably delete them.

But before we delete the files, we will write a program to lookfiles that are more than
one line long and show the contents of the file. But let's ndhboshowing ourselves those
files that are exactly 2578 or 2565 characters long since we khat these files have no
useful information.

So we write the following program:

import os
from os.path import join
for (dirname, dirs, files) in os.walk(L)
for filename in files:
if filename.endswith(axt ')
thefile = os.path.join(dirname,filename)
size = os.path.getsize(thefile)
if size == 2578 or size == 2565:
continue
fhand = open(thefile, r')
lines = list()

11.2. Example: Cleaning up a photo directory 131

for line in fhand:
lines.append(line)

fhand.close()

if len(lines) > 1:
print len(lines), thefile
print lines[:4]

We use aontinue to skip files with the two “bad sizes”, then open the rest offiles and
read the lines of the file into a Python list and if the file hagertban one line we print out
how many lines are in the file and print out the first three lines

It looks like filtering out those two bad file sizes, and asswgrthat all one-line files are
correct, we are down to some pretty clean data:

python txtcheck.py

3 ./2004/03/22-03-04_2015.txt

[Little horse rider\rin B 1) B

2 ./2004/11/30-11-04_1834001.txt

[' Testing 123\n ', "\n"]

3 ./2007/09/15-09-07_074202_03.txt

[*\Wn ", "\dn ', " Sent from my iPhone\rin "]
3 ./2007/09/19-09-07_124857_01.txt

[*\n ", "\\n ', " Sent from my iPhone\rin "]
3 ./2007/09/20-09-07_115617_01.txt

But there is one more annoying pattern of files: there are sbree-line files that consist
of two blank lines followed by a line that says “Sent from mydpe” that have slipped
into my data. So we make the following change to the progradetd with these files as
well.

lines = list()
for line in fhand:
lines.append(line)
if len(lines) == 3 and lines[2].startswith(' Sent from my iPhone
continue
if len(lines) > 1:
print len(lines), thefile
print lines[:4]

We simply check if we have a three-line file, and if the thimklistarts with the specified
text, we skip it.

Now when we run the program, we only see four remaining niimiéfiles and all of those
files look pretty reasonable:

python txtcheck2.py
3 ./2004/03/22-03-04_2015.txt

132 Chapter 11. Automating common tasks on your computer

[Little horse rider\rin ,'Wn e]
2 ./2004/11/30-11-04_1834001.txt

[Testing 123\n ', "\n"]

2 ./2006/03/17-03-06_1806001.txt

[' On the road again..\r\n ,"\nn]

2 ./2006/03/24-03-06_1740001.txt

[' On the road again..\r\n o' \in]

If you look at the overall pattern of this program, we havecassively refined how we
accept or reject files and once we found a pattern that was thadsedcontinue to skip
the bad files so we could refine our code to find more file pattiiatsvere bad.

Now we are getting ready to delete the files, so we are goingptthi logic and instead of
printing out the remaining good files, we will print out theatt files that we are about to
delete.

import os
from os.path import join
for (dirname, dirs, files) in os.walk(L)
for filename in files:
if filename.endswith(axt ')
thefile = os.path.join(dirname,filename)
size = os.path.getsize(thefile)
if size == 2578 or size == 2565:
print ' T-Mobile: ' thefile

continue
fhand = open(thefile, r')
lines = list()

for line in fhand:
lines.append(line)
fhand.close()

if len(lines) == 3 and lines[2].startswith(" Sent from my iPhone
print ' iPhone: ', thefile
continue

We can now see a list of candidate files that we are about téedahel why these files are
up for deleting. The program produces the following output:

python txtcheck3.py

T-Mobile: ./2006/05/31-05-06_1540001.txt
T-Mobile: ./2006/05/31-05-06_1648001.txt
iPhone: ./2007/09/15-09-07_074202_03.txt
iPhone: ./2007/09/15-09-07_144641 01.txt
iPhone: ./2007/09/19-09-07_124857 01.txt

0

11.3. Command line arguments 133

We can spot-check these files to make sure that we did noténishtly end up introducing
a bug in our program or perhaps our logic caught some files dvaatiwant to catch.

Once we are satisfied that this is the list of files we want tetdelwe make the following
change to the program:

if size == 2578 or size == 2565:
print ' T-Mobile: ' thefile
os.remove(thefile)
continue

if len(lines) == 3 and lines[2].startswith(' Sent from my iPhone ') :
print ' iPhone: ', thefile
os.remove(thefile)
continue

In this version of the program, we will both print the file omderemove the bad files using
o0s.remove .

python txtdelete.py
T-Mobile: ./2005/01/02-01-05_1356001.txt
T-Mobile: ./2005/01/02-01-05_1858001.txt

Just for fun, run the program a second time and it will procaeutput since the bad files
are already gone.

If we reruntxtcount.py ~ we can see that we have removed 899 bad files:

python txtcount.py
Files: 1018

In this section, we have followed a sequence where we useRythfirst look through
directories and files seeking patterns. We slowly use Pytbdrelp determine what we
want to do to clean up our directories. Once we figure out wfiieh are good and which
files are not useful, we use Python to delete the files and peittee cleanup.

The problem you may need to solve can either be quite simgleraght only depend on
looking at the names of files, or perhaps you need to read eiegje file and look for
patterns within the files. Sometimes you will need to reathalffiles and make a change to
some of the files. All of these are pretty straightforwardeopou understand hows.walk

and the otheos utilities can be used.

11.3 Command line arguments

In earlier chapters, we had a number of programs that praimfotea file name using
raw_input and then read data from the file and processed the data aggollo

134 Chapter 11. Automating common tasks on your computer

name = raw_input(' Enter file: ')
handle = open(name, 'r')
text = handle.read()

We can simplify this program a bit by taking the file name fréva tommand line when we
start Python. Up to now, we simply run our Python programsrasgond to the prmompts
as as follows:

python words.py
Enter file: mbox-short.txt

We can place additional strings after the Python file and ssctteosecommand line ar-
gumentsin our Python program. Here is a simple program that dematestrreading
arguments from the command line:

import sys
print ' Count: ', len(sys.argv)
print ' Type: ', type(sys.argv)
for arg in sys.argv:
print ' Argument:

', arg
The contents ofys.argv are a list of strings where the first string is the name of the
Python program and the remaining strings are the argumarteacommand line after the
Python file.

The following shows our program reading several commareldiguments from the com-
mand line:

python argtest.py hello there
Count: 3

Type: <type 'list ' >
Argument: argtest.py
Argument: hello

Argument: there

There are three arguments are passed into our program aseacflement list. The first
element of the list is the file name (argtest.py) and the sthee the two command line
arguments after the file name.

We can rewrite our program to read the file, taking the file nénm the command line
argument as follows:

import sys

name = sys.argv[l]

handle = open(name, 'r')

text = handle.read()

print name, 'is "', len(text), ' bytes

11.4. Pipes 135

We take the second command line argument as the name of thsKipping past the
program name in th®] entry). We open the file and read the contents as follows:

python argfile.py mbox-short.txt
mbox-short.txt is 94626 bytes

Using command line arguments as input can make it easieuse gour Python programs
especially when you only need to input one or two strings.

11.4 Pipes

Most operating systems provide a command-line interfalse, lenown as ahell. Shells
usually provide commands to navigate the file system ancclaapplications. For exam-
ple, in Unix, you can change directories witth, display the contents of a directory with
Is , and launch a web browser by typing (for examilejox

Any program that you can launch from the shell can also beclaedh from Python using a
pipe. A pipe is an object that represents a running process.

For example, the Unix commahds -| normally displays the contents of the current
directory (in long format). You can laund$ with os.popen :

>>>cmd =" Is -
>>> fp = os.popen(cmd)

The argument is a string that contains a shell command. Tthenrgalue is a file pointer
that behaves just like an open file. You can read the outpuat fheels process one line at
a time withreadline or get the whole thing at once withad :

>>> res = fp.read()
When you are done, you close the pipe like a file:

>>> stat = fp.close()
>>> print stat
None

The return value is the final status of tise processNone means that it ended normally
(with no errors).

11.5 Glossary

absolute path: A string that describes where a file or directory is stored $tarts at the
“top of the tree of directories” so that it can be used to as¢he file or directory,
regardless of the current working directory.

IWhen using pipes to talk to operating system commandsldikeit is important for you to know which
operating system you are using and only open pipes to commiaaidare supported on your operating system.

136 Chapter 11. Automating common tasks on your computer

checksum: See alschashing The term “checksum” comes from the need to verify if
data was garbled as it was sent across a network or writtebaalaup medium and
then read back in. When the data is written or sent, the sergyisigm computes
a checksum and also sends the checksum. When the data is resztioed, the
receiving system re-computes the checksum from the reteiat and compares it
to the received checksum. If the checksums do not match, v assume that the
data was garbled as it was transferred.

command line argument: Parameters on the command line after the Python file name.

current working directory: The current directory that you are “in”. You can change your
working directory using thed command on most systems in their command-line
interfaces. When you open a file in Python using just the fileenarith no path
information the file must be in the current working directerigere you are running
the program.

hashing: Reading through a potentially large amount of data and priodua unique
checksum for the data. The best hash functions produce eerycollisions” where
you can give two different streams of data to the hash funatial get back the same
hash. MD5, SHAL, and SHA256 are examples of commonly usdd fuaastions.

pipe: A pipe is a connection to a running program. Using a pipe, youwrite a program
to send data to another program or receive data from thatgmogA pipe is similar
to asocketexcept that a pipe can only be used to connect programs gionithe
same computer (i.e. not across a network).

relative path: A string that describes where a file or directory is storedtiet to the
current working directory.

shell: A command-line interface to an operating system. Also dadl&erminal program”
in some systems. In this interface you type a command andnedeas on a line and
press “enter” to execute the command.

walk: A term we use to describe the notion of visiting the entire wédirectories, sub-
directories, sub-sub-directories, until we have visitegl &ll of the directories. We
call this “walking the directory tree”.

11.6 Exercises

Exercise 11.11n a large collection of MP3 files there may be more than oneg afjthe
same song, stored in different directories or with différiéle names. The goal of this
exercise is to search for these duplicates.

1. Write a program that walks a directory and all of its sukediories for all files
with a given suffix (like.mp3) and lists pairs of files with that are the same size.
Hint: Use a dictionary where the key of the dictionary is tiee ©f the file from
0s.path.getsize and the value in the dictionary is the path name concatenated
with the file name. As you encounter each file check to see ifajmady have a file

11.6. Exercises 137

that has the same size as the current file. If so, you have &dtgsize file and print
out the file size and the two files names (one from the hash anatltier file you are
looking at).

2. Adapt the previous program to look for files that have digié content using a hash-
ing or checksumalgorithm. For example, MD5 (Message-Digest algorithmelkes
an arbitrarily-long “message” and returns a 128-bit “ctsegk.” The probability is
very small that two files with different contents will retuttee same checksum.

You can read about MD5 aitkipedia.org/wiki/Md5 . The following code snippet
opens afile, reads it and computes its checksum.

import hashlib

fhand = open(thefile, 1)

data = fhand.read()

fhand.close()

checksum = hashlib.md5(data).hexdigest()

You should create a dictionary where the checksum is the kéytze file name is
the value. When you compute a checksum and it is already ini¢kiertary as a key,
you have two files with duplicate content so print out the filehie dictionary and
the file you just read. Here is some sample output from a runfolder of image

files:

.12004/11/15-11-04_0923001.jpg ./2004/11/15-11-04 10 16001.jpg
.12005/06/28-06-05_1500001.jpg ./2005/06/28-06-05_15 02001.jpg
.12006/08/11-08-06_205948 01.jpg ./2006/08/12-08-06 155318 02.jpg
.12006/09/28-09-06_225657_01.jpg ./2006/09-50-years/ 28-09-06_225657_01.jpg
.12006/09/29-09-06_002312_01.jpg ./2006/09-50-years/ 29-09-06_002312_01.jpg

Apparently | sometimes sent the same photo more than onceade im copy of a
photo from time to time without deleting the original.

138 Chapter 11. Automating common tasks on your computer

Chapter 12

Networked programs

While many of the examples in this book have focused on reafilies)and looking for
data in those files, there are many different sources ofrimtion when one considers the
Internet.

In this chapter we will pretend to be a web browser and redri@eb pages using the
HyperText Transport Protocol (HTTP). Then we will read thgh the web page data and
parse it.

12.1 HyperText Transport Protocol - HTTP

The network protocol that powers the web is actually quitepde and there is built-in
support in Python callesbckets which makes it very easy to make network connections
and retrieve data over those sockets in a Python program.

A socketis much like a file, except that it provides a two-way conrmtibetween two
programs with a single socket. You can both read from andweithe same socket. If you
write somthing to a socket it is sent to the application atatier end of the socket. If you
read from the socket, you are given the data which the othaicagion has sent.

But if you try to read a socket when the program on the otheroditite socket has not sent
any data - you just sit and wait. If the programs on both endee&ocket simply wait for
some data without sending anything, they will wait for a vienyg time.

So an important part of programs that communicate over ttegrat is to have some sort
of protocol. A protocol is a set of precise rules that deteemwwho is to go first, what they
are to do, and then what are the responses to that messagehasgnds next and so on.
In a sense the two applications at either end of the socked@rng a dance and making
sure not to step on each other’s toes.

There are many documents which describe these networkgmietdr he HyperText Trans-
port Protocol is described in the following document:

140 Chapter 12. Networked programs

http:/fwww.w3.org/Protocols/rfc2616/rfc2616.txt

This is a long and complex 176 page document with a lot of Hefgiou find it interesting
feel free to read it all. But if you take a look around page 3&B{C2616 you will find the
syntax for the GET request. If you read in detail, you will fithéit to request a document
from a web server, we make a connection towmsv.py4inf.com server on port 80, and
then send a line of the form:

GET http://www.py4inf.com/code/romeo.txt HTTP/1.0

Where the second parameter is the web page we are requestingeamwe also send a
blank line. The web server will respond with some headermégion about the document
and a blank line followed by the document content.

12.2 The World's Simplest Web Browser

Perhaps the easiest way to show how the HTTP protocol worlkswsite a very simple
Python program that makes a connection to a web server alwviioy) the rules of the
HTTP protocol, requests a document and displays what thveiseends back.

import socket

mysock = socket.socket(socket. AF_INET, socket.SOCK_STR EAM)
mysock.connect((' www.pydinf.com ', 80))

mysock.send(' GET http://www.py4inf.com/code/romeo.txt HTTP/1.0\n\n ")
while True:

data = mysock.recv(512)

if (len(data) < 1) :
break

print data

mysock.close()

First the program makes a connection to port 80 on the semer.py4inf.com. Since our
program is playing the role of the “web browser” the HTTP poatl says we must send
the GET command followed by a blank line.

Our Computer Web Server
www.py4inf.com

send

Web Pages
Socket 80 -

T~
recv/

12.3. Retrieving web pages withurllib 141

Once we send that blank line, we write a loop that receives 512 character chunks
from the socket and prints the data out until there is no mata tb read (i.e. the recv()
returns an empty string).

The program produces the following output:

HTTP/1.1 200 OK

Date: Sun, 14 Mar 2010 23:52:41 GMT

Server: Apache

Last-Modified: Tue, 29 Dec 2009 01:31:22 GMT
ETag: "143c1b33-a7-4b395hea"

Accept-Ranges: bytes

Content-Length: 167

Connection: close

Content-Type: text/plain

But soft what light through yonder window breaks
It is the east and Juliet is the sun

Arise fair sun and kill the envious moon

Who is already sick and pale with grief

The output starts with headers which the web server sendssitrile the document. For
example, the&€ontent-Type header indicated that the document is a plain text document
(text/plain).

After the server sends us the headers, it adds a blank limgliweite the end of the headers
and then sends the actual data of therfileeo.txt

This example shows how to make a low-level network conneatith sockets. Sockets
can be use to communicate with a web server or with a mail servaany other kinds of
servers. All that is needed is to find the document which dessithe protocol and write
the code to send and receive the data according to the ptotoco

However, since the protocol that we use most commonly is fheRH(i.e. the web) proto-
col, Python has a special library specifically designed ppstt the HTTP protocol for the
retrieval of documents and data over the web.

12.3 Retrieving web pages withurllib

Theurllib library makes it very easy to retrieve web pages and probes#ata in Python.
Usingurllib you can treat a web page much like a file. You simply indicatelviveb
page you would like to retrieve andlib handles all of the HTTP protocol details.

The equivalent code to read theneo.txt ~ file from the web usingrllib is as follows:

import urllib

fhand = urllib.urlopen(" http:/lwww.py4inf.com/code/romeo.txt ")

142 Chapter 12. Networked programs

for line in fhand:
print line.strip()

Once the web page has been opened witib.urlopen we can treat it like a file and
read through it using r loop.

When the program runs, we only see the output of the contentedile. The headers are
still sent, but thaurlib code consumes the headers and only returns the data to us.

But soft what light through yonder window breaks
It is the east and Juliet is the sun

Arise fair sun and kill the envious moon

Who is already sick and pale with grief

As an example, we can write a program to retrieve the dateofego.txt and compute
the frequency of each word in the file as follows:

import urllib

counts = dict()
fhand = urllib.urlopen(" http:/lwww.py4inf.com/code/romeo.txt ")
for line in fhand:
words = line.split()
for word in words:
countsfword] = counts.get(word,0) + 1
print counts

Again, once we have opened the web page, we can read it lileakfile.

12.4 Parsing HTML and scraping the web

One of the common uses of thelib capability in Python is tscrapethe web. Web
scraping is when we write a program that pretends to be a wetsier and retrieves pages
and then examines the data in those pages looking for pattern

As an example, a search engine such as Google will look abtivees of one web page and
extract the links to other pages and retrieve those pageagcérg links, and so on. Using
this technique, Googlspidersits way through nearly all of the pages on the web. Google
also uses the frequency of links from pages it finds to a pdatiqppage as one measure of
how “important” a page is and how highly the page should apimeits search results.

There are a number of Python libraries which can help youepld®ML and extract data
from the pages. Each of the libraries has its strengths aa#ivesses and you can pick one
based on your needs.

As an example, we will simply parse some HTML input and extlia&s using theBeau-
tifulSoup library. You can download and install the BeautifulSoupemm:

www.crummy.com

12.4. Parsing HTML and scraping the web 143

You can download and “install” BeautifulSoup or you can diynglace the
BeautifulSoup.py file in the same folder as your application.

Even though HTML looks like XML and some pages are carefuligstructed to be XML,
most HTML is geerally broken in ways that cause an XML parseefect the entire page
of HTML as improperly formed. BeautifulSoup tolerates Higflawed HTML and still
lets you easily extract the data you need.

Here is a simple web page:

<h1>The First Page</h1>

<p>

If you like, you can switch to the

Second Page.

</p>

We will useurllib to read the bage and then uBeautifulSoup to extract thehref
attributes from the anchoa) tags.

import urllib
from BeautifulSoup import *

url = raw_input(' Enter - ")
html = urllib.urlopen(url).read
soup = BeautifulSoup(html)

Retrieve all of the anchor tags
tags = soup('a')
for tag in tags:

print tag.get("href ', None)

The program prompts for a web address, then opens the webrpads the data and passes
the data to the BeautifulSoup parser, and then retrieves #e anchor tags and prints out
thehref attribute for each tag.

When the program is run it looks as follows:

python urllinks.py
Enter - http://iwww.dr-chuck.com/pagel.htm
http:/iwww.dr-chuck.com/page2.htm

python urllinks.py

Enter - http://www.py4inf.com/
http://www.greenteapress.com/thinkpython/thinkpytho n.html
http://allendowney.com/

http:/iwww.si502.com/

http://www.lib.umich.edu/espresso-book-machine
http:/lwww.py4inf.com/code

http://www.pythonlearn.com/

144 Chapter 12. Networked programs

You can use BeautifulSoup to pull out various parts of eaglatafollows:

import urllib
from BeautifulSoup import *

url = raw_input(' Enter - ")
html = urllib.urlopen(url).read
soup = BeautifulSoup(html)

Retrieve all of the anchor tags
tags = soup('a')
for tag in tags:
Look at the parts of a tag
print ' TAG:" ,tag
print ' URL:" tag.get(' href ', None)
print ' Content: ' ,tag.contents[0]
print ' Attrs: ' tag.attrs

This produces the following output:

python urllink2.py

Enter - http://www.dr-chuck.com/pagel.htm

TAG:

Second Page

URL: http://www.dr-chuck.com/page2.htm

Content: [u ' \nSecond Page ']

Attrs: [(u " href ', u' http://www.dr-chuck.com/page2.htm "]

These examples only begin to show the power of BeautifulSadugn it comes to parsing
HTML. See the documentation and sampleswalv.crummy.com for more detail.

12.5 Glossary

BeautifulSoup: A Python library for parsing HTML documents and extractiregadfrom
HTML documents that compensates for most of the imperfastio the HTML
that browsers generally ignore. You can download the Bed8tup code from
WwWw.crummy.com .

port: A number that generally indicates which application you @etacting when you
make a socket connection to a server. As an example, welt tuaffially uses port
80 while e-mail traffic uses port 50.

scrape: When a program pretends to be a web browser and retrieves aagetapd then
looks at the web page content. Often programs are followiaditks in one page to
find the next page so they can traverse a network of pages aia setwork.

12.6. Exercises 145

socket: A network connection between two applications where thdiegafons can send
and receive data in either direction.

spider: The act of a web search engine retrieving a page and theregihitpes linked from
a page and so on until they have nearly all of the pages on thenkt which they
use to build their search index.

12.6 Exercises

Exercise 12.1

146 Chapter 12. Networked programs

Chapter 13

Using Web Services

Once it became easy to retrieve documents and parse docimentHTTP using pro-

grams, it did not take long to develop an approach where weedtaroducing documents
that were specifically designed to be consumed by other anogji(i.e. not HTML to be

displayed in a browser).

The most common approach when two programs are exchangiagdass the web is to
exchange the data in a format called the “eXtensible Markamguage” or XML.

13.1 eXtensible Markup Language - XML

XML looks very similar to HTML, but XML is more structured thaHTML. Here is a
sample of an XML document:

<person>
<name>Chuck</name>
<phone type="intl">
+1 734 303 4456
</phone>
<email hide="yes"/>
</person>

Often it is helpful to think of an XML document as a tree stiuetwhere there is a top tag
person and other tags such gbone are drawn ashildrenof their parent nodes.

148 Chapter 13. Using Web Services

hide=
yes

{ Chuck

+1734
303 4456

13.2 Parsing XML

Here is a simple application that parses some XML and edisaine data elements from
the XML.:

import xml.etree.ElementTree as ET
data = ™
<person>
<name>Chuck</name>
<phone type="intl">
+1 734 303 4456
</phone>
<email hide="yes"/>
</person> ™

tree = ET.fromstring(data)
print ' Name:" tree.find(' name').text
print " Attr: ' tree.find("email ').get(' hide ')

Calling fromstring ~ converts the string representation of the XML into a 'treEX&L
nodes. When the XML is in a tree, we have a series of methoddw¥ecan call to extract
portions of data from the XML.

Thefind function searches through the XML tree and retrievemde that matches the
specified tag. Each node can have some text, some attribigedike hide) and some
“child” nodes. Each node can be the top of a tree of nodes.

Name: Chuck
Attr: yes

Using an XML parser such &ementTree has the advantage that while the XML in this
example is quite simple, it turns out that there are manysredgarding valid XML and
usingElementTree allows us to extract data from XML without worrying about thies
of XML syntax.

13.3. Looping through nodes 149

13.3 Looping through nodes

Often the XML has multiple nodes and we need to write a loopte@ss all of the nodes.
In the following program, we loop through all of thiser nodes:

import xml.etree.ElementTree as ET

input = ™
<stuff>
<users>
<user x="2">
<id>001</id>
<name>Chuck</name>
<luser>
<user x="7">
<id>009</id>
<name>Brent</name>
<luser>
<lusers>
<stuff> ™

stuff = ET.fromstring(input)
Ist = stuff.findall(' usersfuser ')
print ' User count: ', len(lst)

for item in Ist:

print ' Namé , item.find(' name').text
print ' Id", item.find("id ').text
print ' Attribute ', item.get(' x')

Thefindall method retrieves a Python list of sub-trees that reprebensér structures
in the XML tree. Then we can writefar loop that looks at each of the user nodes, and
prints thename andid text elements as well as tleattribute from thaiser node.

User count: 2
Name Chuck
Id 001
Attribute 2
Name Brent
Id 009
Attribute 7

13.4 Application Programming Interfaces (API)

We now have the ability to exchange data between applicatising HyperText Transport
Protocol (HTTP) and a way to represent complex data that weemding back and forth

150 Chapter 13. Using Web Services

between these applications using eXtensible Markup Lagey(@&ML).

The next step is to begin to define and document “contractsidsn applications using
these techniques. The general name for these applicatiapglication contracts isppli-
cation Program Interfacesor APIs. When we use an API, generally one program makes
a set ofservicesavailable for use by other applications and publishes this ARe. the
“rules”) which must be followed to access the services ptegliby the program.

When we begin to build our programs where the functionalityoof program includes
access to services provided by other programs, we call theaph aService-Oriented
Architecture or SOA. A SOA approach is one where our overall applicatiotkesause
of the services of other applications. A non-SOA approachktisre the application is a
single stand-alone application which contains all of thdecoecessary to implement the
application.

We see many examples of SOA when we use the web. We can go tgla sieb site and
book air travel, hotels, and automobiles all from a singte.sThe data for hotels is not
stored on the airline computers. Instead, the airline cderplcontact the services on the
hotel computers and retrieve the hotel data and presenthietaser. When the user agrees
to make a hotel reservation using the airline site, therarsite uses another web service
on the hotel systems to actually make the reservation. Anehvithcomes to charge your
credit card for the whole transaction, still other compsitsecome involved in the process.

A Service-Oriented Architecture has many advantages dirogu (1) we always maintain

only one copy of data - this is particularly important fontgs like hotel reservations where
we do not want to over-commit and (2) the owners of the dataseathe rules about the
use of their data. With these advantages, a SOA system mustékilly designed to have
good performance and meet the user’s needs.

When an application makes a set of services in its AP| availaér the web, we call these
web services

13.5 Twitter web services

You are probably familiar with the Twitter web site and itspipations http://www.
twitter.com . Twitter has a very unique approach to its APl/web servicethat all of
its data is available to non-Twitter applications using Thstter API.

Because Twitter has been so liberal in allowing access tiaits, it has enabled thousands
of software developers to build their own customized Twitiased software. These addi-
tional applications greatly increase the value of Twiteerlieyond simply a web site. The
Twitter web services allow the building of whole new applicas that the Twitter team
may never have thought of. It is said that over 90 percent®ife of Twitter is through
the API (i.e. not through thitter.com web user interface).

You can view the Twitter APl documentation fattp://apiwiki.twitter.com/ . The
Twitter APl is an example of the REST style of web services.WNkfocus on the Twitter

13.5. Twitter web services 151

API to retrieve a list of a user’s friends and their statugesan example, you can visit the
following URL:

http://api.twitter.com/1/statuses/friends/drchuck.x ml

To see a list of the friends of the twitter accouinthuck . It may look like a mess in
your browser. To see the actual XML returned by Twitter, yan giew the source of the
returned “web page”.

We can retrieve this same XML using Python usingutié utility:

import urllib
TWITTER_URL =" http://api.twitter.com/l/statuses/friends/ACCT.xml '

while True:
print
acct = raw_input(' Enter Twitter Account:)
if (len(acct) < 1) : break
url = TWITTER_URL.replace(' ACCT, acct)
print ' Retrieving ', url
document = urllib.urlopen (url).read()
print document[:250]

The program prompts for a Twitter account and opens the URthifriends and statuses
API and then retrieves the text from the URL and shows us teeZB0 characters of the
text.

python twitterl.py

Enter Twitter Account:drchuck
Retrieving http://api.twitter.com/l/statuses/friends [drchuck.xml
<?xml version="1.0" encoding="UTF-8"?>
<users type="array">
<user>
<id>115636613</id>
<name>Steve Coppin</name>
<screen_name>steve_coppin</screen_name>
<location>Kent, UK</location>
<description>Software developing, best practicing, agil ee

Enter Twitter Account:

In this application, we have retrieved the XML exactly ag iivere an HTML web page.
If we wanted to extract data from the XML, we could use Pythimimg functions but this
would become pretty complex as we tried to really start toilig the XML in detail.

If we were to dump out some of the retrieved XML it would lookighly as follows:

152 Chapter 13. Using Web Services

<?xml version="1.0" encoding="UTF-8"?>
<users type="array">
<user>
<id>115636613</id>
<name>Steve Coppin</name>
<screen_name>steve_coppin</screen_name>
<location>Kent, UK</location>
<status>
<id>10174607039</id>
<source>web</source>
</status>
<luser>
<user>
<id>17428929</id>
<name>davidkocher</name>
<screen_name>davidkocher</screen_name>
<location>Bern</location>
<status>
<id>10306231257</id>
<text>@MikeGrace If possible please post a detailed bug rep ort </text>
</status>
<luser>

The top level tag is asers and there are multipleser tags below within theisers tag.
There is also atatus tag below thauser tag.

13.6 Handling XML data from an API

When we receive well-formed XML data from an API, we generalkbg an XML parser
such aslementTree to extract information from the XML data.

In the program below, we retrieve the friends and statuses the Twitter APl and then
parse the returned XML to show the first four friends and te&tuses.

import urllib
import xml.etree.ElementTree as ET

TWITTER_URL =" http://api.twitter.com/l/statuses/friends/ACCT.xml '

while True:
print
acct = raw_input(' Enter Twitter Account:)
if (len(acct) < 1) : break
url = TWITTER_URL.replace(' ACCT , acct)
print ' Retrieving ', url

13.6. Handling XML data from an API 153

document = urllib.urlopen (url).read()
print ' Retrieved ', len(document), ' characters.
tree = ET.fromstring(document)
count = 0
for user in tree.findall(' user '):
count = count + 1
if count > 4 : break

print user.find(' screen_name ').text
status = user.find(' status ')
if status :
txt = status.find("text ').text
print ' ' txt[:50]

We use thdindall method to get a list of theser nodes and loop through the list using
afor loop. For eachuser node, we pull out the text of thegreen_name node and then
pull out thestatus node. If there is atatus node, we pull out the text of thext node
and print the first 50 characters of the status text.

The pattern is pretty straightforward, we dgall andfind to pull out a list of nodes
or a single node and then if a node is a complex element witteraob-nodes we look
deeper into the node until we reach the text element that eeterested in.

The program runs as follows:

python twitter2.py

Enter Twitter Account.drchuck
Retrieving http://api.twitter.com/l/statuses/friends [drchuck.xml
Retrieved 193310 characters.
steve_coppin

Looking forward to some "oh no the markets closed,
davidkocher

@MikeGrace If possible please post a detailed bug
hrheingold

From today ' s Columbia Journalism Review, on crap d
huge_idea

@drchuck #cnx2010 misses you, too. Thanks for co

Enter Twitter Account:hrheingold

Retrieving http://api.twitter.com/l/statuses/friends [hrheingold.xml
Retrieved 208081 characters.
carr2n
RT @tysone: Saturday ' s proclaimation by @carr2n pr
tiffanyshlain
RT @ScottKirsner: Turning smartphones into a tool
soniasimone

@ACCompanyC Funny, smart, cute, and also nice! He

154 Chapter 13. Using Web Services

JenStone7617
Watching "Changing The Equation: High Tech Answers

Enter Twitter Account:

While the code for parsing the XML and extracting the fieldsig&ilementTree takes a
few lines to express what we are looking for in the XML, it ischusimpler than trying to
use Python string parsing to pull apart the XML and find the@déments.

13.7 Glossary

API: Application Program Interface - A contract between appiices that defines the
patterns of interaction between two application compament

ElementTree: A built-in Python library used to parse XML data.

REST: REpresentational State Transfer - A style of Web Servicasplovide access to
resources within an application using the HTTP protocol.

SOA: Service Oriented Architecture - when an application is maideomponents con-
nected across a network.

XML: eXtensible Markup Language - A format that allows for the ko@rof structured
data.

13.8 Exercises

Exercise 13.1Change the program that retrieves twitter data to also pritithe location
for each of the friends indented under the name by two spacfsiews:

Enter Twitter Account:drchuck
Retrieving http://api.twitter.com/l/statuses/friends [drchuck.xml
Retrieved 194533 characters.
steve_coppin

Kent, UK

Looking forward to some "oh no the markets closed,
davidkocher

Bern

@MikeGrace If possible please post a detailed bug
hrheingold

San Francisco Bay Area

RT @barrywellman: Lovely AmBerhSci Internet & Comm
huge_idea

Boston, MA

@drchuck #cnx2010 misses you, too. Thanks for co

Chapter 14

Using databases and Structured
Query Language (SQL)

14.1 Whatis a database?

A databaseis a file that is organized for storing data. Most database®eaganized like
a dictionary in the sense that they map from keys to valuese [igest difference is
that the database is on disk (or other permanent storagé)pecsists after the program
ends. Because a database is stored on permanent storagesiooe far more data than a
dictionary, which is limited to the size of the memory in therputer.

Like a dictionary, database software is designed to keem#®eting and accessing of data
very fast, even for large amounts of data. Database softmanetains its performance by
building indexesas data is added to the database to allow the computer to juinklyto

a particular entry.

There are many different database systems which are usedWite variety of purposes
including: Oracle, MySQL, Microsoft SQL Server, PostgraS@nd SQLite. We focus on
SQLite in this book because it is a very common database aice&dy built into Python.
SQLite is designed to bembeddednto other applications to provide database support
within the application. For example, the Firefox browsesoalises the SQLite database
internally as do many other products.

http://sqlite.org/

SQLite is well suited to some of the data manipulation protd¢hat we see in Informatics
such as the Twitter spidering application that we descriliis chapter.

14.2 Database concepts

When you first look at a database it looks like a spreadshektmuttiple sheets. The pri-
mary data structures in a database &ables rows, andcolumns In technical descriptions

156 Chapter 14. Using databases and Structured Query Langug (SQL)

of relational databases the concepts of table, row, androolre more formally referred
to asrelation, tuple, andattribute , respectively. We will use the less formal terms in this
chapter.

14.3 SQLite Database Browser

While this chapter will focus on using Python to work with date&SQLite database files,
many operations can be done more conveniently using a gegkigram called th8QLite
Database Browsemwhich is freely available from:

http://sourceforge.net/projects/sqlitebrowser/

Using the browser you can easily create tables, insert ddiadata, or run simple SQL
gueries on the data in the database.

In a sense, the database browser is similar to a text editenwiorking with text files.
When you want to do one or very few operations on a text file, yujast open it in a text
editor and make the changes you want. When you have many chrage/ou need to do
to a text file, often you will write a simple Python program.uvaill find the same pattern
when working with databases. You will do simple operatianthie database browser and
more complex operations will be most conveniently done ith&y.

14.4 Creating a database table

Databases require more defined structure than Python tigistmnaries.

When we create a databasdle we must tell the database in advance the names of each
of the columns in the table and the type of data which we are planning to stoeach
column. When the database software knows the type of data in eacimopitican choose

the most efficient way to store and lookup the data based otypleeof data.

You can look at the various data types supported by SQLitesafidilowing url:
http://www.sqlite.org/datatypes.html

Defining structure for your data up front may seem inconueréé the beginning, but the
payoff is fast access to your data even when the databas&im®atlarge amount of data.

The code to create a database file and a table ndamaekls with two columns in the
database is as follows:

import sqlite3

conn = sqlite3.connect(" music.db ')
cur = conn.cursor()

1sQLite actually does allow some flexibility in the type of datared in a column, but we will keep our data
types strict in this chapter so the concepts apply equalbther database systems such as MySQL.

14.4. Creating a database table 157

cur.execute(' DROP TABLE IF EXISTS Tracks ')
cur.execute(' CREATE TABLE Tracks (tite TEXT, plays INTEGER) ")

conn.close()

Theconnect operation makes a “connection” to the database stored iiilétmusic.db in
the current directory. If the file does not exist, it will becated. The reason this is called a
“connection” is that sometimes the database is stored opar@te “database server” from
the server on which we are running our application. In oumpséinexamples the database
will just be a local file in the same directory as the Pythonecag are running.

A cursor is like a file handle that we can use to perform operations ew#ta stored in the
database. Callingursor() is very similar conceptually to callingpen() when dealing
with text files.

Once we have the cursor, we can begin to execute commands corttents of the database
using theexecute() method.

Database commands are expressed in a special languagashztdn standardized across
many different database vendors to allow us to learn a sidgtabase language. The
database language is call8ttuctured Query Languageor SQL for short.

http://en.wikipedia.org/wiki/SQL

In our example, we are executing two SQL commands in our databAs a convention,
we will show the SQL keywords in uppercase and the parts ottimemand that we are
adding (such as the table and column names) will be showmierkase.

The first SQL command removes thieacks table from the database if it exists. This
pattern is simply to allow us to run the same program to criset@racks table over and
over again without causing an error. Note thatBfROP TABLEommand deletes the table
and all of its contents from the database (i.e. there is nddtin

cur.execute(' DROP TABLE IF EXISTS Tracks ')

The second command creates a table nafnagks with a text column namettle and
an integer column nameghys .

cur.execute(' CREATE TABLE Tracks (tite TEXT, plays INTEGER) ")

Now that we have created a table narmettks , we can put some data into that table using
the SQLINSERT operation. Again, we begin by making a connection to thelueta and
obtaining thecursor . We can then execute SQL commands using the cursor.

The SQLINSERT command indicates which table we are using and then definesva n
row by listing the fields we want to includgtle, plays) followed by theVALUES
we want placed in the new row in the table. We specify the \masequestion mark8,

?) to indicate that the actual values are passed in as a tuplg Way’, 15) as the
second parameter to tlegecute() call.

158 Chapter 14. Using databases and Structured Query Langug (SQL)

import sqlite3

conn = sqlite3.connect(" music.db ")
cur = conn.cursor()

cur.execute(' INSERT INTO Tracks (title, plays) VALUES (?, ?) ",
(' Thunderstruck ', 20))

cur.execute(' INSERT INTO Tracks (title, plays) VALUES (?, ?) Y
("My Way, 15))

conn.commit()

print ' Tracks: '

cur.execute(' SELECT title, plays FROM Tracks ")

for row in cur :
print row

cur.execute(' DELETE FROM Tracks WHERE plays < 100)
conn.commit()

cur.close()

After we INSERT two rows into our table and usemmit() to force the data to be written
to the database file, we use tBELECTcommand to retrieve the rows we just inserted from
the table. On th&ELECTcommand, we indicate which columns we would Iikite,

plays) and indicate which table we want to retrieve the data fronteAfve execute the
SELECTstatement, the cursor is something we can loop throughfon astatement. For
efficiency, the cursor does not read all of the data from thaldese when we execute the
SELECTstatement. Instead, the data is read on-demand as we laamththe rows in the
for statement.

The output of the program is as follows:

Tracks:
(u' Thunderstruck ', 20)
(u" My Way, 15)

Our for loop finds two rows, and each row is a Python tuple with the fiadtie as the
titte and the second value as the numbepla§s . Do not be concerned that the title
strings are shown starting with . This is an indication that the strings ddaicodestrings
that are capable of storing non-Latin character sets.

At the very end of the program, we execute an SQL commab&t&TEthe rows we have
just created so we can run the program over and over. DEA&ETEcommand shows the
use of aWHEREIlause that allows us to express a selection criterion sombaan ask the
database to apply the command to only the rows that matclriteei@an. In this example
the criterion happens to apply to all the rows so we emptydbketout so we can run the
program repeatedly. After tHBELETEis performed we also catbmmit() to force the data
to be removed from the database.

14.5. Structured Query Language (SQL) summary 159

14.5 Structured Query Language (SQL) summary

So far, we have been using the Structured Query LanguageriRydhon examples and
have covered many of the basics of the SQL commands. In thi®eewe look at the
SQL language in particular and give an overview of SQL syntax

Since there are so many different database vendors, thet8td Query Language (SQL)
was standardized so we could communicate in a portable mémdatabase systems from
multiple vendors.

A relational database is made up of tables, rows, and colufirescolumns generally have
a type such as text, numeric, or date data. When we createea tabindicate the names
and types of the columns:

CREATE TABLE Tracks (title TEXT, plays INTEGER)
To insert a row into a table, we use the SQISERT command:
INSERT INTO Tracks (title, plays) VALUES ("My Way, 15)

The INSERT statement specifies the table name, and then a list of the/teldmns that
you would like to set in the new row, and then the keywd®AlUESand then a list of
corresponding values for each of the fields.

The SQLSELECTcommand is used to retrieve rows and columns from a databise.
SELECTstatement lets you specify which columns you would like toiege as well as a
WHERElause to select which rows you would like to see. It alsonadlan optionaDRDER
BY clause to control the sorting of the returned rows.

SELECT * FROM Tracks WHERE title = ' My Way

Using* indicates that you want the database to return all of thensotufor each row that
matches th&VHERElause.

Note, unlike in Python, in a SQWHERElause we use a single equal sign to indicate a test
for equality rather than a double equal sign. Other logigarations allowed in &HERE
clause include, >, <=, >=, I= | as well a’ANDandORand parentheses to build your logical
expressions.

You can request that the returned rows be sorted by one ofetlals fis follows:
SELECT title,plays FROM Tracks ORDER BY title

To remove a row, you need/dHERElause on an SQRELETEstatement. Th&/HERElause
determines which rows are to be deleted:

DELETE FROM Tracks WHERE title = ' My Way

It is possible tdJPDATEa column or columns within one or more rows in a table using the
SQL UPDATEstatement as follows:

UPDATE Tracks SET plays = 16 WHERE title = ' My Way

160 Chapter 14. Using databases and Structured Query Langug (SQL)

The UPDATEstatement specifies a table and then a list of fields and vadugsange after
theSETkeyword and then an option&HERElause to select the rows that are to be updated.
A single UPDATEstatement will change all of the rows that match WiéERElause, or if a
WHERElause is not specified, it performs tHEDATEon all of the rows in the table.

These four basic SQL commands (INSERT, SELECT, UPDATE, aBHHEY E) allow the
four basic operations needed to create and maintain data.

14.6 Spidering Twitter using a database

In this section, we will create a simple spidering prograrmt twill go through Twitter
accounts and build a database of théote: Be very careful when running this program.
You do not want to pull too much data or run the program for tmed and end up having
your Twitter access shut off.

One of the problems of any kind of spidering program is thateiéds to be able to be
stopped and restarted many times and you do not want to lesgatia that you have re-
trieved so far. You don’t want to always restart your dateeeal at the very beginning so
we want to store data as we retrieve it so our program cantsiaktup and pick up where
it left off.

We will start by retrieving one person’s Twitter friends aheir statuses, looping through
the list of friends, and adding each of the friends to a dataa be retrieved in the future.
After we process one person’s Twitter friends, we check indatabase and retrieve one of
the friends of the friend. We do this over and over, pickinguvisited” person, retrieving
their friend list and adding friends we have not seen to atifdir a future visit.

We also track how many times we have seen a particular frietitel database to get some
sense of “popularity”.

By storing our list of known accounts and whether we havéewtd the account or not,
and how popular the account is in a database on the disk obtheuter, we can stop and
restart our program as many times as we like.

This program is a bit complex. It is based on the code from deectse earlier in the book
that uses the Twitter API.

Here is the source code for our Twitter spidering applicatio

import sglite3
import urllib
import xml.etree.ElementTree as ET

TWITTER_URL =" http://api.twitter.com/l/statuses/friends/ACCT.xml '

conn = sqlite3.connect(' twdata.db ')
cur = conn.cursor()

14.6. Spidering Twitter using a database 161

cur.execute("™
CREATE TABLE IF NOT EXISTS
Twitter (name TEXT, retrieved INTEGER, friends INTEGER) ")
while True:
acct = raw_input(' Enter a Twitter account, or quit: ")
if (acct == ‘quit ') : break

if (len(acct) < 1) :
cur.execute(' SELECT name FROM Twitter WHERE retrieved = 0 LIMIT 1 ')

try:
acct = cur.fetchone()[0]

except:
print ' No unretrieved Twitter accounts found '
continue

url = TWITTER_URL.replace(' ACCT , acct)
print ' Retrieving ', url

document = urllib.urlopen (url).read()

tree = ET.fromstring(document)

cur.execute(' UPDATE Twitter SET retrieved=1 WHERE name = ? ', (acct,))

countnew = 0

countold = 0
for user in tree.findall("user '):
friend = user.find(' screen_name ').text
cur.execute(' SELECT friends FROM Twitter WHERE name = ? LIMIT 1 ',
(friend,))
try:

count = cur.fetchone()[0]

curexecute(' UPDATE Twitter SET friends = ? WHERE name = ? ',
(count+1, friend))

countold = countold + 1

except:
curexecute("™ INSERT INTO Twitter (name, retrieved, friends)
VALUES (2, 0,1) ™ , (friend,))
countnew = countnew + 1
print ' New accounts= ' ,countnew, ' revisited= ' countold

conn.commit()

cur.close()

Our database is stored in the fitelata.db and it has one table namé@&ditter and each
row in theTwitter table has a column for the account name, whether we havevedi
the friends of this account, and how many times this accoastieen “friended”.

In the main loop of the program, we prompt the user for a Twitecount name or “quit”

162 Chapter 14. Using databases and Structured Query Langug (SQL)

to exit the program. If the user enters a Twitter account, eteave the list of friends and
statuses for that user and add each friend to the databasedfraady in the database. If
the friend is already in the list, we add one to fiiends field in the row in the database.

If the user presses enter, we look in the database for theTmatter account that we have
not yet retrieved and retrieve the friends and statuseshfair dccount, add them to the
database or update them and increase fheids count

Once we retrieve the list of friends and statuses, we loogutin all of theuser items in
the returned XML and retrieve theereen_name for each user. Then we use tBELECT
statement to see if we already have stored this partisategn_name in the database and
retrieve the friend counfriends) if the record exists.

countnew = 0

countold = 0
for user in tree.findall("user '):
friend = user.find(' screen_name ').text

cur.execute(' SELECT friends FROM Twitter WHERE name = ? LIMIT 1 ',
(friend,))
try:
count = cur.fetchone()[0]
cur.execute(' UPDATE Twitter SET friends = ? WHERE name = ? ',
(count+1, friend))
countold = countold + 1
except:
curexecute("™ INSERT INTO Twitter (name, retrieved, friends)
VALUES (2, 0,1) ™ , (friend,))
countnew = countnew + 1
print ' New accounts= ' ,countnew,
conn.commit()

revisited= ' ,countold

Once the cursor executes tBELECT statement, we must retrieve the rows. We could do
this with afor statement, but since we are only retrieving one roMIT 1), we can use
thefetchone() method to fetch the first (and only) row that is the result & $ELECT
operation. Sincéetchone() returns the row as tuple (even though there is only one
field), we take the first value from the tuple usif®y to get the current friend count into
the variablecount .

If this retrieval is successful, we use the SQRDATEstatement with &VHERElause to add
one to thdriends column for the row that matches the friend’s account. Ndtiee there
are two placeholders (i.e. question marks) in the SQL, ardsdtond parameter to the
execute() is a two-element tuple which holds the values to be substitirtto the SQL in
place of the question marks.

If the code in thery block fails it is probably because no record matchedNRERE name

= ? clause on the SELECT statement. So in¢keept block, we use the SQINSERT
statement to add the friendssreen_name to the table with an indication that we have not
yet retrieved thecreen_name and setting the friend count to zero.

14.6. Spidering Twitter using a database 163

So the first time the program runs and we enter a Twitter adcali@ program runs as
follows:

Enter a Twitter account, or quit: drchuck

Retrieving http://api.twitter.com/l/statuses/friends [drchuck.xml
New accounts= 100 revisited= 0

Enter a Twitter account, or quit: quit

Since this is the first time we have run the program, the datasempty and we create
the database in the fitedata.db and add a table nam@&dahitter to the database. Then
we retrieve some friends and add them all to the database giedatabase is empty.

At this point, we might want to write a simple database duntpeéake a look at what is in
ourtwdata.db file:

import sqlite3

conn = sqlite3.connect(" twdata.db ')
cur = conn.cursor()
cur.execute(' SELECT * FROM Twitter ')
count = 0
for row in cur :

print row

count = count + 1
print count, ' rows.
cur.close()

This program simply opens the database and selects all obthiens of all of the rows in
the tableTwitter , then loops through the rows and prints out each row.

If we run this program after the first execution of our Twitsgider above, its output will
be as follows:

(u' opencontent ', 0, 1)
(u' Ihawthorn ', 0, 1)
(u"' steve_coppin ', 0, 1)
(u' davidkocher ', 0, 1)
(u* hrheingold ', 0, 1)

100 rows.
We see one row for eactcreen_name , that we have not retrieved the data for that
screen_name and everyone in the database has one friend.

Now our database reflects the retrieval of the friends of esir Twitter accountdrchuck).
We can run the program again and tell it to retrieve the fréeofdthe next “unprocessed”
account by simply pressing enter instead of a Twitter actasifiollows:

164 Chapter 14. Using databases and Structured Query Langug (SQL)

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/l/statuses/friends lopencontent.xml|
New accounts= 98 revisited= 2

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/l/statuses/friends llhawthorn.xml
New accounts= 97 revisited= 3

Enter a Twitter account, or quit: quit

Since we pressed enter (i.e. we did not specify a Twitter @upthe following code is
executed:

if (len(acct) < 1) :
curexecute(' SELECT name FROM Twitter WHERE retrieved = O LIMIT 1 ")

try:
acct = cur.fetchone()[0]

except:
print ' No unretrieved twitter accounts found '
continue

We use the SQISELECTstatement to retrieve the name of the fitsk((T 1) user who still
has their “have we retrieved this user” value set to zero. & ase thdetchone()[0]
pattern within a try/except block to either extractcaeen_name from the retrieved data
or put out an error message and loop back up.

If we successfully retrieved an unprocesserden_name , we retrieve their data as follows:

url = TWITTER_URL.replace(' ACCT, acct)
print ' Retrieving ', url

document = urllib.urlopen (url).read()

tree = ET.fromstring(document)

cur.execute(' UPDATE Twitter SET retrieved=1 WHERE name = ? ', (acct,))

Once we retrieve the data successfully, we usdJ#igATEstatement to set thetrieved
column to one to indicate that we have completed the retrathe friends of this account.
This keeps us from re-retrieving the same data over and owtikeeps us progressing
forward through the network of Twitter friends.

If we run the friend program and press enter twice to retrédigenext unvisited friend’s
friends, then run the dumping program, it will give us thddeling output:

(u' opencontent ', 1, 1)
(u' Ihawthorn ', 1, 1)
(u' steve_coppin ', 0, 1)
(u"' davidkocher ', 0, 1)
(u' hrheingold ', 0, 1)

(u'cnxorg ', 0, 2

14.7. Basic data modeling 165

(u' knoop', 0, 1)
(u" kthanos ', 0, 2)
(u' LectureTools ', 0, 1)

295 rows.

We can see that we have properly recorded that we have visitmdhorn and
opencontent . Also the accountgnxorg and kthanos already have two followers.
Since we now have retrieved the friends of three peogiehifck , opencontent and
lhawthorn) our table has 295 rows of friends to retrieve.

Each time we run the program and press enter, it will pick #d nnvisited account (e.qg.
the next account will bsteve_coppin), retrieve their friends, mark them as retrieved and
for each of the friends ofteve_coppin , either add them to the end of the database, or
update their friend count if they are already in the database

Since the program’s data is all stored on disk in a databhsesgidering activity can be
suspended and resumed as many times as you like with no ldsgaof

Note: One more time before we leave this topic, be very clandfan running this Twitter
spidering program. You do not want to pull too much data or thum program for too long
and end up having your Twitter access shut off.

14.7 Basic data modeling

The real power of a relational database is when we make reut@bles and make links
between those tables. The act of deciding how to break up gpplication data into
multiple tables and establishing the relationships betwtbe two tables is calledata
modeling. The design document that shows the tables and their netips is called a
data model

Data modeling is a relatively sophisticated skill and wd wiily introduce the most basic
concepts of relational data modeling in this section. Forem®tail on data modeling you
can start with:

http://en.wikipedia.org/wiki/Relational_model

Let’s say for our Twitter spider application, instead oftjosunting a person’s friends, we
wanted to keep a list of all of the incoming relationships oomuld find a list of everyone
who is following a particular account.

Since everyone will potentially have many accounts thdbfolthem, we cannot simply
add a single column to odmwitter table. So we create a new table that keeps track of
pairs of friends. The following is a simple way of making swctable:

CREATE TABLE Pals (from_friend TEXT, to_friend TEXT)

Each time we encounter a person winchuck is following, we would insert a row of the
form:

166 Chapter 14. Using databases and Structured Query Langug (SQL)

INSERT INTO Pals (from_friend,to_friend) VALUES (" drchuck ', ' lhawthorn ')

As we are processing the 100 friends from tiehuck Twitter feed, we will insert 100
records with “drchuck” as the first parameter so we will endluplicating the string many
times in the database.

This duplication of string data violates the best practifsdatabase normalization
which basically states that we should never put the sanmgystidta in the database more
than once. If we need the data more than once, we create a ioUagifor the data and
reference the actual data using this key.

In practical terms, a string takes up a lot more space thantager on the disk and in the
memory of our computer and takes more processor time to cengral sort. If we only
have a few hundred entries the storage and processor tirdly Inaatters. But if we have a
million people in our database and a possibility of 100 wilfriend links, it is important
to be able to scan data as quickly as possible.

We will store our Twitter accounts in a table namféabple instead of thelwitter table
used in the previous example. TReople table has an additional column to store the
numeric key associated with the row for this Twitter user.L8&has a feature that auto-
matically adds the key value for any row we insert into a talslieg a special type of data
column (NTEGER PRIMARY KEY

We can create theeople table with this additionall column as follows:

CREATE TABLE People
(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGE R)

Notice that we are no longer maintaining a friend count irherev of thePeople table.
When we seleciNTEGER PRIMARY KEMYs the type of ouid column, we are indicating
that we would like SQLite to manage this column and assignguemumeric key to each
row we insert automatically. We also add the keywdNIQUEto indicate that we will not
allow SQLite to insert two rows with the same value fiame.

Now instead of creating the tabRals above, we create a table callBdlows with two
integer columndrom_id andto_id and a constraint on the table that tembinationof
from_id andto_id must be unique in this table (i.e. we cannot insert duplicates) in
our database.

CREATE TABLE Follows
(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id))

As we add thesENIQUEclauses to our tables, we are communicating a set of rulésvtha
are asking the database to enforce when we attempt to ieserds. We are creating these
rules as a convenience in our programs as we will see in a moffiea rules both keep us
from making mistakes and make it simpler to write some of aatec

14.8 Programming with multiple tables

We will now re-do the Twitter spider program using two tablé® primary keys, and the
key references as described above. Here is the code forwheansion of the program:

14.8. Programming with multiple tables 167

import sqlite3
import urllib
import xml.etree.ElementTree as ET

TWITTER_URL =" http://api.twitter.com/l/statuses/friends/ACCT.xml '

conn = sqlite3.connect(' twdata.db ')
cur = conn.cursor()

curexecute("™ CREATE TABLE IF NOT EXISTS People

(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGE R)"™)
cur.execute("™ CREATE TABLE IF NOT EXISTS Follows

(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id)) ")

while True:
acct = raw_input(' Enter a Twitter account, or quit: ")
if (acct == ‘quit ') : break
if (len(acct) < 1) :
curexecute("™ SELECT id,name FROM People
WHERE retrieved = 0 LIMIT 1 ™)
try:
(id, acct) = cur.fetchone()
except:
print ' No unretrieved Twitter accounts found
continue
else:
cur.execute(' SELECT id FROM People WHERE name = ? LIMIT 1,
(acct,))
try:
id = cur.fetchone()[0]
except:
curexecute("™ INSERT OR IGNORE INTO People
(name, retrieved) VALUES (?, 0) "o, (acet,))
conn.commit()
if cur.rowcount = 1 :
print ' Error inserting account: ' ,acct
continue
id = cur.lastrowid

url = TWITTER_URL.replace(' ACCT, acct)
print ' Retrieving ', url

document = urllib.urlopen (url).read()

tree = ET.fromstring(document)

cur.execute(' UPDATE People SET retrieved=1 WHERE name = ? ', (acct,))

168 Chapter 14. Using databases and Structured Query Langug (SQL)

countnew = 0

countold = 0
for user in tree.findall("user '):
friend = user.find(' screen_name ').text

curexecute(' SELECT id FROM People WHERE name = ? LIMIT 1,
(friend,))

try:
friend_id = cur.fetchone()[0]
countold = countold + 1
except:
curexecute("™ INSERT OR IGNORE INTO People (name, retrieved)
VALUES (2, 0) ™ , (friend,))
conn.commit()
if cur.rowcount = 1 :
print ' Error inserting account: " friend
continue
friend_id = cur.lastrowid
countnew = countnew + 1
curexecute("™ INSERT OR IGNORE INTO Follows
(from_id, to_id) VALUES (?, ?) ", (id, friend_id))
print ' New accounts= ' ,countnew, ' revisited= ' countold

conn.commit()

cur.close()
This program is starting to get a bit complicated, but itsthates the patterns that we need
to use when we are using integer keys to link tables. The Ipasgierns are:

1. Creating tables with primary keys and constraints.

2. When we have a logical key for a person (i.e. account naneenneed thed
value for the person. Depending on whether or not the persairéady in the
People table, we either need to: (1) look up the person in Reeple table and
retrieve theid value for the person or (2) add the person theRbaple table and
get theid value for the newly added row.

3. Insert the row that captures the “follows” relationship.

We will cover each of these in turn.

14.8.1 Constraints in database tables

As we design our table structures, we can tell the databastemythat we would like it
to enforce a few rules on us. These rules help us from makirstpkes and introducing
incorrect data into out tables. When we create our tables:

14.8. Programming with multiple tables 169

cur.execute("™ CREATE TABLE IF NOT EXISTS People

(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGE R)™)
curexecute(™ CREATE TABLE IF NOT EXISTS Follows

(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id)) ")

We indicate that th@ame column in thePeople table must b&JNIQUE We also indicate
that the combination of the two numbers in each row offitilsws table must be unique.
These constraints keep us from making mistakes such aspithdisame relationship more
than once.

We can take advantage of these constraints in the followdaig.c

cur.execute("™ INSERT OR IGNORE INTO People (name, retrieved)
VALUES (2,00 ™ , (friend,))

We add theOR IGNOREclause to outNSERT statement to indicate that if this particular
INSERT would cause a violation of thendme must be unique” rule, the database system is
allowed to ignore théNSERT. We are using the database constraint as a safety net to make
sure we don’t inadvertently do something incorrect.

Similarly, the following code ensures that we don’t add thact saméd-ollows relation-
ship twice.

curexecute(™ INSERT OR IGNORE INTO Follows
(from_id, to_id) VALUES (?, ?) " (id, friend_id))

Again we simply tell the database to ignore our attempiSERT if it would violate the
uniqueness constraint that we specified forRblows rows.

14.8.2 Retrieve and/or insert a record

When we prompt the user for a Twitter account, if the accouist&xwe must look up its
id value. If the account does not yet exist in fepple table, we must insert the record
and get thed value from the inserted row.

This is a very common pattern and is done twice in the progriaove This code shows
how we look up théd for a friend’s account when we have extractestraen_name from
auser node in the retrieved Twitter XML.

Since over time it will be increasingly likely that the acodwill already be in the database,
we first check to see if theeople record exists using 8ELECTstatement.

If all goes welf inside thetry section, we retrieve the record usifetchone() and then
retrieve the first (and only) element of the returned tupk store it inid .

If the SELECT fails, thefetchone()[0] code will fail and control will transfer into the
except section.

2|n general, when a sentence starts with “if all goes well” yallifind that the code needs to use try/except.

170 Chapter 14. Using databases and Structured Query Langug (SQL)

friend = user.find(' screen_name ').text
cur.execute(' SELECT id FROM People WHERE name = ? LIMIT 1,
(friend,))

try:
friend_id = cur.fetchone()[0]
countold = countold + 1
except:
cur.execute(™ INSERT OR IGNORE INTO People (name, retrieved)
VALUES (2, 0) ™ , (friend,))

conn.commit()

if cur.rowcount != 1 :
print ' Error inserting account: " friend
continue

friend_id = cur.lastrowid

countnew = countnew + 1

If we end up in theexcept code, it simply means that the row was not found so we must
insert the row. We ustNSERT OR IGNORHust to avoid errors and then cadbmmit()

to force the database to really be updated. After the writdoise, we can check the
cur.rowcount to see how many rows were affected. Since we are attemptingséot

a single row, if the number of affected rows is something othan one, it is an error.

If the INSERT is successful, we can look atir.lastrowid to find out what value the
database assigned to tidecolumn in our newly created row.

14.8.3 Storing the friend relationship

Once we know the key value for both the Twitter user and thenttiin the XML, it is a
simple matter to insert the two numbers into Botlows table with the following code:

cur.execute(' INSERT OR IGNORE INTO Follows (from_id, to_id) VALUES (?, ?) ",
(id, friend_id))

Notice that we let the database take care of keeping us frambig-inserting” a relation-
ship by creating the table with a uniqueness constraint lagi 4ddingOR IGNOREo our
INSERT statement.

Here is a sample execution of this program:

Enter a Twitter account, or quit:

No unretrieved Twitter accounts found

Enter a Twitter account, or quit: drchuck

Retrieving http://api.twitter.com/l/statuses/friends [drchuck.xml
New accounts= 100 revisited= 0

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/l/statuses/friends lopencontent.xml
New accounts= 97 revisited= 3

14.9. Three kinds of keys 171

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/l/statuses/friends llhawthorn.xml
New accounts= 97 revisited= 3

Enter a Twitter account, or quit: quit

We started with therchuck account and then let the program automatically pick the next
two accounts to retrieve and add to our database.

The following is the first few rows in th@eople andFollows tables after this run is
completed:

People:
" drchuck ', 1)

opl
u
u ' opencontent ', 1)
u
u
u

wnh

" Ihawthorn ', 1)

' steve_coppin ', 0)
5, u ' davidkocher ', 0)
295 rows.

Follows:

1 2

1 3

1, 4

(1, 5)

1, 6)
300 rows.

&

(
(
(
(
(

You can see thi , name, andvisited fields in thePeople table and you see the numbers
of both ends of the relationshipllows table. In thePeople table, we can see that the first
three people have been visited and their data has beerveetri¢he data in th€ollows
table indicates thadrchuck (user 1) is a friend to all of the people shown in the first five
rows. This makes sense because the first data we retrievedtenmd was the Twitter
friends ofdrchuck . If you were to print more rows from thepllows table, you would see
the friends of user two and three as well.

14.9 Three kinds of keys

Now that we have started building a data model putting oua ohd multiple linked tables,
and linking the rows in those tables usikgys we need to look at some terminology
around keys. There are generally three kinds of keys usedétiedoase model.

« A logical key is a key that the “real world” might use to look up a row. In our
example data model, tmame field is a logical key. It is the screen name for the user
and we indeed look up a user’s row several times in the progsang thenamefield.
You will often find that it makes sense to addJHIQUEconstraint to a logical key.
Since the logical key is how we look up a row from the outsideleyat makes little
sense to allow multiple rows with the same value in the table.

172 Chapter 14. Using databases and Structured Query Langug (SQL)

« A primary key is usually a number that is often assigned automaticallyhey t
database. It generally has no meaning outside the progrdrisamly used to link
rows from different tables together. When we want to look upvain a table, usu-
ally searching for the row using the primary key is the fastesy to find a row.
Since primary keys are integer numbers, they take up vehy fitorage and can be
compared or sorted very quickly. In our data model,ithdield is an example of a
primary key.

» A foreign key is usually a number that points to the primary key of an asgedirow
in a different table. An example of a foreign key in our datadelas thefrom_id .

We are using a naming convention of always calling the prynkay field namead and
appending the suffixid to any field name that is a foreign key.

14.10 Using JOIN to retrieve data

Now that we have followed the rules of database normalinagiod have data separated
into two tables, linked together using primary and foreiggd we need to be able to build
a SELECTthat re-assembles the data across the tables.

SQL uses thdOIN clause to re-connect these tables. Ini0&N clause you specify the
fields that are used to re-connect the rows between the tables

The following is an example of 8ELECTwith aJOIN clause:

SELECT * FROM Follows JOIN People
ON Follows.to_id = People.id WHERE Follows.from_id = 2

The JOIN clause indicates that the fields we are selecting cross betkotlows and
People tables. TheONclause indicates how the two tables are to be joined. Takeothe
from Follows and append the row froreople where the fieldrom_id in Follows is
the same th@ value in thePeople table.

The result of the JOIN is to create an extra-long “meta-rowfal has both the fields from
Follows and the matching fields frofPeople .

The following code demonstrates the data that we will hatbérdatabase after the multi-
table Twitter spider program (above) has been run sevenakti

import sglite3

conn = sqlite3.connect(" twdata.db ')
cur = conn.cursor()

cur.execute(' SELECT * FROM People)
count = 0

print ' People:
for row in cur :

14.10. Using JOIN to retrieve data 173

if count < 5: print row
count = count + 1
print count, " rows. '
cur.execute(' SELECT * FROM Follows")
count = 0
print ' Follows:
for row in cur :
if count < 5: print row
count = count + 1

print count, " rows. '
cur.execute(™ SELECT * FROM Follows JOIN People

ON Follows.to_id = People.id WHERE Follows.from_id = 2 ")
count = 0

print ' Connections for id=2:
for row in cur :
if count < 5: print row
count = count + 1
print count, ' rows.

cur.close()

In this program, we first dump out thiReople andFollows and then dump out a subset of
the data in the tables joined together.

Here is the output of the program:

python twjoin.py

People:

(1, u "drchuck ', 1)

(2, u " opencontent ', 1)
(3, u " lhawthorn ', 1)
(4, u ' steve coppin ', 0)
(5, u ' davidkocher ', 0)
295 rows.

Follows:

1, 2

1,3

1, 4)

1,95

(1, 6)

300 rows.

Connections for id=2:

(2, 1, 1, u "drchuck ', 1)
(2, 28, 28, u 'cnxorg ', 0)
(2, 30, 30, u " kthanos ', 0)

174 Chapter 14. Using databases and Structured Query Langug (SQL)

(2, 102, 102, u ' SomethingGirl ', 0)
(2, 103, 103, u ‘'ja_Pac ', 0)
100 rows.

You see the columns from theople andFollows tables and the last set of rows is the
result of theSELECTwith the JOIN clause.

In the last select, we are looking for accounts that are diseaf “opencontent” (i.e.
People.id=2).

In each of the “meta-rows” in the last select, the first twauoahs are from thé&ollows
table followed by columns three through five from ®eople table. You can also see that
the second columrFfllows.to_id) matches the third columrPéople.id) in each of
the joined-up “meta-rows”.

14.11 Summary

This chapter has covered a lot of ground to give you an owereiethe basics of using a
database in Python. It is more complicated to write the codesé a database to store data
than Python dictionaries or flat files so there is little reamuse a database unless your
application truly needs the capabilities of a database.sltoations where a database can
be quite useful are: (1) when your application needs to maiadlsnany random updates
within a large data set, (2) when your data is so large it cafihim a dictionary and you
need to look up information repeatedly, or (3) you have a{anging process that you
want to be able to stop and restart and retain the data fromuont® the next.

You can build a simple database with a single table to suitynegaplication needs, but
most problems will require several tables and links/refeghips between rows in different
tables. When you start making links between tables, it is mamb to do some thoughful
design and follow the rules of database normalization toentlak best use of the database’s
capabilities. Since the primary motivation for using a Bate is that you have a large
amount of data to deal with, it is important to model your dfteciently so your programs
run as fast as possible.

14.12 Debugging

One common pattern when you are developing a Python prograonnect to an SQLite
database will be to run a Python program and check the rasitig the SQLite Database
Browser. The browser allows you to quickly check to see ifryprogram is working

properly.

You must be careful because SQLite takes care to keep twogmsgfrom changing the
same data at the same time. For example, if you open a databdsebrowser and make
a change to the database and have not yet pressed the “sat@i uthe browser, the
browser “locks” the database file and keeping any other pragrom accessing the file.
In particular, your Python program will not be able to acabssfile if it is locked.

14.13. Glossary 175

So a solution is to make sure to either close the dababasesérawuse th&ile menu to
close the database in the browser before you attempt tosatteedatabase from Python to
avoid the problem of your Python code failing because thaeluese is locked.

14.13 Glossary

attribute: One of the values within a tuple. More commonly called a “cattl or “field”.

constraint: When we tell the database to enforce a rule on a field or a rowabla.t A
common constraint is to insist that there can be no duplicaliges in a particular
field (i.e. all the values must be unique).

cursor: A cursor allows you to execute SQL commands in a databaseedrieve data
from the database. A cursor is similar to a socket or file hafatl network connec-
tions and files respectively.

database browser: A piece of software that allows you to directly connect to tatlase
and manipulate the database directly without writing a paoyg

foreign key: A numeric key that points to the primary key of a row in anottadrle. For-
eign keys establish relationships between rows storedferent tables.

index: Additional data that the database software maintains as e inserted into a
table designed to make lookups very fast.

logical key: A key that the “outside world” uses to look up a particular réwer example
in a table of user accounts, a person’s E-Mail address miglat ¢pood candidate as
the logical key for the user’s data.

normalization: Designing a data model so that no data is replicated. We st item
of data at one place in the database and reference it elsewsieig a foreign key.

primary key: A numeric key assigned to each row that is used to refer to oweirr a
table from another table. Often the database is configureditoamatically assign
primary keys as rows are inserted.

relation: An area within a database that contains tuples and attebutéore typically
called a “table”.

tuple: A single entry in a database table that is a set of attributésre typically called

row-.

176 Chapter 14. Using databases and Structured Query Langug (SQL)

Chapter 15

Advanced functions

15.1 Return values

Some of the built-in functions we have used, such as the nuaittibns, produce results.
Calling the function generates a value, which we usualligas®e a variable or use as part
of an expression.

e = math.exp(1.0)
height = radius * math.sin(radians)

All of the functions we have written so far are void; they psomething or move turtles
around, but their return value None.

In this chapter, we are (finally) going to write fruitful futhans. The first example i&rea ,
which returns the area of a circle with the given radius:

def area(radius):
temp = math.pi * radius**2
return temp

We have seen theeturn statement before, but in a fruitful function theurn statement

includes an expression. This statement means: “Return diatedy from this function

and use the following expression as a return value.” Theesgion can be arbitrarily
complicated, so we could have written this function morectsely:

def area(radius):
return math.pi * radius**2

On the other handemporary variables like temp often make debugging easier.

Sometimes it is useful to have multiple return statements,in each branch of a condi-
tional:

178 Chapter 15. Advanced functions

def absolute_value(x):
if x < 0:
return -x
else:
return x

Since theseeturn statements are in an alternative conditional, only onelveilexecuted.

As soon as a return statement executes, the function teisingthout executing any sub-
sequent statements. Code that appears afetura statement, or any other place the flow
of execution can never reach, is calldghd code

In a fruitful function, it is a good idea to ensure that eveoggible path through the program
hits areturn statement. For example:

def absolute_value(x):
if x < 0:
return -x
if x > 0:
return x

This function is incorrect becausexfhappens to be 0, neither condition is true, and the
function ends without hitting eeturn ~ statement. If the flow of execution gets to the end
of a function, the return value one, which is not the absolute value of 0.

>>> print absolute_value(0)
None

By the way, Python provides a built-in function callelas that computes absolute values.

Exercise 15.1Write acompare function that returng if x > y,0if x == y, and-1 if x
<y.

15.2 Tuples as return values

Strictly speaking, a function can only return one value ibitlite value is a tuple, the effect
is the same as returning multiple values. For example, ifwant to divide two integers
and compute the quotient and remainder, it is inefficienbroputexly and thern%y. It is
better to compute them both at the same time.

The built-in functiondivmod takes two arguments and returns a tuple of two values, the
guotient and remainder. You can store the result as a tuple:

>>> t = divmod(7, 3)
>>> print t
2 1)

Or use tuple assignment to store the elements separately:

15.3. Variable-length argument tuples 179

>>> quot, rem = divmod(7, 3)
>>> print quot

2

>>> print rem

1

Here is an example of a function that returns a tuple:

def min_max(t):
return min(t), max(t)

maxandmin are built-in functions that find the largest and smallestnelsts of a sequence.
min_max computes both and returns a tuple of two values.

15.3 Variable-length argument tuples

Functions can take a variable number of arguments. A pasmatne that begins with
gathersarguments into a tuple. For examppeintall takes any number of arguments
and prints them:

def printall(*args):
print args

The gather parameter can have any name you likeargat is conventional. Here’s how
the function works:

>>> printall(1, 2.0, '3')
1,20, '3

You can combine the gather operator with required and positiarguments:

def pointless(required, optional=0, *args):
print required, optional, args

Run this function with 1, 2, 3 and 4 or more arguments and mafeyou understand what
it does.

The complement of gathersgatter. If you have a sequence of values and you want to pass
it to a function as multiple arguments, you can use*ttaperator. For examplejvmod
takes exactly two arguments; it doesn’t work with a tuple:

>>> t = (7’ 3)
>>> divmod(t)
TypeError: divmod expected 2 arguments, got 1

But if you scatter the tuple, it works:

>>> divmod(*t)
@ 1)

180 Chapter 15. Advanced functions

Exercise 15.2Many of the built-in functions use variable-length argumtiples. For
examplemax andmin can take any number of arguments:

>>> max(1,2,3)
3

But sum does not.

>>> sum(l,2,3)
TypeError: sum expected at most 2 arguments, got 3

Write a function calledumall that takes any number of arguments and returns their sum.

15.4 Variables and parameters are local

When you create a variable inside a function, itasal, which means that it only exists
inside the function. For example:

def cat_twice(partl, part2):
cat = partl + part2
print_twice(cat)

This function takes two arguments, concatenates them, @amtd the result twice. Here is
an example that uses it:

>>> linel = ' Bing tiddle '
>>> |ine2 = ' tiddle bang. '
>>> cat_twice(linel, line2)

Bing tiddle tiddle bang.

Bing tiddle tiddle bang.

Whencat_twice terminates, the variabk&at is destroyed. If we try to print it, we get an
exception:

>>> print cat
NameError: name

cat ' is not defined

Parameters are also local. For example, outpiohé twice , there is no such thing as
bruce .

15.5 Global variables

In the previous examplé&nown is created outside the function, so it belongs to the special
frame called_main__ . Variables in_main__ are sometimes calleglobal because they
can be accessed from any function. Unlike local variabldschvdisappear when their
function ends, global variables persist from one functialhto the next.

15.5. Global variables 181

Itis common to use global variables fitags that is, boolean variables that indicate (“flag”)
whether a condition is true. For example, some programs kg aaamedverbose to
control the level of detail in the output:

verbose = True

def examplel():
if verbose:
print ' Running examplel

If you try to reassign a global variable, you might be sulgmtisThe following example is
supposed to keep track of whether the function has beerdcalle

been_called = False

def example2():
been_called = True # WRONG

But if you run it you will see that the value dken_called doesn’t change. The problem
is thatexample2 creates a new local variable nante@n_called . The local variable goes
away when the function ends, and has no effect on the glolialble.

To reassign a global variable inside a function you haveédolare the global variable
before you use it:

been_called = False

def example2():
global been_called
been_called = True

Theglobal statement tells the interpreter something like, “In thiadiion, when | say
been_called , | mean the global variable; don't create a local one.”

Here's an example that tries to update a global variable:

count = 0

def example3():
count = count + 1 # WRONG

If you run it you get:
UnboundLocalError: local variable " count ' referenced before assignment

Python assumes thedunt is local, which means that you are reading it before writing i
The solution, again, is to declaceunt global.

def example3():
global count
count += 1

182 Chapter 15. Advanced functions

If the global value is mutable, you can modify it without dahg it:
known = {0:0, 1:1}

def example4():
known[2] = 1

So you can add, remove and replace elements of a global listtonary, but if you want
to reassign the variable, you have to declare it:

def example5():
global known
known = dict()

15.6 Incremental development

As you write larger functions, you might find yourself spergimore time debugging.

To deal with increasingly complex programs, you might wantry a process calleih-
cremental development The goal of incremental development is to avoid long dengg
sessions by adding and testing only a small amount of codérata

As an example, suppose you want to find the distance betwempdimts, given by the
coordinategxs,y1) and(xz,y2). By the Pythagorean theorem, the distance is:

distance= \/(xz —X1)?+ (Y2 — y1)?

The first step is to consider whatlastance function should look like in Python. In other
words, what are the inputs (parameters) and what is the b(rgturn value)?

In this case, the inputs are two points, which you can reptasging four numbers. The
return value is the distance, which is a floating-point value

Already you can write an outline of the function:

def distance(x1, y1, x2, y2):
return 0.0

Obviously, this version doesn’t compute distances; it gbvaeturns zero. But it is syn-
tactically correct, and it runs, which means that you cahitdsefore you make it more
complicated.

To test the new function, call it with sample arguments:

>>> distance(l, 2, 4, 6)
0.0

15.6. Incremental development 183

| chose these values so that the horizontal distance is 3nengettical distance is 4; that
way, the result is 5 (the hypotenuse of a 3-4-5 triangle). Whsting a function, it is useful
to know the right answer.

At this point we have confirmed that the function is syntadtjccorrect, and we can start
adding code to the body. A reasonable next step is to find ffez@ices; — x; andy, — ;.
The next version stores those values in temporary variandsprints them.

def distance(x1, y1, x2, y2):

dx = x2 - x1
dy = y2 -yl
print "dx is ', dx
print 'dyis ', dy
return 0.0
If the function is working, it should displaydx is 3 ' and'dy is 4 . If so, we know

that the function is getting the right arguments and perfognthe first computation cor-
rectly. If not, there are only a few lines to check.

Next we compute the sum of squaresiofanddy:

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 -yl
dsquared = dx**2 + dy**2
print ' dsquared is: ', dsquared
return 0.0

Again, you would run the program at this stage and check thgud@which should be 25).
Finally, you can useath.sqrt to compute and return the result:

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 -yl
dsquared = dx**2 + dy**2
result = math.sqrt(dsquared)
return result

If that works correctly, you are done. Otherwise, you miglantvto print the value of
result before the return statement.

The final version of the function doesn’t display anythingewntit runs; it only returns a
value. Theprint statements we wrote are useful for debugging, but once ybthge
function working, you should remove them. Code like thataed scaffolding because it
is helpful for building the program but is not part of the fipabduct.

When you start out, you should add only a line or two of code aha.tAs you gain more
experience, you might find yourself writing and debuggingdeir chunks. Either way,
incremental development can save you a lot of debugging time

The key aspects of the process are:

184 Chapter 15. Advanced functions

1. Start with a working program and make small incrementahges. At any point, if
there is an error, you should have a good idea where it is.

2. Use temporary variables to hold intermediate values socam display and check
them.

3. Once the program is working, you might want to remove sofikescaffolding or
consolidate multiple statements into compound expressiout only if it does not
make the program difficult to read.

Exercise 15.3Use incremental development to write a function caliggbtenuse that
returns the length of the hypotenuse of a right trianglergite lengths of the two legs as
arguments. Record each stage of the development process gsy

15.7 Composition

As you should expect by now, you can call one function frormhimianother. This ability
is calledcomposition

As an example, we’'ll write a function that takes two poinke tenter of the circle and a
point on the perimeter, and computes the area of the circle.

Assume that the center point is stored in the variakdeandyc, and the perimeter point is
in xp andyp. The first step is to find the radius of the circle, which is tistahce between
the two points. We just wrote a functiotistance , that does that:
radius = distance(xc, yc, xp, yp)
The next step is to find the area of a circle with that radiusjusewrote that, too:
result = area(radius)
Encapsulating these steps in a function, we get:
def circle_area(xc, yc, xp, yp):
radius = distance(xc, yc, xp, yp)
result = area(radius)

return result

The temporary variablemdius andresult are useful for development and debugging,
but once the program is working, we can make it more concissbyposing the function
calls:

def circle_area(xc, yc, xp, yp):
return area(distance(xc, yc, xp, yp))

15.8. Stack diagrams 185

15.8 Stack diagrams

To keep track of which variables can be used where, it is Somstuseful to draw atack
diagram. Like state diagrams, stack diagrams show the value of eagable, but they
also show the function each variable belongs to.

Each function is represented byframe. A frame is a box with the name of a function
beside it and the parameters and variables of the functmderit. The stack diagram for
the previous example looks like this:

linel ——= ’Bing tiddle’

__Mmain__) .
line2 ——= 'tiddle bang.’
partl —= ’'Bing tiddle’
cat_twice part2 —= 'tiddle bang.’

cat —= ’'Bing tiddle tiddle bang.’

print_twice bruce —= 'Bing tiddle tiddle bang.’

The frames are arranged in a stack that indicates whichiimcalled which, and so on.
In this exampleprint_twice was called bycat_twice , andcat_twice was called by

__main__, which is a special name for the topmost frame. When you creatiable

outside of any function, it belongs tomain__ .

Each parameter refers to the same value as its correspaagjument. Sopartl has the
same value atinel , part2 has the same value &2 , andbruce has the same value
ascat .

If an error occurs during a function call, Python prints tteeme of the function, and the
name of the function that called it, and the name of the fomathat calledhat, all the way
backto__main__ .

For example, if you try to accesat from within print_twice , you get aNameError :

Traceback (innermost last):
File "test.py", line 13, in __main__
cat_twice(linel, line2)
File "test.py", line 5, in cat twice
print_twice(cat)
File "test.py", line 9, in print_twice
print cat
NameError: name

cat ' is not defined

This list of functions is called raceback. It tells you what program file the error occurred
in, and what line, and what functions were executing at tme tilt also shows the line of
code that caused the error.

186 Chapter 15. Advanced functions

The order of the functions in the traceback is the same asrtder of the frames in the
stack diagram. The function that is currently running ishatbottom.

15.9 Boolean functions

Functions can return booleans, which is often convenietititbng complicated tests inside
functions. For example:

def is_divisible(x, y):
if x %y ==0:
return True
else:
return False

It is common to give boolean functions names that sound like/no questions;
is_divisible returns eitheffrue or False to indicate whethex is divisible byy.

Here is an example:

>>> is_divisible(6, 4)
False
>>> is_divisible(6, 3)
True

The result of the= operator is a boolean, so we can write the function more sehcby
returning it directly:

def is_divisible(x, y):
return X % y ==

Boolean functions are often used in conditional statements

if is_divisible(x, y):
print ' x is divisible by y

It might be tempting to write something like:

if is_divisible(x, y) == True:
print ' x is divisible by y '

But the extra comparison is unnecessary.

Exercise 15.4Write a functionis_between(x, y, z) that returnsTrue if x<y<zor
False otherwise.

15.10 Optional parameters

We have seen built-in functions and methods that take abhlarisumber of arguments. It
is possible to write user-defined functions with optiongluanents, too. For example, here
is a function that prints the most common words in a histogram

15.11. Debugging 187

def print_most_common(hist, hum=10)
t = most_common(hist)
print ' The most common words are:
for freq, word in t[0:numj:
print word, "\t ', freq

The first parameter is required; the second is optional.ddfault value of numis 10.
If you only provide one argument:

print_most_common(hist)

num gets the default value. If you provide two arguments:

print_most_common(hist, 20)

numgets the value of the argument instead. In other words, ttiera argumenbverrides
the default value.

If a function has both required and optional parametershaltequired parameters have to
come first, followed by the optional ones.

15.11 Debugging

Breaking a large program into smaller functions createsrabtheckpoints for debugging.
If a function is not working, there are three possibilitiesbnsider:

« There is something wrong with the arguments the functigyetting; a precondition
is violated.

» There is something wrong with the function; a postcondiisviolated.

» There is something wrong with the return value or the wag iging used.

To rule out the first possibility, you can addpant statement at the beginning of the
function and display the values of the parameters (and m#yie types). Or you can
write code that checks the preconditions explicitly.

If the parameters look good, adghiént statement before eactturn statement that dis-
plays the return value. If possible, check the result by h&uahsider calling the function
with values that make it easy to check the result (as in Sedfto6).

If the function seems to be working, look at the function talinake sure the return value
is being used correctly (or used at all!).

Adding print statements at the beginning and end of a funatan help make the flow of
execution more visible.

If you are confused about the flow of execution, this kind dfotican be helpful. It takes
some time to develop effective scaffolding, but a little difitscaffolding can save a lot of
debugging.

188 Chapter 15. Advanced functions

15.12 Glossary

call graph: A diagram that shows every frame created during the exatofia program,
with an arrow from each caller to each callee.

dead code: Part of a program that can never be executed, often becaagpéatrs after a
return statement.

declaration: A statement likeglobal that tells the interpreter something about a variable.

default value: The value given to an optional parameter if no argument igigeal.
flag: A boolean variable used to indicate whether a conditioruis.tr

frame: A box in a stack diagram that represents a function call. Htaios the local
variables and parameters of the function.

global variable: A variable defined outside a function. Global variables camtcessed
from any function.

guardian: A programming pattern that uses a conditional statemerti¢clcfor and han-
dle circumstances that might cause an error.

incremental development: A program development plan intended to avoid debugging by
adding and testing only a small amount of code at a time.

local variable: A variable defined inside a function. A local variable canyobé used
inside its function.

None: A special value returned by functions that have no retunestant or a return state-
ment without an argument.

override: To replace a default value with an argument.

scaffolding: Code that is used during program development but is not gaheofinal
version.

stack diagram: A graphical representation of a stack of functions, theifaldes, and the
values they refer to.

temporary variable: A variable used to store an intermediate value in a complEulzs
tion.

traceback: A list of the functions that are executing, printed when acegtion occurs.

15.13. Exercises 189

15.13 Exercises

Exercise 15.5Draw a stack diagram for the following program. What does ttogyam
print?

def b(z):
prod = a(z, 2)
print z, prod
return prod

def a(x, y):
X=x+1
return x *y

def c(x, vy, 2):
sum = X +y + z
pow = b(sum)**2

return pow
X =1
y=x+1

print c(x, y+3, x+y)

Exercise 15.6 A palindrome is a word that is spelled the same backward amehfal, like
“noon” and “redivider”. Recursively, a word is a palindrorfi¢he first and last letters are
the same and the middle is a palindrome.

The following are functions that take a string argument atdrn the first, last, and middle
letters:

def first(word):
return word[0]

def last(word):
return word[-1]

def middle(word):
return word[1:-1]

We'll see how they work in Chapter 6.

1. Type these functions into a file nampaindrome.py and test them out. What
happens if you caliniddle with a string with two letters? One letter? What about
the empty string, which is writteth and contains no letters?

2. Write a function calleds_palindrome that takes a string argument and returns
True if it is a palindrome andralse otherwise. Remember that you can use the
built-in functionlen to check the length of a string.

190 Chapter 15. Advanced functions

Exercise 15.7 A number,a, is a power ob if it is divisible by b anda/b is a power ofb.
Write a function calleds_power that takes parameteasandb and returngrue if ais a
power ofb.

Exercise 15.8The greatest common divisor (GCD) afandb is the largest number that
divides both of them with no remainder

One way to find the GCD of two numbers is Euclid’s algorithm,iathis based on the
observation that if is the remainder wheais divided byb, thengcd(a, b) = gcd(b,r). As
a base case, we can consided(a,0) = a.

Write a function calledicd that takes parametessandb and returns their greatest common
divisor. If you need help, sesikipedia.org/wiki/Euclidean_algorithm

1This exercise is based on an example from Abelson and Suss8tamiure and Interpretation of Computer
Programs

Chapter 16

Classes and objects

16.1 User-defined types

We have used many of Python’s built-in types; now we are gtrdefine a new type. As
an example, we will create a type callBdint that represents a point in two-dimensional
space.

In mathematical notation, points are often written in péreses with a comma separating
the coordinates. For exampl@, 0) represents the origin, arld,y) represents the poimt
units to the right ang units up from the origin.

There are several ways we might represent points in Python:

« We could store the coordinates separately in two variaklasdy.
* We could store the coordinates as elements in a list or tuple

» We could create a new type to represent points as objects.

Creating a new type is (a little) more complicated than thepbptions, but it has advan-
tages that will be apparent soon.

A user-defined type is also calleadtkass A class definition looks like this:

class Point(object):
""represents a point in 2-D space

mmn

This header indicates that the new classPoiat , which is a kind ofobject , which is a
built-in type.

The body is a docstring that explains what the class is fou &&n define variables and
functions inside a class definition, but we will get back tattlater.

Defining a class nameRbint creates a class object.

192 Chapter 16. Classes and objects

>>> print Point
<class ' __main__.Point ' >

BecauséPoint is defined at the top level, its “full name” is main__.Point

The class object is like a factory for creating objects. Tate a Point, you caltoint as
if it were a function.

>>> plank = Point()
>>> print blank
<_main__.Point instance at Oxb7e9d3ac>

The return value is a reference to a Point object, which wigiassblank . Creating a new
object is callednstantiation, and the object is aimstanceof the class.

When you print an instance, Python tells you what class itigddo and where it is stored
in memory (the prefiX)x means that the following number is in hexadecimal).

16.2 Attributes

You can assign values to an instance using dot notation:

3.0
4.0

>>> plank.x
>>> blank.y

This syntax is similar to the syntax for selecting a varididen a module, such asath.pi
or string.whitespace . In this case, though, we are assigning values to named Bteme
of an object. These elements are cabidtwlibutes.

As a noun, “AT-trib-ute” is pronounced with emphasis on thistfsyllable, as opposed to
“a-TRIB-ute,” which is a verb.

The following diagram shows the result of these assignmexitate diagram that shows
an object and its attributes is called @loject diagram:

Point

olank —| x —= 3.0

y —= 4.0

The variableblank refers to a Point object, which contains two attributes. Heattribute
refers to a floating-point number.

You can read the value of an attribute using the same syntax:

>>> print blank.y

4.0
>>> X = blank.x
>>> print x

3.0

16.3. Rectangles 193

The expressioblank.x means, “Go to the objettank refers to and get the value »f’
In this case, we assign that value to a variable namethere is no conflict between the
variablex and the attribute.

You can use dot notation as part of any expression. For exampl

>>> print ' (%0, %g) ' % (blank.x, blank.y)
(3.0, 4.0

>>> distance = math.sqrt(blank.x**2 + blank.y**2)
>>> print distance

5.0

You can pass an instance as an argument in the usual way. &opéx
def print_point(p):
print " (%g, %g) " % (p.x, p.y)

print_point takes a point as an argument and displays it in mathematitation. To
invoke it, you can pagsslank as an argument:

>>> print_point(blank)
(3.0, 4.0)

Inside the functionp is an alias foiblank , so if the function modifieg, blank changes.

Exercise 16.1Write a function calledlistance that takes two Points as arguments and
returns the distance between them.

16.3 Rectangles

Sometimes it is obvious what the attributes of an object khiogl, but other times you have
to make decisions. For example, imagine you are designiteasa to represent rectangles.
What attributes would you use to specify the location and efza rectangle? You can
ignore angle; to keep things simple, assume that the reetengjther vertical or horizontal.

There are at least two possibilities:

* You could specify one corner of the rectangle (or the cgntee width, and the
height.

* You could specify two opposing corners.

At this point it is hard to say whether either is better thamather, so we’ll implement the
first one, just as an example.

Here is the class definition:

class Rectangle(object):
""represent a rectangle.
attributes: width, height, corner.

194 Chapter 16. Classes and objects

The docstring lists the attributesidth andheight are numbers;orner is a Point object
that specifies the lower-left corner.

To represent a rectangle, you have to instantiate a Reetabigct and assign values to the
attributes:

box = Rectangle()
box.width = 100.0
box.height = 200.0
box.corner = Point()
box.corner.x = 0.0
box.cornery = 0.0

The expressiomox.cornerx ~ means, “Go to the objediox refers to and select the at-
tribute namedorner ; then go to that object and select the attribute named

The figure shows the state of this object:

Rectangle
box —=| width —= 100.0 Point
corner y ~ 00

An object that is an attribute of another objecémbedded

16.4 Instances as return values

Functions can return instances. For examioid, center takes aRectangle as an argu-
ment and returns Boint that contains the coordinates of the center ofRbetangle :

def find_center(box):
p = Point()
p.x = box.corner.x + box.width/2.0
p.y = box.cornery + box.height/2.0
return p

Here is an example that pasdes as an argument and assigns the resulting Point to
center :

>>> center = find_center(box)
>>> print_point(center)
(50.0, 100.0)

16.5. Objects are mutable 195

16.5 Objects are mutable

You can change the state of an object by making an assignmenttof its attributes. For
example, to change the size of a rectangle without changgngpisition, you can modify
the values ofvidth andheight :

box.width = box.width + 50
box.height = box.width + 100

You can also write functions that modify objects. For exampfow rectangle takes
a Rectangle object and two numbedwjdth anddheight , and adds the numbers to the
width and height of the rectangle:

def grow_rectangle(rect, dwidth, dheight) :
rectwidth += dwidth
rect.height += dheight

Here is an example that demonstrates the effect:

>>> print box.width

100.0

>>> print box.height

200.0

>>> grow_rectangle(box, 50, 100)
>>> print box.width

150.0

>>> print box.height

300.0

Inside the functionrect is an alias fobox, so if the function modifiesect , box changes.

Exercise 16.2Write a function namedhove_rectangle that takes a Rectangle and two
numbers namedx anddy. It should change the location of the rectangle by addingp
thex coordinate otorner and addingly to they coordinate otorner .

16.6 Copying

Aliasing can make a program difficult to read because chamgese place might have
unexpected effects in another place. It is hard to keep wéel the variables that might
refer to a given object.

Copying an object is often an alternative to aliasing. @@ module contains a function
calledcopy that can duplicate any object:

>>> pl = Point()
>>> plx = 3.0
>>> ply = 4.0

196 Chapter 16. Classes and objects

>>> import copy
>>> p2 = copy.copy(pl)

pl andp2 contain the same data, but they are not the same Point.

>>> print_point(pl)
(3.0, 4.0

>>> print_point(p2)
(3.0, 4.0

>>> pl is p2
False

>>> p]_ == p2
False

Theis operator indicates thatl andp2 are not the same object, which is what we ex-
pected. But you might have expected to yield True because these points contain the
same data. In that case, you will be disappointed to leamftinanstances, the default
behavior of the== operator is the same as tise operator; it checks object identity, not
object equivalence. This behavior can be changed—we’ll seeldter.

If you usecopy.copy to duplicate a Rectangle, you will find that it copies the Ragte
object but not the embedded Point.

>>> hox2 = copy.copy(box)
>>> hox2 is box

False

>>> hox2.corner is box.corner
True

Here is what the object diagram looks like:

box—={ width —= 100.0 100.0 =— width |<—box2
height —= 200.0 . 0.0 200.0 =— height
corner y 0.0 corner

This operation is called shallow copybecause it copies the object and any references it
contains, but not the embedded objects.

For most applications, this is not what you want. In this egbn invoking
grow_rectangle on one of the Rectangles would not affect the other, but imgk
move_rectangle on either would affect both! This behavior is confusing anmdeprone.

Fortunately, theopy module contains a method namdstpcopy that copies not only the
object but also the objects it refers to, and the objdwtgrefer to, and so on. You will not
be surprised to learn that this operation is callettap copy

16.7. Debugging 197

>>> pox3 = copy.deepcopy(box)
>>> hox3 is box

False

>>> hox3.corner is box.corner
False

box3 andbox are completely separate objects.

Exercise 16.3Write a version ofnove_rectangle that creates and returns a new Rectan-
gle instead of modifying the old one.

16.7 Debugging

When you start working with objects, you are likely to enc@unrstome new exceptions. If
you try to access an attribute that doesn't exist, you géitttahuteError

>>> p = Point()
>>> print p.z
AttributeError: Point instance has no attribute

If you are not sure what type an object is, you can ask:

>>> type(p)
<type ' _main__.Point '>

If you are not sure whether an object has a particular atejbgou can use the built-in
functionhasattr

>>> hasattr(p, "x")
True
>>> hasattr(p, 'z')
False

The first argument can be any object; the second argumestrisigthat contains the name
of the attribute.

16.8 Glossary
class: A user-defined type. A class definition creates a new clagcbj

class object: An object that contains information about a user-define tyffhe class
object can be used to create instances of the type.

instance: An object that belongs to a class.
attribute: One of the named values associated with an object.

embedded (object): An object that is stored as an attribute of another object.

198 Chapter 16. Classes and objects

shallow copy: To copy the contents of an object, including any referencesntbedded
objects; implemented by theepy function in thecopy module.

deep copy: To copy the contents of an object as well as any embeddedtspfetd any
objects embedded in them, and so on; implemented bgepeopy function in the
copy module.

object diagram: A diagram that shows objects, their attributes, and theegbf the at-
tributes.

16.9 Exercises

Exercise 16.4World.py , which is part of Swampy (see Chap®%), contains a class def-
inition for a user-defined type call&tlorld . You can import it like this:

from World import World

This version of thémport statement imports th&orld class from théVorld module. The
following code creates a World object and calls trenloop method, which waits for the
user.

world = World()
world.mainloop()

A window should appear with a title bar and an empty squarewiWeaise this window to
draw Points, Rectangles and other shapes. Add the folloliviag before callingnainloop
and run the program again.

canvas = world.ca(width=500, height=500, background= " white ')
bbox = [[-150,-100], [150, 100]]
canvas.rectangle(bbox, outline= " black ', width=2, fill= ' greend ')

You should see a green rectangle with a black outline. Theliivs creates a Canvas,
which appears in the window as a white square. The Canvastgisjevides methods like
rectangle for drawing various shapes.

bbox is a list of lists that represents the “bounding box” of thetaagle. The first pair
of coordinates is the lower-left corner of the rectangle; skecond pair is the upper-right
corner.

You can draw a circle like this:
canvas.circle([-25,0], 70, outline=None, fill= "red')

The first parameter is the coordinate pair for the centeretifcle; the second parameter
is the radius.

If you add this line to the program, the result should resenthe national flag of
Bangladesh (seikipedia.org/wiki/Gallery_of sovereign-state_flags).

16.9. Exercises 199

1. Write a function callediraw_rectangle that takes a Canvas and a Rectangle as
arguments and draws a representation of the Rectangle @uathas.

2. Add an attribute namedcolor to your Rectangle objects and modify
draw_rectangle so that it uses the color attribute as the fill color.

3. Write a function callediraw_point that takes a Canvas and a Point as arguments
and draws a representation of the Point on the Canvas.

4. Define a new class called Circle with appropriate attebuand instantiate a few
Circle objects. Write a function callelaw_circle that draws circles on the canvas.

5. Write a program that draws the national flag of of the CzegbuRkc. Hint: you can
draw a polygon like this:

points = [[-150,-100], [150, 100], [150, -100]]

canvas.polygon(points, fill= " blue ')

| have written a small program that lists the available cgjlgrou can download it from
thinkpython.com/code/color_list.py

200 Chapter 16. Classes and objects

Chapter 17

Classes and functions

17.1 Time

As another example of a user-defined type, we'll define a daksdTime that records the
time of day. The class definition looks like this:

class Time(object):
""represents the time of day.
attributes: hour, minute, second

(i

We can create a nefime object and assign attributes for hours, minutes, and sacond

time = Time()
time.hour = 11
time.minute = 59
time.second = 30

The state diagram for thBme object looks like this:

Time

time —= hour — 11
minute —= 59

second —= 30

Exercise 17.1Write a function callegrint_time that takes a Time object and prints it
in the formhour:minute:second . Hint: the format sequence.2d' prints an integer
using at least two digits, including a leading zero if neaegs

Exercise 17.2Write a boolean function called after that takes two Time objectt],
andt2 , and returngrue if t1 followst2 chronologically andralse otherwise. Challenge:
don't use anf statement.

202 Chapter 17. Classes and functions

17.2 Pure functions

In the next few sections, we’ll write two functions that adtde values. They demonstrate
two kinds of functions: pure functions and modifiers. Thespalemonstrate a development
plan I'll call prototype and patch, which is a way of tackling a complex problem by
starting with a simple prototype and incrementally dealiith the complications.

Here is a simple prototype afld_time :

def add_time(t1, t2):
sum = Time()
sum.hour = tl.hour + t2.hour
sum.minute = tl.minute + t2.minute
sum.second = tl.second + t2.second
return sum

The function creates a nelime object, initializes its attributes, and returns a refeestac
the new object. This is calledmure function because it does not modify any of the objects
passed to it as arguments and it has no effect, like disgiayivalue or getting user input,
other than returning a value.

To test this function, I'll create two Time objectstart contains the start time of a movie,
like Monty Python and the Holy Graindduration contains the run time of the movie,
which is one hour 35 minutes.

add_time figures out when the movie will be done.

>>> start = Time()
>>> start.hour = 9
>>> start.minute = 45
>>> start.second = 0

>>> duration = Time()
>>> duration.hour = 1
>>> duration.minute = 35
>>> duration.second = 0

>>> done = add_time(start, duration)
>>> print_time(done)
10:80:00

The result,10:80:00 might not be what you were hoping for. The problem is that this
function does not deal with cases where the number of seandsutes adds up to more
than sixty. When that happens, we have to “carry” the extrarsgxinto the minute column
or the extra minutes into the hour column.

Here’s an improved version:

def add_time(tl, t2):

17.3. Modifiers 203

sum = Time()

sum.hour = tl.hour + t2.hour
sum.minute = tl.minute + t2.minute
sum.second = tl.second + t2.second

if sum.second >= 60:
sum.second -= 60
sum.minute += 1

if sum.minute >= 60:
sum.minute -= 60
sum.hour += 1

return sum

Although this function is correct, it is starting to get bile will see a shorter alternative
later.

17.3 Modifiers

Sometimes itis useful for a function to modify the objectgsts as parameters. In that case,
the changes are visible to the caller. Functions that waskiay are calleagnodifiers.

increment , which adds a given number of seconds firae object, can be written natu-
rally as a modifier. Here is a rough draft:

def increment(time, seconds):
time.second += seconds

if time.second >= 60:
time.second -= 60
time.minute += 1

if time.minute >= 60:
time.minute -= 60
time.hour += 1

The first line performs the basic operation; the remaindatsdeith the special cases we
saw before.

Is this function correct? What happens if the parameg¢eonds is much greater than
Sixty?

In that case, it is not enough to carry once; we have to keamdbuntil time.second is
less than sixty. One solution is to replace thestatements witlwhile statements. That
would make the function correct, but not very efficient.

Exercise 17.3Write a correct version aficrement that doesn’t contain any loops.

204 Chapter 17. Classes and functions

Anything that can be done with modifiers can also be done witie fflunctions. In fact,
some programming languages only allow pure functions. &l®rsome evidence that
programs that use pure functions are faster to develop asceleor-prone than programs
that use modifiers. But modifiers are convenient at times famectional programs tend to
be less efficient.

In general, | recommend that you write pure functions whenéus reasonable and resort
to modifiers only if there is a compelling advantage. Thisrapph might be called a
functional programming style.

Exercise 17.4Write a “pure” version ofncrement that creates and returns a new Time
object rather than modifying the parameter.

17.4 Prototyping versus planning

The development plan | am demonstrating is called “protetgpd patch.” For each func-
tion, | wrote a prototype that performed the basic calcatatind then tested it, patching
errors along the way.

This approach can be effective, especially if you don't yatéeha deep understanding
of the problem. But incremental corrections can generatie dbat is unnecessarily
complicated—since it deals with many special cases—andiahlel—since it is hard to
know if you have found all the errors.

An alternative isplanned developmentin which high-level insight into the problem can
make the programming much easier. In this case, the ingghat a Time object is really
a three-digit number in base 60 (seikipedia.org/wiki/Sexagesimal)! The second
attribute is the “ones column,” theinute attribute is the “sixties column,” and th@ur
attribute is the “thirty-six hundreds column.”

When we wroteadd _time andincrement , we were effectively doing addition in base 60,
which is why we had to carry from one column to the next.

This observation suggests another approach to the whol#eme—we can convert Time
objects to integers and take advantage of the fact that thpwater knows how to do integer
arithmetic.

Here is a function that converts Times to integers:

def time_to_int(time):
minutes = time.hour * 60 + time.minute
seconds = minutes * 60 + time.second
return seconds

And here is the function that converts integers to Timesatélcatdivmod divides the first
argument by the second and returns the quotient and renmmaadetuple).

17.5. Debugging 205

def int_to_time(seconds):
time = Time()
minutes, time.second = divmod(seconds, 60)
time.hour, time.minute = divmod(minutes, 60)
return time

You might have to think a bit, and run some tests, to convirmeself that these functions
are correct. One way to test them is to check tinag_to_int(int_to_time(x)) == x
for many values of. This is an example of a consistency check.

Once you are convinced they are correct, you can use themwtiigadd_time :

def add_time(t1, t2):
seconds = time_to_int(tl) + time_to_int(t2)
return int_to_time(seconds)

This version is shorter than the original, and easier tdyeri

Exercise 17.5Rewriteincrement usingtime_to_int andint_to_time

In some ways, converting from base 60 to base 10 and backdsihidwan just dealing with
times. Base conversion is more abstract; our intuition &alichg with time values is better.

But if we have the insight to treat times as base 60 numbersrai@ the investment of
writing the conversion functiondgithe_to_int andint_to_time), we get a program that
is shorter, easier to read and debug, and more reliable.

It is also easier to add features later. For example, imagjitracting two Times to find
the duration between them. Theiva approach would be to implement subtraction with
borrowing. Using the conversion functions would be easiermore likely to be correct.

Ironically, sometimes making a problem harder (or more ghenakes it easier (because
there are fewer special cases and fewer opportunities ffor)er

17.5 Debugging

A Time object is well-formed if the values afinutes andseconds are between 0 and 60
(including 0 but not 60) and ifiours is positive. hours andminutes should be integral
values, but we might alloweconds to have a fraction part.

These kind of requirements are calli@slariants because they should always be true. To
put it a different way, if they are not true, then something pane wrong.

Writing code to check your invariants can help you detectrsrand find their causes. For
example, you might have a function likelid_time that takes a Time object and returns
False if it violates an invariant:

206 Chapter 17. Classes and functions

def valid_time(time):
if time.hours < 0 or time.minutes < 0 or time.seconds < O:
return False
if time.minutes >= 60 or time.seconds >= 60:
return False
return True

Then at the beginning of each function you could check thaeraamts to make sure they
are valid:

def add_time(tl, t2):
if not valid_time(tl) or not valid_time(t2):
raise ValueError, "invalid Time object in add_time '
seconds = time_to_int(tl) + time_to_int(t2)
return int_to_time(seconds)

Or you could use aassert statement, which checks a given invariant and raises an ex-
ception if it fails:

def add_time(t1, t2):
assert valid_time(tl) and valid_time(t2)
seconds = time_to_int(tl) + time_to_int(t2)
return int_to_time(seconds)

assert statements are useful because they distinguish code thist\digh normal condi-
tions from code that checks for errors.

17.6 Glossary

prototype and patch: A development plan that involves writing a rough draft of apr
gram, testing, and correcting errors as they are found.

planned development: A development plan that involves high-level insight inte throb-
lem and more planning than incremental development or pye¢odevelopment.

pure function: A function that does not modify any of the objects it recei@esrguments.
Most pure functions are fruitful.

modifier: A function that changes one or more of the objects it receigearguments.
Most modifiers are fruitless.

functional programming style: A style of program design in which the majority of func-
tions are pure.

invariant: A condition that should always be true during the executiba program.

17.7. Exercises 207

17.7 Exercises

Exercise 17.6Write a function callednul_time that takes a Time object and a number and
returns a new Time object that contains the product of thgirmal Time and the number.

Then usenul_time to write a function that takes a Time object that represdmginishing
time in a race, and a number that represents the distancegands a Time object that
represents the average pace (time per mile).

Exercise 17.7Write a class definition for a Date object that has attriba®s month
andyear . Write a function calledncrement date that takes a Date objealate and
an integer,n, and returns a new Date object that represents thenddgys afterdate .
Hint: “Thirty days hath September...” Challenge: does yiomction deal with leap years
correctly? Seavikipedia.org/wiki/Leap_year

Exercise 17.8The datetime module provideglate andtime objects that are similar
to the Date and Time objects in this chapter, but they progidieh set of methods and
operators. Read the documentatiodaus.python.org/lib/datetime-date.html

1. Use thalatetime module to write a program that gets the current date andsatiet
day of the week.

2. Write a program that takes a birthday as input and printsutex’s age and the
number of days, hours, minutes and seconds until their nehktlay.

208 Chapter 17. Classes and functions

Chapter 18

Classes and methods

18.1 Object-oriented features

Python is arobject-oriented programming language which means that it provides fea-
tures that support object-oriented programming.

It is not easy to define object-oriented programming, but axeetalready seen some of its
characteristics:

« Programs are made up of object definitions and function itiefixs, and most of the
computation is expressed in terms of operations on objects.

» Each object definition corresponds to some object or cdringpe real world, and
the functions that operate on that object correspond to tyesweal-world objects
interact.

For example, th@ime class defined in Chapter 17 corresponds to the way peopledreco
the time of day, and the functions we defined correspond tditigs of things people do
with times. Similarly, thePoint andRectangle classes correspond to the mathematical
concepts of a point and a rectangle.

So far, we have not taken advantage of the features Pythamdpsoto support object-
oriented programming. These features are not strictly s&ug; most of them provide
alternative syntax for things we have already done. But imynzases, the alternative is
more concise and more accurately conveys the structures gfrigram.

For example, in th&ime program, there is no obvious connection between the cldss de
nition and the function definitions that follow. With somea@xination, it is apparent that
every function takes at least offime object as an argument.

This observation is the motivation fonethods a method is a function that is associated
with a particular class. We have seen methods for stringfs, lilictionaries and tuples. In
this chapter, we will define methods for user-defined types.

Methods are semantically the same as functions, but therevarsyntactic differences:

210 Chapter 18. Classes and methods

* Methods are defined inside a class definition in order to nia&erelationship be-
tween the class and the method explicit.

» The syntax for invoking a method is different from the sytar calling a function.

In the next few sections, we will take the functions from threvious two chapters and
transform them into methods. This transformation is purachanical; you can do it
simply by following a sequence of steps. If you are comfdgaionverting from one form
to another, you will be able to choose the best form for whatgoeu are doing.

18.2 Printing objects

In Chapter 17, we defined a class naniéoe and in Exercise 17.1, you wrote a function
namedprint_time

class Time(object):
""represents the time of day.
attributes: hour, minute, second™"
def print_time(time):
print ' %.2d:%.2d:%.2d ' % (time.hour, time.minute, time.second)

To call this function, you have to pas§ime object as an argument:

>>> start = Time()
>>> start.hour = 9
>>> start.minute = 45
>>> start.second = 00
>>> print_time(start)
09:45:00

To makeprint_time a method, all we have to do is move the function definitiondasi
the class definition. Notice the change in indentation.

class Time(object):
def print_time(time):
print ' %.2d:%.2d:%.2d ' % (time.hour, time.minute, time.second)

Now there are two ways to caitint time . The first (and less common) way is to use
function syntax:

>>> Time.print_time(start)
09:45:00

In this use of dot notatiorifime is the name of the class, apdnt_time is the name of
the methodstart is passed as a parameter.

The second (and more concise) way is to use method syntax:

18.3. Another example 211

>>> start.print_time()
09:45:00

In this use of dot notatiomrint_time is the name of the method (again), astat s
the object the method is invoked on, which is called shbject Just as the subject of
a sentence is what the sentence is about, the subject of adnetrocation is what the
method is about.

Inside the method, the subject is assigned to the first pdaesye® in this casstart is
assigned tdime .

By convention, the first parameter of a method is cadkdid , so it would be more common
to write print_time like this:

class Time(object):
def print_time(self):
print ' %.2d:%.2d:%.2d ' % (self.hour, self.minute, self.second)

The reason for this convention is an implicit metaphor:

« The syntax for a function calprint_time(start) , suggests that the function is the
active agent. It says something like, “Hpgynt time ! Here’s an object for you to
print.”

* In object-oriented programming, the objects are the a@gyents. A method invoca-
tion like start.print_time() says “Heystart ! Please print yourself.”

This change in perspective might be more polite, but it isomtious that it is useful. In
the examples we have seen so far, it may not be. But sometiniftisg responsibility
from the functions onto the objects makes it possible toanribre versatile functions, and
makes it easier to maintain and reuse code.

Exercise 18.1Rewritetime_to_int (from Section 17.4) as a method. It is probably not
appropriate to rewritént_to_time as a method; it's not clear what object you would
invoke it on!

18.3 Another example

Here’s a version oihcrement (from Section 17.3) rewritten as a method:
inside class Time:
def increment(self, seconds):

seconds += self.time_to_int()
return int_to_time(seconds)

This version assumes thtahe_to_int is written as a method, as in Exercise 18.1. Also,
note that it is a pure function, not a modifier.

Here’s how you would invokécrement

212 Chapter 18. Classes and methods

>>> start.print_time()

09:45:00

>>> end = start.increment(1337)
>>> end.print_time()

10:07:17

The subjectstart , gets assigned to the first paramesetf . The argument]337, gets
assigned to the second parameteconds .

This mechanism can be confusing, especially if you make eor.eFor example, if you
invokeincrement with two arguments, you get:

>>> end = start.increment(1337, 460)
TypeError: increment() takes exactly 2 arguments (3 given)

The error message is initially confusing, because thererdyetwo arguments in parenthe-
ses. But the subject is also considered an argument, s@ather that's three.

18.4 A more complicated example

is_after (from Exercise 17.2) is slightly more complicated becaudakes two Time
objects as parameters. In this case it is conventional teertamfirst parameteself and
the second parametether :

inside class Time:

def is_after(self, other):
return self.time_to_int() > other.time_to_int()

To use this method, you have to invoke it on one object andtbassther as an argument:

>>> end.is_after(start)
True

One nice thing about this syntax is that it almost reads likglEh: “end is after start?”

18.5 The init method

The init method (short for “initialization”) is a special thed that gets invoked when an
object is instantiated. Its full name isinit__ (two underscore characters, followed by
init , and then two more underscores). An init method forTine class might look like
this:

inside class Time:

def __init_ (self, hour=0, minute=0, second=0):

18.6. The_.str __method 213

self.hour = hour
self.minute = minute
self.second = second

Itis common for the parameters ofinit__ to have the same names as the attributes. The
statement

self.hour = hour
stores the value of the parameteur as an attribute ofelf .

The parameters are optional, so if you CEithe with no arguments, you get the default
values.

>>> time = Time()
>>> time.print_time()
00:00:00

If you provide one argument, it overridasur :

>>> time = Time (9)
>>> time.print_time()
09:00:00

If you provide two arguments, they overritleur andminute .

>>> time = Time(9, 45)
>>> time.print_time()
09:45:00

And if you provide three arguments, they override all threfadlt values.

Exercise 18.2Write an init method for thePoint class that takes andy as optional
parameters and assigns them to the corresponding atgibute

18.6 The_str __ method

__stris a special method, like init__, thatis supposed to return a string representa-
tion of an object.

For example, here issir method for Time objects:

inside class Time:

def _ str_ (self):
return ' %.2d:%.2d:%.2d ' % (self.hour, self.minute, self.second)

When youprint an object, Python invokes tis& method:

214 Chapter 18. Classes and methods

>>> time = Time(9, 45)
>>> print time
09:45:00

When | write a new class, | almost always start by writingiit__ , which makes it easier
to instantiate objects, andstr__ , which is useful for debugging.

Exercise 18.3Write astr method for thePoint class. Create a Point object and print it.

18.7 Operator overloading

By defining other special methods, you can specify the behafi operators on user-
defined types. For example, if you define a method namedd__ for theTime class, you
can use the operator on Time objects.

Here is what the definition might look like:

inside class Time:

def __add_ (self, other):
seconds = self.time_to_int() + other.time_to_int()
return int_to_time(seconds)

And here is how you could use it:

>>> start = Time(9, 45)
>>> duration = Time(1, 35)
>>> print start + duration
11:20:00

When you apply the operator to Time objects, Python invokesdd . When you print
the result, Python invokes str__ . So there is quite a lot happening behind the scenes!

Changing the behavior of an operator so that it works with-dséined types is calledp-
erator overloading. For every operator in Python there is a corresponding apewthod,
like _add . For more details, se#ocs.python.org/ref/specialnames.html

Exercise 18.4Write anadd method for the Point class.

18.8 Type-based dispatch

In the previous section we added two Time objects, but yoo ailght want to add an
integer to a Time object. The following is a version ofadd __ that checks the type of
other and invokes eitheadd_time or increment

18.8. Type-based dispatch 215

inside class Time:

def __add_ (self, other):
if isinstance(other, Time):
return self.add_time(other)
else:
return self.increment(other)

def add_time(self, other):
seconds = self.time_to_int() + other.time_to_int()
return int_to_time(seconds)

def increment(self, seconds):
seconds += self.time_to_int()
return int_to_time(seconds)

The built-in functionisinstance takes a value and a class object, and retiliros if the
value is an instance of the class.

If other is a Time object, add__ invokesadd_time . Otherwise it assumes that the
parameter is a number and invokiesrement . This operation is called &ype-based
dispatch because it dispatches the computation to different methadsd on the type of
the arguments.

Here are examples that use theperator with different types:

>>> start = Time(9, 45)
>>> duration = Time(1, 35)
>>> print start + duration
11:20:00

>>> print start + 1337
10:07:17

Unfortunately, this implementation of addition is not contative. If the integer is the first
operand, you get

>>> print 1337 + start
TypeError: unsupported operand type(s) for +: "int ' and ' instance

The problem is, instead of asking the Time object to add agart Python is asking an
integer to add a Time object, and it doesn’t know how to do.tH&it there is a clever
solution for this problem: the special methodadd__ , which stands for “right-side add.”
This method is invoked when a Time object appears on the siglet of the+ operator.
Here’s the definition:

inside class Time:

def _ radd__ (self, other):
return self.__add_ (other)

216 Chapter 18. Classes and methods

And here’s how it's used:

>>> print 1337 + start
10:07:17

Exercise 18.5Write anadd method for Points that works with either a Point object or a
tuple:

« If the second operand is a Point, the method should returewaPRoint whosex
coordinate is the sum of thecoordinates of the operands, and likewise for yhe
coordinates.

« If the second operand is a tuple, the method should add #iefement of the tuple
to thex coordinate and the second element toytheordinate, and return a new Point
with the result.

18.9 Polymorphism

Type-based dispatch is useful when it is necessary, buu(fately) it is not always nec-
essary. Often you can avoid it by writing functions that wodkrectly for arguments with
different types.

Many of the functions we wrote for strings will actually woftr any kind of sequence.
For example, in Section 9.1 we uskigtogram to count the number of times each letter
appears in a word.

def histogram(s):

d = dict()
for ¢ in s
if ¢ not in d:
dc] =1
else:
dlc] = d[c]+1
return d

This function also works for lists, tuples, and even dictines, as long as the elements of
s are hashable, so they can be used as kegs in

>>>t =] 'spam', 'egg', 'spam', 'spam', 'bacon', ‘' spam']
>>> histogram(t)
{*bacon': 1, 'egg': 1, 'spam': 4}

Functions that can work with several types are capjetymorphic. Polymorphism can
facilitate code reuse. For example, the built-in functam, which adds the elements of a
sequence, works as long as the elements of the sequencetsagigtion.

Since Time objects provide a@dd method, they work wittsum:

18.10. Debugging 217

>>> t1 = Time(7, 43)

>>> 12 = Time(7, 41)

>>> t3 = Time(7, 37)

>>> total = sum([t1, t2, t3])
>>> print total

23:01:00

In general, if all of the operations inside a function workiwa given type, then the function
works with that type.

The best kind of polymorphism is the unintentional kind, vehgou discover that a function
you already wrote can be applied to a type you never planned fo

18.10 Debugging

It is legal to add attributes to objects at any point in thecexien of a program, but if you

are a stickler for type theory, it is a dubious practice toehaljects of the same type with
different attribute sets. It is usually a good idea to ititia all of an objects attributes in
the init method.

If you are not sure whether an object has a particular atejbgou can use the built-in
functionhasattr (see Section 16.7).

Another way to access the attributes of an object is throbglspecial attribute dict_
which is a dictionary that maps attribute names (as striagd)values:

>>> p = Point(3, 4)
>>> print p.__dict__
{*y':4, "x':3}

For purposes of debugging, you might find it useful to keegp fiinction handy:

def print_attributes(obj):
for attr in obj.__ dict_:
print attr, getattr(obj, attr)

print_attributes traverses the items in the object’s dictionary and printhestribute
name and its corresponding value.

The built-in functiongetattr ~ takes an object and an attribute name (as a string) and seturn
the attribute’s value.

18.11 Glossary

object-oriented language: A language that provides features, such as user-defineskslas
and method syntax, that facilitate object-oriented progréng.

218 Chapter 18. Classes and methods

object-oriented programming: A style of programming in which data and the operations
that manipulate it are organized into classes and methods.

method: A function that is defined inside a class definition and is kagon instances of
that class.

subject: The object a method is invoked on.

operator overloading: Changing the behavior of an operator likeso it works with a
user-defined type.

type-based dispatch: A programming pattern that checks the type of an operandrand i
vokes different functions for different types.

polymorphic: Pertaining to a function that can work with more than one type

18.12 Exercises

Exercise 18.6 This exercise is a cautionary tale about one of the most comara diffi-
cult to find, errors in Python.

1. Write a definition for a class nam#&dngaroo with the following methods:

(& An__init_ method that initializes an attribute namgalich_contents to
an empty list.

(b) A method namegdut in_pouch that takes an object of any type and adds it to
pouch_contents

(c) A _str__ method that returns a string representation of the Kangelogexct
and the contents of the pouch.

Test your code by creating twkangaroo objects, assigning them to variables named
kanga androo , and then addingpo to the contents dfanga 's pouch.

2. Downloadthinkpython.com/code/BadKangaroo.py . It contains a solution to the
previous problem with one big, nasty bug. Find and fix the bug.

If you get stuck, you can downloatinkpython.com/code/GoodKangaroo.py ,
which explains the problem and demonstrates a solution.

Exercise 18.7Visual is a Python module that provides 3-D graphics. It isalovays in-
cluded in a Python installation, so you might have to inst&élbm your software repository
or, if it's not there, fromvpython.org

The following example creates a 3-D space that is 256 unidewong and high, and sets
the “center” to be the pointL28 128 128). Then it draws a blue sphere.

18.12. Exercises 219

from visual import *

scene.range = (256, 256, 256)
scene.center = (128, 128, 128)

color = (0.1, 0.1, 0.9) # mostly blue
sphere(pos=scene.center, radius=128, color=color)

color is an RGB tuple; that is, the elements are Red-Green-Bluaddetween 0.0 and
1.0 (seewikipedia.org/wiki/RGB_color_model).

If you run this code, you should see a window with a black baolgd and a blue sphere.
If you drag the middle button up and down, you can zoom in artd ¥ou can also rotate

the scene by dragging the right button, but with only one sphethe world, it is hard to

tell the difference.

The following loop creates a cube of spheres:

t = range(0, 256, 51)
for x in t:
for y in t:
for z in t:
pos = X, Y, z
sphere(pos=pos, radius=10, color=color)

1. Put this code in a script and make sure it works for you.

2. Modify the program so that each sphere in the cube has tbetbat corresponds to
its position in RGB space. Notice that the coordinates atikeérrange 0—255, but the
RGB tuples are in the range 0.0-1.0.

3. Download thinkpython.com/code/color_list.py and use the function
read_colors to generate a list of the available colors on your systemir the
names and RGB values. For each named color draw a sphere jpositen that
corresponds to its RGB values.

You can see my solution &tinkpython.com/code/color_space.py

220 Chapter 18. Classes and methods

Chapter 19

Inheritance

In this chapter we will develop classes to represent plagards, decks of cards, and poker
hands. If you don't play poker, you can read about i&ipedia.org/wiki/Poker , but
you don't have to; I'll tell you what you need to know for theeggises.

If you are not familiar with Anglo-American playing cardsply can read about them at
wikipedia.org/wiki/Playing_cards

19.1 Card objects

There are fifty-two cards in a deck, each of which belongs ®afrfour suits and one of
thirteen ranks. The suits are Spades, Hearts, Diamond<;labd (in descending order in
bridge). The ranks are Ace, 2, 3, 4,5, 6, 7, 8, 9, 10, Jack, Qe King. Depending on
the game that you are playing, an Ace may be higher than Kihgnar than 2.

If we want to define a new object to represent a playing caislpibvious what the attributes
should be:rank andsuit . It is not as obvious what type the attributes should be. One
possibility is to use strings containing words likBpade' for suits and Queen' for ranks.
One problem with this implementation is that it would not lasyto compare cards to see
which had a higher rank or suit.

An alternative is to use integers émcodethe ranks and suits. In this context, “encode”
means that we are going to define a mapping between numbessiascor between num-
bers and ranks. This kind of encoding is not meant to be atsghet would be “encryp-
tion”).

For example, this table shows the suits and the correspgmtieger codes:

Spades —
Hearts —
Diamonds +—
Clubs >

OFrLrNW

222 Chapter 19. Inheritance

This code makes it easy to compare cards; because highensjitto higher numbers, we
can compare suits by comparing their codes.

The mapping for ranks is fairly obvious; each of the numéniaaks maps to the corre-
sponding integer, and for face cards:

Jack +— 11

Queen — 12

King — 13
| am using the— symbol to make is clear that these mappings are not part d?yteon
program. They are part of the program design, but they d@méar explicitly in the code.

The class definition fo€ard looks like this:

class Card(object):
""represents a standard playing card.""
def _init_ (self, suit=0, rank=2):
self.suit = suit
self.rank = rank

As usual, the init method takes an optional parameter fdn aicbute. The default card is
the 2 of Clubs.

To create a Card, you callard with the suit and rank of the card you want.

queen_of diamonds = Card(1, 12)

19.2 Class attributes

In order to print Card objects in a way that people can easdyglywe need a mapping from
the integer codes to the corresponding ranks and suits. Ukalatay to do that is with lists
of strings. We assign these listsdlass attributes

inside class Card:

suit names = [' Clubs ', ' Diamonds', 'Hearts ', ' Spades']
rank_names = [None, 'Ace', '2', "3, "4, '5" ['6", '7T",
"8, "9, "10", "Jack', 'Queen', 'King']

def _ str(self):
return ' %s of %s' % (Card.rank_names[self.rank],
Card.suit_names[self.suit])

Variables likesuit names andrank_names , which are defined inside a class but outside
of any method, are called class attributes because theysaoeiated with the class object
Card .

19.3. Comparing cards 223

This term distinguished them from variables lgt andrank , which are callednhstance
attributes because they are associated with a particular instance.

Both kinds of attribute are accessed using dot notation.ekample, in_str , self
is a Card object, andelf.rank is its rank. Similarly,Card is a class object, and
Card.rank_names is a list of strings associated with the class.

Every card has its owsuit andrank , but there is only one copy &lit_ names and
rank_names .

Putting it all together, the expressi@ard.rank_names|self.rank] means “use the at-
tributerank from the objecself as an index into the lisank_names from the clas€ard ,
and select the appropriate string.”

The first element ofank_names is None because there is no card with rank zero. By
includingNone as a place-keeper, we get a mapping with the nice propertytthandex

2 maps to the string2' , and so on. To avoid this tweak, we could have used a dictyonar
instead of a list.

With the methods we have so far, we can create and print cards:

>>> cardl = Card(2, 11)
>>> print cardl
Jack of Hearts

Here is a diagram that shows t@ierd class object and one Card instance:

type list
Card —= suit_names
list
rank_names
Card

cardl — suit—=1
rank — 11

Card is a class object, so it has typg@e . cardl has typeCard. (To save space, | didn't
draw the contents afuit_names andrank_names).

19.3 Comparing cards

For built-in types, there are conditional operatogs X, ==, etc.) that compare values
and determine when one is greater than, less than, or eqaaltber. For user-defined

224 Chapter 19. Inheritance

types, we can override the behavior of the built-in opesabyrproviding a method named
_cmp__.

__cmp__ takes two parametersglf andother , and returns a positive number if the first
object is greater, a negative number if the second objeaemter, and 0 if they are equal
to each other.

The correct ordering for cards is not obvious. For examplackvis better, the 3 of Clubs
or the 2 of Diamonds? One has a higher rank, but the other haghartsuit. In order to
compare cards, you have to decide whether rank or suit is mrertant.

The answer might depend on what game you are playing, buteqo théngs simple, we'll
make the arbitrary choice that suit is more important, sofdte Spades outrank all of the
Diamonds, and so on.

With that decided, we can write cmp__:
inside class Card:

def __cmp__(self, other):
check the suits
if self.suit > other.suit: return 1
if self.suit < other.suit: return -1

suits are the same... check ranks
if self.rank > other.rank: return 1
if self.rank < other.rank: return -1

ranks are the same... it 's a tie
return 0

You can write this more concisely using tuple comparison:
inside class Card:

def __cmp__ (self, other):
t1 = self.suit, self.rank
t2 = other.suit, other.rank
return cmp(tl, t2)

The built-in functioncmp has the same interface as the methaainp__: it takes two values
and returns a positive number if the first is larger, a negativmber if the second is larger,
and 0 if they are equal.

Exercise 19.1Write a__cmp__ method for Time objects. Hint: you can use tuple compar-
ison, but you also might consider using integer subtraction

19.4. Decks 225

19.4 Decks

Now that we have Cards, the next step is to define Decks. Sideelais made up of cards,
it is natural for each Deck to contain a list of cards as aribate.

The following is a class definition fdbeck. The init method creates the attribuderds
and generates the standard set of fifty-two cards:

class Deck(object):

def __init__(self):
self.cards = []
for suit in range(4):
for rank in range(l, 14):
card = Card(suit, rank)
self.cards.append(card)

The easiest way to populate the deck is with a nested loopotite loop enumerates the
suits from 0 to 3. The inner loop enumerates the ranks fromlBtdcach iteration creates
a new Card with the current suit and rank, and appendssiltoards

19.5 Printing the deck

Hereisa str method forDeck:

#inside class Deck:

def _ str_ (self):
res = [
for card in self.cards:
res.append(str(card))
return " \n "' join(res)

This method demonstrates an efficient way to accumulatege kKtring: building a list of
strings and then usinpin . The built-in functionstr invokes the_str_ method on
each card and returns the string representation.

Since we invokgoin on a newline character, the cards are separated by newtiege's
what the result looks like:

>>> deck = Deck()
>>> print deck
Ace of Clubs

2 of Clubs

3 of Clubs

10 of Spades

226 Chapter 19. Inheritance

Jack of Spades
Queen of Spades
King of Spades

Even though the result appears on 52 lines, it is one longgsthiat contains newlines.

19.6 Add, remove, shuffle and sort

To deal cards, we would like a method that removes a card frmmdéck and returns it.
The list methodgop provides a convenient way to do that:

#inside class Deck:

def pop_card(self):
return self.cards.pop()

Sincepop removes thédastcard in the list, we are dealing from the bottom of the deck. In
real life bottom dealing is frowned updrbut in this context it's ok.

To add a card, we can use the list metlappend :

#inside class Deck:

def add_card(self, card):
self.cards.append(card)

A method like this that uses another function without doingcmreal work is sometimes
called aveneer. The metaphor comes from woodworking, where it is commonide @
thin layer of good quality wood to the surface of a cheapecei@f wood.

In this case we are defining a “thin” method that expressest apieration in terms that are
appropriate for decks.

As another example, we can write a Deck method nasheffle using the function
shuffle from therandom module:

inside class Deck:

def shuffle(self):
random.shuffle(self.cards)

Don't forget to importrandom .

Exercise 19.2Write a Deck method namesdrt that uses the list methadrt to sort the
cards in aeck. sort uses the cmp__ method we defined to determine sort order.

1seewikipedia.org/wiki/Bottom_dealing

19.7. Inheritance 227

19.7 Inheritance

The language feature most often associated with objeety&id programming isher-
itance. Inheritance is the ability to define a new class that is a fiemtliversion of an
existing class.

It is called “inheritance” because the new class inherigsrttethods of the existing class.
Extending this metaphor, the existing class is calledodrent and the new class is called
thechild.

As an example, let's say we want a class to represent a “htrat,is, the set of cards held
by one player. A hand is similar to a deck: both are made up et afscards, and both
require operations like adding and removing cards.

A hand is also different from a deck; there are operations waat\for hands that don’t
make sense for a deck. For example, in poker we might comparéands to see which
one wins. In bridge, we might compute a score for a hand inrdaeake a bid.

This relationship between classes—similar, but differerrdk itself to inheritance.

The definition of a child class is like other class definitidmst the name of the parent class
appears in parentheses:

class Hand(Deck):
""represents a hand of playing cards

mmn

This definition indicates thatand inherits fromDeck ; that means we can use methods like
pop_card andadd_card for Hands as well as Decks.

Hand also inherits_init__ from Deck, but it doesn't really do what we want: instead of
populating the hand with 52 new cards, the init method ford$ashould initializecards
with an empty list.

If we provide an init method in thEand class, it overrides the one in tBeck class:

inside class Hand:

def __init_ (self, label= ")
self.cards = []
self.label = label

So when you create a Hand, Python invokes this init method:

>>> hand = Hand(' new hand")
>>> print hand.cards

I

>>> print hand.label

new hand

But the other methods are inherited fr@eck, so we can uspop_card andadd_card to
deal a card:

228 Chapter 19. Inheritance

>>> deck = Deck()

>>> card = deck.pop_card()
>>> hand.add_card(card)
>>> print hand

King of Spades

A natural next step is to encapsulate this code in a methdeldaabve cards :

#inside class Deck:

def move_cards(self, hand, num):
for i in range(num):
hand.add_card(self.pop_card())

move_cards takes two arguments, a Hand object and the number of caréstoldmodi-
fies bothself andhand, and returndone.

In some games, cards are moved from one hand to anothernoafrand back to the deck.
You can usenove_cards for any of these operationself can be either a Deck or a Hand,
andhand, despite the name, can also bbezk.

Exercise 19.3Write a Deck method calledeal_hands that takes two parameters, the
number of hands and the number of cards per hand, and thatsnmeaw Hand objects,
deals the appropriate number of cards per hand, and retlisiofHand objects.

Inheritance is a useful feature. Some programs that wouldjetitive without inheritance
can be written more elegantly with it. Inheritance can ftaii# code reuse, since you can
customize the behavior of parent classes without havingadifmthem. In some cases, the
inheritance structure reflects the natural structure optbblem, which makes the program
easier to understand.

On the other hand, inheritance can make programs difficuleanl. When a method is
invoked, it is sometimes not clear where to find its definitiofhe relevant code may
be scattered among several modules. Also, many of the thivedscan be done using
inheritance can be done as well or better without it.

19.8 Class diagrams

So far we have seen stack diagrams, which show the state afgagpn, and object dia-
grams, which show the attributes of an object and their wallibese diagrams represent a
shapshot in the execution of a program, so they change asdgem runs.

They are also highly detailed; for some purposes, too @éetai class diagrams is a more
abstract representation of the structure of a programeaaisdf showing individual objects,
it shows classes and the relationships between them.

There are several kinds of relationship between classes:

19.9. Debugging 229

» Objects in one class might contain references to objeasdther class. For exam-
ple, each Rectangle contains a reference to a Point, andBesathcontains refer-
ences to many Cards. This kind of relationship is cali&-A, as in, “a Rectangle
has a Point.”

« One class might inherit from another. This relationshigabedlS-A, as in, “a Hand
is a kind of a Deck.”

* One class might depend on another in the sense that chamge® iclass would
require changes in the other.

A class diagramis a graphical representation of these relationghif®r example, this
diagram shows the relationships betw&ard , Deck andHand.

*

Deck Card

I

Hand

The arrow with a hollow triangle head represents an 1S-Atieiahip; in this case it indi-
cates that Hand inherits from Deck.

The standard arrow head represents a HAS-A relationshithiisncase a Deck has refer-
ences to Card objects.

The star {) near the arrow head ismaultiplicity ; it indicates how many Cards a Deck has.
A multiplicity can be a simple number, like, a range, liké..7 or a star, which indicates
that a Deck can have any number of Cards.

A more detailed diagram might show that a Deck actually dostalist of Cards, but
built-in types like list and dict are usually not includeddiass diagrams.

Exercise 19.4ReadTurtleWorld.py , World.py andGui.py and draw a class diagram
that shows the relationships among the classes defined there

19.9 Debugging

Inheritance can make debugging a challenge because whemyake a method on an
object, you might not know which method will be invoked.

Suppose you are writing a function that works with Hand adlisje¢rou would like it to
work with all kinds of Hands, like PokerHands, BridgeHanets, If you invoke a method

2The diagrams | am using here are similar to UML (seikipedia.org/wiki/Unified_Modeling_
Language), with a few simplifications.

230 Chapter 19. Inheritance

like shuffle , you might get the one defined Deck, but if any of the subclasses override
this method, you'll get that version instead.

Any time you are unsure about the flow of execution througtr poogram, the simplest so-
lution is to add print statements at the beginning of thevesiemethods. IDeck.shuffle
prints a message that says something Rkening Deck.shuffle , then as the program
runs it traces the flow of execution.

As an alternative, you could use this function, which take®lject and a method name
(as a string) and returns the class that provides the definiti the method:

def find_defining_class(obj, meth_name):
for ty in type(obj).mro():
if meth_name in ty. dict_:
return ty

Here’s an example:

>>> hand = Hand()
>>> print find_defining_class(hand, " shuffle ')
<class ' Card.Deck ' >

So theshuffle method for this Hand is the one reck.

find_defining_class uses thenro method to get the list of class objects (types) that will
be searched for methods. “MRO” stands for “method resafubialer.”

Here’s a program design suggestion: whenever you overnidethod, the interface of the
new method should be the same as the old. It should take the garameters, return the
same type, and obey the same preconditions and postcardditfoyou obey this rule, you

will find that any function designed to work with an instandexsuperclass, like a Deck,
will also work with instances of subclasses like a Hand ordPHiand.

If you violate this rule, your code will collapse like (sojr& house of cards.

19.10 Glossary

encode: To represent one set of values using another set of valuesrsfracting a map-
ping between them.

class attribute: An attribute associated with a class object. Class atgtare defined
inside a class definition but outside any method.

instance attribute: An attribute associated with an instance of a class.

veneer: A method or function that provides a different interface nother function with-
out doing much computation.

inheritance: The ability to define a new class that is a modified version ofewipusly
defined class.

19.11. Exercises 231

parent class: The class from which a child class inherits.

child class: A new class created by inheriting from an existing classp akdled a “sub-
class.”

IS-A relationship: The relationship between a child class and its parent class.

HAS-A relationship: The relationship between two classes where instances oflase
contain references to instances of the other.

class diagram: A diagram that shows the classes in a program and the rethijos be-
tween them.

multiplicity: A notation in a class diagram that shows, for a HAS-A relafop, how
many references there are to instances of another class.

19.11 Exercises

Exercise 19.5The following are the possible hands in poker, in increasirtgr of value
(and decreasing order of probability):

pair: two cards with the same rank
two pair: two pairs of cards with the same rank
three of a kind: three cards with the same rank

straight: five cards with ranks in sequence (aces can be high or loAces@-3-4-5 is a
straight and so i$0-Jack-Queen-King-Ace , butQueen-King-Ace-2-3 is not.)

flush: five cards with the same suit

full house: three cards with one rank, two cards with another

four of a kind: four cards with the same rank

straight flush: five cards in sequence (as defined above) and with the same suit

The goal of these exercises is to estimate the probabilitirafing these various hands.

1. Download the following files frorthinkpython.com/code
Card.py : A complete version of th€ard , Deck andHand classes in this chapter.

PokerHand.py : An incomplete implementation of a class that representskamp
hand, and some code that tests it.

2. If you runPokerHand.py , it deals seven 7-card poker hands and checks to see if any

of them contains a flush. Read this code carefully before yoorg

3. Add methods td’okerHand.py namedhas_pair , has_twopair , etc. that return
True or False according to whether or not the hand meets kinard criteria. Your
code should work correctly for “hands” that contain any nemdf cards (although
5 and 7 are the most common sizes).

232

Chapter 19. Inheritance

. Write a method namedassify that figures out the highest-value classification for

a hand and sets thHabel attribute accordingly. For example, a 7-card hand might
contain a flush and a pair; it should be labeled “flush”.

. When you are convinced that your classification methodaarking, the next step is

to estimate the probabilities of the various hands. Writenation inPokerHand.py
that shuffles a deck of cards, divides it into hands, classifie hands, and counts
the number of times various classifications appear.

. Print a table of the classifications and their probab#iti Run your program with

larger and larger numbers of hands until the output valueserge to a reasonable
degree of accuracy. Compare your results to the valuegkiaedia.org/wiki/
Hand_rankings

Exercise 19.6 This exercise uses TurtleWorld from Chap®* You will write code that
makes Turtles play tag. If you are not familiar with the rubésag, seavikipedia.org/
wiki/Tag_(game)

1.

Downloadthinkpython.com/code/Wobbler.py and run it. You should see a
TurtleWorld with three Turtles. If you press thun button, the Turtles wander
at random.

. Read the code and make sure you understand how it works.Wobiger class

inherits fromTurtle , which means that theurtle methodsdt , rt , fd andbk work
on Wobblers.

Thestep method gets invoked by TurtleWorld. It invoketer , which turns the
Turtle in the desired directiomobble , which makes a random turn in proportion to
the Turtle’s clumsiness, amdove, which moves forward a few pixels, depending on
the Turtle’s speed.

. Create afile namelhgger.py . Import everything fronWobbler , then define a class

namedTagger that inherits fromWobbler . Call make_world passing theragger
class object as an argument.

. Add asteer method toTagger to override the one ildvobbler . As a starting place,

write a version that always points the Turtle toward the iarigHint: use the math
functionatan2 and the Turtle attributes, y andheading .

. Modify steer so that the Turtles stay in bounds. For debugging, you migtmt\to

use theStep button, which invokestep once on each Turtle.

. Modify steer so that each Turtle points toward its nearest neighbor. : Hinttles

have an attributeyorld , that is a reference to the TurtleWorld they live in, and the
TurtleWorld has an attributenimals , that is a list of all Turtles in the world.

. Modify steer so the Turtles play tag. You can add method$agger and you can

overridesteer and__init__ , but you may not modify or overridsep , wobble or
move. Also,steer is allowed to change the heading of the Turtle but not thetioosi

19.11. Exercises 233

Adjust the rules and yousteer method for good quality play; for example, it should
be possible for the slow Turtle to tag the faster Turtles aaty.

You can get my solution frorthinkpython.com/code/Tagger.py

234 Chapter 19. Inheritance

Appendix A

Debugging

Different kinds of errors can occur in a program, and it iSuls® distinguish among them
in order to track them down more quickly:

« Syntax errors are produced by Python when it is translatiegsource code into
byte code. They usually indicate that there is somethinghgnwith the syntax of
the program. Example: Omitting the colon at the end défa statement yields the
somewhat redundant messa&yataxError; invalid syntax

* Runtime errors are produced by the interpreter if somgtlgioes wrong while the
program is running. Most runtime error messages includainétion about where
the error occurred and what functions were executing.

» Semantic errors are problems with a program that runs withmducing error mes-
sages but doesn't do the right thing. Example: An expressiay not be evaluated
in the order you expect, yielding an incorrect result.

The first step in debugging is to figure out which kind of errouyare dealing with. Al-
though the following sections are organized by error typenestechniques are applicable
in more than one situation.

A.1 Syntax errors

Syntax errors are usually easy to fix once you figure out whayt etre. Unfortunately,
the error messages are often not helpful. The most commosages ar&yntaxError:
invalid syntax and SyntaxError: invalid token , heither of which is very infor-
mative.

On the other hand, the message does tell you where in thegonatpe problem occurred.
Actually, it tells you where Python noticed a problem, whisnot necessarily where the

236 Appendix A. Debugging

error is. Sometimes the error is prior to the location of theremessage, often on the
preceding line.

If you are building the program incrementally, you shouldéha good idea about where
the error is. It will be in the last line you added.

If you are copying code from a book, start by comparing youtecto the book’s code
very carefully. Check every character. At the same time erabver that the book might be
wrong, so if you see something that looks like a syntax eitrarjght be.

Here are some ways to avoid the most common syntax errors:

1. Make sure you are not using a Python keyword for a variadeen

2. Check that you have a colon at the end of the header of evenpaund statement,
includingfor , while ,if , anddef statements.

3. Make sure that any strings in the code have matching qaotatarks.

4. If you have multiline strings with triple quotes (single @ouble), make sure you
have terminated the string properly. An unterminated gtnmay cause aimvalid
token error at the end of your program, or it may treat the followjayt of the
program as a string until it comes to the next string. In thmaed case, it might not
produce an error message at all!

5. An unclosed opening operato(—{, or [—makes Python continue with the next
line as part of the current statement. Generally, an erroargcalmost immediately
in the next line.

6. Check for the classk instead of= inside a conditional.

7. Check the indentation to make sure it lines up the way gesed to. Python can
handle space and tabs, but if you mix them it can cause prablérhe best way
to avoid this problem is to use a text editor that knows abgtitéh and generates
consistent indentation.

If nothing works, move on to the next section...

A.1.1 | keep making changes and it makes no difference.

If the interpreter says there is an error and you don’t séhat, might be because you and
the interpreter are not looking at the same code. Check ymgramming environment to
make sure that the program you are editing is the one Pythoying to run.

If you are not sure, try putting an obvious and deliberatdayerror at the beginning of
the program. Now run it again. If the interpreter doesn't fihnd new error, you are not
running the new code.

There are a few likely culprits:

A.2. Runtime errors 237

* You edited the file and forgot to save the changes beforeimgrih again. Some
programming environments do this for you, but some don't.

 You changed the name of the file, but you are still runningaldename.
» Something in your development environment is configurediirectly.

« If you are writing a module and usirigport , make sure you don't give your module
the same name as one of the standard Python modules.

« If you are usingimport to read a module, remember that you have to restart the
interpreter or useeload to read a modified file. If you import the module again, it
doesn’t do anything.

If you get stuck and you can't figure out what is going on, onpraach is to start again
with a new program like “Hello, World!,” and make sure you agat a known program to
run. Then gradually add the pieces of the original prograthémew one.

A.2 Runtime errors

Once your program is syntactically correct, Python can dtenifpand at least start running
it. What could possibly go wrong?

A.2.1 My program does absolutely nothing.

This problem is most common when your file consists of fumdiand classes but does
not actually invoke anything to start execution. This mayrttentional if you only plan to
import this module to supply classes and functions.

If it is not intentional, make sure that you are invoking adtion to start execution, or
execute one from the interactive prompt. Also see the “Flb#n@cution” section below.

A.2.2 My program hangs.

If a program stops and seems to be doing nothing, it is “hayigibften that means that it
is caught in an infinite loop. If there is a particular looptthau suspect is the problem, add
aprint statement immediately before the loop that says “entefiegdop” and another
immediately after that says “exiting the loop.”

Run the program. If you get the first message and not the segont/e got an infinite
loop. If you think you have an infinite loop and you think youoknwhat loop is causing
the problem, add arint statement inside the loop as the last statement in the lagp lo
that prints the values of the variables in the condition deMalue of the condition.

For example:

238 Appendix A. Debugging

while x > 0 and y < 0 :
do something to x
do something to y

print X', X
print yioty
print ' condition: ', (x>0and y <0)

Now when you run the program, you will see three lines of oufpueach time through
the loop. The last time through the loop, the condition stidndfalse . If the loop keeps
going, you will be able to see the valuesxaindy, and you might figure out why they are
not being updated correctly.

Flow of Execution

If you are not sure how the flow of execution is moving throughiyprogram, adgrint
statements to the beginning of each function with a messkgédntering functiorfoo ,”
wherefoo is the name of the function.

Now when you run the program, it will print a trace of each fiimit as it is invoked.

A.2.3 When I run the program | get an exception.

If something goes wrong during runtime, Python prints a mgsghat includes the name
of the exception, the line of the program where the probleoued, and a traceback.

The traceback identifies the function that is currently ingnand then the function that
invoked it, and then the function that invok#tht, and so on. In other words, it traces the
sequence of function invocations that got you to where yeu #ralso includes the line
number in your file where each of these calls occurs.

The first step is to examine the place in the program wherertioe eccurred and see if
you can figure out what happened. These are some of the most@onuntime errors:

NameError: You are trying to use a variable that doesn’t exist in theentrenvironment.
Remember that local variables are local. You cannot reféngm from outside the
function where they are defined.

TypeError: There are several possible causes:

* You are trying to use a value improperly. Example: indexinstring, list, or
tuple with something other than an integer.

e There is a mismatch between the items in a format string la@dtéms passed
for conversion. This can happen if either the number of itemss not match
or an invalid conversion is called for.

A.2. Runtime errors 239

* You are passing the wrong number of arguments to a functionesthod. For
methods, look at the method definition and check that the gasameter is
self . Then look at the method invocation; make sure you are imgpkine
method on an object with the right type and providing the pt#mguments
correctly.

KeyError: You are trying to access an element of a dictionary using ahtatythe dictio-
nary does not contain.

AttributeError: You are trying to access an attribute or method that doesdigit €heck
the spelling! You can usdir to list the attributes that do exist.

If an AttributeError indicates that an object hémeType , that means that it idone.
One common cause is forgetting to return a value from a fanctif you get to
the end of a function without hitting @turn statement, it returnSone. Another
common cause is using the result from a list method,ddte , that returndNone.

IndexError: The index you are using to access a list, string, or tuple esitgr than its
length minus one. Immediately before the site of the erdd, &print statement to
display the value of the index and the length of the arrayhésarray the right size?
Is the index the right value?

The Python debuggepdb) is useful for tracking down Exceptions because it allows yo
to examine the state of the program immediately before tlar.eYou can read aboutdb
atdocs.python.org/lib/module-pdb.html

A.2.4 |added so manyrint statements I get inundated with output.

One of the problems with usingsint statements for debugging is that you can end up
buried in output. There are two ways to proceed: simplifyah&put or simplify the pro-
gram.

To simplify the output, you can remove or comment it ~ statements that aren’t help-
ing, or combine them, or format the output so it is easier weustand.

To simplify the program, there are several things you carfitst, scale down the problem
the program is working on. For example, if you are searchitistasearch amalllist. If
the program takes input from the user, give it the simplgsttithat causes the problem.

Second, clean up the program. Remove dead code and re@gheiprogram to make it
as easy to read as possible. For example, if you suspecthéhatroblem is in a deeply
nested part of the program, try rewriting that part with dienstructure. If you suspect a
large function, try splitting it into smaller functions atekting them separately.

Often the process of finding the minimal test case leads ydletdoug. If you find that a
program works in one situation but not in another, that gjx@sa clue about what is going
on.

Similarly, rewriting a piece of code can help you find subtlgé. If you make a change
that you think shouldn't affect the program, and it doest tizen tip you off.

240 Appendix A. Debugging

A.3 Semantic errors

In some ways, semantic errors are the hardest to debug,deettaiinterpreter provides no
information about what is wrong. Only you know what the paogris supposed to do.

The first step is to make a connection between the progranatekthe behavior you are
seeing. You need a hypothesis about what the program isligatoing. One of the things
that makes that hard is that computers run so fast.

You will often wish that you could slow the program down to lamrspeed, and with some
debuggers you can. But the time it takes to insert a few waltqmlprint statements is
often short compared to setting up the debugger, insertidg@moving breakpoints, and
“stepping” the program to where the error is occurring.

A.3.1 My program doesn’t work.
You should ask yourself these questions:

« |Is there something the program was supposed to do but wiebnid seem to be
happening? Find the section of the code that performs tinatifin and make sure it
is executing when you think it should.

« Is something happening that shouldn’t? Find code in yooggam that performs
that function and see if it is executing when it shouldn't.

« |s a section of code producing an effect that is not what wpeeted? Make sure that
you understand the code in question, especially if it ingslnvocations to functions
or methods in other Python modules. Read the documentatiché functions you
invoke. Try them out by writing simple test cases and chegkire results.

In order to program, you need to have a mental model of howrprog work. If you write
a program that doesn’t do what you expect, very often thelprolis not in the program;
it's in your mental model.

The best way to correct your mental model is to break the pragnto its components
(usually the functions and methods) and test each companéapendently. Once you
find the discrepancy between your model and reality, you obre ghe problem.

Of course, you should be building and testing componentsoasdgvelop the program.
If you encounter a problem, there should be only a small amofunew code that is not
known to be correct.

A.3.2 I've got a big hairy expression and it doesn’t do what | &pect.

Writing complex expressions is fine as long as they are readhbt they can be hard to
debug. Itis often a good idea to break a complex expresstoraiseries of assignments to
temporary variables.

For example:

A.3. Semantic errors 241

self.hands]i].addCard(self.hands[self.findNeighbor(i)].popCard())
This can be rewritten as:

neighbor = self.findNeighbor(i)
pickedCard = self.hands[neighbor].popCard()
self.hands]i].addCard(pickedCard)

The explicit version is easier to read because the variadohees provide additional doc-
umentation, and it is easier to debug because you can chedibs of the intermediate
variables and display their values.

Another problem that can occur with big expressions is thatdarder of evaluation may
not be what you expect. For example, if you are translatiegettpressiony- into Python,
you might write:

y = x | 2 * math.pi

That is not correct because multiplication and divisionehthe same precedence and are
evaluated from left to right. So this expression compute.

A good way to debug expressions is to add parentheses to mela@der of evaluation
explicit:

y = x [(2 * math.pi)

Whenever you are not sure of the order of evaluation, use teses. Not only will the
program be correct (in the sense of doing what you intendkedi] also be more readable
for other people who haven't memorized the rules of preceelen

A.3.3 I've got a function or method that doesn’t return what | expect.

If you have areturn statement with a complex expression, you don't have a chance
print thereturn value before returning. Again, you can use a temporary bkriaFor
example, instead of:

return self.hands[i].removeMatches()
you could write:

count = self.hands[i].removeMatches()
return count

Now you have the opportunity to display the valueaint before returning.

A.3.4 I'mreally, really stuck and | need help.

First, try getting away from the computer for a few minutesnfputers emit waves that
affect the brain, causing these symptoms:

242 Appendix A. Debugging

« Frustration and rage.

* Superstitious beliefs (“the computer hates me”) and nagiinking (“the program
only works when | wear my hat backward”).

* Random walk programming (the attempt to program by writrigry possible pro-
gram and choosing the one that does the right thing).

If you find yourself suffering from any of these symptoms, getand go for a walk. When
you are calm, think about the program. What is it doing? Whasaree possible causes
of that behavior? When was the last time you had a working pragand what did you do
next?

Sometimes it just takes time to find a bug. | often find bugs wham away from the
computer and let my mind wander. Some of the best places tbfigsl are trains, showers,
and in bed, just before you fall asleep.

A.3.5 No, I really need help.

It happens. Even the best programmers occasionally get. sBametimes you work on a
program so long that you can't see the error. A fresh pair ebey just the thing.

Before you bring someone else in, make sure you are prepéoedprogram should be as
simple as possible, and you should be working on the smatipst that causes the error.
You should haveyrint statements in the appropriate places (and the output thuelupe
should be comprehensible). You should understand thegmmoblell enough to describe it
concisely.

When you bring someone in to help, be sure to give them therirdtion they need:

« If there is an error message, what is it and what part of tbgnam does it indicate?

» What was the last thing you did before this error occurred? tWileae the last lines
of code that you wrote, or what is the new test case that fails?

* What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what you duatd done to find it
faster. Next time you see something similar, you will be dblénd the bug more quickly.

Remember, the goal is not just to make the program work. Theigto learn how to make
the program work.

Appendix B

Contributor List

Contributor List for “Python for Informatics”

Bruce Shields for copy editing early drafts, Sarah Heggeyest Cherry, Sarah Kathleen
Barbarow, Andrea Parker, Radaphat Chongthammakun, Megam Hirby Urner, Sarah
Kathleen Barbrow, Katie Kujala, Noah Botimer, Emily Alindiélark Thompson-Kular,
James Perry,

Contributor List for “Think Python”

(Allen B. Downey)

More than 100 sharp-eyed and thoughtful readers have ssnggestions and corrections
over the past few years. Their contributions, and enthosias this project, have been a
huge help.

For the detail on the nature of each of the contributions fthese individuals, see the
“Think Python” text.

Lloyd Hugh Allen, Yvon Boulianne, Fred Bremmer, Jonah Cqhdithael Conlon, Benoit
Girard, Courtney Gleason and Katherine Smith, Lee Harre3akaylin, David Kershaw,
Eddie Lam, Man-Yong Lee, David Mayo, Chris McAloon, MatthéwMoelter, Simon
Dicon Montford, John Ouzts, Kevin Parks, David Pool, Midh&ehmitt, Robin Shaw,
Paul Sleigh, Craig T. Snydal, lan Thomas, Keith VerheydetePWinstanley, Chris Wro-
bel, Moshe Zadka, Christoph Zwerschke, James Mayer, Haptigkfee, Angel Arnal,
Tauhidul Hoque and Lex Berezhny, Dr. Michele Alzetta, Andijtdfiell, Kalin Harvey,
Christopher P. Smith, David Hutchins, Gregor Lingl, Juletd?s, Florin Oprina, D. J. We-
bre, Ken, Ivo Wever, Curtis Yanko, Ben Logan, Jason Armgjrdrouis Cordier, Brian
Cain, Rob Black, Jean-Philippe Rey at Ecole Centrale Ra&yn Mader at George Wash-
ington University made a number Jan Gundtofte-Bruun, AbaVit and Alexis Dinno,

244 Appendix B. Contributor List

Charles Thayer, Roger Sperberg, Sam Bull, Andrew CheunGopgy Capel, Alessandra,
Wim Champagne, Douglas Wright, Jared Spindor, Lin Peiheray, Ragtvedt, Torsten
Hubsch, Inga Petuhhov, Arne Babenhauserheide, Mark E. &aSicbtt Tyler, Gordon

Shephard, Andrew Turner, Adam Hobart, Daryl Hammond andlS8Zimmerman, George
Sass, Brian Bingham, Leah Engelbert-Fenton, Joe Funkey-Ciieo Chen, Jeff Paine, Lu-
bos Pintes, Gregg Lind and Abigail Heithoff, Max Hailper@hotipat Pornavalai, Stanis-
law Antol, Eric Pashman, Miguel Azevedo, Jianhua Liu, Nidkdés Martin Zuther, Adam

Zimmerman, Ratnakar Tiwari, Anurag Goel, Kelli Kratzer, td&riffiths, Roydan Ongie,

Patryk Wolowiec, Mark Chonofsky, Russell Coleman, Wei Hyiakaren Barber, Nam

Nguyen, Séphane Morin, and Paul Stoop.

Index

abecedarian, 63
abs function, 178
absolute path, 128
access, 90
accumulator, 60
string, 225
sum, 57
add method, 214
algorithm, 7, 13
Euclid, 190
MD5, 137
aliasing, 96, 97, 103, 193, 195, 218
copying to avoid, 100
alternative execution, 31
ambiguity, 10
and operator, 30
API, 154
append method, 92, 98, 225, 226
argument, 39, 43, 46, 49, 97
gather, 179
keyword, 117
list, 97
optional, 68, 94
variable-length tuple, 179
argument scatter, 179
arguments, 133
arithmetic operator, 18
assert statement, 206
assignment, 25, 89
item, 64, 90, 116
multiple, 59, 181
tuple, 117, 124, 178
assignment statement, 16
attribute, 175
_dict__, 217
class, 222, 230
initializing, 217

instance, 192, 197, 222, 230
AttributeError, 197, 239
available colors, 199, 219

Bangladesh, national flag, 198
BeautifulSoup, 143, 144
big, hairy expression, 240
birthday, 207
bisection, debugging by, 59
bitwise operator, 18
body, 36, 43, 49, 52
bool type, 29
boolean expression, 29, 36
boolean function, 186, 201
boolean operator, 66
borrowing, subtraction with, 205
bounding box, 198
bracket

squiggly, 105
bracket operator, 61, 90, 116
branch, 31, 36
break statement, 53
bug, 7, 13

worst, 218
BY-SA, v

calculator, 14

call graph, 188

Canvas object, 198

Card class, 222

card, playing, 221

carrying, addition with, 202, 204
case-sensitivity, variable names, 25
catch, 86

CC-BY-SA, v

celsius, 33

central processing unit, 12

246

Index

chained conditional, 31, 36
character, 61
checksum, 136, 137
child class, 227, 231
choice function, 41
class, 191, 197

Card, 222

child, 227, 231

Date, 207

Deck, 225

Hand, 227

Kangaroo, 218

parent, 227

Point, 191, 213

Rectangle, 193

Time, 201
class attribute, 222, 230
class definition, 191
class diagram, 229, 231
class object, 192, 197
close method, 85, 135
cmp function, 224
__.cmp._ method, 224
Collatz conjecture, 53
colon, 43, 236
color list, 199, 219
comment, 22, 26
commutativity, 21, 215
comparable, 115, 124
compare function, 178
comparison

string, 66

tuple, 116, 224
comparison operator, 29
compile, 5, 12
composition, 46, 50, 184, 225
compound statement, 30, 36
concatenation, 21, 26, 63, 64, 95, 180

list, 91, 98
condition, 30, 36, 52, 237
conditional, 236

chained, 31, 36

nested, 32, 37
conditional execution, 30
conditional operator, 223

conditional statement, 30, 36, 186
connect function, 157
consistency check, 112, 205
constraint, 175
continue statement, 55
contributors, 243
conversion

type, 40
copy

deep, 196

shallow, 196

slice, 64, 92

to avoid aliasing, 100
copy module, 195
copying objects, 195
count method, 68
counter, 60, 65, 73, 80, 107, 181
counting and looping, 65
CPU, 12
Creative Commons License, v
cursor, 175
cursor function, 157
Czech Republic, national flag, 199

data structure, 123, 125
database, 155
indexes, 155
database browser, 175
database normalization, 175
Date class, 207
datetime module, 207
dead code, 178, 188, 239
debugger (pdb), 239
debugging, 7, 11, 13, 24, 35, 49, 70, 86, 99,
112,123, 187,197, 205, 217, 229,
235
by bisection, 59
emotional response, 11, 242
experimental, 8
superstition, 242
Deck class, 225
deck, playing cards, 225
declaration, 181, 188
decorate-sort-undecorate pattern, 117
decrement, 51, 59
deep copy, 196, 198

Index 247

deepcopy function, 196 duplicate, 137

def keyword, 43

default value, 42, 187, 188, 213 element, 89, 102
avoiding mutable, 218 element deletion, 93

definition ElementTree, 148, 154
class, 191 find, 148
function, 43 findall, 149

del operator, 93 fromstring, 148

deletion, element of list, 93 ~get, 149

delimiter, 94, 103 elif keyword, 31

deterministic, 41, 42 ellipses, 44

else keyword, 31
email address, 118
embedded object, 194, 197, 218

development plan
incremental, 182, 236
planned, 204

copying, 196
prototype and patch, 202, 204 : .
random walk programming, 124, 242 emo'uonal debugging, 11, 242
empty list, 89

diagram
call graph, 188
class, 229, 231
object, 192, 194, 196, 198, 201, 223
stack, 98, 185
state, 16, 72, 90, 96, 97, 122, 102, 194,
196, 201, 223
__dict__ attribute, 217

empty string, 73, 95
encapsulation, 65, 184, 228
encode, 221, 230

encrypt, 221

nd of line character, 86
quivalence, 96

equivalent, 102

dict function, 105 errorcomp"e_time, 235
dictionary, 105, 113, 119, 239 runtime, 8, 24, 35, 235
looping with, 109 semantic, 8, 16, 25, 72, 235, 240
traversal, 119, 217 shape, 123
directory, 127 syntax, 7, 24, 235
current, 136 error message, 7, 8, 11, 16, 24, 235
cwd, 136 Euclid’s algorithm, 190
working, 128, 136 evaluate, 19
dispatch exception, 8, 13, 24, 235, 238
type-based, 216 AttributeError, 197, 239
dispatch, type-based, 215 IndexError, 62, 72, 91, 239
divisibility, 20 IOError, 84
division KeyError, 106, 239
floating-point, 19 NamekError, 180, 238
floor, 19, 36 OverflowError, 36
divmod, 178, 204 TypeError, 61, 64, 70, 116, 179, 212,
docstring, 191 238
documentation, 13 UnboundLocalError, 181
dot notation, 42, 50, 67, 192, 210, 223 ValueError, 22, 118
Doyle, Arthur Conan, 8 executable, 6, 12

DSU pattern, 117, 125 exists function, 128

Index

248
experimental debugging, 8, 124 dict, 105
expression, 18, 19, 26 exists, 128
big and hairy, 240 find, 65
boolean, 29, 36 float, 40
extend method, 93 getattr, 217
eXtensible Markup Language, 154 getcwd, 127
. hasattr, 197, 217
fahrenheit, _33 int, 40
Ealse special value, 29 isinstance, 215
file, 77 len, 62, 106
open, 78 list, 94
regt_jmg, 80 log, 43
writing, 85 max, 179, 180
file handle, 78 min, 179, 180
file name, 127 open, 78, 84
filter pattern, 81 pope’n 1'35
find function, 65 randini a1
flag, 73, 180, 188 randorr; a1
float function, 40 raw ian;t 21
float type, 15 reloiad 2é7
floating-point, 25 ’
floating-point division, 19 repr, 86
floor division, 19, 26, 36 reversed, 123
flow of execution, 45, 50, 52, 187, 230, 238 Shuffle, 226
folder, 127 sorted, 123
for loop, 62, 91 sqrt, 43, 183
for statement, 55 str, 40
foreign key, 175 sum, 180
formal language, 9, 13 tuple, 115
type, 197

format operator, 69, 73, 238
format sequence, 69, 73
format string, 69, 73 function call, 39, 49
frame, 185, 188 function composition, 184
Free Documentation License, GNU, vii, viiifunction definition, 43, 45, 49
frequency, 107 function frame, 185, 188
letter, 126 function object, 44
fruitful function, 47, 49 function parameter, 46
frustration, 242 function syntax, 210
function, 43, 49, 209 function type
abs, 178 modifier, 203
choice, 41 pure, 202
cmp, 224 function, fruitful, 47
compare, 178 function, math, 42
connect, 157 function, reasons for, 48
cursor, 157 function, trigonometric, 43
deepcopy, 196

function argument, 46

function, tuple as return value, 178

Index

249

function, void, 47
functional programming style, 204, 206

gather, 125, 179
GCD (greatest common divisor), 190
generalization, 205
get method, 108
getattr function, 217
getcwd function, 127
global statement, 181
global variable, 180, 188
update, 181

GNU Free Documentation License, vii, viii

greatest common divisor (GCD), 190
guardian pattern, 34, 37, 71, 72, 188

Hand class, 227
hanging, 237
hardware, 3

architecture, 3
HAS-A relationship, 229, 231
hasattr function, 197, 217
hash function, 113
hashable, 115, 121, 124
hashing, 136
hashtable, 106, 113
header, 43, 49, 236
Hello, World, 11
help utility, 13
hexadecimal, 192
high-level language, 5, 12
histogram, 107, 113
Holmes, Sherlock, 8
HTML, 143
hypotenuse, 184

identical, 102

identity, 96

if statement, 30

immutability, 64, 73, 97, 115, 122
implementation, 107, 113

import statement, 49

in operator, 66, 91, 106

increment, 51, 59, 203, 211
incremental development, 188, 236
indentation, 43, 210, 236

index, 61, 72, 73, 90, 102, 105, 175, 238
looping with, 91
negative, 62
slice, 63, 92
starting at zero, 61, 90
IndexError, 62, 72, 91, 239
infinite loop, 52, 60, 237
inheritance, 227, 230
init method, 212, 217, 222, 225, 227
initialization (before update), 51
instance, 192, 197
as argument, 193
as return value, 194
instance attribute, 192, 197, 222, 230
instantiation, 192
int function, 40
int type, 15
integer, 25
interactive mode, 6, 12, 18, 47
interface, 230
interpret, 5, 12
invariant, 205, 206
invocation, 67, 73
IOError, 84
is operator, 96, 196
IS-A relationship, 229, 231
isinstance function, 215
item, 73, 89
dictionary, 113
item assignment, 64, 90, 116
item update, 91
items method, 119
iteration, 51, 59

join method, 95, 225

Kangaroo class, 218
key, 105, 113
key-value pair, 105, 113, 119
keyboard input, 21
KeyError, 106, 239
keys method, 110
keyword, 17, 25, 236
def, 43
elif, 31
else, 31

250

Index

keyword argument, 117

language
formal, 9
high-level, 5
low-level, 5
natural, 9
programming, 5
safe, 8

len function, 62, 106

letter frequency, 126

letter rotation, 75

Linux, 9

list, 89, 94, 102, 122
as argument, 97
concatenation, 91, 98
copy, 92
element, 90
empty, 89
function, 94
index, 91
membership, 91
method, 92
nested, 89, 91
of objects, 225
operation, 91
repetition, 92
slice, 92
traversal, 91, 102

literalness, 10

local variable, 180, 188

log function, 43

logical key, 175

logical operator, 29, 30

lookup, 113

loop, 52
condition, 237
for, 62, 91
infinite, 52, 237
maximum, 57
minimum, 57
nested, 108, 113, 225
traversal, 62
while, 51

looping
with dictionaries, 109

with indices, 91

with strings, 65
looping and counting, 65
low-level language, 5, 12
Is (Unix command), 135

machine code, 12
main memory, 12
map to, 221
mapping, 90
math function, 42
max function, 179, 180
McCloskey, Robert, 63
MD?5 algorithm, 137
membership
dictionary, 106
list, 91
set, 106
mental model, 240
metaphor, method invocation, 211
method, 67, 73, 209, 218
cmp., 224
_str__, 213, 225
add, 214
append, 92, 98, 225, 226
close, 85, 135
count, 68
extend, 93
get, 108
init, 212, 222, 225, 227
items, 119
join, 95, 225
keys, 110
mro, 230
pop, 93, 226
radd, 215
read, 135
readline, 135
remove, 93
sort, 93, 99, 116, 226
split, 94, 118
string, 74
values, 106
void, 93
method resolution order, 230
method syntax, 210

Index 251

method, list, 92 printing, 210
min function, 179, 180 object code, 6, 12
mnemonic, 23, 25 object diagram, 192, 194, 196, 198, 201,
model, mental, 240 223
modifier, 203, 206 object-oriented language, 217
module, 42, 50 object-oriented programming, 209, 218, 227

copy, 195 open function, 78, 84

datetime, 207 operand, 18, 26

os, 127 operator, 25

random, 41, 226 and, 30

reload, 237 bitwise, 18

sqlite3, 156 boolean, 66

Visual, 218 bracket, 61, 90, 116

vpython, 218 comparison, 29

World, 198 conditional, 223
module object, 42 del, 93
modulus operator, 20, 26 format, 69, 73, 238
Monty Python and the Holy Grail, 202 in, 66, 91, 106
MP3, 136 is, 96, 196
mro method, 230 logical, 29, 30
multiline string, 236 modulus, 20, 26
multiple assignment, 59, 181 not, 30
multiplicity (in class diagram), 229, 231 or, 30
mutability, 64, 90, 92, 97, 115, 122, 182, overloading, 218

195 slice, 63, 74, 92, 98, 116
mutable object, as default value, 218 string, 21
operator overloading, 214, 224

NameError, 180, 238 operator, arithmetic, 18
natural language, 9, 13 optional argument, 68, 94
negative index, 62 optional parameter, 41, 186, 213
nested conditional, 32, 37 or operator, 30
nested list, 89, 91, 102 order of operations, 20, 25, 241
nested loops, 108, 113 0s module, 127
newline, 21, 79, 85, 86, 225 other (parameter name), 212
None special value, 47, 57, 93, 94, 178, 188verflowError, 36
normalization, 175 overloading, 218
not operator, 30 override, 42, 187, 188, 213, 224, 227, 230

number, random, 41
palindrome, 189

object, 64, 73, 96, 102, 191 parameter, 46, 49, 97, 180
Canvas, 198 gather, 179
class, 192 optional, 41, 186, 213
copying, 195 other, 212
embedded, 194, 197, 218 self, 211
function, 44 parent class, 227, 231

mutable, 195 parentheses

252 Index

argument in, 39 prompt, 6,12, 21

empty, 43, 67 prose, 10

matching, 7 prototype and patch, 202, 204, 206

overriding precedence, 20 pseudorandom, 41, 42

parameters in, 46, 180 pure function, 202, 206

parent class in, 227 Pythagorean theorem, 182

tuples in, 115 Python 3.0, 11, 19, 21
parse, 9, 13 Python debugger (pdb), 239
parsing python.org, 13

HTML, 143 Pythonic, 85, 86
pass statement, 30
path, 127 QA, 84, 86

absolute, 128, 135 Quality Assurance, 84, 86

relative, 128, 136 quotation mark, 11, 15, 16, 64, 236
pattern

decorate-sort-undecorate, 117 radq method, 215

DSU. 117 radian, 43

o rage, 242

filter, 81

raise statement, 206
randint function, 41
random function, 41

guardian, 34, 37,71, 72,188
search, 65, 73

swap, 117 random module, 41, 226
pdb (Python debugger), 239 random number, 41
PEMDAS‘ 20 random walk programming, 124, 242
persistence, 77 rank. 221
pi, 43 raw_input function, 21
pipe, 135, 136 read method, 135
planned development, 204, 206 readline method. 135
playing card, Anglo-American, 221 Rectangle class, 193
poetry, 10 redundancy, 10
Point class, 191, 213 reference, 97, 103
point, mathematical, 191 aliasing, 97
poker, 221, 231 relation, 175
polymorphism, 216, 218, 229 relative path, 128
pop method, 93, 226 reload function, 237
popen function, 135 remove method, 93
port, 144 repetition
portability, 5, 12 list, 92
postcondition, 187, 230 repr function, 86
precedence, 26, 241 representation, 191, 193, 221
precondition, 187, 230 return statement, 177, 241
primary key, 175 return value, 39, 49, 177, 194
print statement, 11, 13, 213, 239 tuple, 178
problem solving, 4, 12 reversed function, 123
program, 7, 13 rotation, letter, 75

programming language, 5 rules of precedence, 20, 26

Index 253

running pace, 14, 207 sqrt, 183
runtime error, 8, 24, 35, 235, 238 sqgrt function, 43
squiggly bracket, 105
safe language, 8 stack diagram, 98, 185, 188, 189
sanity check, 112 state diagram, 16, 25, 72, 90, 96, 97, 122,
scaffolding, 112, 183, 188 192, 194, 196, 201, 223
scatter, 125, 179 statement, 18, 25
script, 6, 12 assert, 206
script mode, 6, 12, 18, 47 assignment, 16
search pattern, 65, 73 break, 53
secondary memory, 12, 77 compound, 30
self (parameter name), 211 conditional, 30, 36, 186
semantic error, 8, 13, 16, 25, 72, 235, 240 continue, 55
semantics, 8, 13, 209 for, 55, 62, 91
sequence, 61, 73, 89, 94, 115, 122 global, 181

Service Oriented Architecture, 154 it 30
set membership, 106 ’

sexagesimal, 204 g;zg,rtégg
EE:LI)Z\?VlC;;y’ 196, 198 pr?nt, 11, 13, 213, 239
shape error, 123 raise, 206
shell, 135, 136 return, 177, 241
short circuit, 34, 37 try, 84
shuffle function, 226 while, 51
sine function, 43 step SIZ?, 74
singleton, 115, 124 str function, 40
slice, 73 __str__method, 213, 225
copy, 64, 92 string, 15, 25, 94, 122
list, 92 accumulator, 225
string, 63 comparison, 66
tuple, 116 empty, 95
update, 92 immutable, 64
slice operator, 63, 74, 92, 98, 116 method, 67
SOA, 154 multiline, 236
socket, 144, 145 operation, 21
sort method, 93, 99, 116, 226 slice, 63
sorted function, 123 string method, 74
source code, 6, 12 string representation, 86, 213
special case, 203 string type, 15
special value structure, 9
False, 29 subclass, 227
None, 47, 57, 93, 94, 178, 188 subject, 211, 218
True, 29 subtraction with borrowing, 205
spider, 145 suit, 221
split method, 94, 118 sum function, 180

sqlite3 module, 156 superclass, 227

254 Index

superstitious debugging, 242 user-defined, 191, 201
Swampy, 198, 232 type conversion, 40
swap pattern, 117 type function, 197
syntax, 7, 13, 209, 236 type-based dispatch, 215, 216, 218
syntax error, 7, 13, 24, 235 TypeError, 61, 64, 70, 116, 179, 212, 238
typographical error, 124
Tagger, 232
temperature conversion, 33 UML, 229
temporary variable, 177, 188, 241 UnboundLocalError, 181
test case, minimal, 239 underscore character, 17
testing Unicode, 158
incremental development, 182 Unix command
interactive mode, 6 Is, 135
knowing the answer, 183 update, 51, 59
minimal test case, 239 global variable, 181
text file, 86 item, 91
Time class, 201 slice, 92
token, 9, 13 use before def, 24, 45
traceback, 33, 35, 37, 185, 188, 238 user-defined type, 191, 201

traversal, 62, 65, 71, 73, 107, 109, 117
dictionary, 217
list, 91

traverse
dictionary, 119

trigonometric function, 43

True special value, 29

value, 15, 25, 96, 113
default, 42, 187
tuple, 178

ValueError, 22, 118

values method, 106

variable, 16, 25

try statement, 84 |9|0b|c’:l|,1;§0
tuple, 115, 122, 124, 175, 178 ocal,
as key in dictionary, 121 temporary, 177, 188, 241
updating, 51

assignment, 117
comparison, 116, 224
in brackets, 122
singleton, 115
slice, 116
tuple assignment, 124, 178
tuple function, 115

variable-length argument tuple, 179
veneer, 226, 230

Visual module, 218

void function, 47, 49

void method, 93

vpython module, 218

TurtleWorld, 232 walk, 136
type, 15, 25 while loop, 51
bool, 29 whitespace, 35, 49, 86, 236
O.“Ct’ 105 working directory, 128
file, 77 World module, 198
float, 15 worst bug, 218
int, 15
list, 89 XML, 154
str, 15

tuple, 115 zero, index starting at, 61, 90

