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The aim of this work is the development of an automatic, adaptive mesh refinement strategy 
for solving hyperbolic conservation laws in two dimensions. There are two main difficulties in 
doing this. The first problem is due to the presence of discontinuities in the solution and the 
effect on them of discontinuities in the mesh. The second problem is how to organize the algo- 
rithm to minimize memory and CPU overhead. This is an important consideration and will 
continue to be important as more sophisticated algorithms that use data structures other than 
arrays are developed for use on vector and parallel computers. b? 1989 Academic Press, Inc. 

1. INTRODUCTION 

In this paper, we present computations that use adaptive mesh refinement 
to solve multidimensional, time dependent shock hydrodynamics problems. 
Complicated structures such as multiple Mach reflections arise in these problems. 
Adaptive techniques are essential for our computations in order to adequately 
resolve features in the solution within today’s computer limitations. 

Our starting point will be the algorithms in [6] for adaptive mesh refinement for 
hyperbolic equations on rectangular grids. In this approach, the refined regions 
consist of a small number of rectangular grid patches with finer mesh spacing than 
the underlying global coarse grid. These rectangular subgrids contain points where 
the error in the coarser grid solution is too high, and other points as well. We use 
rectangular subgrids so that we can use integration methods for rectangular grids 
whose convergence properties are well understood. These methods can be made 
quite efficient on vector and parallel computers. In addition, rectangular grids have 
a simple userinterface. We can use the same integrator on line and coarse grids. By 
separating the integrator from the adaptive strategy, an off-the-shelf integrator can 
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be used without modification. This eliminates much of the problem specific work in 
doing adaptive calculations. 

The present work differs from that in [6] in several respects. The main one is 
that we are computing unsteady flows with shocks, so that maintaining global con- 
servation form is a primary consideration. The second difference is that the nested 
refinements we use have boundaries coinciding with the grid lines of the underlying 
coarse mesh, This greatly simplifies the maintenance of conservation over the 
former approach, where the relined subgrids were allowed to be rotated with 
respect to the coarse grid. Third, great care was taken to obtain an efficient 
implementation on a supercomputer. The main difficulty with adaptive methods is 
the need for data structures not usually found in numerical software. We felt the 
program complexity was high enough to justify the effort of devising as general and 
automatic an approach as possible. 

Earlier work along the lines of the present work was done by [7] in one dimen- 
sion, and [ 141 for scalar problems in two dimensions. [19] have also computed 
transonic flow in two dimensions with grid embedding. However, in the latter two 
approaches, the grids were not restricted to rectangles. The data structures, and 
therefore the efficiency of such an approach, are quite different. Our method of 
adaptivity through grid refinement is in contrast to methods that adapt the grid by 
moving grid lines into one region, leaving a coarser region somewhere else [ 18, 1, 
15, 13, 20, 81. Such methods try to get the most accurate solution for a fixed cost, 
whereas our approach tries to attain a fixed accuracy for a minimum cost. Both 
approaches have their advantages and disadvantages. The so-called moving grid 
point methods often have trouble maintaining a smooth grid. Regularity terms and 
penalty functions used to regularize the grid add overhead and reduce the simplicity 
of these methods. Local grid refinement, on the other hand, has the drawback of 
needing special equations at grid interfaces. In a method where a fixed number of 
grid points are used during a computation, the user must initially guess at what will 
be an adequate number of points to resolve features in the solution that may arise 
later. With local grid refinement, grid points are added or removed as necessary. 

In the numerical experiments shown below, we have combined this adaptive 
mesh refinement strategy with the high resolution difference scheme of [lo] to 
develop an almost automatic software tool for solving gas dynamics problems in 
two space dimensions. A reasonable question is, why is an adaptive method needed, 
given that the difference scheme used, a second-order Godunov-type method, 
already has quite high resolution? Conversely, if adaptive methods are used, are 
such complicated and expensive difference schemes really necessary? The answer is 
that both components are necessary to obtain well-resolved results for shock 
hydrodynamics. It has been demonstrated [22] that the more complicated 
Godunov-type schemes give more resolution per computational dollar than simpler 
schemes such as Lax-Wendroff. Given that a high quality scheme is necessary, 
adaptive mesh refinement can then concentrate the computational effort in regions 
where it is most useful. Since Godunov-type methods are more expensive than 
simple schemes, the computational savings of selective refinement can be substan- 
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tial. Some of the computations presented here could not have been done reasonably 
without the use of an adaptive solver. 

In the sections that follow, we describe the adaptive mesh refinement (AMR) 
algorithm for integrating a general hyperbolic system of conservation laws 

u, +f(u), + g(u), = 0 on DcR2 

Bu=b on aD. 

Our numerical examples involve the Euler equations for gas dynamics, where 

and 

PV 

PUO 

Pv2+P 

pvE + vl; 

P=(?-l)(pE-p(y)). 

Although our work to date is in two space dimensions, all the algorithms extend 
to three dimensions, and in fact it seems possible to implement a general code 
where the number of dimensions is input. 

In the next sections we describe in detail the adaptive mesh refinement algorithm 
and its implementation. We give enough detail for users interested in modifying the 
algorithm, using our code, or writing their own. First, we discuss the structures that 
define our grid hierarchy. Next, we describe the integration scheme for such a 
(static) grid hierarchy. Third, the grid generation and error estimation procedures 
used to generate the grid hierarchy itself are presented. Our error estimation proce- 
dure is theoretically justifiable only for smooth solutions. We discuss variations of 
it that may prove useful for problems with shocks. In the last section we present 
numerical experiments along with a detailed timing analysis of the runs. This 
program is being used to study Mach reflection in two dimensions with resolution 
not previously possible. New results, a triple Mach stem configuration at low y, 
have been observed. 

2. GRID DESCRIPTION 

AMR is based on using a sequence of nested, logically rectangular meshes on 
which the pde is discretized. In this work, we require the domain D to be a finite 
union of rectangles whose sides lie in the coordinate directions. We assume here 
that all the meshes are physically rectangular as well, although this is not essential. 
The method discussed here can be implemented on a general quadrilateral mesh. 
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(See, for example, [S] ). We define a sequence of levels 1 = 1, . . . . I,,,. A grid G,, has 
mesh spacing h,, with level 1 coarsest, and define 

Gl= u G,,,. 
k 

With an abuse of terminology describing a grid and the domain it covers, we have 
G, = Uk Gl,k = D, the problem domain. If there are several grids at level 1, the grid 
lines must “align” with each other; that is, each grid is a subset of a rectangular 
discretization of the whole space. 

We may often have overlapping grids at the same level, so that G,, jn G,, # 0, 
j # k. However, we require that the discrete solution be independent of how G, is 
decomposed into rectangles. 

Grids at different levels in the grid hierarchy must be “properly nested.” This 
means 

(i) a tine grid starts and ends at the corner of a cell in the next coarser grid. 
(ii) There must be at least one level I- 1 cell in some level I - 1 grid separat- 

ing a grid cell at level I from a cell at level I- 2, in the north, south, east, and west 
directions, unless the cell abuts the physical boundary of the domain. 

Note that this proper nesting is not as stringent as requiring a tine grid to be 
contained in only one coarser level grid. For example, in Fig. 2.1, there is one grid 
at level 3, G,, , . Every grid point in G3,, is contained in one of the two grids at 
level 2, Gz , or Gz,z. 

Grids will be relined in time as well as space, by the same mesh refinement ratio 
r, where r = Ax,- ,/Ax,. Thus, 

At, At,-, At, -= -= . . =- 
Ax, Ax,- I Ax, 

and so the same explicit difference scheme is stable on all grids. This means more 

FIG. 2.1. Grid G,,, spans two coarser grids but is properly level nested. 
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time steps are taken on the finer grids than on the coarser grids. This is a 
reasonable requirement from the point of view of accuracy, since for many dif- 
ference schemes, the leading terms in the spatial and temporal truncation error are 
of the same order. In addition, the smaller time step of the fine grid is not imposed 
globally. In this implementation we only allow an even refinement ratio. This 
simplifies the error estimation procedure described later, by avoiding the need of 
distinguish between an odd and even number of grid points in a grid. 

At discrete times the grid hierarchy may be modified. The finest grids need to be 
changed (“moved,” deleted if necessary) most often. When grids at level 1 are 
changed, all liner level grids are changed as well, but the coarser grids may remain 
fixed. New grids at level 1 may replace the old ones, but they are still subject to the 
same “proper nesting” requirement. 

A point (x, y) ED may be contained in several grids. The solution u(x, y) will be 
taken from the finest grid containing the point. If there are several equally fine grids 
containing the point, any line grid value will s&ice, since the solution on the 
intersection of overlapping line grids will be identical. 

3. INTEGRATION ALGORITHM 

AMR assumes there is a basic, underlying, conservative, explicit finite difference 
scheme of the form 

~:f’=u:i-~(Fi+Lj2,j-Fi-I,2.j)-~(Gi,j+,,2-Gi,j-i,2), 
AY 

The values ui,j are cell-centered quantities. Each cell is defined by its four corner 
grid points. If there are no refined regions, then Eq. (l), augmented by the dis- 
cretized physical boundary conditions, defines the time evolution on a single grid. 

With multiple grids, each grid is separately defined and has its own solution 
vector, so that a grid can be advanced independently of other grids, except for the 
determination of its boundary values (see Section 4). The integration steps on dif- 
ferent grids are interleaved, so that before advancing a grid to time t + A?, all the 
finer level grids have been integrated to time t. Scheme (1) is still initially applied 
on every grid at every level, but the results will need to be modified in case 

(i) the cell is overlayed by a finer level grid; or 
(ii) the cell abuts a line grid interface but is not itself covered by any line grid. 

In case (i), the coarse grid value at level I- 1 is defined to be the conservative 
average of the fine grid values at level 1 that comprise the coarse cell. After every 
coarse integration step, the coarse grid value is simply replaced by this conservative 
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average, and the value originally calculated using (1) is discarded. For a refinement 
ratio of r, we define 

where the indices refer to the example in Fig. 3.1. We could define a coarse cell U, , 
at multiples of the fine time step in the same way, but this is not necessary. This 
is equivalent (within roundoff error) to redefining the coarse fluxes around the 
overlayed coarse grid point to be the sum over the fine time steps of all line grid 
fluxes calculated on any boundary segment for that cell. However, this implementa- 
tion would use extra storage to save the line grid fluxes. By updating the solution 
values themselves, no extra flux storage is needed. 

In case (ii), the difference scheme (1) itself that is applied to the coarse cell must 
be modified. According to (l), the fine grid abutting the coarse cell has no effect. 
However, for the difference scheme to be conservative on this grid hierarchy, the 
fluxes into the fine grid across a coarse/line cell boundary must equal the flux out 
of the coarse cell. (This conservative procedure has been discussed by [ 173. A fuller 
discussion of conservation at grid interfaces is in [4].) We use this to redefine the 
coarse grid flux in case (ii). For example, in Fig. 3.2, the difference scheme at point 
i, j should be 

ui, j ( f + d fc~ar~e 1 

Atcoarse 
-dy CGi,j+ 1,2(t) - Gi.,- &f)l, 

where Ax and Ay are coarse spatial step sizes. The double sum is due to the reline- 
ment in time: for a refinement ratio r, there are r times as many steps taken on the 
line grid as the coarse grid. If the cell to the north of (i, j) were also relined, the 
flux G, j + 112 would be replaced by the sum of fine fluxes as well. 

I 

FIG. 3.1. The coarse cell value is replaced by the average of all the tine grid points in that cell. 



70 BERGER AND COLELLA 

FIG. 3.2. The difference scheme is modified at a coarse cell abutting a tine grid. 

This modification is implemented as a correction pass applied after a grid has 
been integrated using scheme (1) and after the liner level grids have also been 
integrated, so that the line grid fluxes in (2) are known. The provisional coarse flux 
used in (1) is subtracted from the solution uy,y(t + dfcOaTSe), and the line fluxes are 
added using Eq. (2). To implement this modification, we save an array 6F of fluxes 
at coarse grid edges corresponding to the outer boundary of each line grid. After 
the coarse grid fluxes have been calculated by (l), we initialize 6F with 

SF,, ,lz,j := - F;y,$j, (3) 

At the end of each line grid time step, we add to 6Fi, ,,2, j the sum of the fine grid 
fluxes along the (i + l/2, j)lh edge, 

Finally, after r line grid time steps have been completed, we use 6F,+ ,,2,i to correct 
the coarse grid solution so that the effective flux is that of (2). For example, for cell 
(i + 1, j), we make the correction 

If the cell i+ 2, j were refined, we would also make the correction 

and similarly for the vertical fluxes. 
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The boundary fluxes 6F are stored in a vector associated with every fine grid. In 
the initialization step (3), there may be several coarse grids that set 6F. Since ail 
fluxes calculated at a given edge and level are identical (up to roundoff error) and 
are independent of the particular grid on which they are calculated, we simply use 
the last value assigned. At the end of a time step, we may have several fine grids 
available to update a given coarse cell edge, since overlapping grids are permitted. 
For this reason, we use a matrix to indicate the edges of a coarse cell that have 
already been updated and only perform the update once for each edge. As before, 
it does not matter which line grid actually performs the update for any given edge, 
so the result is independent of the order in which the tine grid list is traversed. This 
modification is a negligible amount of work, taking approximately 0.3% of a 
typical run time. On machines with a scatter/gather operation, this should proceed 
even faster. 

We emphasize that this work is done as a “fix up” step after each grid is updated 
using scheme (1). In this way, the integrator can be separated from the additional 
work which is needed because of the grid hierarchy. A new difference scheme can 
be substituted by a user unfamiliar with and not interested in the inner workings 
of the AMR program. 

4. BOUNDARY CONDITIONS 

A discussion of boundary conditions completes the description of the integration 
procedure on a multiple grid hierarchy. Let the interior integration scheme have a 
stencil which is centered in space, with d points to each side. To compute the new 
time step, AMR provides solution values at the old time step on a border of cells 
of width d intersected with the physical domain. The user must supply the code to 
compute any additional information needed to implement the boundary conditions. 
For example, if boundary conditions are imposed by extrapolation, the user would 
provide the extrapolated values for points outside the domain. 

For a grid at level 1, the bordering cell values are provided using values from 
adjacent level I grids where they are available; otherwise, the AMR algorithm com- 
putes boundary values using bilinear interpolation from coarser level solution 
values. If necessary, we also interpolate linearly in time. 

It may happen that a point (x, y) is inside the domain D, but one or more sur- 
rounding coarse grid points needed for the bilinear interpolation are outside. As 
before, we assume there is a user-supplied routine that can provide exterior coarse 
grid points given some interior points. 

Our implementation partitions the required border cells at level I into rectangular 
boundary patches. For each rectangular piece we: 

(i) find solution values from level I - 1 grids on a slightly larger rectangular 
piece enclosing the border cells; 

(ii) linearly interpolate for the border values; 
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(iii) if there are fine grids at level I that could supply some values (say an 
adjacent line grid), overwrite the linearly interpolated values from step (ii). 

In step (i), most of these coarser level values are found by intersecting the rec- 
tangular patch with level i- 1 grids and by filling the overlapping pieces. However, 
it may be necessary to go to even coarser grids to supply these level I- 1 values. 
This is done by applying (i) to (iii) recursively to the smallest rectangular patch 
containing the unfilled cells. 

For efficiency, it is important that the boundary values are supplied on a rec- 
tangular patch at one time and not computed a point at a time. Even though the 
amount of work is proportional to the boundary of each grid, our initial implemen- 
tation took 40% of the run time and had to be rewritten. By working on grid 
patches, the bulk of the memory transfers are done in blocks, and the number of 
subroutine calls is minimized. This is particularly important on the Cray, where 
there is a substantial performance penalty for single word accesses and subroutine 
calls. 

5. CREATING THE GRID HIERARCHY 

At specified time intervals, an error estimation procedure is invoked, and a new 
grid structure is determined. If there are several nested levels of refined grids, the 
error estimation and grid generation procedures are recursively applied on each 
level, from finest to coarsest, to (re-)create the fine grids at the next level. The error 
estimation procedure (see Section 6) produces a list of coarse grid points with large 
error estimates, indicating that a line grid patch is needed in that region. Every 
flagged coarse grid point should be included in a liner grid. Our grid generation 
algorithms try to produce grids that have as little overlap as possible, so that the 
area that is unnecessarily refined is as small as possible. The algorithm also strives 
for a small number of patches that are as large as possible, to reduce the computa- 
tional overhead. It is difficult to find a foolproof algorithm that satisfies these often 
conflicting goals. However, we have developed heuristics that have been successfully 
tested in many different applications. A much fuller discussion of grid generation is 
in [3]. Here, we will describe the particular set of algorithms that produced the 
numerical results in Section 7. 

Suppose there is a base level, Ibase, where grids will stay fixed, but that the finer 
levels from lbase + 1 to lfinest may be “moved.” Starting with the finest level grids, we 
estimate the error, using a procedure described next. If there are points where the 
error estimate is too high, these points are flagged, and a level lenest + 1 grid will be 
needed. Next, we estimate the error on the existing lanes* - 1 grids. If there are 
flagged points, a different level Ifinest grid will be created, making sure that if there 
are any level lAnes, + 1 grids, they are properly contained in the level lenest grids. This 
continues until the error is estimated on the base level grids. Thus, it is only 
possible to add one new level at a time, although many levels may be removed 
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during a single regridding operation. (At the initial time however, where the initial 
data is known for all x, y and not just at coarse grid points, it is possible to add 
many levels at a time. This is essential for some problems, where the error can 
depend entirely on the initial conditions.) 

In more detail, our regridding algorithm performs the following steps: 

(1) Adds the buffer zone. A buffer zone of unflagged points is added around 
every grid. This ensures that discontinuities or other regions of high error do not 
propagate out from a line grid into coarser regions before the next regridding time. 
This is possible because of the finite propagation speed of hyperbolic systems. The 
larger the buffer zone, the more expensive it is to integrate the solution on the line 
grids, but the less often the error needs to be estimated on the coarse grids and the 
line grids moved. The buffer zone is added by flagging all coarse grid points that 
are sufficiently close to flagged points with high error estimates. A buffer zone of 
two cells in each direction is typical. By flagging neighboring points, instead of 
enlarging grids at a later step, the area of overlap between grids is reduced. 

(2) Flags every cell at level I corresponding to an interior cell in a level I+ 2 
grid. This will maintain proper nesting, by ensuring that there will be a new level 
I+ 1 grid containing every point in the level I + 2 grid, even if the level I grid error 
estimation did not report a high error. This procedure ensures that the line grid 
error estimates are used instead of the coarse grid estimates at the same point. To 
ensure proper nesting, points within one cell of a non-physical (interior) boundary 
of G, are deleted from the list of flagged points. 

(3) Creates rectangular fine grids. The grid generator takes all the flagged 
points as input, and outputs a list of corners of rectangles that are the level I+ 1 
grids. Nearby points are clustered together, and a line grid patch spanning each 
cluster is formed. These clustering algorithms use heuristic procedures described 
separately below. 

(4) Ensures proper nesting. The new line grids are checked to ensure that 
they are properly contained in the base level grids. If they are not, the new grid is 
repeatedly subdivided until each piece does lit. Since the flagged points originally 
were inside the base grid, at least one cell from the boundary, the new grid contain- 
ing the flagged points must eventually lie inside as well. Since the base level grids 
did not move, step (2) cannot be used to ensure the proper nesting of this level. 
This problem only arises when the base grids are a non-convex union of rectangles. 

Step (3) is the difficult one. Since problems in gas dynamics develop 
l-dimensional discontinuities, we have streamlined the more general grid generation 
procedures of [3] for this particular application. The procedure we use here 
includes a bisection step and a merging step. Initially, a grid patch is formed around 
the entire list of flagged cells on a given level. The efficiency of the patch is 
measured by taking the ratio of flagged cells to the total number of cells in the new 
grid. If this efficiency rating is less than an input minimum efficiency (e.g., 60%), 
the long direction of the rectangular grid is bisected, and the flagged points are 
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sorted into two clusters depending on which half they are in. The process is 
repeated on the two clusters. The bisection steps ends when each cluster has an 
acceptable efficiency rating. 

The bisection step uses no geometric information, so although each grid may be 
“acceptable” by itself, the resulting grid hierarchy may not be optimal. For this 
reason, the bisection is followed by a merge step. In addition to an absolute 
efficiency criterion, grids are merged if the new grid is relatively more efficient than 
the two smaller grids. The cost function we use to measure this is proportional to 
the cost of an integration step on each grid. On an m by n grid, (m + 1) by (n + 1) 
fluxes are calculated, with perhaps loo0 vector operations per flux. In addition 
there is a cost associated with the perimeter of each grid: finding interface condi- 
tions, conservative updating of coarser grids, and special slope calculations that are 
done only for boundary fluxes. Some of this work uses scalar arithmetic, at least on 
machines such as the Cray 1 that does not vectorize indirect addressing and 
gather/scatter operations. The total cost associated with a grid is proportional to 
mn + m + n. Grids are merged if the single resulting grid has a smaller cost. The 
merging step ends when no pair of grids can be successfully merged. 

Although this procedure is somewhat ad hoc, it has been successfully used on 
several different types of problems. The grid generation routines, not including the 
solution initialization on each grid or the error estimation to produce the flagged 
points, account for approximately 1.7 % of the CPU time for a typical run. 

6. ERROR ESTIMATION 

In [6], estimates of the local truncation error were used to select those grid 
points on a given level with unacceptably large errors. If the solution u(x, t) is 
smooth enough, the local truncation error u(x, t + k) - Qu(x, t) on a mesh with 
spatial step h and time step k satisfies 

u(x, t+k)-Qu(x, t)=k(c,(x, t)kq+cZ(x, f)hq)+kO(kq+1+h4+1) 

-z(x, t)+kO(kY+’ +hq+‘), 

where the leading term is denoted by r. Here we assume our difference method Q 
has order of accuracy q in both time and space. If u is smooth enough, then if we 
take two time steps with the method Q, to leading order the error is 2t , 

u(x, t + 2k) - Q*u(x, t) = 22 + kO(k4+’ + hq+ ‘). 

Let Q2h denote the same difference method as Q but based on a mesh widths of 2h 
and 2k. Then 

u(x, t+2k)-Q&x, t)=2q+1t+O(h4+2). 
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By taking two steps with the regular integration scheme, and one “giant” step using 
every other grid point, the difference 

Q2cG t) - Q2h4& t) 
2Yf’-2 =z+O(hyf2) 

gives an estimate of the local truncation error at time t. We emphasize that it is not 
necessary to know the exact form of the truncation error (e.g., h2u,,,), only its 
order. 

This procedure is easily implemented in AMR for the conservative finite dif- 
ference methods presented here. The values on a grid at a given level are projected 
onto a virtual grid coarsened by a factor of two in each direction. The solution on 
both grids is advanced in time: the original grid for two time steps, the coarsened 
grid for one step using a time step twice as large. The difference between the solu- 
tions obtained on the two grids at each point is proportional to the local truncation 
error at that point. At coarse cells where the difference between the two sets of 
values exceed some tolerance, all four cells contained in the real grid are flagged as 
requiring refinement. Notice that this estimation procedure is independent of the 
finite difference method actually used, as well as the pde. One disadvantage of this 
procedure is that it always predicts a large error in the neighborhood of captured 
discontinuities. It is easy to construct examples for which the procedure outlined 
above will give values on the coarsened grid which differ pointwise by an amount 
independent of the mesh spacing in the neighborhood of a shock. In general, this 
leads to refinement of the mesh at all discontinuities with strength greater than 
some minimum. 

Theoretically, one could define a distributional error by averaging the difference 
between the two solutions over some region centered at the given cell whose size 
is 0( 1) relative to the mesh spacing. We have devised various techniques for carry- 
ing out such a procedure, all of which are equivalent to ignoring the pointwise error 
estimate in the neighborhood of those discontinuities which, by some other criteria, 
are considered adequately resolved. For problems in shock hydrodynamics, only 
shock discontinuities, and not slip surfaces or contact discontinuities, are likely to 
satisfy any such criteria. This is because conservative finite difference methods 
applied to shocks mimic the convergence of characteristics in the analytic solution, 
so that the shock spreads only over a fixed number of zones independent of the 
mesh spacing and time. Thus, for example, it is unnecessary to refine the grid in the 
neighborhood of a shock separating two constant states. In contrast, it is usually 
necessary to refine at linearly degenerate discontinuities since the number of cells 
over which they spread is an increasing function of time. 

There is a second set of difficulties with refinement in the presence of strong 
shocks. There is evidence that shock-capturing methods are zeroth-order methods, 
i.e., that the fluxes computed in the neighborhood of the shock differ by 0( 1) from 
the exact fluxes at a given time step [21, 161. These O(1) errors could generate 
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waves associated with the characteristic families crossing the shock, sending 0( 1) 
pointwise errors into the postshock region. For shocks computed on a single 
uniform grid, this does not occur, because the same 0( 1) errors are committed on 
successive cell edges with a phase lag, so that errors in the time integral of suc- 
cessive fluxes cancel upon differencing. However, when a shock intersects an inter- 
face between two grids with different mesh spacings, the O(1) errors in the time 
integrals of the fluxes on each of the two grids will be different, generating O(1) 
errors in the solution propagating into the postshock state. In practice, we have 
observed that the amplitude of the spurious waves generated in this fashion is 
proportional to the amplitude of the jump in the characteristic quantities carried by 
characteristics crossing the shock. In practice, then, there is usually a threshold 
shock strength below which the errors generated by a shock crossing a grid discon- 
tinuity are acceptable and above which the errors generated are too large. For the 
latter shocks, they must be relined everywhere, if they are to be refined anywhere. 

We illustrate this with an example where we force the algorithm not to reline the 
grid above a certain height. This forces the strong incident shock, with a shock 
Mach number of 10, to pass through a fine grid boundary into the coarse grid. The 
oscillations caused by this are apparent in the contour plots of Fig. 6.1 and the plot 
of Fig. 6.2 for a fixed value of y. 

Combining the two considerations given above, a fairly general refinement 
strategy is to use the local truncation error estimate described above, but ignore it 
in the neighborhood of gas-dynamic shocks whose strength lies below some 
predetermined threshold. This has the effect of relining, possibly unnecessarily, all 
shocks whose strength is above the threshold. We have found that this strategy 
works acceptably well if the coarsened base grid is sufficiently line, so that the 
waves are well separated. A much simpler strategy, which is applicable in a large 
class of problems, is simply to use the user’s knowledge of the problem instead of 
the truncation error estimates. For example, in the shock reflection problems given 
below, the solution is made up entirely of smooth waves and weak shocks a certain 
distance behind the incident shock. Consequently, we simply ignore the local 
truncation error estimate in that region. 

FIG. 6.1. Contour plot showing the effects of a strong shock passing through a grid boundary. 
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FIG. 6.2. Density profile for a horizontal line slightly below the grid interface intersecting the shock. 

7. NUMERICAL RESULTS 

We choose as our test problem reflection of a planar shock in an ideal gas by an 
oblique surface. In this problem, a straight shock is incident on a perfectly reflecting 
surface. At later times, a reflected wave pattern is generated, depending only on a, 
M,, and y, where c( is the angle between the direction of propagation and the reflec- 
ting surface, M, is the incident shock Mach number, and y is the ratio of specific 
heats. The solution to this problem is formally self-similar, depending on (x, y, t) 
only in the combination (x/t, y/t). Thus, the time dependence of the solution is 
given by a linear scaling of a fixed wave pattern with time. We are particularly 
interested in values of the problem parameters for which very complicated small 
scale structures are observed. 

The underlying integration method in our AMR calculations is a second-order 
Godunov method described in [lo]. In our calculations, we make use of the fact 
that the regions where the small scale behavior can appear are localized in the 
vicinity of the reflection point. Our procedure for estimating the error is to measure 
the local truncation error of the density, except that we do not tag points beyond 
a certain distance behind the incident shock. This effectively restricts our refinement 
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TABLE I 

Breakdown of Computational Times Obtained Using FLOWTRACE 

Grid integration 78.29 
Interpolation 12.95 
output 2.87 
Grid updates 2.78 
Grid generation 1.71 
Memory management 0.59 

to be in a window moving with the reflection point, and shuts off the grid retine- 
ment ground the (weak) reflected shock. 

The results presented here were calculated on the Cray XMP 22 at the LLNL 
NMFECC, using the CFT 1.14 compiler. To obtain detailed diagnostic information 
about where most of the time is spent in the calculation, we used the FLOW- 
TRACE option of the CFT compiler in the first calculation below. The total time 
spent was 5674 seconds of CPU time. Table I shows a breakdown of the calculation 
time into six categories: the integration routine, the interpolation routines (for con- 
structing boundary conditions and initializing new line grids), the updating routines 
(fine grids updating coarse grids and for maintaining conservation across grid 
interfaces), the grid generation routines, output routines, and memory management 
routines. 

The main result is that the integration step takes about 80% of the computa- 
tional time. This figure includes integration steps needed for the error estimation. 
However, measurements show that the latter is only 3% of the integration cost, 
with actual useful integration steps accounting for 97% of the integration time. 
Note that the error estimation cost is very small despite the fact the error is 
estimated at every other coarse time step. There are two reasons for this. First, over 
90% of the cells being integrated belong to the finest level grids (level 3 in both 
calculations), and the error is not estimated there. Second, since refinement is per- 
formed in time as well as space, the overwhelming majority of the work is done on 
the finest grid. Table II shows the number of cell updates done on each grid level, 
as well as the total number of cell updates done for error estimation. 

We can thus obtain a rough estimate of the efficiency of AMR relative to com- 
puting on a uniform grid. About 80% of the run time is spent integrating grids. The 

TABLE II 

Number of Cell Updates at Each Level 

Level 1 
Level 2 
Level 3 
Error estimation 

2.98 x 10s 
4.59 x 106 
1.13 x 10s 
3.06 x lo6 
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finest level grids occupy only about 10% of the domain. Thus an equivalent 
uniform grid computation would require a factor of 8 more CPU time. Of course 
in this particular problem, one could omit computations ahead of the incident 
shock, since the solution there is constant, saving approximately half the uniform 
grid time. In general, this could not be done. 

It is more difficult to compare memory usage with that of a uniform grid calcula- 
tion. The integration algorithm used here requires live 2-dimensional grid arrays for 
scratch space, in addition to the four required to store the conserved quantities, 
so that the memory requirements for a uniform grid calculation would be 
9.320.1600 z 4.5 x lo6 words. In contrast, the maximum storage used in the 
calculation performed here was 8.94 x lo5 words. Much of the memory use in AMR 
is due to saving two time levels of the solution on each grid. It is possible to avoid 
the memory overhead of having full grid scratch arrays by breaking the calculation 
into pieces. (In fact, we effectively do this in the AMR calculations by restricting the 
size of any grid to be less than some pre-determined maximum, subdividing grids 
that are too large.) However, this would introduce overheads and programming 
complexities in the uniform grid calculation similar to those in AMR. In any case, 
even if those overheads could be neglected and only four full grid arrays were 
required, the memory required would be 2.0 x lo6 words, a factor of 2.2 larger than 
that required by AMR. 

In Fig. 7.1, we show results for the case M, = 10, c1= 30”, y = 1.4. The domain is 
a rectangle of length 2.0 by 0.4, with initial coarse grid spacing Ax = Ay = 0.02. The 
calculation ran for 149 coarse grid time steps. The error was estimated every other 
step, with a buffer zone of one cell and a grid efficiency of 65 %. The error tolerance 
was 0.02. The mesh was relined by a factor of 4 in each direction at each grid level. 
The finest grids in this calculation represent a factor of 4 increase in resolution in 
each spatial direction over the finest grid calculation in [22]. Figure 7.la shows the 
location of the level 2 and 3 grids at time t = 1.20. In displaying the solution, we 
show two sets of plots. One is a contour plot of the full flow field. The other is an 
enlargement of the region around the reflection point. This is the part of the 
domain covered by the level two and three grids. In both cases, the contour plots 
are made using the finest available grid in the subregion. Due to the increased 
resolution, we can now observe a non-self-similar Kelvin-Helmholtz rollup along 
the principal slip line. This is to be expected, since this slip line is instable. The 
Kelvin-Helmholtz rolls are formed near where the weak shock emanating from the 
second triple point impinges on the slip line. They then propagate along the slip 
line and are eventually swept up into a large rollup at the tip of the jet, along the 
bottom wall. 

Finally, in Fig. 7.2 we present results for M, = 8, CI = 35”, y = 1.107. It has been 
noticed [ 1 l] that the wave patterns associated with double Mach reflection become 
increasingly complex as y is reduced. The jet along the reflecting wall formed by the 
slip line from the principal Mach triple point is more and more strongly 
accelerated, pushing the Mach stem out ahead of it. This leads to strongly rota- 
tional supersonic flow and the formation of multiple Mach triple points. The pre- 
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FIG. 7.1. Shock reflection off an oblique wedge with y = 1.4, M, = 10, a = 30”: (a) Shows the grid 
hierarchy; grid 1 is a level 1 grid, grids 6 and 34 are level 2 grids, and the rest are level 3 grids, at time 
r = 0.12. (b) Density, full flow field. (c) Density, level 2 and 3 grids only. (d) Pressure, level 2 and 3 grids 
only. (e) Entropy, level 2 and 3 grids only. 
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Fig. 7.1-Continued 
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FIG. 7.2. Shock reflection ON an oblique wedge with y = 1.107, M, = 8, G( = 35”: (a) Density, full flow 
field, at t = 0.115. (b) Density, level 2 and 3 grids only, f = 0.115. (c) Density, full flow field, at t = 0.230. 
(d) Density, level 2 and 3 grids only, t = 0.230. 
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sent results represent a rather extreme example of this, with a total of seven Mach 
triple points in the double Mach region, including a third triple point along the top 
shock. The seven triple points are marked in Fig. 7.2d. This calculation gives some 
indication of why adaptive mesh refinement is an important tool in these problems. 
As y approaches one, the distance between the leading edge of the wall jet and the 
main Mach stem becomes smaller and smaller, requiring more grid resolution in 
that region. The value of y in this calculation represents the limit of resolution, 
given the resources available on the Cray XMP. The calculations in [l l] using 
uniform grids without mesh refinement, were not fully resolved for y < 1.25. Even 
with mesh refinement, at this low value of y the flow field is not fully resolved at 
time t = 0.115, in Fig. 7.2a and b. Only after running to time t = 0.230, which by 
self-similarity corresponds to increased grid resolution, is the solution adequately 
resolved. 

8. CONCLUSIONS 

The complexity of our AMR code might be intimidating to a new user. Not 
counting the integration routine, our program consists of 3000 lines of Fortran. 
However, a big code is not necessarily a fragile code. We have been careful to 
develop AMR to make it automatic and robust. In addition, a user should be able 
to use AMR without having to understand it all. This makes it important to 
develop AMR in a modular way. A user should be able to plug in an integrator for 
a new problem without knowing details about how the more computer science 
oriented parts of AMR work, but knowing that these other parts will indeed work. 
We have already demonstrated this modularity by using AMR to compute tran- 
sonic flow in conjunction with FL052 [S] and to compute a combustion problem 
with a simple induction time model for chemistry [Z]. 

The most difficult problems will best be solved by combining several adaptive 
techniques. Despite its more complicated data structures, AMR has already been 
combined with the conservative front-tracking scheme of [9]. This enables tracking 
of a strong incident shock, while using shock-capturing for the other discontinuities, 
and avoids the mismatch of strong captured shocks crossing grid boundaries. 
This combined approach is being used to study transition from regular to Mach 
reflection. Finally, we intend to couple this method with the variational technique 
of [S]. Their mesh-moving technique would allow the underlying mesh geometry to 
be approximately aligned with global features in the Row, leading to more efficient 
refined meshes. However, the actual mesh refinement for error reduction would be 
done with AMR, so the global time step penalty of moving mesh methods is not 
incurred. Lastly, a major open question is how to use implicit difference schemes 
with embedded grids for a time-dependent calculation. This will be needed to 
compute solutions to hyperbolic-parabolic problems, such as the NavierAtokes 
equations at high Reynolds number. 
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