
JOURNAL OF COMPUTATIONAL PHYSICS 82, 6484 (1989)

Local Adaptive Mesh Refinement
for Shock Hydrodynamics

M. J. BERGER

Couranf Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, 10012 New York

AND

P. COLELLA

Lawrence Livermore Laboratory, Livermore, 94550 California

Received September 8, 1987; revised May 20, 1988

The aim of this work is the development of an automatic, adaptive mesh refinement strategy
for solving hyperbolic conservation laws in two dimensions. There are two main difficulties in
doing this. The first problem is due to the presence of discontinuities in the solution and the
effect on them of discontinuities in the mesh. The second problem is how to organize the algo-
rithm to minimize memory and CPU overhead. This is an important consideration and will
continue to be important as more sophisticated algorithms that use data structures other than
arrays are developed for use on vector and parallel computers. b? 1989 Academic Press, Inc.

1. INTRODUCTION

In this paper, we present computations that use adaptive mesh refinement
to solve multidimensional, time dependent shock hydrodynamics problems.
Complicated structures such as multiple Mach reflections arise in these problems.
Adaptive techniques are essential for our computations in order to adequately
resolve features in the solution within today’s computer limitations.

Our starting point will be the algorithms in [6] for adaptive mesh refinement for
hyperbolic equations on rectangular grids. In this approach, the refined regions
consist of a small number of rectangular grid patches with finer mesh spacing than
the underlying global coarse grid. These rectangular subgrids contain points where
the error in the coarser grid solution is too high, and other points as well. We use
rectangular subgrids so that we can use integration methods for rectangular grids
whose convergence properties are well understood. These methods can be made
quite efficient on vector and parallel computers. In addition, rectangular grids have
a simple userinterface. We can use the same integrator on line and coarse grids. By
separating the integrator from the adaptive strategy, an off-the-shelf integrator can

64
0021-9991/89 $3.00
Copyright 6 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.

LOCAL ADAPTIVE MESH REFINEMENT 65

be used without modification. This eliminates much of the problem specific work in
doing adaptive calculations.

The present work differs from that in [6] in several respects. The main one is
that we are computing unsteady flows with shocks, so that maintaining global con-
servation form is a primary consideration. The second difference is that the nested
refinements we use have boundaries coinciding with the grid lines of the underlying
coarse mesh, This greatly simplifies the maintenance of conservation over the
former approach, where the relined subgrids were allowed to be rotated with
respect to the coarse grid. Third, great care was taken to obtain an efficient
implementation on a supercomputer. The main difficulty with adaptive methods is
the need for data structures not usually found in numerical software. We felt the
program complexity was high enough to justify the effort of devising as general and
automatic an approach as possible.

Earlier work along the lines of the present work was done by [7] in one dimen-
sion, and [141 for scalar problems in two dimensions. [19] have also computed
transonic flow in two dimensions with grid embedding. However, in the latter two
approaches, the grids were not restricted to rectangles. The data structures, and
therefore the efficiency of such an approach, are quite different. Our method of
adaptivity through grid refinement is in contrast to methods that adapt the grid by
moving grid lines into one region, leaving a coarser region somewhere else [18, 1,
15, 13, 20, 81. Such methods try to get the most accurate solution for a fixed cost,
whereas our approach tries to attain a fixed accuracy for a minimum cost. Both
approaches have their advantages and disadvantages. The so-called moving grid
point methods often have trouble maintaining a smooth grid. Regularity terms and
penalty functions used to regularize the grid add overhead and reduce the simplicity
of these methods. Local grid refinement, on the other hand, has the drawback of
needing special equations at grid interfaces. In a method where a fixed number of
grid points are used during a computation, the user must initially guess at what will
be an adequate number of points to resolve features in the solution that may arise
later. With local grid refinement, grid points are added or removed as necessary.

In the numerical experiments shown below, we have combined this adaptive
mesh refinement strategy with the high resolution difference scheme of [lo] to
develop an almost automatic software tool for solving gas dynamics problems in
two space dimensions. A reasonable question is, why is an adaptive method needed,
given that the difference scheme used, a second-order Godunov-type method,
already has quite high resolution? Conversely, if adaptive methods are used, are
such complicated and expensive difference schemes really necessary? The answer is
that both components are necessary to obtain well-resolved results for shock
hydrodynamics. It has been demonstrated [22] that the more complicated
Godunov-type schemes give more resolution per computational dollar than simpler
schemes such as Lax-Wendroff. Given that a high quality scheme is necessary,
adaptive mesh refinement can then concentrate the computational effort in regions
where it is most useful. Since Godunov-type methods are more expensive than
simple schemes, the computational savings of selective refinement can be substan-

66 BERGER AND COLELLA

tial. Some of the computations presented here could not have been done reasonably
without the use of an adaptive solver.

In the sections that follow, we describe the adaptive mesh refinement (AMR)
algorithm for integrating a general hyperbolic system of conservation laws

u, +f(u), + g(u), = 0 on DcR2

Bu=b on aD.

Our numerical examples involve the Euler equations for gas dynamics, where

and

PV

PUO

Pv2+P

pvE + vl;

P=(?-l)(pE-p(y)).

Although our work to date is in two space dimensions, all the algorithms extend
to three dimensions, and in fact it seems possible to implement a general code
where the number of dimensions is input.

In the next sections we describe in detail the adaptive mesh refinement algorithm
and its implementation. We give enough detail for users interested in modifying the
algorithm, using our code, or writing their own. First, we discuss the structures that
define our grid hierarchy. Next, we describe the integration scheme for such a
(static) grid hierarchy. Third, the grid generation and error estimation procedures
used to generate the grid hierarchy itself are presented. Our error estimation proce-
dure is theoretically justifiable only for smooth solutions. We discuss variations of
it that may prove useful for problems with shocks. In the last section we present
numerical experiments along with a detailed timing analysis of the runs. This
program is being used to study Mach reflection in two dimensions with resolution
not previously possible. New results, a triple Mach stem configuration at low y,
have been observed.

2. GRID DESCRIPTION

AMR is based on using a sequence of nested, logically rectangular meshes on
which the pde is discretized. In this work, we require the domain D to be a finite
union of rectangles whose sides lie in the coordinate directions. We assume here
that all the meshes are physically rectangular as well, although this is not essential.
The method discussed here can be implemented on a general quadrilateral mesh.

LOCAL ADAPTIVE MESH REFINEMENT 67

(See, for example, [S]). We define a sequence of levels 1 = 1, I,,,. A grid G,, has
mesh spacing h,, with level 1 coarsest, and define

Gl= u G,,,.
k

With an abuse of terminology describing a grid and the domain it covers, we have
G, = Uk Gl,k = D, the problem domain. If there are several grids at level 1, the grid
lines must “align” with each other; that is, each grid is a subset of a rectangular
discretization of the whole space.

We may often have overlapping grids at the same level, so that G,, jn G,, # 0,
j # k. However, we require that the discrete solution be independent of how G, is
decomposed into rectangles.

Grids at different levels in the grid hierarchy must be “properly nested.” This
means

(i) a tine grid starts and ends at the corner of a cell in the next coarser grid.
(ii) There must be at least one level I- 1 cell in some level I - 1 grid separat-

ing a grid cell at level I from a cell at level I- 2, in the north, south, east, and west
directions, unless the cell abuts the physical boundary of the domain.

Note that this proper nesting is not as stringent as requiring a tine grid to be
contained in only one coarser level grid. For example, in Fig. 2.1, there is one grid
at level 3, G,, , . Every grid point in G3,, is contained in one of the two grids at
level 2, Gz , or Gz,z.

Grids will be relined in time as well as space, by the same mesh refinement ratio
r, where r = Ax,- ,/Ax,. Thus,

At, At,-, At, -= -= . . =-
Ax, Ax,- I Ax,

and so the same explicit difference scheme is stable on all grids. This means more

FIG. 2.1. Grid G,,, spans two coarser grids but is properly level nested.

68 BERGER AND COLELLA

time steps are taken on the finer grids than on the coarser grids. This is a
reasonable requirement from the point of view of accuracy, since for many dif-
ference schemes, the leading terms in the spatial and temporal truncation error are
of the same order. In addition, the smaller time step of the fine grid is not imposed
globally. In this implementation we only allow an even refinement ratio. This
simplifies the error estimation procedure described later, by avoiding the need of
distinguish between an odd and even number of grid points in a grid.

At discrete times the grid hierarchy may be modified. The finest grids need to be
changed (“moved,” deleted if necessary) most often. When grids at level 1 are
changed, all liner level grids are changed as well, but the coarser grids may remain
fixed. New grids at level 1 may replace the old ones, but they are still subject to the
same “proper nesting” requirement.

A point (x, y) ED may be contained in several grids. The solution u(x, y) will be
taken from the finest grid containing the point. If there are several equally fine grids
containing the point, any line grid value will s&ice, since the solution on the
intersection of overlapping line grids will be identical.

3. INTEGRATION ALGORITHM

AMR assumes there is a basic, underlying, conservative, explicit finite difference
scheme of the form

~:f’=u:i-~(Fi+Lj2,j-Fi-I,2.j)-~(Gi,j+,,2-Gi,j-i,2),
AY

The values ui,j are cell-centered quantities. Each cell is defined by its four corner
grid points. If there are no refined regions, then Eq. (l), augmented by the dis-
cretized physical boundary conditions, defines the time evolution on a single grid.

With multiple grids, each grid is separately defined and has its own solution
vector, so that a grid can be advanced independently of other grids, except for the
determination of its boundary values (see Section 4). The integration steps on dif-
ferent grids are interleaved, so that before advancing a grid to time t + A?, all the
finer level grids have been integrated to time t. Scheme (1) is still initially applied
on every grid at every level, but the results will need to be modified in case

(i) the cell is overlayed by a finer level grid; or
(ii) the cell abuts a line grid interface but is not itself covered by any line grid.

In case (i), the coarse grid value at level I- 1 is defined to be the conservative
average of the fine grid values at level 1 that comprise the coarse cell. After every
coarse integration step, the coarse grid value is simply replaced by this conservative

LOCAL ADAPTIVE MESH REFINEMENT 69

average, and the value originally calculated using (1) is discarded. For a refinement
ratio of r, we define

where the indices refer to the example in Fig. 3.1. We could define a coarse cell U, ,
at multiples of the fine time step in the same way, but this is not necessary. This
is equivalent (within roundoff error) to redefining the coarse fluxes around the
overlayed coarse grid point to be the sum over the fine time steps of all line grid
fluxes calculated on any boundary segment for that cell. However, this implementa-
tion would use extra storage to save the line grid fluxes. By updating the solution
values themselves, no extra flux storage is needed.

In case (ii), the difference scheme (1) itself that is applied to the coarse cell must
be modified. According to (l), the fine grid abutting the coarse cell has no effect.
However, for the difference scheme to be conservative on this grid hierarchy, the
fluxes into the fine grid across a coarse/line cell boundary must equal the flux out
of the coarse cell. (This conservative procedure has been discussed by [173. A fuller
discussion of conservation at grid interfaces is in [4].) We use this to redefine the
coarse grid flux in case (ii). For example, in Fig. 3.2, the difference scheme at point
i, j should be

ui, j (f + d fc~ar~e 1

Atcoarse
-dy CGi,j+ 1,2(t) - Gi.,- &f)l,

where Ax and Ay are coarse spatial step sizes. The double sum is due to the reline-
ment in time: for a refinement ratio r, there are r times as many steps taken on the
line grid as the coarse grid. If the cell to the north of (i, j) were also relined, the
flux G, j + 112 would be replaced by the sum of fine fluxes as well.

I

FIG. 3.1. The coarse cell value is replaced by the average of all the tine grid points in that cell.

70 BERGER AND COLELLA

FIG. 3.2. The difference scheme is modified at a coarse cell abutting a tine grid.

This modification is implemented as a correction pass applied after a grid has
been integrated using scheme (1) and after the liner level grids have also been
integrated, so that the line grid fluxes in (2) are known. The provisional coarse flux
used in (1) is subtracted from the solution uy,y(t + dfcOaTSe), and the line fluxes are
added using Eq. (2). To implement this modification, we save an array 6F of fluxes
at coarse grid edges corresponding to the outer boundary of each line grid. After
the coarse grid fluxes have been calculated by (l), we initialize 6F with

SF,, ,lz,j := - F;y,$j, (3)

At the end of each line grid time step, we add to 6Fi, ,,2, j the sum of the fine grid
fluxes along the (i + l/2, j)lh edge,

Finally, after r line grid time steps have been completed, we use 6F,+ ,,2,i to correct
the coarse grid solution so that the effective flux is that of (2). For example, for cell
(i + 1, j), we make the correction

If the cell i+ 2, j were refined, we would also make the correction

and similarly for the vertical fluxes.

LOCALADAPTIVEMESHREFINEMENT 71

The boundary fluxes 6F are stored in a vector associated with every fine grid. In
the initialization step (3), there may be several coarse grids that set 6F. Since ail
fluxes calculated at a given edge and level are identical (up to roundoff error) and
are independent of the particular grid on which they are calculated, we simply use
the last value assigned. At the end of a time step, we may have several fine grids
available to update a given coarse cell edge, since overlapping grids are permitted.
For this reason, we use a matrix to indicate the edges of a coarse cell that have
already been updated and only perform the update once for each edge. As before,
it does not matter which line grid actually performs the update for any given edge,
so the result is independent of the order in which the tine grid list is traversed. This
modification is a negligible amount of work, taking approximately 0.3% of a
typical run time. On machines with a scatter/gather operation, this should proceed
even faster.

We emphasize that this work is done as a “fix up” step after each grid is updated
using scheme (1). In this way, the integrator can be separated from the additional
work which is needed because of the grid hierarchy. A new difference scheme can
be substituted by a user unfamiliar with and not interested in the inner workings
of the AMR program.

4. BOUNDARY CONDITIONS

A discussion of boundary conditions completes the description of the integration
procedure on a multiple grid hierarchy. Let the interior integration scheme have a
stencil which is centered in space, with d points to each side. To compute the new
time step, AMR provides solution values at the old time step on a border of cells
of width d intersected with the physical domain. The user must supply the code to
compute any additional information needed to implement the boundary conditions.
For example, if boundary conditions are imposed by extrapolation, the user would
provide the extrapolated values for points outside the domain.

For a grid at level 1, the bordering cell values are provided using values from
adjacent level I grids where they are available; otherwise, the AMR algorithm com-
putes boundary values using bilinear interpolation from coarser level solution
values. If necessary, we also interpolate linearly in time.

It may happen that a point (x, y) is inside the domain D, but one or more sur-
rounding coarse grid points needed for the bilinear interpolation are outside. As
before, we assume there is a user-supplied routine that can provide exterior coarse
grid points given some interior points.

Our implementation partitions the required border cells at level I into rectangular
boundary patches. For each rectangular piece we:

(i) find solution values from level I - 1 grids on a slightly larger rectangular
piece enclosing the border cells;

(ii) linearly interpolate for the border values;

72 BERGERAND COLELLA

(iii) if there are fine grids at level I that could supply some values (say an
adjacent line grid), overwrite the linearly interpolated values from step (ii).

In step (i), most of these coarser level values are found by intersecting the rec-
tangular patch with level i- 1 grids and by filling the overlapping pieces. However,
it may be necessary to go to even coarser grids to supply these level I- 1 values.
This is done by applying (i) to (iii) recursively to the smallest rectangular patch
containing the unfilled cells.

For efficiency, it is important that the boundary values are supplied on a rec-
tangular patch at one time and not computed a point at a time. Even though the
amount of work is proportional to the boundary of each grid, our initial implemen-
tation took 40% of the run time and had to be rewritten. By working on grid
patches, the bulk of the memory transfers are done in blocks, and the number of
subroutine calls is minimized. This is particularly important on the Cray, where
there is a substantial performance penalty for single word accesses and subroutine
calls.

5. CREATING THE GRID HIERARCHY

At specified time intervals, an error estimation procedure is invoked, and a new
grid structure is determined. If there are several nested levels of refined grids, the
error estimation and grid generation procedures are recursively applied on each
level, from finest to coarsest, to (re-)create the fine grids at the next level. The error
estimation procedure (see Section 6) produces a list of coarse grid points with large
error estimates, indicating that a line grid patch is needed in that region. Every
flagged coarse grid point should be included in a liner grid. Our grid generation
algorithms try to produce grids that have as little overlap as possible, so that the
area that is unnecessarily refined is as small as possible. The algorithm also strives
for a small number of patches that are as large as possible, to reduce the computa-
tional overhead. It is difficult to find a foolproof algorithm that satisfies these often
conflicting goals. However, we have developed heuristics that have been successfully
tested in many different applications. A much fuller discussion of grid generation is
in [3]. Here, we will describe the particular set of algorithms that produced the
numerical results in Section 7.

Suppose there is a base level, Ibase, where grids will stay fixed, but that the finer
levels from lbase + 1 to lfinest may be “moved.” Starting with the finest level grids, we
estimate the error, using a procedure described next. If there are points where the
error estimate is too high, these points are flagged, and a level lenest + 1 grid will be
needed. Next, we estimate the error on the existing lanes* - 1 grids. If there are
flagged points, a different level Ifinest grid will be created, making sure that if there
are any level lAnes, + 1 grids, they are properly contained in the level lenest grids. This
continues until the error is estimated on the base level grids. Thus, it is only
possible to add one new level at a time, although many levels may be removed

LOCAL ADAPTIVE MESH REFINEMENT 13

during a single regridding operation. (At the initial time however, where the initial
data is known for all x, y and not just at coarse grid points, it is possible to add
many levels at a time. This is essential for some problems, where the error can
depend entirely on the initial conditions.)

In more detail, our regridding algorithm performs the following steps:

(1) Adds the buffer zone. A buffer zone of unflagged points is added around
every grid. This ensures that discontinuities or other regions of high error do not
propagate out from a line grid into coarser regions before the next regridding time.
This is possible because of the finite propagation speed of hyperbolic systems. The
larger the buffer zone, the more expensive it is to integrate the solution on the line
grids, but the less often the error needs to be estimated on the coarse grids and the
line grids moved. The buffer zone is added by flagging all coarse grid points that
are sufficiently close to flagged points with high error estimates. A buffer zone of
two cells in each direction is typical. By flagging neighboring points, instead of
enlarging grids at a later step, the area of overlap between grids is reduced.

(2) Flags every cell at level I corresponding to an interior cell in a level I+ 2
grid. This will maintain proper nesting, by ensuring that there will be a new level
I+ 1 grid containing every point in the level I + 2 grid, even if the level I grid error
estimation did not report a high error. This procedure ensures that the line grid
error estimates are used instead of the coarse grid estimates at the same point. To
ensure proper nesting, points within one cell of a non-physical (interior) boundary
of G, are deleted from the list of flagged points.

(3) Creates rectangular fine grids. The grid generator takes all the flagged
points as input, and outputs a list of corners of rectangles that are the level I+ 1
grids. Nearby points are clustered together, and a line grid patch spanning each
cluster is formed. These clustering algorithms use heuristic procedures described
separately below.

(4) Ensures proper nesting. The new line grids are checked to ensure that
they are properly contained in the base level grids. If they are not, the new grid is
repeatedly subdivided until each piece does lit. Since the flagged points originally
were inside the base grid, at least one cell from the boundary, the new grid contain-
ing the flagged points must eventually lie inside as well. Since the base level grids
did not move, step (2) cannot be used to ensure the proper nesting of this level.
This problem only arises when the base grids are a non-convex union of rectangles.

Step (3) is the difficult one. Since problems in gas dynamics develop
l-dimensional discontinuities, we have streamlined the more general grid generation
procedures of [3] for this particular application. The procedure we use here
includes a bisection step and a merging step. Initially, a grid patch is formed around
the entire list of flagged cells on a given level. The efficiency of the patch is
measured by taking the ratio of flagged cells to the total number of cells in the new
grid. If this efficiency rating is less than an input minimum efficiency (e.g., 60%),
the long direction of the rectangular grid is bisected, and the flagged points are

74 BERGER AND COLELLA

sorted into two clusters depending on which half they are in. The process is
repeated on the two clusters. The bisection steps ends when each cluster has an
acceptable efficiency rating.

The bisection step uses no geometric information, so although each grid may be
“acceptable” by itself, the resulting grid hierarchy may not be optimal. For this
reason, the bisection is followed by a merge step. In addition to an absolute
efficiency criterion, grids are merged if the new grid is relatively more efficient than
the two smaller grids. The cost function we use to measure this is proportional to
the cost of an integration step on each grid. On an m by n grid, (m + 1) by (n + 1)
fluxes are calculated, with perhaps loo0 vector operations per flux. In addition
there is a cost associated with the perimeter of each grid: finding interface condi-
tions, conservative updating of coarser grids, and special slope calculations that are
done only for boundary fluxes. Some of this work uses scalar arithmetic, at least on
machines such as the Cray 1 that does not vectorize indirect addressing and
gather/scatter operations. The total cost associated with a grid is proportional to
mn + m + n. Grids are merged if the single resulting grid has a smaller cost. The
merging step ends when no pair of grids can be successfully merged.

Although this procedure is somewhat ad hoc, it has been successfully used on
several different types of problems. The grid generation routines, not including the
solution initialization on each grid or the error estimation to produce the flagged
points, account for approximately 1.7 % of the CPU time for a typical run.

6. ERROR ESTIMATION

In [6], estimates of the local truncation error were used to select those grid
points on a given level with unacceptably large errors. If the solution u(x, t) is
smooth enough, the local truncation error u(x, t + k) - Qu(x, t) on a mesh with
spatial step h and time step k satisfies

u(x, t+k)-Qu(x, t)=k(c,(x, t)kq+cZ(x, f)hq)+kO(kq+1+h4+1)

-z(x, t)+kO(kY+’ +hq+‘),

where the leading term is denoted by r. Here we assume our difference method Q
has order of accuracy q in both time and space. If u is smooth enough, then if we
take two time steps with the method Q, to leading order the error is 2t ,

u(x, t + 2k) - Q*u(x, t) = 22 + kO(k4+’ + hq+ ‘).

Let Q2h denote the same difference method as Q but based on a mesh widths of 2h
and 2k. Then

u(x, t+2k)-Q&x, t)=2q+1t+O(h4+2).

LOCAL ADAPTIVE MESH REFINEMENT 15

By taking two steps with the regular integration scheme, and one “giant” step using
every other grid point, the difference

Q2cG t) - Q2h4& t)
2Yf’-2 =z+O(hyf2)

gives an estimate of the local truncation error at time t. We emphasize that it is not
necessary to know the exact form of the truncation error (e.g., h2u,,,), only its
order.

This procedure is easily implemented in AMR for the conservative finite dif-
ference methods presented here. The values on a grid at a given level are projected
onto a virtual grid coarsened by a factor of two in each direction. The solution on
both grids is advanced in time: the original grid for two time steps, the coarsened
grid for one step using a time step twice as large. The difference between the solu-
tions obtained on the two grids at each point is proportional to the local truncation
error at that point. At coarse cells where the difference between the two sets of
values exceed some tolerance, all four cells contained in the real grid are flagged as
requiring refinement. Notice that this estimation procedure is independent of the
finite difference method actually used, as well as the pde. One disadvantage of this
procedure is that it always predicts a large error in the neighborhood of captured
discontinuities. It is easy to construct examples for which the procedure outlined
above will give values on the coarsened grid which differ pointwise by an amount
independent of the mesh spacing in the neighborhood of a shock. In general, this
leads to refinement of the mesh at all discontinuities with strength greater than
some minimum.

Theoretically, one could define a distributional error by averaging the difference
between the two solutions over some region centered at the given cell whose size
is 0(1) relative to the mesh spacing. We have devised various techniques for carry-
ing out such a procedure, all of which are equivalent to ignoring the pointwise error
estimate in the neighborhood of those discontinuities which, by some other criteria,
are considered adequately resolved. For problems in shock hydrodynamics, only
shock discontinuities, and not slip surfaces or contact discontinuities, are likely to
satisfy any such criteria. This is because conservative finite difference methods
applied to shocks mimic the convergence of characteristics in the analytic solution,
so that the shock spreads only over a fixed number of zones independent of the
mesh spacing and time. Thus, for example, it is unnecessary to refine the grid in the
neighborhood of a shock separating two constant states. In contrast, it is usually
necessary to refine at linearly degenerate discontinuities since the number of cells
over which they spread is an increasing function of time.

There is a second set of difficulties with refinement in the presence of strong
shocks. There is evidence that shock-capturing methods are zeroth-order methods,
i.e., that the fluxes computed in the neighborhood of the shock differ by 0(1) from
the exact fluxes at a given time step [21, 161. These O(1) errors could generate

76 BERGER AND COLELLA

waves associated with the characteristic families crossing the shock, sending 0(1)
pointwise errors into the postshock region. For shocks computed on a single
uniform grid, this does not occur, because the same 0(1) errors are committed on
successive cell edges with a phase lag, so that errors in the time integral of suc-
cessive fluxes cancel upon differencing. However, when a shock intersects an inter-
face between two grids with different mesh spacings, the O(1) errors in the time
integrals of the fluxes on each of the two grids will be different, generating O(1)
errors in the solution propagating into the postshock state. In practice, we have
observed that the amplitude of the spurious waves generated in this fashion is
proportional to the amplitude of the jump in the characteristic quantities carried by
characteristics crossing the shock. In practice, then, there is usually a threshold
shock strength below which the errors generated by a shock crossing a grid discon-
tinuity are acceptable and above which the errors generated are too large. For the
latter shocks, they must be relined everywhere, if they are to be refined anywhere.

We illustrate this with an example where we force the algorithm not to reline the
grid above a certain height. This forces the strong incident shock, with a shock
Mach number of 10, to pass through a fine grid boundary into the coarse grid. The
oscillations caused by this are apparent in the contour plots of Fig. 6.1 and the plot
of Fig. 6.2 for a fixed value of y.

Combining the two considerations given above, a fairly general refinement
strategy is to use the local truncation error estimate described above, but ignore it
in the neighborhood of gas-dynamic shocks whose strength lies below some
predetermined threshold. This has the effect of relining, possibly unnecessarily, all
shocks whose strength is above the threshold. We have found that this strategy
works acceptably well if the coarsened base grid is sufficiently line, so that the
waves are well separated. A much simpler strategy, which is applicable in a large
class of problems, is simply to use the user’s knowledge of the problem instead of
the truncation error estimates. For example, in the shock reflection problems given
below, the solution is made up entirely of smooth waves and weak shocks a certain
distance behind the incident shock. Consequently, we simply ignore the local
truncation error estimate in that region.

FIG. 6.1. Contour plot showing the effects of a strong shock passing through a grid boundary.

r

LOCAL ADAPTIVE MESH REFINEMENT

c

77

1 1 1 1 1 1 urn,- LA-L I- -!
.iZ .24 .26 .28 ,30 ,32 ,34 .36 .38 .40 .42 .44 .46 .4@ .13

FIG. 6.2. Density profile for a horizontal line slightly below the grid interface intersecting the shock.

7. NUMERICAL RESULTS

We choose as our test problem reflection of a planar shock in an ideal gas by an
oblique surface. In this problem, a straight shock is incident on a perfectly reflecting
surface. At later times, a reflected wave pattern is generated, depending only on a,
M,, and y, where c(is the angle between the direction of propagation and the reflec-
ting surface, M, is the incident shock Mach number, and y is the ratio of specific
heats. The solution to this problem is formally self-similar, depending on (x, y, t)
only in the combination (x/t, y/t). Thus, the time dependence of the solution is
given by a linear scaling of a fixed wave pattern with time. We are particularly
interested in values of the problem parameters for which very complicated small
scale structures are observed.

The underlying integration method in our AMR calculations is a second-order
Godunov method described in [lo]. In our calculations, we make use of the fact
that the regions where the small scale behavior can appear are localized in the
vicinity of the reflection point. Our procedure for estimating the error is to measure
the local truncation error of the density, except that we do not tag points beyond
a certain distance behind the incident shock. This effectively restricts our refinement

78 BERGER AND COLELLA

TABLE I

Breakdown of Computational Times Obtained Using FLOWTRACE

Grid integration 78.29
Interpolation 12.95
output 2.87
Grid updates 2.78
Grid generation 1.71
Memory management 0.59

to be in a window moving with the reflection point, and shuts off the grid retine-
ment ground the (weak) reflected shock.

The results presented here were calculated on the Cray XMP 22 at the LLNL
NMFECC, using the CFT 1.14 compiler. To obtain detailed diagnostic information
about where most of the time is spent in the calculation, we used the FLOW-
TRACE option of the CFT compiler in the first calculation below. The total time
spent was 5674 seconds of CPU time. Table I shows a breakdown of the calculation
time into six categories: the integration routine, the interpolation routines (for con-
structing boundary conditions and initializing new line grids), the updating routines
(fine grids updating coarse grids and for maintaining conservation across grid
interfaces), the grid generation routines, output routines, and memory management
routines.

The main result is that the integration step takes about 80% of the computa-
tional time. This figure includes integration steps needed for the error estimation.
However, measurements show that the latter is only 3% of the integration cost,
with actual useful integration steps accounting for 97% of the integration time.
Note that the error estimation cost is very small despite the fact the error is
estimated at every other coarse time step. There are two reasons for this. First, over
90% of the cells being integrated belong to the finest level grids (level 3 in both
calculations), and the error is not estimated there. Second, since refinement is per-
formed in time as well as space, the overwhelming majority of the work is done on
the finest grid. Table II shows the number of cell updates done on each grid level,
as well as the total number of cell updates done for error estimation.

We can thus obtain a rough estimate of the efficiency of AMR relative to com-
puting on a uniform grid. About 80% of the run time is spent integrating grids. The

TABLE II

Number of Cell Updates at Each Level

Level 1
Level 2
Level 3
Error estimation

2.98 x 10s
4.59 x 106
1.13 x 10s
3.06 x lo6

LOCAL ADAPTIVE MESH REFINEMENT 79

finest level grids occupy only about 10% of the domain. Thus an equivalent
uniform grid computation would require a factor of 8 more CPU time. Of course
in this particular problem, one could omit computations ahead of the incident
shock, since the solution there is constant, saving approximately half the uniform
grid time. In general, this could not be done.

It is more difficult to compare memory usage with that of a uniform grid calcula-
tion. The integration algorithm used here requires live 2-dimensional grid arrays for
scratch space, in addition to the four required to store the conserved quantities,
so that the memory requirements for a uniform grid calculation would be
9.320.1600 z 4.5 x lo6 words. In contrast, the maximum storage used in the
calculation performed here was 8.94 x lo5 words. Much of the memory use in AMR
is due to saving two time levels of the solution on each grid. It is possible to avoid
the memory overhead of having full grid scratch arrays by breaking the calculation
into pieces. (In fact, we effectively do this in the AMR calculations by restricting the
size of any grid to be less than some pre-determined maximum, subdividing grids
that are too large.) However, this would introduce overheads and programming
complexities in the uniform grid calculation similar to those in AMR. In any case,
even if those overheads could be neglected and only four full grid arrays were
required, the memory required would be 2.0 x lo6 words, a factor of 2.2 larger than
that required by AMR.

In Fig. 7.1, we show results for the case M, = 10, c1= 30”, y = 1.4. The domain is
a rectangle of length 2.0 by 0.4, with initial coarse grid spacing Ax = Ay = 0.02. The
calculation ran for 149 coarse grid time steps. The error was estimated every other
step, with a buffer zone of one cell and a grid efficiency of 65 %. The error tolerance
was 0.02. The mesh was relined by a factor of 4 in each direction at each grid level.
The finest grids in this calculation represent a factor of 4 increase in resolution in
each spatial direction over the finest grid calculation in [22]. Figure 7.la shows the
location of the level 2 and 3 grids at time t = 1.20. In displaying the solution, we
show two sets of plots. One is a contour plot of the full flow field. The other is an
enlargement of the region around the reflection point. This is the part of the
domain covered by the level two and three grids. In both cases, the contour plots
are made using the finest available grid in the subregion. Due to the increased
resolution, we can now observe a non-self-similar Kelvin-Helmholtz rollup along
the principal slip line. This is to be expected, since this slip line is instable. The
Kelvin-Helmholtz rolls are formed near where the weak shock emanating from the
second triple point impinges on the slip line. They then propagate along the slip
line and are eventually swept up into a large rollup at the tip of the jet, along the
bottom wall.

Finally, in Fig. 7.2 we present results for M, = 8, CI = 35”, y = 1.107. It has been
noticed [1 l] that the wave patterns associated with double Mach reflection become
increasingly complex as y is reduced. The jet along the reflecting wall formed by the
slip line from the principal Mach triple point is more and more strongly
accelerated, pushing the Mach stem out ahead of it. This leads to strongly rota-
tional supersonic flow and the formation of multiple Mach triple points. The pre-

80 BERGER AND COLELLA

FIG. 7.1. Shock reflection off an oblique wedge with y = 1.4, M, = 10, a = 30”: (a) Shows the grid
hierarchy; grid 1 is a level 1 grid, grids 6 and 34 are level 2 grids, and the rest are level 3 grids, at time
r = 0.12. (b) Density, full flow field. (c) Density, level 2 and 3 grids only. (d) Pressure, level 2 and 3 grids
only. (e) Entropy, level 2 and 3 grids only.

LOCAL ADAPTIVE MESH REFINEMENT 81

Fig. 7.1-Continued

82 BERGER AND COLELLA

i
I A

/I i

FIG. 7.2. Shock reflection ON an oblique wedge with y = 1.107, M, = 8, G(= 35”: (a) Density, full flow
field, at t = 0.115. (b) Density, level 2 and 3 grids only, f = 0.115. (c) Density, full flow field, at t = 0.230.
(d) Density, level 2 and 3 grids only, t = 0.230.

LOCALADAPTIVEMESHREFINEMENT 83

sent results represent a rather extreme example of this, with a total of seven Mach
triple points in the double Mach region, including a third triple point along the top
shock. The seven triple points are marked in Fig. 7.2d. This calculation gives some
indication of why adaptive mesh refinement is an important tool in these problems.
As y approaches one, the distance between the leading edge of the wall jet and the
main Mach stem becomes smaller and smaller, requiring more grid resolution in
that region. The value of y in this calculation represents the limit of resolution,
given the resources available on the Cray XMP. The calculations in [l l] using
uniform grids without mesh refinement, were not fully resolved for y < 1.25. Even
with mesh refinement, at this low value of y the flow field is not fully resolved at
time t = 0.115, in Fig. 7.2a and b. Only after running to time t = 0.230, which by
self-similarity corresponds to increased grid resolution, is the solution adequately
resolved.

8. CONCLUSIONS

The complexity of our AMR code might be intimidating to a new user. Not
counting the integration routine, our program consists of 3000 lines of Fortran.
However, a big code is not necessarily a fragile code. We have been careful to
develop AMR to make it automatic and robust. In addition, a user should be able
to use AMR without having to understand it all. This makes it important to
develop AMR in a modular way. A user should be able to plug in an integrator for
a new problem without knowing details about how the more computer science
oriented parts of AMR work, but knowing that these other parts will indeed work.
We have already demonstrated this modularity by using AMR to compute tran-
sonic flow in conjunction with FL052 [S] and to compute a combustion problem
with a simple induction time model for chemistry [Z].

The most difficult problems will best be solved by combining several adaptive
techniques. Despite its more complicated data structures, AMR has already been
combined with the conservative front-tracking scheme of [9]. This enables tracking
of a strong incident shock, while using shock-capturing for the other discontinuities,
and avoids the mismatch of strong captured shocks crossing grid boundaries.
This combined approach is being used to study transition from regular to Mach
reflection. Finally, we intend to couple this method with the variational technique
of [S]. Their mesh-moving technique would allow the underlying mesh geometry to
be approximately aligned with global features in the Row, leading to more efficient
refined meshes. However, the actual mesh refinement for error reduction would be
done with AMR, so the global time step penalty of moving mesh methods is not
incurred. Lastly, a major open question is how to use implicit difference schemes
with embedded grids for a time-dependent calculation. This will be needed to
compute solutions to hyperbolic-parabolic problems, such as the NavierAtokes
equations at high Reynolds number.

BERGER AND COLELLA

ACKNOWLEDGMENTS

We thank Michael Welcome for assembling the graphics program for multiple grids used to display
the numerical results. We thank John Bolstad for a careful reading of the manuscript. The first author’s
work was supported in part by the Department of Energy Contract DEAC0276ER03077-V and by the
Air Force O&e of Scientitic Research under Contract AFORSR-86-0148. The second author’s work was
supported in part by the Office of Energy Research of the U.S. Department of Energy at the Lawrence
Livermore National Laboratory under Contract W-740%ENG-48 and at the Lawrence Berkeley
Laboratory under Contract DE-AC03-76SF00098 and by the Air Force Office of Scientific Research
under Contract AFOSR-ISSA-870016. Phillip Colella wishes to thank the Courant Institute, which he
visited for five months under Department of Energy Contract DEAC0276ER03077-V.

REFERENCES

1. S. ADJERID AND J. FLAHERTY, RPI Computer Science Report No. 85-21 (unpublished).
2. J. BELL, P. COLELLA, J. TRANGENSTEIN, AND M. WELCOME, presented at the 8th AIAA CFD

Conference, June 1987, Honolulu, HI; Lawrence Livermore Report UCRL-96443 (unpublished).
3. M. J. BERGER, SIAM .I. Sci. Statist. Comput. I, 904 (1986).
4. M. J. BERGER, SIAM J. Num. Anal. 24, 967 (1987).
5. M. J. BERGER AND A. JAMESON, AIAA J. 23, 561 (1985).
6. M. J. BERGER AND J. OLIGER, .I. Comput. Phys. 53, 484 (1984).
7. J. BOLSTAD, Ph. D. thesis, Department of Computer Science, Stanford University, California, 1982

(unpublished).
8. J. U. BRACKBILL AND J. S. SALTZMAN, J. Comput. Phys. 46, 342 (1982).
9. I. CHERN AND P. COLELLA, J. Comput. Phys.

10. P. COLELLA, Lawrence Berkely Laboratory Report LBL-17023; J. Comput. Phys.
11. P. COLLELA AND H. GLAZ, in Proceedings, 9th Intl. ConJ Numerical Methods in Fluid Dynamics,

June 1984; Lecture Notes in Physics Vol. 218 (Springer-Verlag, New York/Berlin, 1985).
12. P. COLLELA AND P. WOODWARD, J. Comput. Phys. 59, 264 (1985).
13. H. A. DWYER, AIAA Paper No. 83-0449 (unpublished).
14. W. D. GROPP, SIAM J. Sci. Statist. Comput. 4, 191 (1980).
15. K. MILLER AND R. N. MILLER, SIAM J. Num. Anal. 18, 1033 (1981).
16. W. NOH, Lawrence Livermore National Laboratory Report No. UCRL-52112, June 1976

(unpublished).
17. S. OSHER AND R. SANDERS, Mafh. Comput. 41, 321 (1983).
18. M. M. RAI AND D. A. ANDERSON, J. Compur. Phys. 43, 327 (1981).
19. W. J. USAB AND E. M. MURMAN, AIAA Paper No. 83-1946-CP, July 1983 (unpublished).
20. K. H. WINKLER, Ph. D. thesis, University of GGttingen, 1976 (unpublished).
21. P. WOODWARD, in Proceedings Nnto Workshop in Astrophysical Radiation Hydrodynamics, Munich,

W. Germany, Nov. 1983; Lawrence Livermore Report UCRL-90009, August 1982 (unpublished).
22. P. W~~DWAIUJ AND P. COLELLA, J. Comput. Phys. 54, 115 (1984).

