
1278 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 5, SEPTEMBEWOCTOBER 1991

In addition to an effective solution to the jigsaw puzzle problem, we
have advanced the notion of a global feature of a planar object, called
an isthmus. A method for reliably computing the isthmus feature
from the Euclidean skeleton of an object and deriving a new set of
critical points (isthmus critical points) that describe the feature has
been presented.

Suggestions for Future Work
A set of programs that integrates many different critical points

(sharp corners, inflection points, curvature maxima, and isthmus
points) may broaden the class of puzzles solvable. Thus, if a solution
is not possible using isthmus points, the algorithm could then use
sharp corners or other points as the critical points.

The use of parallel processing to mate match segments could be
used. It may be possible to store each puzzle piece’s set of match
segments in a small processor and then in one probe determine
which of the other pieces best match. This could speed up the
matching process. Future work might also include using a robot to
physically assemble the puzzle. The robot end effector could be a
suction or vacuum device to manipulate the pieces. The vision system
could instruct the robot to perform the actual piece rotations and
translations.

ACKNOWLEDGMENT

The authors wish to thank the IEEE reviewers for their very insightful
suggestions, Dr. Giorgio Ingargiola and Dr. Charles Kapps of the
Department of Computer Science at Temple University, Dr. Paul
Ross of Millersville University and Dr. Marvin Ziskin of the Temple
University School of Medicine and for their comments on earlier
drafts of this paper.

REFERENCES

[11 H. Freeman, “Boundary encoding and processing,” in Picture Processing
and Psychopictorics, B. Lipkin and A. Rosenfeld, Eds. New York:
Academic, 1970, pp. 101-120.

[2] G . Radack and N. Badler, “Jigsaw puzzle matching using a boundary-
centered polar encoding,” Computer Graphics, and Image Processing,
vol. 19, pp. 1-2, May, 1982.

[3] R. Webster, “Partial boundary matching and shape fitting using the
medial axis transformation,” Ph.D. Dissertation, Temple Univ., Philadel-
phia, PA, May 1988, pp. 1-208 (also available through University
Microfilms International, Ann Arbor, MI).

[4] H. Freeman and L. Garder, “Apictorial jigsaw puzzles: The computer
solution to a problem in pattern recognition,” IEEE Trans. Electron.
Comput., vol. EC-13, pp. 118-127, Apr. 1964.

[SI K. Hirota and Y. Ohto, “Image recognition in jigsaw puzzle assembly
robot system (JPARS),” in Bull. Coll. Eng., Hosei Univ., Japan, pp.
87-93, Mar. 1986.

[6] K. Nagura, K, Sato, H. Maekawa, T. Morita, and K. Fujii, “Partial con-
tour processing using curvature function-Assembly of jigsaw puzzle
and recognition of moving figures,’’ Syst. Computing,vol. 2, pp. 30-39,
Feb. 1986.

[7] H. Blum, “A transformation for extracting new descriptors of shape,” in
Proc. Symp. Models for Perception of Speech and Visual Form,Weiant
Whaten-Dunn, Eds. Cambridge, MA: MIT Press, 1967, pp. 362-380.

[8] E. Persoon and K. S. Fu, “Shape discrimination using Fourier descrip-
tors,’’ IEEE Trans. Syst., Man, Cybern., vol. SMC-7, pp. 17&179, May
1977.

191 M. K. Hu, “Visual pattern recognition by moment invariants,” I R E Trans.
Inform. Theory, vol. IT-8, pp. 179-187, Feb., 1962.

[lo] E. Wong and E. L. Hall, “Scene matching with invariant moments,”
Computer Graphics, and Image Processing, vol. 8, pp. 16-24, 1978.

[Ill T. Nguyen and J . Sklansky, “A fast skeleton finder for coronary arteries,”
in Proc. IEEE Int. Con& Pattertz Recog., Paris, France, Oct. 27-31, 1986,
pp. 4 8 1 4 .

[12] H. Blum, “A geometry for biology,” in Mathematical Analysis of
Fundamental Biological Phenomena, Ann. New York Acad. Sci., vol.

[I31 F, Z. and K. And, “Performance evaluation of shape matching
via chord length distribution,” Computer Wsion, Graphics, and Image
Processing, vol. 28, pp. 185-198, Nov. 1984.

[14] J. L. Pfaltz and A. Rosenfeld, “Computer representation of planar
regions by their skeletons,” Commun. ACM, vol. 10, no.2, pp. 119-122,
Feb. 1967.

[IS] C. Arcelli, L. Cordella, and S. Levaldi, “From local maxima to connected
skeletons,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-3, no.
2, pp. 134-143, Mar. 1981.

I161 U. Montanari, “A method for obtaining skeletons using a quasi-euclidean
distance,” J . ACM, vol. 16, pp. 534-549, 1969.

[17] B. Shapiro, J . Pisa, and J. Sklansky, “Skeleton generation from x,y
boundary sequences,” Computer Vision, Graphics, and Image Process-
ing, vol. 15, pp. 136-153, 1981.

[18] L. Dorst, “Pseudo Euclidean skeletons,” in Proc. IEEE Int.Conf Pattern
Recog., Paris, France, Oct. 27-31, 1986, pp. 286-288.

[19] C. Lee, “Modified distance transform and linking algorithm for image
skeletonization,” in Proc. SPIE, vol. 415, Apr. 1983, pp. 147-154.

[20] B. Zvolanek, and C. Lee, “Image skeletonization for object position
measurement,” in Proc. SPIE, vol. 359, Aug. 1982, pp. 24-27.

[21] D. Lee, “Medial axis of a planar shape,” IEEE Trans. Pattern Anal.
Machine Intell., vol. PAMI-4, no. 4, pp. 363-369, July, 1982.

[22] S. Peleg and A. Rosenfeld, “A min-max medial axis transformation,”
IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-3, no. 2, pp.
208-210, Mar., 1981.

[23] P. V. DeSouza, and P. Houghton, “Computer location of medial axes,”
Comput. Biomed. Res., vol. 10, no. 4, pp. 333-343, Aug. 1977.

[24] G. Borgefors, “A new distance transformation approximating the eu-
clidean distance,” Proc. IEEE Int. Conf Pattern Recog., Paris, France,
Oct. 27-31, 1986, pp. 336-338.

[25] P. Danielsson, “Euclidean distance mapping,” Computer K’sion, Graph-
ics, and Image Processing, vol. 14, pp. 227-248, 1980.

231, pp. 19-30, 1974.

An Algorithm for Point Clustering and Grid Generation

Marsha Berger and Isidore Rigoutsos

Abstract- The paper describes a special purpose point clustering
algorithm, and its application to automatic grid generation, a technique
used to solve partial differential equations. Extensions of techniques
common in computer vision and pattern recognition literature are used
to partition points into a set of enclosing rectangles. Examples from two-
dimensional (2-D) calculations are shown, but the algorithm generalizes
readily to three dimensigns.

1. INTRODUCTION
This paper presents a special purpose clustering algorithm for

the automatic generation of grids when solving partial differential
equations using adaptive mesh refinement. Adaptive mesh refinement

Manuscript received April 25, 1990; revised January 26, 1991. This
work was supported in part by the Air Force Office of Scientific Research
under Contract No. AFOSR-86-0148, in part by the NSF Presidential Young
Investigator Award ASC-8858101, in part by the Department of Energy
Contract No. DEAC0276ER03077-V, and in part by Cray Research and
Grumman Aerospace, who gave matching funds in support of the PYI award.

The authors are with the Courant Institute of Mathematical Sciences, 251
Mercer St., New York, NY 10012.

IEEE Log Number 9100401.

0018-9472/91$01.00 0 1991 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 5, SEPTEMBERIOCTOBER 1991 1279

Fig. 1. A coarse grid with rectangular subgrids around the flagged points is
shown. The coarse grid points with high error are marked with an “x”.

methods can be summarized as follows. We are solving a partial
differential equation using finite difference equations on a uniform
rectangular grid. Often, the solution we are computing has sharp
localized features that cannot be resolved using a uniform grid
of practical size. The first step of adaptive mesh refinement is a
mathematical “error estimation’’ procedure that “flags” grid points
that have insufficient resolution [13]. The second step, which is the
subject of this paper, is a “grid generation” procedure that places
small finer grid patches over the coarse grid that cover the flagged
points (see Fig. 1).

In our approach the flagged points are fist separated into clusters;
each cluster is then covered with a single rectangle. Thus, the problem
of automatic generation of fine grids is reduced to the problem
of intelligent clustering of sets of points. This application is best
illustrated by an example. Fig. 1 shows a coarse grid, along with the
flagged points where the error estimate is too large. The rectangles
produced by the algorithm are indicated in dashes. Each rectangle
will become a finer grid with smaller mesh spacing.

The clustering algorithm must separate the points into distinct
rectangles such that neighboring points are in the same rectangle
(as much as possible), and all points are contained in some rectangle.
We make no assumptions about the shape of the regions needing
refinement; for example, oblique shocks, reflecting shocks, etc., lead
to regions shaped like slanted lines or the letter “V”. Our algorithm
is completely general, and so there is no attempt to do a structural
decomposition of shapes.

The grid generation problem then is to define an optimal set of
rectangles enclosing all the flagged points. Certain factors make an
enormous difference in the performance of these subgrids in solving
the differential equations:

There should be as little unnecessarily refined area as
possible.

Since the cost of the numerical integration procedure is proportional
to the area of the rectangle, the smaller the better. Fig. 1 gives an
example of a set of flagged points for which a few patches lead to
much less refined area than if the whole grid were refined. This gain
in efficiency is the purpose of adaptive methods. Some unnecessarily
refined area (or inclusion of nonflagged coarse grid points in a new
rectangle) is inevitable, since we are restricted to using rectangles.
In addition, for numerical reasons the rectangles are oriented with
the base grid rectangle. This is true even if the flagged points lie on
a diagonal of the coarse grid, and could be perfectly enclosed by a
rotated rectangle. (However, an algorithm that uses rotated rectangles
is considered in [3]) . Along these lines, if several rectangles are used
to enclose the flagged points, their overlap should be minimal, to
further reduce the computational time.

There should be as few rectangles as possible.
At the other extreme, we could put one tiny rectangle around each

flagged point. Many of these tiny rectangles would share a common

boundary segment. However, there is boundary overhead associated
with each rectangular subgrid that should also be minimized, along
with the area. In addition, these procedures will be used on vector
processors, which favor larger vector lengths and therefore larger
rectangles. (We could worry further about this, for example by trying
to maximize the length in a particular coordinate direction, but we
will not consider such machine specific details here). These first two
criteria are often at odds with each other, however our final algorithm
strikes a nice balance between them.

The rectangles should ‘ Y t ” the data.
This is hard to make absolutely precise, but for example, if a person
were to put the rectangles around the points by hand, using whatever
clustering or partitioning the brain uses, it would “look right.”
Although this is not essential for accurate numerical integration on
the rectangles, we prefer the adaptively generated rectangles to be
pleasing. Finally,

The algorithm should be fast.
This algorithm is repeated every few timesteps, or hundreds of times
during any particular numerical simulation, and should therefore be
fast relative to the time needed to take a integrate the solution on
the resulting grids.

Our solution to this rectangle-fitting problem employs ideas from
the pattern recognition and computer vision literature. A combination
of ,one dimensional signatures and zero crossings of second deriva-
tives is used to partition the flagged points into disjoint rectangles.
Although reminiscent of structural pattern recognition approaches, it
should be stressed that our algorithm does not attempt to perform
structural decomposition of its input, and our decompositions do not
necessarily generate meaningful parts. Our examples are all in two
dimensions, but the algorithm generalizes readily and has proven
effective in three dimensions too. Before describing the algorithm,
we give a little background and discuss some other approaches we
tried and discarded.

Previous Algorithms

Our previous algorithms for this problem can be summarized as
being of two main types: bottom-up or topdown. The topdown
approach is based on a bisection method. It can be viewed as a form
of divisive hierarchical clustering [6] . Initially, the flagged points
of the grid are surrounded by a single rectangle, and its efficiency
is computed. Here, we define the efficiency of a rectangle as the
ratio of flagged points to the total number of coarse grid points in
the new rectangle. This is one of the key parameters behind our
algorithm, and it is easily computed. If the efficiency is above a
preselected threshold, the rectangle is accepted and the algorithm
stops. Otherwise, we bisect the longest direction of the rectangle, and
generate two smaller rectangles. This process is repeated recursively
on each of the two new rectangles. When the algorithm terminates, all
of the rectangles are guaranteed to have acceptable efficiency ratings.
However, hierarchical clustering methods are known to create clusters
even if no natural clusters exist [l] , [7], [9]. In addition, since the
bisection approach uses no information about the locations of the
flagged points, a nonoptimal grid hierarchy is generally created. To
alleviate this, we usually follow the bisection step with a merging
step, where neighboring rectangles are merged into larger ones if the
result continues to be acceptably efficient. This merging step is what
leads to the problem of overlapping rectangles.

The bottom-up approach starts at the grid point level. The flagged
points are organized into a minimal spanning tree, so that each point
is connected to its nearest neighbor. Neighboring branches of the tree
are merged, either one point at a time, or a front at a time, as long as

1280 IEEE TRANSACTIONS ON SYSTEMS. MAN, AND CYBERNETICS, VOL. 21, NO. 5 , SEPTEMBERIOCTOBER 1991

Fig. 2. Nearest neighbor clustering is sufficient in simple
cases, e.g., the top left cluster.

the resulting grid is efficient. Although philosophically appealing,
this algorithm actually performs much worse than the top-down
bisection algorithm. A fundamental problem is the nonuniqueness
of the minimal spanning tree. Also, the algorithm suffered from the
hill-climbing problem of getting stuck in local minima; it was very
sensitive in the first few steps to the initial direction of growth of
the clusters, and tended to stop prematurely, although larger and
acceptably efficient grids were just several branches away. In that
case, it had to be followed by a merging procedure as well.

In practice, both approaches were preceded by a “nearest neighbor”
clustering algorithm. The purpose of this was to separate flagged
points when possible into isolated islands (see Fig. 2). This some-
times produces acceptable clusters by itself, but fails to help when
the flagged points formed elongated, curved shapes. Thus, it was
followed by either the bisection or minimal spanning tree algorithm.
Summarizing, both of these algorithms produced less than optimally
efficient grids that overlapped too much. Better grids were easily
created by hand.

11. TOWARD AN EFFICIENT ALGORITHM

In a more general form, the grid generation algorithm should
cluster a set of 7ti flagged points into k clusters, where k is either
specified a priori or is determined by the algorithm itself. This special
type of clustering is called partitioning [l]. In the experiments that
follow, below each example we show the total number of coarse
grid points in the generated sub-rectangles. The ratio of the total
number of flagged points to the total number of refined points
(counting overlapping areas twice) provides a simple measure of
the effectiveness of our partitioning algorithmb. Although it doesn’t
include all of our evaluation criteria, it does provide a good measure
of the cost of doing the computation on the new fine grids, and
adds a more objective means of evaluating the performance of the
partitioning algorithms.

A First Approach: Local Maxima in Two-Dimensional (2-0) Grids
Our first approach considered the question of how to choose a set

of k “seed points” around which k clusters would be built. Initially,
each of the grid points is given a value: “1” for the flagged, and
“0” for the nonflagged ones. These grid values, viewed as a binary
image, I(s. y), are then preprocessed by convolving it with either an
“averaging” or a “low-pass’’ filtering template, (see Fig. 3) [2], [8] ,
[Ill. This operation results in a nonconvex function, I(.r. y), whose
local maxima. determined by the Sobel operators [2], [111 of Fig. 4,
compose the set of “seed points’’ around which we build the clusters.

Three partitioning algorithms were tested using the seeds found
above: the standard k-means algorithm, its converging variant, and a
I;-means variant where no updating of the centroids takes place [I] ,
[7]. These algorithms are outlined in the Appendix.

(a) (b)

Fig. 3. The two filtering templates. (a) Averaging. (b) Low-Pass

- 1 ~ -2 ~ - 1 I
Fig. 4. The Sobel gradient operators. (a) a/a.r. (b) a/ay

Figs. 5 and 6 show graphically the output of the three algorithms on
two sample data sets. The three algorithms exhibit the same overall
behavior. The seeds are sensibly chosen, but in all the test cases
the resulting rectangles overlap excessively. The next method tries to
reduce the number of seeds, keeping only the best, and thus hopefully
reducing the overlapping.

A Second Approach: Local Maxima in Signature Arrays

Signatures have been known in computer vision and pattern
recognition for many years [2], [8], [ll]. Able to encapsulate gross
characteristics of a shape, and computationally simple, signatures
proved very useful for establishing preliminary landmarks in images;
these landmarks in turn led to a subsequent reduction of the search
effort. Given a continuous function, the horizontal and vertical
signatures, H (s) and 1 7 (y) are defined as

H (. r) = / f (. r . y) d y
J Y

and

I-(!/) = 1 f(s. y) tlr

respectively.
First, the horizontal and vertlcal signatures of the image are

computed. The resulting one-dimensional (1-D) arrays are low-pass
filtered [8] , and subsequently searched for local maxima. Let AI and
-Y be the two sets of maxima. As can be seen from Fig. 7, some
of the tuples of the Cartesian product M x -1’ do not correspond to
flagged point regions. After discarding all such tuples, we are left
with precisely the coordinates of the starting seeds.

With this choice of seeds, we again employed the three partitioning
techniques (k-means, converging k-means, and the no updating
variant). Figs. 8 and 9 show the results. This algorithm considerably
reduced overlapping, making this approach superior to using the local
maxima of i (. r . y) for the seed points. Unfortunately, the generated
subgrids were still not the most efficient ones; better choices were
clearly possible. Some observations based on extensive experimen-
tation were made: 1) the nonconverging variants outperformed the

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS. VOL. 21, NO. 5, SEPTEMBERIOCTOBER 1991

j j j j , , 4 .

d r l l l t t l t l

.

- ;...*...*
I t a : : : : : :

......

t l I i i j / ~ ~ ~ I P i - - - 1 1

.....

(a)

.........

......

j

j_

1281

...... 7

(c) (4
Fig. 5. The seeds are local maxima of a 2-D function. (a) Input, # flagged pts=Y74. (b) k-means, area of rectangles=1624, ratio=60.0%.
(continued). (c) Converging k-means, area of rectangles=1580, ratio=61.6%. (d) No centroid updating, area of rectangles=1687,
ratio=57.7%.

converging k-means, 2) overlapping was minimal when no updating
of the centroids occurred, and 3) the distance metric (Manhattan
Block versus Euclidean) had no appreciable effect on the results.

Apparently, the use of local maxima in signatures did not capture
enough of the underlying structure. In the next section, we use
signatures in a different way to partition the flagged points into
clusters.

111. THE ALGORITHM

Our best algorithm uses ideas related to edge detection. One of the
many approaches to the edge detection problem is the one suggested
by [121. Based on the psychophysical and neurophysiological exper-
iments of [5] , the method consists of first convolving the original
image against a Gaussian kernel and then computing the Laplacian
of the result; the intensity discontinuities are associated with those
positions where the Laplacian is equal to 0 (zero crossings).

In what follows, the input grids are viewed as binary images in
the sense of Section 11-A. The edges will now be located at those
positions of the grid where a transition from a flagged point region
to a nonflagged one occurs. The most prominent such transition
represents a “natural” line with respect to which the original grid
can be partitioned. For the example depicted in Fig. 10, the line (e)
represents such a transition.

The problem is that of determining such transitions. Although the
Marr-Hildreth method would be a potential candidate, it cannot easily
be employed toward this end for two reasons. First, its output is a
collection of Boolean values at the different grid locations: TRUE if a
zero crossing exists at that location, FALSE otherwise; these Boolean
values need to be combined in order to generate an actual edge, a not
so trivial task. Second, since the Laplacian operator is isotropic, the
“natural” line with respect to which the original grid could be split
will not, in general, be parallel to the sides of the grid. (We require the
sides of the rectangle to be parallel to the sides of the original grid).

Signatures again hold the answer: the idea is to look for zero
crossings in the second derivative of a signature (inflection points).
This idea borrows from both the signature approach and the Marr-
Hildreth method, except that we do not convolve with a Gaussian
filter.

In general, there is more than one inflection point in a given
signature array. For our purposes however, we select one inflection
point at a time, corresponding to the most prominent edge. Its
location is determined by searching both the horizontal and vertical
signature arrays for the inflection point with the largest local change
of values. This is indicated in Fig. 11, where the row (column) labeled
S contains the horizontal (vertical) signature, and A indicates the
Laplacian of the signature in the appropriate direction.

1282 IEEE TRANSACTIONS ON SYSTEMS. MAN, AND CYBERNETICS, VOL. 21, NO. 5 , SEPTEMBERIOaOBER 1991

.......
. . a

. . a

....
........

....
a
a

...

..

(c) (4

Fig. 6. The seeds are local maxima of a 2-D function. (a) input, # flagged pts = 704. (b) k-means area of rectangles
=1034, ratio=68.1% (continued), (c) converging k-means, area of rectangles=1020, ratio=69.0%. (d) no centroid updating, area
of rectangles=1000, ratio=70.4%

6 1 n 1
Y’ 0

X
x x x

x x
x x x

x x x x
x x x

X

xo xl

Fig. 7. Seed values are obtained from the maxima of the one dimensional
signature arrays at so. si and yo. y1, However, their Cartesian product does
not always correspond to a region with flagged points.

The input grids are also expected to contain isolated regions of
flagged points (islands), making it necessary that both signature arrays
first be searched for chains of O’s, or “holes” (see Fig. 10). The
occurrence of such holes provides obvious choices for splitting the
input grid into a number of rectangles, and is exploited before any
attempt at locating inflection points is made. If holes are found, we use
them before computing any inflection points. We proceed by applying
our algorithm only to those rectangles that are still inefficient.

We now give a high level description of the actual algorithm,

followed by sample runs in Figs. 12 to 16 on a number of real and
synthetic problem cases.
BEGIN

i = 1;
while (i number-of-rectangles) do

if (rectangle efficiency < threshold)
then
compute signatures ;
find the best place to split R,
(either a hole or inflection pt.) ;

if (found a place to split) then
split rectangle in two ;
append new rectangle to end
of list of rectangles ;

else

endif

i +- i + 1 ; (consider the next

i + i + l ;

else

rectangle on the list)
end if

end while
END

Iv. COMMENTS ON THE ALGORITHM AND ITS PERFORMANCE

While most of the time the algorithm performs exceptionally well,
sometimes it generates anomalous and/or nonoptimal rectangles. As

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 5, SEPTEMBEWOCTOBER 1991 1283

... e

a

a
. . a
. . a

........

.... e-. . ..

Fig. 8. The seeds are chosen from local maxima of signature arrays. (a) input, # flagged pts=704; (b) k-means, area of
rectangles=946, ratio=74.4%. (continued) (c) converging k-means, area of rectangles=928, ratio=75.8%; (d) no centroid updating,
area of rectangles=859, ratio=81.9%.

we will see, many of these can be eliminated by simple changes
in the algorithm. The anomalies fall into several general categories,
which we illustrate by picture. The basic algorithm description has
two exit points: a rectangle is “accepted” either because its efficiency
is already above threshold, or because it cannot be further split using
either of the two methods (i.e. holes and inflection points). As a
result, the efficiency of some of the generated subgrids may be below
the preset threshold. This is the case with all grids associated with
regions that form an angle with the horizontal (see Figs. 6 and 9). The
inefficiency approaches its maximum as angles approach 45 degrees.

Another problematic grid is the one appearing in Fig. 17. Neither
the horizontal nor the vertical signatures will contain any holes or
inflection points, and this will be true for all nonzero values of a , b.
In these cases the bounding rectangles will have an efficiency of pre-
cisely 50%. An ordinary bisection step could be easily incorporated
here to increase the efficiency to 100%. A similar arrangement of
flagged points which we have encountered in our experiments (see
Fig. 18) leads to another kind of nonoptimal choice. One way around
this is to used weighted second derivatives, scaling the Laplacian by
the number of flagged points. This leads to a correct choice for the
inflection point in Fig. 18.

A modification of our algorithm that covers both anomalous cases
is to compute the sum of the absolute value of the gradient, and

difference the results to get the second derivative. The most robust
solution to this problem is still an open question.

A seemingly problematic case is shown in Fig. 19. Here it appears
as if the algorithm made a nonoptimal decision by unnecessarily
splitting rectangle R1 (dotted line) into two smaller subrectangles.
However, careful inspection shows that rectangles R1 and R2 could
not have been generated without introducing an overlapping region.

Tight bounds for the running time of the described algorithm are
very hard to establish, since the precise flow of the algorithm is
input dependent. However, it should be clear that the running time
is O (k (P + N + M)) , where IC is the total number of grids upon
termination of the algorithm, and P is the number of flagged points.
The P term comes from computing the signatures of the points (by
traversing the list of flagged points). The N (resp. M) term comes
from the linear search that determines the best inflection point. The
above bound is far from optimal, and the algorithm performs very
well in practice. Preliminary three dimensional results also show great
performance.

V. CONCLUSION
We have described a new and efficient algorithm for point clus-

tering and adaptive grid generation. The algorithm’s performance

1284 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 5, SEPTEMBERIOmOBER 1991

x x x x ; x x x x
x x x x : x x x x x x
x x x x ; x x x x x x x
x x x x ; x x x x x x x x
X X X X ~ x x x x x x x x
x x x x : x x x x x x x x

.....

8 - 4
10 -1

11 0
12 -1
12 0
12 0

..

..

.... I .

*.
a . .
a . .
a .
a . ..

..... I ::::::::
...
I..

I

2

(c) (4

Fig. 9. The seeds are chosen from local maxima of signature arrays. (a) input, # flagged pts=974; (b) k-means, area of
rectangles=1721, ratio=56.6%. (continued) (c) converging k-means, area of rectangles1649, ratio=59.1%; (d) no centroid updating,
area of rectangles=1494, ratio=65.2%.

Z A
I 1

x x Ye) x x
x x x x ; x x x x
x x x x : x x x x
x x x x : x x x x
x x x x : x x x x
x x x X~
x x x x :
x x x x : x x
x x x x ; x x x x x
x x x x ; x x x x x

x x x : x x x x x x x
x : x x x x x

Fig. 10. The rectangle is partitioned at line (e); after this, an isolated cluster
can be detected for further partitioning.

has been demonstrated through a series of graphs showing results
obtained with both synthetic and actual 2-D inputs. Preliminary
experiments with three-dimensional (3-D) problems also show a
considerably improved performance over the previous approaches.
In general, the efficiency of the enclosing rectangles for our ap-
plications has been very high, typically ranging between 85% and
loo%, with the exception of the problematic cases illustrated in
Figs. 17-19. It is surprising how effectively the algorithm performs
on multidimensional data, even though it is based on Cartesian

coordinate directions. Finally, this algorithm may also prove useful
in other applications with binary image data, for example in gen-
erating bounding rectangles for computer graphics applications. A
rectangle fitting algorithm has also been used in conjunction with a
pattern recognition system for understanding Japanese business cards
[lo].

.... ,.......... ,.,......... ,.......... I ,........... ,........... ,........... ,...........
. . . . * e . ,.......... 9i;'

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 5, SEPTEMBERIOCTOBER 1991 128.5

....

........

..

[,. ..
.. . .

F]

...

....... 7

....... 1

........ *
. a

........

......
I W j

n

...... 7

Fig. 14. An example of the final algorithm. (a) input, # flagged pts=686.
Fig. 12. An example of the final algorithm. (a) input, # flagged pts = 704. (b) area of rectangles=694, ratio=98.8%.

(b) area of rectangles=756, ratio=93.1%.

....

......

.................. E ILzl 0 i i i i i i i : * =a U Q B m a y;: '
..............

.
a . .

a . . .
a

a

. El
m I : : : ' j

.

.
u t

(b) (b)

Fig. 13. An example of the final algorithm. (a) input, # flagged pts=974. Fig. 15. An example of the final algorithm. (a) Input, # flagged Pts=273.
(b) area of rectangles=1182, ratio42.496. (b) Area of rectangles=324, ratio=84.3%.

APPENDIX 2) Assign each of the remaining data points to the cluster with

McQueen 's k-means Partitioning Algorithm

the nearest (with respect to an appropriate distance metric)
centroid recomputing the gaining cluster's centroid after each
assignment.

1) Form k single member clusters each one containing precisely
one of the k starting seeds. The clusters' centroids originally
coincide with the starting seeds.

3) Assume the cluster centroids are fixed this time, and reassign
each of the data points to the cluster with the nearest centroid
(one pass through the data).

1286

I x x x x x x x x > s x x x x x x x x x
x x x x x x x x A
x x x x x x x x > c

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 5, SEPTEMBERIOCTOBER 1991

b

. *

y x x x x x x x x
~ x x x x x x x x
k x x x x x x x x
lxXXXXxXxx

[T I cl . .

.

E]
.

(b)
Fig. 16. An example of the final algorithm. (a) input, ##
flagged pts=261; @) area of rectangles=292, ratio=89.4%.

a
c > x x x x x x x x x ~

* x x x x x x x x x a

McQueen ’s Converging k-means Partitioning Algorithm

1) Form k single member clusters each one containing precisely
one of the k starting seeds. The clusters’ centroids originally
coincide with the starting seeds.

2) Assign each of the remaining data points to the cluster with
the nearest (with respect to an appropriate distance metric)
centroid recomputing the gaining cluster’s centroid after each
assignment.

3) For each data point compute its distance to all the cluster
centroids; if the nearest centroid corresponds to a cluster
other than the point’s actual parent cluster reassign the point;
recompute the centroids of both the gaining and losing clusters.

4) Repeat step 3) until a full sweep through the data does not
induce further changes in the points’ memberships.

Fig. 18. This set of points leads to a nonoptimal partition, unless the second
derivatives are scaled.

~ ~ x x x x x x x - - ~ ~ - ;
x x x x x x x x

k 2 4 ~ x x x x x x x x x x x ~

x x x x x x x x x x x x
x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x

Fig. 19. An unexpected set of rectangles.

Non-Updating Variant of k-means Partitioning Algorithm

1) Form k single member clusters each one containing precisely
one of the k starting seeds. The clusters’ centroids remain fixed
throughout the algorithm.

2) Assign each of the remaining data points to the cluster with
the nearest (with respect to an appropriate distance metric)
centroid but do not update the gaining cluster’s centroid (one
pass though the data).

REFERENCES

[1) M. Anderberg, Cluster Analysis for Applications. New York: Aca-
demic, 1973.

[2] D. Ballard and C. Brown, Computer Vision. Englewood Cliffs, NJ:
Prentice Hall, 1982.

[3] M. Berger, “Data structures for adaptive grid generation,” SIAM J . Sci.
Stat. Comp., vol. 7, July 1986.

[4] M. Berger and P. Colella, “Local adaptive mesh refinement for shock
hydrodynamics,” J . Comp. Phys., vol. 82, May 1989.

(51 F.W.C. Campbell and J. Robson, Application of Fourier analysis to the
visibility of gratings,” J . Phys., vol. 197, 1908.

[6] R. Duda and P. Hart, Pattern Classification and Scene Analysis. New
York: Wiley, 1973.

[7] J. Hartigan, Clustering Algorithms.
[8] B. Horn. Robot Wsion. Cambridge, M A MIT Press, 1986.
[9] A. Jain and R. Dubes, Algorithms for Clustering Data. Englewood

Cliffs, NJ: Prentice Hall, 1988.
[lo] K. Kise, K. Yamada, N. Tanaka, N. Babaguchi, and Y. Tezuka, “Visiting

card understanding system,” Proc. Int. Conf Pattern Recog., 1988.
[11] M. Levine, Vision in Man and Machine. New York: McGraw-Hill,

1987.
[12] D. Marr and E. Hildreth, “Theory of edge detection,” Proc. Royal Soc.

London vol. 207, 1980.
[13] J. Oliger, “Approximate methods for atmospheric and oceanographic

circulation problems,” Lecture Notes in Physics 91, Glowinski and Lions,
Eds. New York: Springer-Verlag, 1979.

New York: Wiley, 1975.

