Level Set Based Simulations of Two-Phase Oil-Water Flows in Pipes

Myungjoo Kang, ${ }^{1}$ Hyeseon Shim, ${ }^{2}$ and Stanley Osher ${ }^{3}$

Received January 8, 2006; accepted in (revised form) March 13, 20066; Published online October 17, 2006

Abstract

We simulate the axisymmetric pipeline transportation of oil and water numerically under the assumption that the densities of the two fluids are different and that the viscosity of the oil core is very large. We develop the appropriate equations for core-annular flows using the level set methodology. Our method consists of a finite difference scheme for solving the model equations, and a level set approach for capturing the interface between two liquids (oil and water). A variable density projection method combined with a TVD Runge-Kutta scheme is used to advance the computed solution in time. The simulations succeed in predicting the spatially periodic waves called bamboo waves, which have been observed in the experiments of [Bai et al. (1992) J. Fluid Mech. 240, 97-142.] on up-flow in vertical core flow. In contrast to the stable case, our simulations succeed in cases where the oil breaks up in the water, and then merging occurs. Comparisons are made with other numerical methods and with both theoretical and experimental results.

KEY WORDS: level set methods; two-phase flows; core-annular flows.

1. INTRODUCTION

Core-annular flow is a pressure-driven flow through a pipe of one fluid at the core and another fluid in the annulus. This arises naturally for fluids with a high ratio of viscosities because higher viscosity materials tend to become encapsulated by lower viscosity material. An industrial application is the lubricated pipelining of crude oil by the addition of water. We want to efficiently transport a very viscous liquid which, on its own,

[^0]would require costly work. However, when the viscous fluid along the wall is replace by a much less viscous immiscible fluid, such as water, then the work required for transportation is significantly lowered.

We compare our results to the experimental results of Bai et al. [1]. Their oil density is $0.905 \mathrm{~g} \mathrm{~cm}^{-3}$, oil viscosity is 6.01 poise, water density is $0.995 \mathrm{~g} \mathrm{~cm}^{-3}$, and water viscosity is 0.01 poise. The waves are axisymmetric and occur in a very robust regime of up-flow, occupying a large area in the up-flow charts shown in Figs. 16.1-16.4 of Joseph and Renardy [6] and Fig. 2.

The average length of a bamboo wave decreases monotonically as the oil input is increased for fixed flow rate of water. Disturbed bamboo waves are observed when the driving pressure gradient is relatively large and the flow is fast. They are observed in both up-flow and down-flow. The main difference between up-flow and down-flow is that in down-flow, the driving pressure gradient and gravity act in the same direction, making water the heavier fluid which falls while the buoyancy holds the oil back, while in up-flow gravity handers the water and the oil is encouraged to flow upward. Naturally, if the driving pressure gradient is sufficiently strong and dominant then the difference between up-flow and dow-flow vanishes. Thus disturbed bamboo waves are observed in both regimes.

Applications of the level set formulation were used in [8, 10, 14] for incompressible fluid flows. They found that it was best, at least close to the front, to keep ϕ as the signed distance from the front to prevent the development of steep or flat gradients in ϕ. This can be done by solving a simple initial value problem for ϕ which leaves the front location unchanged for fixed time.

We will use the level set approach to solve the problem for coreannular flows in 2D for up-flow and down-flow cases. The horizontal case is tested without the gravity.

2. GOVERNING EQUATIONS OF MOTION

2.1. The Equations of Motion

Two-fluid flow is modeled with the Navier-Stokes equation:

$$
\begin{equation*}
\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}=\frac{1}{\rho}(-\nabla P+\nabla \cdot(2 \mu S))+F \tag{1}
\end{equation*}
$$

where ρ is the density, μ the viscosity, S the viscous stress tensor:

$$
\begin{equation*}
S_{i j}=\frac{1}{2}\left(\frac{\partial u_{j}}{\partial x_{i}}+\frac{\partial u_{i}}{\partial x_{j}}\right) \tag{2}
\end{equation*}
$$

and F the source term for the momentum equation. In our calculations, the body force F includes the gravity and interfacial tension force. In coreannular flow, the pressure P is decomposed into two parts, $P=-f x+p$, where f is the driving pressure gradient. The velocity field \boldsymbol{u} is subject to the incompressibility constraint:

$$
\begin{equation*}
\nabla \cdot \boldsymbol{u}=0 \tag{3}
\end{equation*}
$$

The two fluids are immiscible. In this paper, Fluid 1 is oil and Fluid 2 is water. Density and viscosity are constant in each phase but may be discontinuous at the interface. We use a level set function ϕ to represent and capture the interface which is being moved by the following equation:

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+\boldsymbol{u} \cdot \nabla \phi=0 \tag{4}
\end{equation*}
$$

2.2. Axisymmetric Flow Equations

We now simulate the axisymmetric pipeline transportation of oil and water. For axisymmetric flow, there is no flow in the θ-direction and all θ derivatives are identically zero. So we consider only tow variables, r the radial direction and x the axial direction. We define the fluid velocity by the vector $\boldsymbol{u}=(u, v)$ where $u=u(r, x)$ is the radial component of velocity and $v=v(r, x)$ is the component in the axial direction. The governing equations for axisymmetric flow are

$$
\begin{align*}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial r}+v \frac{\partial u}{\partial x}= & \frac{1}{\rho}\left(-\frac{\partial P}{\partial r}+\frac{1}{r} \frac{\partial}{\partial r}\left(r\left(2 \mu \frac{\partial u}{\partial r}\right)\right)+\frac{\partial}{\partial x}\left(\mu\left(\frac{\partial v}{\partial r}+\frac{\partial u}{\partial x}\right)\right)\right. \\
& \left.-\frac{1}{r}\left(2 \mu \frac{u}{r}\right)+\sigma \kappa \delta(\phi) \phi_{r}\right) \tag{5}\\
\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial r}+v \frac{\partial v}{\partial x}= & \frac{1}{\rho}\left(-\frac{\partial P}{\partial x}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \mu\left(\frac{\partial v}{\partial r}+\frac{\partial u}{\partial x}\right)\right)+\frac{\partial}{\partial x}\left(2 \mu \frac{\partial v}{\partial x}\right)\right. \\
& \left.+\sigma \kappa \delta(\phi) \phi_{x}\right)+g \tag{6}
\end{align*}
$$

and the incompressibility constraint is

$$
\begin{equation*}
\frac{1}{r}\left(\frac{\partial(r u)}{\partial r}\right)+\frac{\partial v}{\partial x}=0 \tag{7}
\end{equation*}
$$

2.3. Parameters for Equations

In dimensional terms in core-annular flow, the pipe radius is denoted by R_{2}, the base velocity is $\boldsymbol{u}=\left(0, V_{i}(r)\right), i=1,2$, and the interface position is $r=R_{1}$, where $P_{2}-P_{1}=\sigma / R_{1}$ and σ is the interfacial tension. The pressure gradient in the axial direction is a constant. Also $d P / d x=-f$. There are four dimensionless parameters:

$$
\begin{equation*}
m=\mu_{2} / \mu_{1}, \quad a=R_{2} / R_{1}, \quad \zeta=\rho_{2} / \rho_{1}, \quad K=\left(f+\rho_{1} g\right) /\left(f+\rho_{2} g\right) \tag{8}
\end{equation*}
$$

where K measures the ratio of driving forces in the core and annulus. We choose the centerline velocity to be

$$
\begin{equation*}
V_{0}(0)=\left(f+\rho_{2} g\right) \frac{R_{1}^{2}}{4 \mu_{2}} A, \quad \text { where } A=m K+a^{2}-1+2(K-1) \log a \tag{9}
\end{equation*}
$$

The dimensionless base velocity field is $(0, V(r))$ where

$$
V(r)=\left\{\begin{array}{lc}
\frac{1}{A}\left(a^{2}-r^{2}-2(K-1) \log (r / a)\right), & 1 \leqslant r \leqslant a \tag{10}\\
1-\frac{1}{A}\left(m r^{2} K\right), & r<1
\end{array}\right.
$$

The interfacial tension parameter is $J=\sigma R_{1} \rho_{1} \mu_{1}^{2}$ and the Reynolds numbers $R e_{i}$ are defined by $R e_{i}=\rho_{i} V_{0}(0) R_{1} / \mu_{i}, i=1,2$, where $R e_{1} / R e_{2}=$ $\mathrm{m} / \zeta /$. For our numerical simulation, we choose some initial data corresponding to the following parameters:

$$
\begin{equation*}
\phi(\boldsymbol{x}(r, x))=A(0) * \cos (\beta * x)+R_{1}, \tag{11}
\end{equation*}
$$

where $\mathrm{A}(0)$ is the amplitude, β the periodicity, and R_{1} the interface position.

3. NUMERICAL FORMULATION

3.1. Level Set Function

We construct a level set function ϕ such that the interface between two different fluids is the zero level set of ϕ. We initialize ϕ to be the signed distance from the interface. So the interface is given by

$$
\begin{equation*}
\Gamma=\{\boldsymbol{x} \mid \phi(\boldsymbol{x}, t)=0\} . \tag{12}
\end{equation*}
$$

We take $\phi<0$ in the oil region and $\phi>0$ in the water region. Therefore we have

$$
\phi(\boldsymbol{x}, t) \begin{cases}<0, & \text { if } \boldsymbol{x} \in \text { oil } \tag{13}\\ =0, & \text { if } \boldsymbol{x} \in \Gamma \\ >0, & \text { if } \boldsymbol{x} \in \text { water. }\end{cases}
$$

Now we let

$$
\boldsymbol{u}= \begin{cases}\boldsymbol{u}_{\text {oil }}, & \text { if } \phi \leqslant 0 \tag{14}\\ \boldsymbol{u}_{\text {water }}, & \text { if } \phi>0\end{cases}
$$

where \boldsymbol{u} is the fluid velocity. The idea of the level set method is to move ϕ with the correct speed \boldsymbol{u} at the front using the following differential equation:

$$
\begin{equation*}
\phi_{t}+\boldsymbol{u} \cdot \nabla \phi=0 . \tag{15}
\end{equation*}
$$

We must reinitialize, using the simple algorithm developed in [15] to keep ϕ as the signed distance, at least near the front. Additionally, we save computational time by performing these calculations only near the front. There are several localization algorithms available; we use the relatively simple algorithm developed in [12]. We can rewrite the variables by using the level set function ϕ. The unit normal on the interface, drawn from the oil into the water, is

$$
\begin{equation*}
n=\frac{\nabla \phi}{|\nabla \phi|} \tag{16}
\end{equation*}
$$

and the curvature of the interface is

$$
\begin{equation*}
\kappa=\nabla \cdot \frac{\nabla \phi}{|\nabla \phi|} . \tag{17}
\end{equation*}
$$

Since the density and viscosity are constant in each region, they take on two different values depending on the sign of ϕ, and we can write

$$
\begin{equation*}
\rho(\phi)=\rho_{\text {oil }}+\left(\rho_{\text {water }}-\rho_{\text {oil }}\right) H(\phi) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu(\phi)=\mu_{\mathrm{oil}}+\left(\mu_{\text {water }}-\mu_{\mathrm{oil}}\right) H(\phi) \tag{19}
\end{equation*}
$$

where $H(\phi)$ is the Heaviside function given by

$$
H(\phi)= \begin{cases}0, & \text { if } \phi<0 \tag{20}\\ \frac{1}{2}, & \text { if } \phi=0 \\ 1, & \text { if } \phi>0\end{cases}
$$

The fact that the surface tension can be written as a delta function at the interface has been used by Unverdi and Tryggvason [16], and Brackbill et al. [3]. The form we use here is due to Chang et al. [4].

3.2. Dimensionless Form

It is convenient to use the dimensionless form of (5). We use the following six dimensionless variables

$$
\begin{array}{cc}
\boldsymbol{x}=R \boldsymbol{x}^{*}, & \boldsymbol{u}=V_{0} \boldsymbol{u}^{*}, \\
P=\left(R / V_{0}\right) t^{*} \tag{21}\\
P=P^{*} \rho_{\mathrm{oil}}\left(V_{0}\right)^{2}, & \rho=\rho_{\mathrm{oil}} \rho^{*},
\end{array} \quad \mu=\mu_{\mathrm{oil}} \mu^{*} .
$$

where the superscripts $*$ denote dimensionless variables, R is the undisturbed interface position and V_{0} is the centerline velocity. Substituting the above dimensionless variables into (5) and dropping the $*$, we have

$$
\begin{align*}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial r}+v \frac{\partial u}{\partial x}= & \frac{1}{\rho}\left(-\frac{\partial P}{\partial r}+\frac{1}{R e}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(2 \mu r \frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial x}\left(\mu\left(\frac{\partial v}{\partial r}+\frac{\partial u}{\partial x}\right)\right)\right.\right. \\
& \left.\left.-2 \frac{u}{r^{2}}\right)+\frac{1}{W e} \kappa \delta(\phi) \frac{\partial \phi}{\partial r}\right) \tag{22}\\
\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial r}+v \frac{\partial v}{\partial x}= & \frac{1}{\rho}\left(-\frac{\partial P}{\partial x}+\frac{1}{R e}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \mu\left(\frac{\partial v}{\partial r}+\frac{\partial u}{\partial x}\right)\right)\right.\right. \\
& \left.\left.+\frac{\partial}{\partial x}\left(2 \mu \frac{\partial v}{\partial x}\right)\right)+\frac{1}{W e} \kappa \delta(\phi) \frac{\partial \phi}{\partial x}\right)+\frac{R}{V_{0}^{2}} \boldsymbol{g} \tag{23}
\end{align*}
$$

where the Reynolds number $R e=\frac{\rho_{\text {oil }} R V_{0}}{\mu \text { oil }}$, the Weber number $W e=\frac{\rho_{\text {oil }} R V_{0}^{2}}{\sigma}$. Now the density and viscosity, respectively, are

$$
\begin{align*}
& \rho(\phi)=\eta+(1-\eta) H(\phi), \tag{24}\\
& \mu(\phi)=\gamma+(1-\gamma) H(\phi), \tag{25}
\end{align*}
$$

where $\eta=\rho_{\text {oil }} / \rho_{\text {water }}$ and $\gamma=\mu_{\text {oil }} / \mu_{\text {water }}$ are the density ratio and the viscosity ratio, respectively.

4. PROJECTION METHOD

This method was proposed independently by Chorin [5] and Temam (1969), while an explicit version of such a method was presented by Fortin et al. (1971). This explicit method is a fractional step method with firstorder accuracy in time. At the first step, we compute explicitly a provisional value \boldsymbol{u}^{*} with

$$
\begin{equation*}
\frac{\boldsymbol{u}^{*}-\boldsymbol{u}^{n}}{\Delta t}=L\left(\boldsymbol{u}^{n}\right) \tag{26}
\end{equation*}
$$

which is the momentum equation without a pressure gradient. Note that only the discretization in time is considered here. Then, at the second step, we correct \boldsymbol{u}^{*} by considering the equations:

$$
\begin{gather*}
\frac{\boldsymbol{u}^{n+1}-\boldsymbol{u}^{*}}{\Delta t}=\frac{1}{\rho}(-\nabla P), \tag{27}\\
\nabla \cdot \boldsymbol{u}^{n+1}=0 . \tag{28}
\end{gather*}
$$

By taking the divergence of Eq. (27) and by making use of (28), which states that \boldsymbol{u}^{n+1} must be a divergence-free vector, we get the Poisson equation

$$
\begin{equation*}
\frac{1}{\Delta t} \nabla \cdot \boldsymbol{u}^{*}=\nabla \cdot\left(\frac{1}{\rho} \nabla P\right) . \tag{29}
\end{equation*}
$$

The boundary condition for P is obtained by projecting the vector equation (27) on the outward unit normal n to the boundary Γ. Thus, we obtain the Neumann condition

$$
\begin{equation*}
\left(\frac{\partial P}{\partial \boldsymbol{n}}\right)_{\Gamma}^{n+1}=-\frac{1}{\Delta t}\left(\boldsymbol{u}_{\Gamma}^{n+1}-\boldsymbol{u}_{\Gamma}^{*}\right) \cdot \boldsymbol{n} \tag{30}
\end{equation*}
$$

where $\boldsymbol{u}_{\Gamma}^{*}$ is the (not yet defined) value of \boldsymbol{u}^{*} on Γ. The condition of compatibility for the Neumann problem is

$$
\begin{equation*}
\frac{1}{\Delta t} \int \nabla \cdot \boldsymbol{u}^{*} d s=-\frac{1}{\Delta t} \int_{\Gamma}\left(\boldsymbol{u}^{n+1}-\boldsymbol{u}^{*}\right) \cdot \boldsymbol{n} d s \tag{31}
\end{equation*}
$$

and it identically satisfies the condition $\int_{\Gamma} \boldsymbol{u}_{\Gamma} \cdot \boldsymbol{n} d s=0$ which expresses the fact that the velocity on the boundary Γ has a zero total flux. It is important that the discretization with respect to space satisfies the above compatibility condition.

4.1. Thickness of the Interface

To reduce the numerical difficulties presented by the Dirac delta function, we shall give the interface a fixed thickness that is proportional to the spatial mesh size. We replace $\rho(\phi)$ in Eq. (1) by a smoothed density function, which we denote as $\rho_{\alpha}(\phi)$ and is given by

$$
\begin{equation*}
\rho_{\alpha}(\phi)=\eta+(1-\eta) H_{\alpha}(\phi), \tag{32}
\end{equation*}
$$

where

$$
H_{\alpha}(\phi)= \begin{cases}1, & \text { if } \phi>\alpha \tag{33}\\ 0, & \text { if } \phi<\alpha \\ \frac{1}{2}\left(1+\frac{\phi}{\alpha}+\frac{1}{\pi} \sin \left(\frac{\pi x}{\alpha}\right)\right) & \text { otherwise }\end{cases}
$$

The smoothed delta function is

$$
\delta_{\alpha}(\phi)= \begin{cases}\frac{1}{2 \alpha}\left(1+\cos \left(\frac{\pi \phi}{\alpha}\right)\right), & \text { if }|\phi|<\alpha \tag{34}\\ 0, & \text { otherwise }\end{cases}
$$

where α is the prescribed "thickness" of the interface (usually $1.5 \Delta x$ in our calculations).

4.2. Numerical Procedure

We now describe the numerical discretization of the equations derived in the previous section. The outline of our scheme is as follows:

We use a MAC grid, i.e., given ϕ^{n}, defined at cells, and \boldsymbol{u}^{n}, defined at cell centers, we solve for $\phi^{n+1}, \boldsymbol{u}^{n+1}$.

For each time step:
Step 1. Initialize $\phi(\boldsymbol{x}, \mathrm{t})$ such that ϕ is a signed distance function to the front.
Step 2. Solve the governing equation (1) and get the velocity \boldsymbol{u}^{n+1}.
Step 3. Update the level set function ϕ^{n} to ϕ^{n+1}.
Step 4. Reinitialize ϕ.

4.3. Solving the Governing Equations

We compute $L\left(\boldsymbol{u}^{n}\right)$ and $\boldsymbol{u} \cdot \nabla \phi$ using high-order ENO upwind scheme for the convective terms and central differencing for the viscous and curvature terms.

4.3.1. Convection Terms

The convection terms in (1) are discretized as:

$$
\begin{align*}
& \boldsymbol{u} \cdot \nabla \phi=\frac{u_{i, j}\left(\phi_{i+1 / 2, j}-\phi_{i-1 / 2, j}\right)}{\Delta r}+\frac{v_{i, j}\left(\phi_{i, j+1 / 2}-\phi_{i, j-1 / 2}\right)}{\Delta x}, \tag{35}\\
& \boldsymbol{u} \cdot \nabla \boldsymbol{u}=\frac{u_{i, j}\left(\boldsymbol{u}_{i+1 / 2, j}-\boldsymbol{u}_{i-1 / 2, j}\right)}{\Delta r}+\frac{v_{i, j}\left(\boldsymbol{u}_{i, j+1 / 2}-\boldsymbol{u}_{i, j-1 / 2}\right)}{\Delta x}, \tag{36}
\end{align*}
$$

where $\phi_{i+1 / 2, j}$ and $\boldsymbol{u}_{i+1 / 2, j}$ are calculated by high-order ENO scheme.

4.3.2. Viscous and Curvature Terms

We use central differencing for computing the viscous and curvature terms. For the discretization of the divergence of the stress tensor $2 \mu D$, we have:

$$
\begin{align*}
\nabla \cdot(2 \mu D) & =\binom{\frac{1}{r} \frac{\partial}{\partial r}\left(r\left(2 \mu \frac{\partial u}{\partial r}\right)\right)+\frac{\partial}{\partial x}\left(\mu\left(\frac{\partial v}{\partial r}+\frac{\partial u}{\partial x}\right)\right)-\frac{1}{r}\left(2 \mu \frac{u}{r}\right)}{\frac{1}{r} \frac{\partial}{\partial r}\left(r \mu\left(\frac{\partial v}{\partial r}+\frac{\partial u}{\partial x}\right)\right)+\frac{\partial}{\partial x}\left(2 \mu \frac{\partial v}{\partial x}\right)}_{i, j} \\
& =\binom{\frac{1}{r} D_{r}\left(r\left(2 \mu D_{r} u\right)\right)+D_{x}\left(\mu\left(D_{r} v+D_{x} u\right)\right)-\frac{1}{r}\left(2 \mu \frac{u}{r}\right)}{\frac{1}{r} D_{r}\left(r \mu\left(D_{r} v+D_{x} u\right)\right)+D_{x}\left(2 \mu D_{x} v\right)}_{i, j} . \tag{37}
\end{align*}
$$

where the difference operators are defined as:
For the case of u-direction,

$$
\begin{aligned}
D_{r} f_{i, j} & =\left(f_{i+1 / 2, j}-f_{i-1 / 2, j}\right) / \Delta r \\
D_{r} f_{i+1 / 2, j} & =\left(f_{i+1, j}-f_{i, j}\right) / \Delta r \\
D_{x} f_{i, j} & =\left(f_{i, j+1 / 2}-f_{i, j-1 / 2}\right) / \Delta x \\
D_{x} f_{i, j+1 / 2} & =\left(f_{i, j+1}-f_{i, j}\right) / \Delta x \\
\mu_{i+1 / 2, j} & =\mu(i, j), \quad \mu_{i-1 / 2, j}=\mu(i-1, j), \\
\mu_{i, j} & =\frac{1}{2}(\mu(i, j)+\mu(i-1, j)), \\
\mu_{i, j+1 / 2} & =\frac{1}{4}(\mu(i-1, j)+\mu(i, j)+\mu(i-1, j+1)+\mu(i, j+1)), \\
\mu_{i, j-1 / 2} & =\frac{1}{4}(\mu(i-1, j-1)+\mu(i, j-1)+\mu(i-1, j)+\mu(i, j)), \\
v_{i+1 / 2, j+1 / 2} & =v(i, j+1), v_{i-1 / 2, j+1 / 2}=v(i-1, j+1) \\
v_{i+1 / 2, j-1 / 2} & =v(i, j), \quad v_{i-1 / 2, j-1 / 2}=v(i-1, j) \\
r_{i, j} & =\frac{1}{2}(r(i, j)+r(i-1, j))
\end{aligned}
$$

The case of v-direction is calculated similarly. For discretization of the curvature $\kappa(\phi)=\nabla \cdot \frac{\nabla \phi}{|\nabla \phi|}$, we have:

$$
\begin{align*}
& \kappa(\phi)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\frac{\partial \phi}{\partial r}}{|\nabla \phi|}\right)+\frac{\partial}{\partial x}\left(\frac{\frac{\partial \phi}{\partial x}}{|\nabla \phi|}\right), \tag{38}\\
& |\nabla \phi|=\sqrt{\left(\frac{\partial \phi}{\partial r}\right)^{2}+\left(\frac{\partial \phi}{\partial x}\right)^{2}} . \tag{39}
\end{align*}
$$

4.3.3. Surface Tension

The surface tension is prescribed as

$$
\begin{equation*}
\frac{1}{W e} \frac{\kappa(\phi) \delta(\phi) \nabla \phi}{\rho} \tag{40}
\end{equation*}
$$

The discretization of the surface tension at cell (i, j) is

$$
\begin{equation*}
\left[\kappa(\phi) \delta(\phi) \phi_{r}\right]_{i, j}=\kappa(\phi)_{i, j} \delta(\phi)_{i, j}\left(\phi_{r}\right)_{i, j} \tag{41}
\end{equation*}
$$

where

$$
\begin{aligned}
\kappa_{i, j} & =\frac{1}{2}(\kappa(i, j)+\kappa(i-1, j)), \\
\delta(\phi)_{i, j} & =\frac{1}{2}(\delta(\phi(i, j))+\delta(\phi(i-1, j))), \\
\left(\phi_{r}\right)_{i, j} & =\frac{\phi_{i+1 / 2, j}-\phi_{i-1 / 2, j}}{\Delta r}, \\
& =\frac{\phi(i, j)-\phi(i-1, j)}{\Delta r}, \\
\rho_{i, j} & =\frac{1}{2}(\rho(i, j)+\rho(i-1, j)) .
\end{aligned}
$$

4.4. Semi-Implicit Method for Viscosity Term

4.4.1. Semi-Implicit Scheme

We use an unconditionally stable method for the viscous terms in 2D [9], which is applied in the following way to our axisymmetric case:

$$
\begin{align*}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial r}+v \frac{\partial u}{\partial x}= & \frac{1}{\rho}\left(-\frac{\partial P}{\partial r}+\frac{1}{r} \frac{\partial}{\partial r}\left(r\left(2 \mu \frac{\partial u}{\partial r}\right)\right)+\frac{\partial}{\partial x}\left(\mu\left(\frac{\partial v}{\partial r}+\frac{\partial u}{\partial x}\right)\right)\right. \\
& \left.-\frac{1}{r}\left(2 \mu \frac{u}{r}\right)+\sigma \kappa \delta(\phi) \phi_{r}\right), \tag{42}\\
\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial r}+v \frac{\partial v}{\partial x}= & \frac{1}{\rho}(-\frac{\partial P}{\partial x}+\underbrace{\frac{1}{r} \frac{\partial}{\partial r}\left(r \mu\left(\frac{\partial v}{\partial r}+\frac{\partial u}{\partial x}\right)\right)}_{I}+\frac{\partial}{\partial x}\left(2 \mu \frac{\partial v}{\partial x}\right)) \\
& +\sigma \kappa \delta(\phi) \phi_{x}+g . \tag{43}
\end{align*}
$$

Here, we need to change the I-term to the following form:

$$
\begin{equation*}
I=\frac{1}{r} \frac{\partial}{\partial r}\left(r \mu\left(\frac{\partial v}{\partial r}\right)\right)+\frac{\mu}{r} \frac{\partial u}{\partial x}+\frac{\partial}{\partial r}\left(\mu \frac{\partial u}{\partial x}\right) . \tag{44}
\end{equation*}
$$

So we have the following semi-implicit formations:

$$
\begin{align*}
\rho \frac{u^{*}-u^{n}}{\Delta t}= & \frac{1}{r} \frac{\partial}{\partial r}\left(r\left(2 \mu \frac{\partial u^{*}}{\partial r}\right)\right)+\frac{\partial}{\partial x}\left(\mu\left(\frac{\partial v^{n}}{\partial r}+\frac{\partial u^{*}}{\partial x}\right)\right) \\
& -2 \mu \frac{u^{*}}{r^{2}}+\text { explicit-terms } \tag{45}\\
\rho \frac{v^{*}-v^{n}}{\Delta t}= & \frac{1}{r} \frac{\partial}{\partial r}\left(r \mu\left(\frac{\partial v^{*}}{\partial r}\right)\right)+\frac{\partial}{\partial r}\left(\mu \frac{\partial u^{n}}{\partial x}\right)+\frac{\mu}{r} \frac{\partial u^{*}}{\partial x} \\
& +\frac{\partial}{\partial x}\left(2 \mu \frac{\partial v^{*}}{\partial x}\right)+\text { explicit-terms } \tag{46}
\end{align*}
$$

where the inertial terms are treated as explicit terms. Here u^{*} depends on v^{n} only explicitly but v^{*} is coupled to u^{*} implicitly. From Eq. (45) we solve for u^{*} first. Next, we substitute u^{*} in the right-side of Eq. (46) and solve for v^{*}.

4.4.2. Factorization

We adapted the factorization technique in [9] to our scheme, so we need only solve a tridiagonal system and the error of factorization is of order $O\left(\Delta t^{3}\right)$. This semi-implicit scheme reduces our computing time. The Eq. (45) can be expressed as

$$
\begin{equation*}
\left\{I-\frac{\Delta t}{\rho}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(2 \mu \frac{\partial}{\partial r}\right)+\frac{\partial}{\partial x}\left(\mu \frac{\partial}{\partial x}\right)-2 \mu \frac{1}{r^{2}}\right]\right\} u^{*}=\text { explicit-terms } \tag{47}
\end{equation*}
$$

and Eq. (46) can be expressed as

$$
\begin{equation*}
\left\{I-\frac{\Delta t}{\rho}\left[\frac{\partial}{\partial r}\left(r \mu \frac{\partial}{\partial r}\right)+\frac{\partial}{\partial x}\left(2 \mu \frac{\partial}{\partial x}\right)\right]\right\} v^{*}=\text { explicit-terms. } \tag{48}
\end{equation*}
$$

As the full explicit scheme, this semi-implicit scheme is first order in precision. Although it is easier to solve than the coupled system, it still requires inversions of a large sparse matrix. We applied a factorization technique to the left-hand sides of Eqs. (47) and (48):

$$
\begin{gather*}
\left\{I-\frac{\Delta t}{\rho}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(2 \mu \frac{\partial}{\partial r}\right)\right]\right\}\left\{I-\frac{\Delta t}{\rho}\left[\frac{\partial}{\partial x}\left(\mu \frac{\partial}{\partial x}\right)\right]\right\} \\
 \tag{49}\\
\left\{I+\frac{\Delta t}{\rho}\left[2 \mu\left(\frac{1}{r^{2}}\right)\right]\right\} u^{*}=\text { explicit-terms } \tag{50}\\
\left\{I-\frac{\Delta t}{\rho}\left[\frac{\partial}{\partial r}\left(r \mu \frac{\partial}{\partial r}\right)\right]\right\}\left\{I-\frac{\Delta t}{\rho}\left[\frac{\partial}{\partial x}\left(2 \mu \frac{\partial}{\partial x}\right)\right]\right\} v^{*}=\text { explicit-terms. }
\end{gather*}
$$

The inversion of the left-hand side of Eqs. (49) and (50) requires solving only tridiagonal matrices; this results in a significant reduction in computation. In fact, the solution of these tridiagonal systems can be done in only $O(N)$ operations (where N is the number of grid points) and is insignificant compared to the complexity for obtaining the solution of the pressure equation.

4.4.3. Stiffness of Viscosity

The viscosity of oil is very different from that of water while the densities are similar. The Reynolds number for the water annulus is roughly 600 times that of the core oil. So the large Reynolds number in the water and the much smaller Reynolds number in the oil impose severe restrictions on the time step size, according to the stability criteria for the explicit formulation. This suggests the method of implementation for the viscous terms.

4.5. Solving the Pressure Term

We use the preconditioned conjugate gradient (PCG) method with incomplete Cholesky Decomposition as a preconditioner to solve the resulting Poisson equation for the pressure:

$$
\begin{align*}
\nabla \cdot\left(\frac{1}{\rho} \nabla P\right) & =\nabla \cdot \boldsymbol{u}^{*} \tag{51}\\
\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{r}{\rho} P_{r}\right)+\frac{\partial}{\partial x}\left(\frac{1}{\rho} P_{x}\right) & =\frac{1}{\Delta t}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r u^{*}\right)+\frac{\partial v^{*}}{\partial x}\right) . \tag{52}
\end{align*}
$$

Then multiplying by r on both sides to make a symmetric system,

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(\frac{r}{\rho} P_{r}\right)+\frac{\partial}{\partial x}\left(\frac{r}{\rho} P_{x}\right)=\frac{1}{\Delta t}\left(\frac{\partial}{\partial r}\left(r u^{*}\right)+\frac{\partial}{\partial x}\left(r v^{*}\right)\right) \tag{53}
\end{equation*}
$$

For the left-hand side of the equation, we use the following discretization:

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(\frac{r}{\rho} P_{r}\right)_{i, j}=\frac{\frac{r_{i+1 / 2, j}}{\rho_{i+1 / 2, j}}\left(P_{i+1, j}-P_{i, j}\right)-\frac{r_{i-1 / 2, j}}{\rho_{i-1 / 2, j}}\left(P_{i, j}-P_{i-1, j}\right)}{\Delta r^{2}}, \tag{54}
\end{equation*}
$$

where

$$
\begin{aligned}
r_{i+1 / 2, j} & =\frac{1}{2}(r(i+1, j)+r(i, j)), \\
r_{i-1 / 2, j} & =\frac{1}{2}(r(i, j)+r(i-1, j)), \\
\rho_{i+1 / 2, j} & =\frac{1}{2}(\rho(i+1, j)+\rho(i, j)), \\
\rho_{i-1 / 2, j} & =\frac{1}{2}(\rho(i, j)+\rho(i-1, j)), \\
P_{i+1, j} & =P(i+1, j), \\
P_{i, j} & =P(i, j), \\
P_{i-1, j} & =P(i-1, j) .
\end{aligned}
$$

For the right-hand side of the equation, we adapt the same discretization. In the above calculation, we are using the average value for r and ρ.

4.6. Time Step Restriction

The timestep Δt is determined by restrictions due to the convection, gravity, viscosity and surface tension. The convective time step restriction is given by

$$
\begin{equation*}
\Delta t d t_{c}=\Delta t\left(\frac{|u|_{\max }}{\Delta r}+\frac{|v|_{\max }}{\Delta x}\right) \leqslant 1 \tag{55}
\end{equation*}
$$

where $|u|_{\max }$ and $|v|_{\max }$ are the maximum magnitudes of the velocities. The viscous time step restriction is given by

$$
\begin{equation*}
\Delta t d t_{v}=\Delta t\left(\max \left\{\frac{\mu_{\text {oil }}}{\rho_{\text {oil }}}, \frac{\mu_{\text {water }}}{\rho_{\text {water }}}\right\}\left(\frac{2}{\Delta r^{2}+\Delta x^{2}}\right)\right) \leqslant 1, \tag{56}
\end{equation*}
$$

where the "max" function returns as the maximum value of its arguments. Gravity can be included in the convection estimation. Note that $|v|_{\max }+$ $|g| \Delta t$ is a linear approximation to a bound on the velocity in the vertical direction due to the effects of gravity at the end of a time step. Then
$\Delta t\left(\frac{|v|_{\max }+|g| \Delta t}{\Delta x}\right) \leqslant 1$ changes to

$$
\begin{equation*}
\Delta t\left(\frac{-|v|_{\max }+\sqrt{|v|_{\max }^{2}+4|g| \Delta y}}{2|g|}\right) \leqslant 1 \tag{57}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\Delta t}{2}\left(\frac{|v|_{\max }}{\Delta x}+\sqrt{\left(\frac{|v|_{\max }}{\Delta x}\right)^{2}+\frac{4|g|}{\Delta x}}\right) \leqslant 1 \tag{58}
\end{equation*}
$$

as a time step restriction for the velocity in the vertical direction. We rewrite (55) and (56) to

$$
\begin{equation*}
\frac{\Delta t}{2}\left(\left(d t_{c}+d t_{v}\right)+\sqrt{\left(d t_{c}+d t_{v}\right)^{2}+\frac{4 F_{r}}{\Delta r}+\frac{4 F_{x}}{\Delta x}}\right) \leqslant 1 \tag{59}
\end{equation*}
$$

where $\boldsymbol{F}=\left(F_{r}, F_{x}\right)$ is the force due to gravity and surface tension. In the δ-function formulation, $\sigma \delta \kappa / \rho$ is added to the right-hand side of the equations for velocity. In the Ghost Fluid Method (GFM) [7], (59) is written as

$$
\begin{equation*}
\Delta t\left(\frac{\left(d t_{c}+d t_{v}\right)+\sqrt{\left(d t_{c}+d t_{v}\right)^{2}+4\left(\Delta t_{g}\right)^{2}+4\left(\Delta t_{s}\right)^{2}}}{2}\right) \leqslant 1 \tag{60}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta t_{g}=\sqrt{\frac{|g|}{\Delta x}} \tag{61}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta t_{s}=\sqrt{\frac{\sigma|\kappa|}{\min \left\{\rho_{\mathrm{oil}}, \rho_{\text {water }}\right\}(\min \{\Delta r, \Delta x\})^{2}}} . \tag{62}
\end{equation*}
$$

represent the time step restrictions due to gravity and surface tension respectively. In our numerical simulations, a CFL restriction of $1 / 2$ is used. Therefore,

$$
\begin{equation*}
\Delta t\left(\frac{\left(d t_{c}+d t_{v}\right)+\sqrt{\left(d t_{c}+d t_{v}\right)^{2}+4\left(\Delta t_{g}\right)^{2}+4\left(\Delta t_{s}\right)^{2}}}{2}\right) \leqslant \frac{1}{2} \tag{63}
\end{equation*}
$$

is used. Due to the factorization technique, we can relax our time step condition by removing the restriction for viscosity term.

4.7. Re-Initialization Operation

It is numerically desirable to keep $\phi(\boldsymbol{x}, t)$ as a signed distance function. In general, it is not always possible to prevent ϕ from deviating away from a signed distance function. One way to reinitialize is to find the location of the front with some interpolation method and compute the signed distance function to this front [10]. This approach has the advantage that it only moves the interface up to the numerical accuracy of the interpolation method but the disadvantage is its high cost and the likelihood of introducing some spurious irregularities into the data. So a smoothing process is usually needed in conjunction with this approach. A more elegant way is suggested in [11], where the following Hamilton-Jacobian equation:

$$
\begin{equation*}
\phi_{\tau}+S\left(\phi_{0}\right)(|\nabla \phi|-1)=0, \quad \phi(\boldsymbol{x}, 0)=\phi_{0}(\boldsymbol{x}) \tag{64}
\end{equation*}
$$

is solved to steady state, giving the desired signed distance function. This method converges in a neighborhood of the front. The reason is very simple since ϕ propagates with speed 1 along the characteristics that are normal to the interface, and converges in time ϵ to a signed distance function in a neighborhood of Γ of width ϵ. In [11], the authors approximate $S(\phi)$ by

$$
\begin{equation*}
S_{\epsilon}(\phi)=\frac{\phi}{\sqrt{\phi^{2}+\epsilon^{2}}} \tag{65}
\end{equation*}
$$

with $\epsilon=\Delta x$, and used a second order ENO scheme [11] to approximate the space derivatives.

5. RESULTS

Our experiments simulate the motions of Core-Annular flow. We numerically simulate up-flow and down-flow cases of the interface in 2D for a vertical pipe case. Also we add our horizontal simulation of the simple case. Core-annular flows of liquids with different density and a highviscosity ratio were computed in a direct numerical simulation using the level set method. It was assumed that the flow is axisymmetric and periodic. These assumptions reduce the computational cost. In dimensional terms, for given material parameters, we obtain solutions when the volume flow rates of oil, water, and the hold-up ratio are prescribed. Our simulation with the level set method on core-annular flow represents an improvement over the results of Bai et al. [1], who solved for the steady solution
of the governing equations assuming the densities matched and assuming a solid core, and on the results of Li and Renardy [8], who investigated this problem with different densities for two liquids. In contrast with Li and Renardy's work, we reduced the computational time without using factorization. Furthermore, we investigated the case where the oil core breaks into water, forming a separate bubble there. This was easy to handle due to the level set methodology.

5.1. Numerical Study of Experimental Regime

We suppose that the flow is spatially periodic and determine the wavelength of the waves from experimental data. The reason for assuming periodicity of the flow is that the simulation for nonperiodic flow is not yet possible due to the computational cost, because the pipeline in Bai et al. [1] is 90 in . which is very long in comparison with its cross-sectional radius, 0.375 in (Fig. 1).

Fig. 1. Bai, Chen and Joseph [1] experimental system. The pipeline is a \cap loop which is mounted on the wall with its long legs vertical, aligned with gravity. The flow of oil and water to the pipeline is established by the pressure of compressed air in the oil and water tanks.

Fig. 2. Bai, Chen and Joseph, [1]. This flow chart displays the types of flow that arise in up-flow as function of the superficial oil velocity V_{o} and the superficial water velocity V_{w}.

5.1.1. Example 1

We begin with the case with $\left[Q_{w}, Q_{o}\right]=[200,429] \mathrm{cm}^{3} \min ^{-1}$. In Fig. 3, the experimental snap-shot shows the coexistence of waves with different wavenumbers. The experimental hold-up ratio h is 1.39 for this flow and from equation (3.4) in Li and Renardy [8], we obtain the corresponding value of $a=1.28$. The parameters for the corresponding Perfect Core-Annular Flow (PCAF) are first calculated using the fixed values of V_{o} and a. The superficial oil velocity is $V_{o}=Q_{o} /\left(\pi R_{2}^{2}\right)=10.34 \mathrm{~cm} \mathrm{~s}^{-1}$. Then we can calculate the other parameters of PCAF using equation (18.15) of Joseph and Renardy [6] and other formulas. Now we have the parameters $R e_{1}=0.9498, m=0.00166, \eta=1.1, J=0.07961$, and $K=-0.4552$. We initialize our numerical simulation with a very small perturbation amplitude $A(0)=0.001$, in order to keep the flow in the linear regime for a relatively long time. Also, we choose the wavenumber $\alpha=2.0$ for this flow. According to the formula for centerline velocity, we use $V_{0}^{*}=16.9531$. This simulation is carried out on a 50×122 mesh over one spatial period on a domain $[0,1.28] \times[0,3.14]$. Fig. 4 shows our results for this case. We also display the contour of the pressure field corresponding to the interfacial shape.

5.1.2. Example 2

Numerical simulations are performed by initializing with wavenumbers $\alpha=1.5,1.75$, and 2.0 , which is the range relevant to the experimental

Fig. 3. Bai, Chen and Joseph [1]. Thin and thick bamboo waves. The bamboo thickens and the average length of a wave decreases when the oil velocity increases at a fixed value of the water velocity.
situation. Beyond the linear regime, these core-annular flows evolve into bamboo waves with constant amplitude. Figure 5 shows our wave shapes for the above four wavenumbers in the nonlinear regime.

There is an adjustment period, when the interface shape changes from the initial cosine shape to the bamboo shape. The steady solution calculated by Bai et al. [2] under solid-core and density-matching assumptions produces an interface shape like the one found in their experiment. However, their interface shape is too rounded and smooth compared to their experimental snap-shot (Fig. 3), which shows an almost symmetric form of the crest, with a pointed peak. The crest is slightly sharper at the front and less sharp at its back. The numerical simulation produced by Li and Renardy [8] under the same assumptions that we use established an interface shape with a symmetric form for the crest and a pointed peak. Our result for the same case successfully reproduced these details.

5.1.3. Example 3

The corresponding PCAF base velocity profile is shown in Fig. 6. This is a mixed flow, up for oil and water near the oil core, down for

Fig. 4. Up-flow with $R e=0.94983, a=1.28, m=0.00166, \eta=1.1, J=0.07961$, and $K=$ -0.4552 . We choose the superficial oil velocity $V_{0}=10.34 \mathrm{~cm} \mathrm{~s}^{-1}$. The wave number α is chosen as 2.0. The right figure is the contour of the pressure field corresponding to the interfacial shape.
water near the pipe wall. Fig. 7 shows the base velocity field for PCAF at $R e=3.0, K=-0.9993$. This is fully up-flow in both fluids. The initial amplitude is chosen as $A(0)=0.005$.

5.1.4. Example 4

To investigate the flow field in more detail, we examine the contour of the pressure field. We produce the contour for pressure for $R e=3.0$, $a=1.28$. In Figure 8, we plot the contour of the pressure field for this example. In the water, the pressure field reaches its maximum value above the crest and its minimum value below the crest. From below the crest to above, the pressure increases monotonically in the water. Thus, the pressure contours are nearly horizontal lines. The pressure field in the oil core is also shown in Figure 8.

Fig. 5. Up-flow for $R e=0.94983, a=1.28, m=0.00166, \eta=1.1, J=0.07961$, and $K=$ -0.4552 . We choose different numbers of wave number α.

Fig. 6. The mixed velocity profile for PCAF for $R e=0.9493, a=1.28, m=0.00166, \eta=1.1$, $J=0.7961$, and $K=-0.4552$.

Fig. 7. The up velocity profile for PCAF for $R e=0.9493, a=1.28, m=0.00166, \eta=1.1, J=$ 0.07961 , and $K=-0.4552$. The wave number α is 2.0 .

Fig. 8. The contour of pressure field for PCAF for $R e=3.0, a=1.61$.

5.1.5. Example 5

For the radius ratio $a=1.28$, the oil core is relatively close to the pipe wall and the interaction between them is strong. In this example, we investigate what happens if the oil core is relatively far away from the pipe wall,

Fig. 9. Interface profiles at $t=0,20,40,60$, and 140 for $R e_{1}=3.73754, a=1.61, m=$ $0.00166, \eta=1.1, J=0.063354$, and $K=-2.030303$. The calculation is carried out on a domain $[0,1.61] \times[0,2.618]$. The wave number α is chosen as 2.4 and the initial amplitude is 0.1 .
so that the water has a large room to stay. Consider the experimental data point No. 1 in Fig. 8, where $a=1.61, F=-1.06699$, which correspond to $J=0.063354$, and $K=-2.0303$. The centerline velocity for PCAF is $V_{0}^{*}=$ $83.91 \mathrm{~cm} / \mathrm{sec}$ so our Reynolds number is $R e_{1}=3.73754$. We set the initial amplitude of perturbation $A(0)=0.1$. The calculation is carried out on a 50×195 mesh over one spatial period on the domain $[0,1.61] \times[0,2.618]$. We choose the wavenumber $\alpha=2.4$ corresponding to a wavelength for this flow. Linear theory indicates that the wavenumber $\alpha=2.4$ is the most dangerous mode for this case. We display the corresponding interface profiles in Fig. 9 at time $t=0,20,40,60$, and 140. The interface shape at $t=40$ reveals some asymmetry in the interface crest in that it is narrower than the trough. This can be explained by the fact that the low-viscosity water provides less resistance, making it easier for the high-viscosity oil to penetrate into it.

5.1.6. Example 6

In our numerical simulation for this up-flow case, we select $R e=3.0$ with $a=1.28$. The domain is [0, 1.28] $\times[0,3.142]$ with 50×500 mesh. The superficial oil velocity V_{O} is $10, J=0.0795$ and $K=-0.9993$. We test this case for the final time $t=100$, but starting from $t=20$, the interfacial shape does not change and remains so until the final time. The profile is shown in Fig. 10.

Fig. 10. up flow for $R e=3.0, a=1.28, m=0.00166, \eta=1.1, J=0.0795$, and $K=-0.9993$.
Our amplitude is 0.01 and wave number α is 2.0 .

5.2. Direct Simulation for the Down Flow

5.2.1. Example 1

In down-flow, the pressure and buoyancy forces of oil oppose those of water. This tends to compress, even eliminate bamboo waves and creates the flow type called "disturbed core-annular flow". It was first found in the experiments of Bai et al. [1]. The down-flow with parameters $R e=2.5$, $a=1.7, m=0.00166, \eta=1.1, J=0.06$, and $K=-0.542709$ was studied by Renardy [13] in the context of non-axisymmetric perturbations. Here, we investigate this flow under the axisymmetric assumption. Numerical investigation of this flow is performed on a 30×200 mesh. We set the initial amplitude $A(0)=0.01$. The asymmetry of the crest is prominent, due to the effect of the buoyancy of oil relative to water, which flattens the back of the crest and steepens the front of the crest. We display our result in Fig. 11.

5.2.2. Example 2

In this example, we take a different Reynolds number while keeping the relative driving force K constant as -0.542709 . Here, we simulate our test case with the centerline velocity $V_{0}(0)^{*}=-28.25547$. Since our Reynolds number is 3.0 , we use 2.625 as the corresponding wave number. Our calculation is carried over a 30×150 mesh on the domain $[0,0.47625] \times[0,2.3936]$. Figure 12 shows the sequence of the interface positions at $t=0,30,60,90,120$, and 150 .

Fig. 11. Down flow: Sequence of interface positions for $R e=2.5, a=1.7, m=0.00166, \eta=$ $1.1, J=0.06$, and $K=-0.542709$. Our amplitude is 0.01 and wave number α is 1.975 .

Fig. 12. Down flow for $R e=3.0, a=1.7, m=0.00166, \eta=1.1, J=0.06$, and $K=-0.542709$. Our amplitude is 0.01 and wave number α is 2.625 .

5.3. Effect of Reynolds Number Re and Flow

We run simulations for several different Reynolds numbers in the case of up- and down-flow for a vertical pipe. In Fig. 13, we show the results for up-flow cases with various Reynolds numbers. We find that as the Reynolds number increases, the length of the waves is shortened. In

Fig. 13. Up flow $a=1.61, m=0.00166, \eta=1.1, J=0.0633$, and $K=-2.030303$. Our ampli tude is $A(0)=0.02$. $R e=1.0,1.5,2.0,3.0$, and 3.7.

Fig. 14, we show the down-flow case in the vertical pipe. Just as in the up-flow case, as the Reynolds number increases, the length of the waves is shortened.

5.4. Effect of Wave Number α and Flow

The effect of wave number α is tested with the case $R e=0.94983$. We display the interfacial profiles in Fig. 4. According to our results, we conclude that as the wave number increases, the length of waves is shortened. While the wave number α changed, taking the values $1.5,1.75$, and 2.0, we fixed the other parameters to find the relation between α and the flow. We get very good bamboo waves for each wave number case.

5.5. Effect of Radius Ratio a and Flow

We simulate the CAF using the wave numbers described in Tables 1 and 2 . The results show that as the wave number is increased, the length of the waves is shortened, as expected and as experiments show, since the Reynolds numbers are increased along with the wave numbers.

Fig. 14. Down flow for $a=1.7, m=0.00166, \eta=1.1, J=0.06$, and $K=-0.542709$. Our amplitude $A(0)$ is 0.01 . The Reynolds number $R e=1.2,2.0,2.5$, and 3.0.

Table I. The Reynolds Numbers and the Corresponding Wavenumbers for Up-Flow, $a=1.6, m=$ $0.00166, \eta=1.1, J=0.063354$, and $K=-2.030303$

Re	1.0	1.5	2.0	3.0	3.74
α	0.9	1.18	1.45	1.95	2.4

5.6. Breaking of the Oil Core

Our numerical simulation is performed with the same interface shape as in the other cases. Since there is no big difference between the volume of fluid method and the level set approach for this CAF problem, we consider a special case to take advantage of level set method. As we know, the level set methodology has a great advantage in breaking or merging problems.

5.6.1. Example 1

In this example, we produce the simulation of the breaking of the oil core in Fig. 15. We start with the initial amplitude $A(0)=0.01$ and a cosine interface shape. Given $R e=1.0, a=1.61, J=0.063354$, and

Fig. 15. $R e=1.0, a=1.61, m=0.00166, \eta=1.1, J=0.063354$, and $K=-2.030303$. Wave number $\alpha=0.9$. Domain is $[0,0.47625] \times[0,6.98]$.
$K=-2.030303$, we select our wave number $\alpha=0.9$ and the centerline velocity $V_{0}^{*}=10.03$. Our numerical simulation is performed on a 50×216 mesh over the domain $[0,1.61] \times[0,6.98]$. It starts to change its topological shape around the dimemsionless time $t=10$. The lower two fingers grow outward and start to approach the oil core, i.e., merge into the oil core, around $t=50$. For a moment, inside of the oil core, a water bubble appears and disappears. Since we do not have a fine enough grid for our simulation, this example does not display perfect bamboo waves. But we show that the oil keeps the water and carries it for a moment. And it "almost" becomes bamboo wave.

5.6.2. Example 2

Figure 16 is the result of another case of the water in the oil core.

5.6.3. Example 3

We next do a different simulation to see what happens if we change our domain to $[-0.47625,0.47625] \times[0, \mathrm{ymax}]$. We are not changing the assumption of axisymmetry. At the final time $t=0.5$, we get a bubble. This topological change is different from the other case, i.e., Example 1 in this section displayed in Fig. 16. We display the 4 oil bubbles in the vertical pipe for Fig. 17.

Fig. 16. Vertical flow $R e=0.94983, a=1.7, m=0.00166, \eta=1.1, J=0.0796875$, and $K=-0.4552$. Wave number is $\alpha=3.0$, final time is 1.0 , domain is $[-0.47625,0.47625] \times$ [0, 6.2832].

Fig. 17. Vertical flow $R e=0.94983, a=1.7, m=0.00166, \eta=1.1, J=0.0796875$, and $K=-0.4552$. Wave number is $\alpha=3.0$, final time is 1.0 , domain is $[-0.47625,0.47625] \times$ [0, 6.2832].

Fig. 18. Vertical flow $R e=3.737354, a=1.61, m=0.00166, \eta=1.1, J=0.063354$ and $K=$ -2.0303 . Wave number is $\alpha=2.4$.

5.6.4. Example 4

Figures 18 and 19 show the results of numerical simulations for oil bubbles in water. This example shows that in the middle of the adjustment period, several oil bubbles exist in the water, then they merge back into the oil core, and stick to it. The Reynolds number is 3.737354 , the ratio of the radius is 1.61 and K, the ratio of driving forces in the core and annulus is -2.030303 . We do our simulations on a 50×80 mesh on the domain $[0,1.61] \times[0,2.6180]$.

5.7. Horizontal Flow without Gravity

Finally, we apply the level set method to simulate the horizontal flow case of CAF. Without the axisymmetric property the numerical simulation fails because the buoyancy of the oil makes the oil move upward and at the same time, water needs to move to give room to the oil but there is no room for the water. To do this we require axisymmetry for our numerical simulations. Thus, we ignore the effect of gravity. The pressure gradient needs to be big enough to move the fluid from left to right. We choose $R e=3.7$ and find the corresponding parameters. The initial shape is a cosine graph with amplitude $A(0)=0.01$. This gives a very smooth interface. Figure 20 shows the result of this computation.

Fig. 19. Zoom in the interfacial shape for Fig. 18 at $t=40$.

Table II. The Reynolds Numbers and the Corresponding Wavenumbers for Down-Flow, $a=1.7, m=0.00166, \eta=1.1, J=0.063354$ and $K=-0.542709$

Re	1.2	2.0	2.5	3.0
α	1.4	1.675	1.975	2.625

5.8. CPU Times

We use Tables 1 and 2 to give the Reynolds numbers and corresponding wave numbers for up-flow and down-flow. We use a computer with a 2.0 GHz Pentium 4 processor for the simulations. We describe our CPU times for our figures in Tables 3 and 4. At the same time, we tabulate CPU times which we used factorization in Tables 3 and 4.

Table III. The Reynolds Numbers and CPU Times for Down-Flows

Re	CPU time without factorization	CPU time with factorization
1.2	1 month	1 week
2.0	3 weeks	5 days
2.5	2 weeks	3 days
3.0	1 week	1 day

Table IV. The Reynolds Numbers and CPU Times for Up-Flows

Re	CPU time without factorization	CPU time with factorization
1.0	1 month	1 week
1.5	3.5 weeks	5 days
2.0	3 weeks	3 days
3.0	2 weeks	2 days
3.7	1 week	1 day

Fig. 20. Simulation for horizontal pipe case $R e=3.7, a=1.61, m=0.00166, \eta=1.1, J=$ 0.063354 , and $K=-2.0303003$. Wave number $\alpha=2.4$. We use the axisymmetric property without gravity.

6. CONCLUSION

Core-annular flows of liquids with different density and a high-viscosity ratio were computed in a direct numerical simulation using the level set method. It was assumed that the flow is axisymmetric and periodic. These assumptions reduce the computational cost. In dimensional terms, for given material parameters, we obtain solutions when the volume flow rates of oil, water, and the hold-up ratio are prescribed. Our simulation with the level set method on core-annular flow represents an improvement over the results of Bai et al. [1], who solved for the steady solution of the governing equations assuming the densities matched and assuming a solid core, and on the results of Li and Renardy [8], who investigated this problem with different densities for two liquids. In contrast with Li and Renardy's work, we reduced the computational time without
using factorization. Furthermore, we investigated the case where the oil core breaks into water, forming a separate bubble there. This was easy to handle due to the level set methodology.

ACKNOWLEDGMENTS

M.Kang was supported by Korea Research Foundation Grant(KRF-2004-003-C00030). M.Kang also holds joint appointment in the Research Institute of Mathematics, Seoul National University.

REFERENCES

1. Bai, R., Chen, K., and Joseph, D. D. (1992). Lubricated pipelining: stability of CoreAnnular flow. part 5. experiments and comparison with theory. J. Fluid Mech. 240, 97-142.
2. Bai, R., Kelkar, K., and Joseph, D. D., (1996). Direct simulation of interfacial waves in a high-viscosity ratio and axisymmetric core annular flow. J. Fluid Mech. 327, 1-34.
3. Brackbill, J. U., Kothe, D. B., and Zemach, C. (1992). A continuum method for modeling surface tension. J. Comput. Phys. 100, 335-353.
4. Chang, Y. C., Hou, T. Y., Merriman, B., and Osher, S. (1996). A level set formulation of eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124, 449-464.
5. Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Math. Comp. 22, 745.
6. Joseph, D. D., and Renardy, Y. Y. (1993) Fundamentals of Two-Fluid Dynamics, Part I, Mathematical Theory and Applications; Part II, Lubricated Transport, Drops and Miscible Liquids. Springer-Verlag, New York.
7. Kang, M., Fedkiw, R. P., and Liu, X. D. (2000). A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 323-360.
8. Li, J., and Renardy, Y. Y. (1999). Direct simulation of unsteady axisymmetric core-annular flow with high viscosity ratio. J. Fluid Mech. 391, 123-149.
9. Li, J., Renardy, Y. Y., and Renardy, M. (1998). A numerical study of periodic disturbances on two-layer Couette flow. Phys. Fluids 10(12), 3056-3071.
10. Osher, S., and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12-49.
11. Osher, S., and Shu, C. W. (1991). High-order Essentially non-oscillatory schemes for Hamilton-Jacobi equation. SINUM 28, 907-922.
12. Peng, D., Merriman, B., Osher, S., Zhao, H. K., and Kang, M. (1999). A PDE based fast local level set method. J. Comput. Phys. 55, 410-438.
13. Renardy, Y. Y. (1997). Snakes and corkscrews in Core-Annular down-flow of two fluids. J. Fluid Mech. 340, 297-317.
14. Sussman, M., Fatemi, E., Smereka, P., and Osher, S. (1998). A level set approach for computing solutions to incompressible two-phase flow II. CAM Rep. 83, 27.
15. Sussman, M., Smereka, P., and Osher, S. (1994). A level set method of computing solutions to incompressible two-phase flow. J. Comput. Phys 119, 146-159.
16. Unverdi, S. O., and Tryggvason, G. (1992). A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 25-37.

[^0]: ${ }^{1}$ Department of Mathematics, Seoul National University, Seoul, Korea. E-mail: mkang@ math.snu.ac.kr
 ${ }^{2}$ Level Set Systems, Inc., 1058 Embury street, Pacific palisadas, CA 90272-2501, USA.
 ${ }^{3}$ Department of Mathematics, University of California, Los Angeles, CA 90095, USA.

