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In addition to an effective solution to the jigsaw puzzle problem, we 
have advanced the notion of a global feature of a planar object, called 
an isthmus. A method for reliably computing the isthmus feature 
from the Euclidean skeleton of an object and deriving a new set of 
critical points (isthmus critical points) that describe the feature has 
been presented. 

Suggestions for Future Work 
A set of programs that integrates many different critical points 

(sharp corners, inflection points, curvature maxima, and isthmus 
points) may broaden the class of puzzles solvable. Thus, if a solution 
is not possible using isthmus points, the algorithm could then use 
sharp corners or other points as the critical points. 

The use of parallel processing to mate match segments could be 
used. It may be possible to store each puzzle piece’s set of match 
segments in a small processor and then in one probe determine 
which of the other pieces best match. This could speed up the 
matching process. Future work might also include using a robot to 
physically assemble the puzzle. The robot end effector could be a 
suction or vacuum device to manipulate the pieces. The vision system 
could instruct the robot to perform the actual piece rotations and 
translations. 
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An Algorithm for Point Clustering and Grid Generation 

Marsha Berger and Isidore Rigoutsos 

Abstract- The paper describes a special purpose point clustering 
algorithm, and its application to automatic grid generation, a technique 
used to solve partial differential equations. Extensions of techniques 
common in computer vision and pattern recognition literature are used 
to partition points into a set of enclosing rectangles. Examples from two- 
dimensional (2-D) calculations are shown, but the algorithm generalizes 
readily to three dimensigns. 

1. INTRODUCTION 
This paper presents a special purpose clustering algorithm for 

the automatic generation of grids when solving partial differential 
equations using adaptive mesh refinement. Adaptive mesh refinement 
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Fig. 1. A coarse grid with rectangular subgrids around the flagged points is 
shown. The coarse grid points with high error are marked with an “x”. 

methods can be summarized as follows. We are solving a partial 
differential equation using finite difference equations on a uniform 
rectangular grid. Often, the solution we are computing has sharp 
localized features that cannot be resolved using a uniform grid 
of practical size. The first step of adaptive mesh refinement is a 
mathematical “error estimation’’ procedure that “flags” grid points 
that have insufficient resolution [13]. The second step, which is the 
subject of this paper, is a “grid generation” procedure that places 
small finer grid patches over the coarse grid that cover the flagged 
points (see Fig. 1). 

In our approach the flagged points are fist separated into clusters; 
each cluster is then covered with a single rectangle. Thus, the problem 
of automatic generation of fine grids is reduced to the problem 
of intelligent clustering of sets of points. This application is best 
illustrated by an example. Fig. 1 shows a coarse grid, along with the 
flagged points where the error estimate is too large. The rectangles 
produced by the algorithm are indicated in dashes. Each rectangle 
will become a finer grid with smaller mesh spacing. 

The clustering algorithm must separate the points into distinct 
rectangles such that neighboring points are in the same rectangle 
(as much as possible), and all points are contained in some rectangle. 
We make no assumptions about the shape of the regions needing 
refinement; for example, oblique shocks, reflecting shocks, etc., lead 
to regions shaped like slanted lines or the letter “V”. Our algorithm 
is completely general, and so there is no attempt to do a structural 
decomposition of shapes. 

The grid generation problem then is to define an optimal set of 
rectangles enclosing all the flagged points. Certain factors make an 
enormous difference in the performance of these subgrids in solving 
the differential equations: 

There should be as little unnecessarily refined area as 
possible. 

Since the cost of the numerical integration procedure is proportional 
to the area of the rectangle, the smaller the better. Fig. 1 gives an 
example of a set of flagged points for which a few patches lead to 
much less refined area than if the whole grid were refined. This gain 
in efficiency is the purpose of adaptive methods. Some unnecessarily 
refined area (or inclusion of nonflagged coarse grid points in a new 
rectangle) is inevitable, since we are restricted to using rectangles. 
In addition, for numerical reasons the rectangles are oriented with 
the base grid rectangle. This is true even if the flagged points lie on 
a diagonal of the coarse grid, and could be perfectly enclosed by a 
rotated rectangle. (However, an algorithm that uses rotated rectangles 
is considered in [3]) .  Along these lines, if several rectangles are used 
to enclose the flagged points, their overlap should be minimal, to 
further reduce the computational time. 

There should be as few rectangles as possible. 
At the other extreme, we could put one tiny rectangle around each 

flagged point. Many of these tiny rectangles would share a common 

boundary segment. However, there is boundary overhead associated 
with each rectangular subgrid that should also be minimized, along 
with the area. In addition, these procedures will be used on vector 
processors, which favor larger vector lengths and therefore larger 
rectangles. (We could worry further about this, for example by trying 
to maximize the length in a particular coordinate direction, but we 
will not consider such machine specific details here). These first two 
criteria are often at odds with each other, however our final algorithm 
strikes a nice balance between them. 

The rectangles should ‘ Y t  ” the data. 
This is hard to make absolutely precise, but for example, if a person 
were to put the rectangles around the points by hand, using whatever 
clustering or partitioning the brain uses, it would “look right.” 
Although this is not essential for accurate numerical integration on 
the rectangles, we prefer the adaptively generated rectangles to be 
pleasing. Finally, 

The algorithm should be fast. 
This algorithm is repeated every few timesteps, or hundreds of times 
during any particular numerical simulation, and should therefore be 
fast relative to the time needed to take a integrate the solution on 
the resulting grids. 

Our solution to this rectangle-fitting problem employs ideas from 
the pattern recognition and computer vision literature. A combination 
of ,one dimensional signatures and zero crossings of second deriva- 
tives is used to partition the flagged points into disjoint rectangles. 
Although reminiscent of structural pattern recognition approaches, it 
should be stressed that our algorithm does not attempt to perform 
structural decomposition of its input, and our decompositions do not 
necessarily generate meaningful parts. Our examples are all in two 
dimensions, but the algorithm generalizes readily and has proven 
effective in three dimensions too. Before describing the algorithm, 
we give a little background and discuss some other approaches we 
tried and discarded. 

Previous Algorithms 

Our previous algorithms for this problem can be summarized as 
being of two main types: bottom-up or topdown.  The topdown 
approach is based on a bisection method. It can be viewed as a form 
of divisive hierarchical clustering [6] .  Initially, the flagged points 
of the grid are surrounded by a single rectangle, and its efficiency 
is computed. Here, we define the efficiency of a rectangle as the 
ratio of flagged points to the total number of coarse grid points in 
the new rectangle. This is one of the key parameters behind our 
algorithm, and it is easily computed. If the efficiency is above a 
preselected threshold, the rectangle is accepted and the algorithm 
stops. Otherwise, we bisect the longest direction of the rectangle, and 
generate two smaller rectangles. This process is repeated recursively 
on each of the two new rectangles. When the algorithm terminates, all 
of the rectangles are guaranteed to have acceptable efficiency ratings. 
However, hierarchical clustering methods are known to create clusters 
even if no natural clusters exist [ l ] ,  [7], [9]. In addition, since the 
bisection approach uses no information about the locations of the 
flagged points, a nonoptimal grid hierarchy is generally created. To 
alleviate this, we usually follow the bisection step with a merging 
step, where neighboring rectangles are merged into larger ones if the 
result continues to be acceptably efficient. This merging step is what 
leads to the problem of overlapping rectangles. 

The bottom-up approach starts at the grid point level. The flagged 
points are organized into a minimal spanning tree, so that each point 
is connected to its nearest neighbor. Neighboring branches of the tree 
are merged, either one point at a time, or a front at a time, as long as 
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Fig. 2. Nearest neighbor clustering is sufficient in simple 
cases, e.g., the top left cluster. 

the resulting grid is efficient. Although philosophically appealing, 
this algorithm actually performs much worse than the top-down 
bisection algorithm. A fundamental problem is the nonuniqueness 
of the minimal spanning tree. Also, the algorithm suffered from the 
hill-climbing problem of getting stuck in local minima; it was very 
sensitive in the first few steps to the initial direction of growth of 
the clusters, and tended to stop prematurely, although larger and 
acceptably efficient grids were just several branches away. In that 
case, it had to be followed by a merging procedure as well. 

In practice, both approaches were preceded by a “nearest neighbor” 
clustering algorithm. The purpose of this was to separate flagged 
points when possible into isolated islands (see Fig. 2). This some- 
times produces acceptable clusters by itself, but fails to help when 
the flagged points formed elongated, curved shapes. Thus, it was 
followed by either the bisection or minimal spanning tree algorithm. 
Summarizing, both of these algorithms produced less than optimally 
efficient grids that overlapped too much. Better grids were easily 
created by hand. 

11. TOWARD AN EFFICIENT ALGORITHM 

In a more general form, the grid generation algorithm should 
cluster a set of 7ti flagged points into k clusters, where k is either 
specified a priori or is determined by the algorithm itself. This special 
type of clustering is called partitioning [l]. In the experiments that 
follow, below each example we show the total number of coarse 
grid points in the generated sub-rectangles. The ratio of the total 
number of flagged points to the total number of refined points 
(counting overlapping areas twice) provides a simple measure of 
the effectiveness of our partitioning algorithmb. Although it doesn’t 
include all of our evaluation criteria, it does provide a good measure 
of the cost of doing the computation on the new fine grids, and 
adds a more objective means of evaluating the performance of the 
partitioning algorithms. 

A First Approach: Local Maxima in Two-Dimensional (2-0) Grids 
Our first approach considered the question of how to choose a set 

of k “seed points” around which k clusters would be built. Initially, 
each of the grid points is given a value: “1” for the flagged, and 
“0” for the nonflagged ones. These grid values, viewed as a binary 
image, I(s. y), are then preprocessed by convolving it with either an 
“averaging” or a “low-pass’’ filtering template, (see Fig. 3) [2], [ 8 ] ,  
[Ill. This operation results in a nonconvex function, I(.r. y), whose 
local maxima. determined by the Sobel operators [2], [ 111 of Fig. 4, 
compose the set of “seed points’’ around which we build the clusters. 

Three partitioning algorithms were tested using the seeds found 
above: the standard k-means algorithm, its converging variant, and a 
I;-means variant where no updating of the centroids takes place [I] ,  
[7]. These algorithms are outlined in the Appendix. 

(a) (b) 

Fig. 3. The two filtering templates. (a) Averaging. (b) Low-Pass 

- 1  ~ -2  ~ - 1  I 
Fig. 4. The Sobel gradient operators. (a) a/a.r. (b) a/ay 

Figs. 5 and 6 show graphically the output of the three algorithms on 
two sample data sets. The three algorithms exhibit the same overall 
behavior. The seeds are sensibly chosen, but in all the test cases 
the resulting rectangles overlap excessively. The next method tries to 
reduce the number of seeds, keeping only the best, and thus hopefully 
reducing the overlapping. 

A Second Approach: Local Maxima in Signature Arrays 

Signatures have been known in computer vision and pattern 
recognition for many years [2], [8], [ll]. Able to encapsulate gross 
characteristics of a shape, and computationally simple, signatures 
proved very useful for establishing preliminary landmarks in images; 
these landmarks in turn led to a subsequent reduction of the search 
effort. Given a continuous function, the horizontal and vertical 
signatures, H ( s )  and 1 7 ( y )  are defined as 

H ( . r )  = / f ( . r . y )  d y  
J Y  

and 

I-(!/) = 1 f(s. y )  tlr 

respectively. 
First, the horizontal and vertlcal signatures of the image are 

computed. The resulting one-dimensional (1-D) arrays are low-pass 
filtered [ 8 ] ,  and subsequently searched for local maxima. Let AI and 
-Y be the two sets of maxima. As can be seen from Fig. 7, some 
of the tuples of the Cartesian product M x -1’ do not correspond to 
flagged point regions. After discarding all such tuples, we are left 
with precisely the coordinates of the starting seeds. 

With this choice of seeds, we again employed the three partitioning 
techniques (k-means, converging k-means, and the no updating 
variant). Figs. 8 and 9 show the results. This algorithm considerably 
reduced overlapping, making this approach superior to using the local 
maxima of i ( . r .  y )  for the seed points. Unfortunately, the generated 
subgrids were still not the most efficient ones; better choices were 
clearly possible. Some observations based on extensive experimen- 
tation were made: 1) the nonconverging variants outperformed the 
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Fig. 5.  The seeds are local maxima of a 2-D function. (a) Input, # flagged pts=Y74. (b) k-means, area of rectangles=1624, ratio=60.0%. 
(continued). (c) Converging k-means, area of rectangles=1580, ratio=61.6%. (d) No centroid updating, area of rectangles=1687, 
ratio=57.7%. 

converging k-means, 2)  overlapping was minimal when no updating 
of the centroids occurred, and 3) the distance metric (Manhattan 
Block versus Euclidean) had no appreciable effect on the results. 

Apparently, the use of local maxima in signatures did not capture 
enough of the underlying structure. In the next section, we use 
signatures in a different way to partition the flagged points into 
clusters. 

111. THE ALGORITHM 

Our best algorithm uses ideas related to edge detection. One of the 
many approaches to the edge detection problem is the one suggested 
by [ 121. Based on the psychophysical and neurophysiological exper- 
iments of [5] ,  the method consists of first convolving the original 
image against a Gaussian kernel and then computing the Laplacian 
of the result; the intensity discontinuities are associated with those 
positions where the Laplacian is equal to 0 (zero crossings). 

In what follows, the input grids are viewed as binary images in 
the sense of Section 11-A. The edges will now be located at those 
positions of the grid where a transition from a flagged point region 
to a nonflagged one occurs. The most prominent such transition 
represents a “natural” line with respect to which the original grid 
can be partitioned. For the example depicted in Fig. 10, the line (e) 
represents such a transition. 

The problem is that of determining such transitions. Although the 
Marr-Hildreth method would be a potential candidate, it cannot easily 
be employed toward this end for two reasons. First, its output is a 
collection of Boolean values at the different grid locations: TRUE if a 
zero crossing exists at that location, FALSE otherwise; these Boolean 
values need to be combined in order to generate an actual edge, a not 
so trivial task. Second, since the Laplacian operator is isotropic, the 
“natural” line with respect to which the original grid could be split 
will not, in general, be parallel to the sides of the grid. (We require the 
sides of the rectangle to be parallel to the sides of the original grid). 

Signatures again hold the answer: the idea is to look for zero 
crossings in the second derivative of a signature (inflection points). 
This idea borrows from both the signature approach and the Marr- 
Hildreth method, except that we do not convolve with a Gaussian 
filter. 

In general, there is more than one inflection point in a given 
signature array. For our purposes however, we select one inflection 
point at a time, corresponding to the most prominent edge. Its 
location is determined by searching both the horizontal and vertical 
signature arrays for the inflection point with the largest local change 
of values. This is indicated in Fig. 11, where the row (column) labeled 
S contains the horizontal (vertical) signature, and A indicates the 
Laplacian of the signature in the appropriate direction. 
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Fig. 6. The seeds are local maxima of a 2-D function. (a) input, # flagged pts = 704. (b) k-means area of rectangles 
=1034, ratio=68.1% (continued), (c) converging k-means, area of rectangles=1020, ratio=69.0%. (d) no centroid updating, area 
of rectangles=1000, ratio=70.4% 
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Fig. 7. Seed values are obtained from the maxima of the one dimensional 
signature arrays at so. si and yo. y1, However, their Cartesian product does 
not always correspond to a region with flagged points. 

The input grids are also expected to contain isolated regions of 
flagged points (islands), making it necessary that both signature arrays 
first be searched for chains of O’s, or “holes” (see Fig. 10). The 
occurrence of such holes provides obvious choices for splitting the 
input grid into a number of rectangles, and is exploited before any 
attempt at locating inflection points is made. If holes are found, we use 
them before computing any inflection points. We proceed by applying 
our algorithm only to those rectangles that are still inefficient. 

We now give a high level description of the actual algorithm, 

followed by sample runs in Figs. 12 to 16 on a number of real and 
synthetic problem cases. 
BEGIN 

i = 1; 
while ( i number-of-rectangles ) do 

if (rectangle efficiency < threshold ) 
then 
compute signatures ; 
find the best place to split R, 
(either a hole or inflection pt.) ; 

if ( found a place to split ) then 
split rectangle in two ; 
append new rectangle to end 
of list of rectangles ; 

else 

endif 

i +- i + 1 ; ( consider the next 

i + i + l ;  

else 

rectangle on the list ) 
end if 

end while 
END 

Iv. COMMENTS ON THE ALGORITHM AND ITS PERFORMANCE 

While most of the time the algorithm performs exceptionally well, 
sometimes it generates anomalous and/or nonoptimal rectangles. As 
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Fig. 8. The seeds are chosen from local maxima of signature arrays. (a) input, # flagged pts=704; (b) k-means, area of 
rectangles=946, ratio=74.4%. (continued) (c) converging k-means, area of rectangles=928, ratio=75.8%; (d) no centroid updating, 
area of rectangles=859, ratio=81.9%. 

we will see, many of these can be eliminated by simple changes 
in the algorithm. The anomalies fall into several general categories, 
which we illustrate by picture. The basic algorithm description has 
two exit points: a rectangle is “accepted” either because its efficiency 
is already above threshold, or because it cannot be further split using 
either of the two methods (i.e. holes and inflection points). As a 
result, the efficiency of some of the generated subgrids may be below 
the preset threshold. This is the case with all grids associated with 
regions that form an angle with the horizontal (see Figs. 6 and 9). The 
inefficiency approaches its maximum as angles approach 45 degrees. 

Another problematic grid is the one appearing in Fig. 17. Neither 
the horizontal nor the vertical signatures will contain any holes or 
inflection points, and this will be true for all nonzero values of a ,  b. 
In these cases the bounding rectangles will have an efficiency of pre- 
cisely 50%. An ordinary bisection step could be easily incorporated 
here to increase the efficiency to 100%. A similar arrangement of 
flagged points which we have encountered in our experiments (see 
Fig. 18) leads to another kind of nonoptimal choice. One way around 
this is to used weighted second derivatives, scaling the Laplacian by 
the number of flagged points. This leads to a correct choice for the 
inflection point in Fig. 18. 

A modification of our algorithm that covers both anomalous cases 
is to compute the sum of the absolute value of the gradient, and 

difference the results to get the second derivative. The most robust 
solution to this problem is still an open question. 

A seemingly problematic case is shown in Fig. 19. Here it appears 
as if the algorithm made a nonoptimal decision by unnecessarily 
splitting rectangle R1 (dotted line) into two smaller subrectangles. 
However, careful inspection shows that rectangles R1 and R2 could 
not have been generated without introducing an overlapping region. 

Tight bounds for the running time of the described algorithm are 
very hard to establish, since the precise flow of the algorithm is 
input dependent. However, it should be clear that the running time 
is O ( k ( P  + N + M ) ) ,  where IC is the total number of grids upon 
termination of the algorithm, and P is the number of flagged points. 
The P term comes from computing the signatures of the points (by 
traversing the list of flagged points). The N (resp. M )  term comes 
from the linear search that determines the best inflection point. The 
above bound is far from optimal, and the algorithm performs very 
well in practice. Preliminary three dimensional results also show great 
performance. 

V. CONCLUSION 
We have described a new and efficient algorithm for point clus- 

tering and adaptive grid generation. The algorithm’s performance 
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Fig. 9. The seeds are chosen from local maxima of signature arrays. (a) input, # flagged pts=974; (b) k-means, area of 
rectangles=1721, ratio=56.6%. (continued) (c) converging k-means, area of rectangles1649, ratio=59.1%; (d) no centroid updating, 
area of rectangles=1494, ratio=65.2%. 
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Fig. 10. The rectangle is partitioned at line (e); after this, an isolated cluster 
can be detected for further partitioning. 

has been demonstrated through a series of graphs showing results 
obtained with both synthetic and actual 2-D inputs. Preliminary 
experiments with three-dimensional (3-D) problems also show a 
considerably improved performance over the previous approaches. 
In general, the efficiency of the enclosing rectangles for our ap- 
plications has been very high, typically ranging between 85% and 
loo%, with the exception of the problematic cases illustrated in 
Figs. 17-19. It is surprising how effectively the algorithm performs 
on multidimensional data, even though it is based on Cartesian 

coordinate directions. Finally, this algorithm may also prove useful 
in other applications with binary image data, for example in gen- 
erating bounding rectangles for computer graphics applications. A 
rectangle fitting algorithm has also been used in conjunction with a 
pattern recognition system for understanding Japanese business cards 
[lo]. 
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Fig. 14. An example of the final algorithm. (a) input, # flagged pts=686. 
Fig. 12. An example of the final algorithm. (a) input, # flagged pts = 704. (b) area of rectangles=694, ratio=98.8%. 

(b) area of rectangles=756, ratio=93.1%. 
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Fig. 13. An example of the final algorithm. (a) input, # flagged pts=974. Fig. 15. An example of the final algorithm. (a) Input, # flagged Pts=273. 
(b) area of rectangles=1182, ratio42.496. (b) Area of rectangles=324, ratio=84.3%. 

APPENDIX 2) Assign each of the remaining data points to the cluster with 

McQueen 's k-means Partitioning Algorithm 

the nearest (with respect to an appropriate distance metric) 
centroid recomputing the gaining cluster's centroid after each 
assignment. 

1) Form k single member clusters each one containing precisely 
one of the k starting seeds. The clusters' centroids originally 
coincide with the starting seeds. 

3 )  Assume the cluster centroids are fixed this time, and reassign 
each of the data points to the cluster with the nearest centroid 
(one pass through the data). 
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Fig. 16. An example of the final algorithm. (a) input, ## 
flagged pts=261; @) area of rectangles=292, ratio=89.4%. 
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McQueen ’s Converging k-means Partitioning Algorithm 

1) Form k single member clusters each one containing precisely 
one of the k starting seeds. The clusters’ centroids originally 
coincide with the starting seeds. 

2) Assign each of the remaining data points to the cluster with 
the nearest (with respect to an appropriate distance metric) 
centroid recomputing the gaining cluster’s centroid after each 
assignment. 

3) For each data point compute its distance to all the cluster 
centroids; if the nearest centroid corresponds to a cluster 
other than the point’s actual parent cluster reassign the point; 
recompute the centroids of both the gaining and losing clusters. 

4) Repeat step 3) until a full sweep through the data does not 
induce further changes in the points’ memberships. 

Fig. 18. This set of points leads to a nonoptimal partition, unless the second 
derivatives are scaled. 

~ ~ x x x x x x x - -  ~ ~ - ;  
x x x x x x x x  

k 2 4 ~ x x x x x x x x x x x  ~ 

x x x x x x x x x x x x 
x x x x x x x x x x x x x  
x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x  

Fig. 19. An unexpected set of rectangles. 

Non-Updating Variant of k-means Partitioning Algorithm 

1)  Form k single member clusters each one containing precisely 
one of the k starting seeds. The clusters’ centroids remain fixed 
throughout the algorithm. 

2)  Assign each of the remaining data points to the cluster with 
the nearest (with respect to an appropriate distance metric) 
centroid but do not update the gaining cluster’s centroid (one 
pass though the data). 
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