Introduction

In the civil engineering sciences bridges are often modeled as so-called trusses. Formally, a truss is a set of points P_{i} which are connected by edges $E_{k}=$ $\left(P_{i}, P_{j}\right)$. In that respect a truss is just a directed graph. The points resemble so-called joints and the edges resemble so-called members of the truss. We give an example of such a truss in the next picture:

$\stackrel{\rightharpoonup}{1}$

The joints are enumerated as follows:

The first $n=18$ joints P_{1}, \ldots, P_{18} are free to move. These joints are called free joints. The additional $p=4$ joints P_{19}, \ldots, P_{22} are assumed to be fixed and are thus called fixed joints. In the above truss we have $m=55$ members in total.
We want to know, how the bridge reacts to loads. One particular load that has to be considered, is the gravitational force. It can be modeled by force vectors F_{i} that act on each free joint P_{i}. In this exercise, we assume the force vectors F_{1}, \ldots, F_{18} are given by

$$
\begin{equation*}
F_{i}=\binom{f_{i}}{g_{i}}=\binom{0}{-9.81} \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

The force acting on the joints will result in a displacement ΔP_{i} of each free joint P_{i}. The position of each joint is given by an x - and a y-coordinate, i.e.,

$$
\begin{equation*}
P_{i}=\binom{x_{i}}{y_{i}} \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

The displacements ΔP_{i} are given by a horizontal and a vertical component.

$$
\begin{equation*}
\Delta P_{i}=\binom{\Delta x_{i}}{\Delta y_{i}} \quad i=1, \ldots, n \tag{3}
\end{equation*}
$$

The truss itself can be modeled by a so-called stiffness matrix $A \in \mathbb{R}^{2 n \times 2 n}$. This matrix determines, how the bridge will react to loads. If we define the vector $b \in \mathbb{R}^{2 n}$ by

$$
b=\left(\begin{array}{c}
F_{1} \tag{4}\\
F_{2} \\
\vdots \\
F_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
g_{1} \\
f_{2} \\
g_{2} \\
\vdots \\
f_{n} \\
g_{n}
\end{array}\right)
$$

and solve the linear system

$$
\begin{equation*}
A u=b, \tag{5}
\end{equation*}
$$

for $u \in \mathbb{R}^{2 n}$, then the displacements are given by

$$
u=\left(\begin{array}{c}
\Delta P_{1} \tag{6}\\
\Delta P_{2} \\
\vdots \\
\Delta P_{n}
\end{array}\right)=\left(\begin{array}{c}
\Delta x_{1} \\
\Delta y_{1} \\
\Delta x_{2} \\
\Delta y_{2} \\
\vdots \\
\Delta x_{n} \\
\Delta y_{n}
\end{array}\right)
$$

Exercise

Simulate and investigate the reaction of the above truss to the forces F_{1}, \ldots, F_{18} acting on the free joints using the C-XSC library.

1. Download the C-XSC library from the following homepage:

> http://www.math.uni-wuppertal.de/~xsc/
and install it by running the install_cxsc script. Make sure you choose the static library installation. If you choose the dynamic library installation, you might have problems when compiling your solution. If you do, look at the provided examples to adapt the compilation.
2. Make yourself familiar with the data types real, rvector, rmatrix, interval, ivector and imatrix.
3. Download the following files from the homepage of the lecture:

Makefile, main.cpp, truss.hpp, truss.cpp, truss.txt
and copy them into your source folder. A call to the function stiffness defined in truss.hpp will return the stiffness matrix A of the above truss as an rmatrix. The file main. cpp contains a main function that uses stiffness to load A into a variable.
4. Solve the linear equation system (5). Represent u and b as an rvector. Implement the Gauss elimination to solve the system in the main.cpp file. The Gauss elimination is given by the following pseudo-code:

```
INPUT A: matrix of dimension n-by-n
    b: vector of dimension n
OUTPUT u: vector of dimension n, solution of A*u = b
VARIABLES y: vector of dimension n
```

ALGORITHM

```
FOR i = 1,...,n
    FOR j = i,...,n
        FOR k = 1,...,i-1
            A[i][j] = A[i][j] - A[i][k] * A[k][j]
        END
    END
    FOR j = i+1,...,n
        FOR k = 1,...,i-1
            A[j][i] = A[j][i] - A[j][k] * A[k][i]
            END
            A[j][i] = A[j][i] / A[i][i]
        END
END
FOR i = 1,...,n
        y[i] = b[i]
        FOR k = 1,...,i-1
            y[i] = y[i] - A[i][k] * y[k]
        END
END
```

```
FOR i = n,...,1
    x[i] = y[i]
    FOR k = i+1,\ldots,n
        x[i] = x[i] - A[i][k] * x[k]
    END
    x[i] = x[i] / A[i][i]
END
```

Implement this algorithm using the C-XSC type rvector. What is the maximal vertical displacement of of the joints, and for which joints is the maximal displacement attained. What does that mean?
5. Due to measurement uncertainty and round-off errors, the result obtained in the previous part of the exercise can actually be inaccurate. Study a worst-case scenario, in which all entries of the vector b are uncertain by 0.1% and in which the components of A are subject to computational round-off errors.
To study this worst case scenario, represent A as an interval matrix $[A]$ and b as an interval vector [b] using the C-XSC types imatrix and ivector. Solve the linear interval system

$$
\begin{equation*}
[A][x]=[b] \tag{7}
\end{equation*}
$$

for the interval vector $[x]$ by implementing the Gauss elimination in interval arithmetic. What maximal vertical displacement do you get by this? How do you judge the quality of the interval solution $[x]$?
6. Usually, naive implementations of standard algorithms in interval arithmetic yield solution intervals that are too big. This is also the case for the Gauss elimination. Download the following files and copy them into your source folder.

```
ilss.hpp, ilss.cpp, lss_aprx.hpp, lss_aprx.cpp
```

Modify the program target in the Makefile to include the object files related to those ones (ilss.cpp and lss_aprx.cpp) so that your compilation keeps working.
Study the worst-case scenario in the previous section again, using the function LSS defined in ilss.hpp. The function LSS solves linear interval systems in a more appropriate way. What maximal vertical displacement do you get now? How good is the interval solution $[x]$?

Delivery format

You have to hand your solution using the PACA system available at:
http://paca.ime.usp.br/

1. Software source code

You should package all the files required to compile and run your solution. This will typically include the following files:

```
Makefile, main.cpp, truss.hpp, truss.cpp, truss.txt, ilss.hpp,
    ilss.cpp, lss_aprx.hpp, lss_aprx.cpp
```

If you have any other file required, remember to pack it as well. Please DO NOT include generated binaries or temporary files (such as .o files). One must be able to just run make all to compile your program.
2. A work report in PDF

To answer the questions of the exercise, you should produce a work report document. It should contain an evaluation of the work required, of your own work and of the result. It should also present the answers for all the questions of the exercise and a critical analysis of the advantages and disadvantages of this computing concept.

You should hand over a single tarball (Gzipped tar file) that contain all those files. The name of that file must be in the following format:

```
your-name-ep1.tar.gz
```

and it should extract to a folder of the same name (without the extensions) that contain all the files.

Heb pret!

