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Chapter 1

Overview

The Structured Adaptive Mesh Refinement Applications Infrastructure (SAMRAI) [1] is a large C++
software library developed in the Center for Applied Scientific Computing (CASC) at Lawrence Livermore
National Laboratory (LLNL). It is designed to support large-scale, parallel, structured adaptive mesh refine-
ment (SAMR) simulations without requiring application developers to implement low-level parallel and/or
SAMR algorithms. For example, SAMRAI shields application developers from the low-level programming
details involved with management of bookkeeping for SAMR data structures and parallel communication.
In addition, SAMRAI is designed to make it relatively easy to migrate from serial codes written to solve
problems on simple, uniform grids to parallel and/or SAMR numerical simulations.

It is important to emphasize that SAMRAI does not take away the application developer’s control over the
numerics. Implementation of the core numerical kernels is still the responsibility of the application developer.
SAMRAI just manages the complexities associated with SAMR data structures and programming issues.

1.1 Fundamentals of Structured Adaptive Mesh Refinement

The basic idea underlying all adaptive mesh refinement methods is that computational resources can be more
efficiently utilized by carrying out a numerical simulation on a non-uniform grid where the grid resolution is
higher only in localized regions of the domain that require it (see Figure ??) [2, 3, 4, 5]. For calculations on
structured meshes, the computational grid is typically represented as a hierarchy of refinement levels each of
which is a collection of grid cells on a structured mesh with the same resolution. Grid refinement is achieved
by tagging grid cells to refine and constructing a refinement level that contains the tagged cells. While
cell-based refinement1 is one possible approach to grid refinement, SAMRAI adopts a patch-based approach,
which generates refinement levels that are unions of logically rectangular blocks (known as patches). Because
SAMRAI uses a patch-based approach to structured adaptive mesh refinement, in this primer, we shall focus
solely on this approach to SAMR.

Numerical algorithms for computations on SAMR grids are not fundamentally different than those for
computations on uniform grids. The most important difference is the need for special numerical schemes to
handle the interfaces between refinement levels. Computations on SAMR grids require that two important
numerical issues be addressed: (1) refinement (also known as interpolation or restriction) of data from coarse
to fine grids and (2) coarsening (also known as prolongation) of data from fine to coarse grids. Both of these
operations are important because they make it possible to couple calculations on different refinement levels.
For example, refinement of coarse data at coarse-fine interfaces may be thought of as a means of providing
boundary data for the fine level from the coarse level. Coarsening of fine data at the interfaces of different
refinement levels can be viewed in the opposite manner – as a way to provide boundary data for the coarse
level.

For patch-based SAMR methods, once data has been refined/coarsened at the interfaces between refine-
ment levels, many numerical calculations on individual patches in the SAMR grid proceed as they would for

1In cell-based grid refinement, grid cells are individually refined and refinement levels are simply collections of refined cells.
Quad- and oct-tree data structures are a common way to store the simulation data associated with cell-based SAMR calculations.
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a uniform grid computation. For example, suppose we wanted to solve the heat equation on a SAMR grid:

Tt = k∇2T (1.1)

where k is thermal conductivity. A simple numerical method to solve this equation on a SAMR grid would
be to take a method of lines approach and use a forward Euler scheme to carry out the time integration. At
each time step, we could use the following procedure to advance the solution in time:

1. Loop from the finest level to the coarsest level and do the following.

(a) Fill boundary data by refining data from the next coarser grid.
(b) Compute the numerical approximation to the spatial derivative term on all patches using standard

discretizations on uniform grids.
(c) Advance the solution in time using a forward Euler scheme.

2. Loop from the finest level to the coarsest level and coarsen the updated solution from each level to the
next coarser level to obtain a consistent solution on the entire SAMR grid.

Note that the last step of this procedure serves two important purposes for the next time step: (1) it provides
boundary data for coarse grids and (2) it provides data for use in the refinement stage of the computation.
It is in this sense that the solution on overshadowed portions of coarse levels is considered to be consistent
with the solution on finer grids. For elliptic problems or implicit time integration schemes, solution of
the discretized problem can often obtained via iterative schemes based on fast adaptive composite (FAC)
methods [?] where the procedure during each iteration has a similar flavor to the procedure described above.

1.2 Basic Structure of SAMRAI Applications

The basic structure of most SAMRAI simulations follows the same standard structure of many scientific
computing applications:

1. Set up data structures for variables.

2. Carry out computations on variables (possibly writing out data, visualization, and/or restart files in
the process).

3. Clean up memory and exit.

However, because SAMRAI is designed to be very general and support difficult to program features (e.g.,
SAMR and high-performance parallel simulation), there are several SAMRAI idioms that must be learned
in order to successfully build SAMRAI-based applications. For instance, access to data in SAMRAI is a bit
indirect but follows a fairly standard set of operations. While we are often accustomed to having explicit
control over memory allocation for variables during the set up phase and and having direct access to variables
during the computation phase, this level of control is really only possible for calculations with simple data
structures (e.g. serial, uniform grid calculations on simple domains). Because the data structures required
for SAMR and parallel computations are relatively complicated and tedious to program, SAMRAI sacrifices
the convenience of direct access to data variables in order to: (1) achieve good computational performance
and/or (2) hide the complexity from the application developer. The goal is to allow application developers
to focus on their particular scientific application rather than on having to deal with low-level programming
issues.

Structure of Typical SAMRAI main Programs

Before getting in to the details of SAMRAI, let’s take a look at the structure of the main program for a
typical SAMRAI application. The following steps show how the generic procedure for scientific computations
described above is expressed within the SAMRAI framework (see Appendix A for a sample main program). It
should be noted that the following procedure is specific to simulations on Cartesian grids and takes advantage
of several built-in SAMRAI classes. SAMRAI is capable of supporting more general computations, but a
discussion of the advanced SAMRAI features is beyond the scope of this primer.
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1. Initialize the MPI and SAMRAI environments.

2. Process command-line arguments. Set up input and restart databases. Set up logging.

3. Create objects required for computation

(a) Set up the geometry for the problem, by creating a CartesianGridGeometry object.

(b) Create PatchHierarchy object. Initially, the PatchHierarchy is empty (i.e., contains no refine-
ment levels). The individual levels of the SAMR hierarchy are added later.

(c) Create instances of application specific subclasses of the SAMRAI strategy classes that are needed
for the simulation (see Section 5.4 or [6] for more information about the strategy design pattern).

(d) Create the grid management objects.

i. Create the three objects that are required by the GriddingAlgorithm object:

• a StandardTagAndInitialize object, which handles initializing data on the
PatchHierarchy and tagging grid cells for refinement,

• a BergerRigoutsos object, which generates boxes for new refinement levels, and
• a LoadBalancer object, which distributes patches across the processors allocated for the

computation.

ii. Create the GriddingAlgorithm object.

4. Set up visualization. VisIt [7] is commonly used to visualize the results of SAMRAI simulations.

5. Use the GriddingAlgorithm object to initialize the PatchHierarchy. Initialization of the
PatchHierarchy includes both creating refinement levels in the hierarchy as well as allocating and
initializing the data on those levels.

NOTE: depending on how the simulation algorithm has been decomposed into C++ classes, the
GriddingAlgorithm may not be the object explicitly used to initialize the PatchHierarchy in the
main program.

6. Carry out the main time-stepping or solver routine. It is common for data, visualization, and restart
files to be written out during this stage.

7. Clean up memory allocated for the computation.

8. Shutdown the MPI and SAMRAI environments.

It is worth mentioning that several important SAMRAI objects are configured using parameters
from the input file. For example, parameters from the input file are used in the construction of the
CartesianGridGeometry, GriddingAlgorithm, LoadBalancer, and StandardTagAndInitialize objects.

1.3 Non-SAMR Use of SAMRAI

While SAMRAI was originally developed to support SAMR simulations, it provides several features that
are useful for general scientific computing applications. These features by themselves can justify the use of
SAMRAI even when SAMR is not required for the computation.

• Parallel Computing. SAMRAI provides strong support for parallel computing, including automatic
domain decomposition and management of data communication between processors. Moreover, the
parallel computing facilities in SAMRAI are specifically designed to be scalable to huge (>10K) number
of processors. These features make it possible to develop high-performance parallel applications without
requiring application developers to deal with the low-level details of MPI programming.
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• Restart Capabilities. SAMRAI provides extensive check-point and restart capabilities. All major
SAMRAI objects involved in computations are instrumented to support serialization/deserialization
(also known as deflation/inflation). Reading to and writing from restart files are managed by the
RestartManager class. To take advantage of check-pointing and restart, the application developer
need only implement serialization/deserialization for application specific classes. For most applications,
this work should be minimal and only requires knowledge of the interface provided by the SAMRAI
Database class.

• Input Database. SAMRAI provides a convenient and general mechanism for processing input files
through its InputDatabase class. Input files are organized in a hierarchical format using C/C++
syntax (including comments), which is an intuitive and natural format for complex simulations.

1.4 Scope of This Primer

This primer is intended to help a new SAMRAI application developer get familiarized with basic SAMRAI
constructs and quickly develop a applications based on SAMRAI. It is not intended to be comprehensive
or be a reference manual for the SAMRAI library. Instead, the primer takes a very practical approach to
SAMRAI. The flexibility and extensibility of the SAMRAI library makes it possible to do many things in
multiple ways. In this primer, I have chosen to illustrate methods that should be relatively intuitive to a
scientific programmer comfortable with writing serial numerical simulations. This choice may not always lead
to the most elegant way to express ideas in SAMRAI, but hopefully it will give new users a solid foundation
from which to start learning the intricacies of SAMRAI on their own.

Two-dimensional Example Code

Many of the C++ classes in the SAMRAI library are templated on the number of spatial dimensions of
the problem2. In this primer, we provide all examples in two-dimensions rather than giving examples for
a general number of spatial dimensions. What this means is that the template variable for the spatial
dimension will always be set to 2 instead of DIM in code snippets throughout the primer. For instance,
PatchHierarchy<2> as opposed to PatchHierarchy<DIM> will appear in sample code.

2While the C++ classes support an arbitrary number of spatial dimensions, the numerical kernels for refining and coarsening
data are only implemented for 1, 2, and 3 spatial dimensions.



Chapter 2

Getting Started with SAMRAI:
Installation and Documentation

2.1 Obtaining SAMRAI

SAMRAI is freely available and may be downloaded from LLNL by following the “Download SAMRAI
Software” link at http://www.llnl.gov/CASC/SAMRAI/software/software.html after filling out a short
registration form.

2.2 Installing SAMRAI

The build procedure for SAMRAI follows the standard configure; make; make install paradigm. The
only strict software dependency for SAMRAI (beyond having C, C++, and Fortran compilers) is the Hierar-
chical Data Format library (HDF5) developed at the University of Illinois at Urbana-Champaign [8]. HDF5
is required for the check-point/restart functionality provided by SAMRAI and visualization using VisIt, a
visualization software developed at LLNL [7]. Parallel SAMRAI applications require an implementation of
MPI (Message Passing Interface) to be installed before building SAMRAI. Other external libraries (e.g.,
PETSc, Hypre, SUNDIALS, etc.) may be needed to support certain SAMRAI features, but they are not
necessary for most basic SAMRAI applications.

SAMRAI is intended to be built in a directory that is different than the source directory. For a basic
SAMRAI installation, the following procedure (with minor variations) may be used to build and install
SAMRAI:

>CC=gcc
>CXX=g++
>F77=gfortran
>export CC CXX F77
>mkdir ${OBJ_DIR}
>cd ${OBJ_DIR}
>${SAMRAI_SRC_DIR}/configure --prefix=${SAMRAI_INSTALL_DIR} \

--enable-opt=-O3 \
--with-x \
--with-hdf5=/home/ktchu/opt/hdf5 \
--without-petsc

>make library
>make install

It is worth mentioning that the SAMRAI library can take up to several hours to build depending on the
platform and the compiler options that are enabled.

9
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2.3 SAMRAI Doxygen Documentation

The entire SAMRAI library is documented using the Doxygen system. The HTML documentation provided
is very convenient for quickly finding detailed information about classes and their methods. The Doxygen
documentation can either be generated from the source code, downloaded directly from LLNL, or viewed
online at http://www.llnl.gov/CASC/SAMRAI/software/html/main.html.



Chapter 3

SAMRAI Essentials: Grids,
Geometry, and Simulation Data

Computational grids, physical geometry, and simulation data form the foundation of many numerical simu-
lations. For small-scale simulations, we have the luxury of choosing not to use complicated data structures
to manage these important constructs. In fact, we can often get away with just storing all relevant informa-
tion in a few variables and not using data structures at all. Unfortunately, as simulations grow in size and
complexity, we are forced to adopt at least a few basic software engineering techniques to keep our programs
from growing out of control.

Parallel, SAMR computations are no exception to this rule. SAMRAI’s goal of shielding the application
developer from the programming complexities needed to support parallel, SAMR computations comes at the
cost of requiring application developers to learn how to access and manipulate grid, geometry, and simulation
data using a collection of SAMRAI classes. In this chapter, we highlight several of the SAMRAI classes that
manage the essential components of any numerical simulation.

3.1 SAMR Grids

Hierarchy of Refinement Levels: The PatchHierarchy, PatchLevel, and Patch

Classes

The fundamental data structure for patch-based SAMR calculations is a hierarchy of refinement levels each
of which is a collection of patches. Each patch covers a logically rectangular block of grid cells with uniform
spacing in each coordinate direction1. The location of the simulation data within each grid cell is flexible
(e.g., cell-, face-, and node-centered) and depends on the nature of the numerical algorithm.

In SAMRAI this data structure is represented by the following three classes: PatchHierarchy,
PatchLevel, and Patch. As their names suggest, the PatchHierarchy manages a collection of PatchLevels
each of which, in turn, contains a collection of Patches (see Figure ??). The PatchHierarchy and
PatchLevel are essentially container classes for PatchLevels and Patches, respectively. The Patch class,
however, holds several pieces of information involved in many numerical calculations in patch-based SAMR
applications. We will discuss the Patch class in more detail a bit later in this chapter after we have introduced
a few important ideas. In general, application developers are not responsible for explicitly constructing the
entire patch hierarchy. This task is typically handled by a collection of classes that SAMRAI provides to
manage grid generation (see Section 4.1).

In SAMRAI, simulation data (and therefore numerical computations) are directly associated with
Patches. As a result, the following SAMRAI idiom is often seen in SAMRAI applications:

// loop over PatchHierarchy
const int num_levels = patch_hierarchy->getNumberLevels();

1The grid spacing need not be the same in all coordinate directions. For example, dx does not need to be the same as dy.

11
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for ( int ln=0 ; ln < num_levels; ln++ ) {
Pointer< PatchLevel<2> > level = patch_hierarchy->getPatchLevel(ln);

// loop over patches
typename PatchLevel<2>::Iterator patch_iterator;
for (patch_iterator.initialize(level); patch_iterator; patch_iterator++) {

// do some work ...

}
}

Note that PatchLevels are numbered starting at zero with higher level numbers corresponding to higher
levels of grid refinement. Note also that the Iterator object only loops over Patches that reside on the
local processor. Looping over the Patches using the patch number can lead to errors for parallel runs.

Index Spaces on SAMR Grids: The Index and IntVector Classes

To make it easy to determine the location of grid cells within the SAMR grid, SAMRAI takes a global
approach to indexing. Within a Patch on a PatchLevel, the index of each grid cell (identified by the center
of the grid cell) is specified relative to a common origin for the entire PatchLevel2. The relationship between
indices on different PatchLevels in a PatchHierarchy is also simple. This relationship is best illustrated
by example.

Consider a two-dimensional PatchHierarchy where the ratio between the grid cells two levels that com-
pletely overlap each other is two in the x-direction and three in the y-direction (see Figure ??). Defining
the refinement ratio between two different levels in a SAMR grid to be the vector of integers specifying
the number of fine grid cells that a coarse grid cell is cut into in each coordinate direction, we say that
refinement ratio between the two levels in this example is (2, 3). To define the indices for the grid cells on
the fine level, we can think of the fine level as having been generated by taking each grid cell on the coarse
level and dividing it into a 2-by-3 block of grid cells on the fine level. To “create” enough indices on the fine
grid for the new cells, we multiply the coarse grid index by the refinement ratio (component-wise) to obtain
a base index in on the fine level. We then add an offset to this base index in order to uniquely identify the
position of each fine grid cell within the subdivided coarse grid cell. For example, consider a grid cell with
index (ic, jc) on the coarse level, the indices of the corresponding 2-by-3 block grid cells on the fine level
would be (2ic, 3jc), (2ic + 1, 3jc), (2ic, 3jc + 1), (2ic + 1, 3jc + 1), (2ic, 3jc + 2), and (2ic + 1, 3jc + 2) ordered
from left to right and bottom to top. Computing the index of the coarse grid cell corresponding to a fine
grid cell with index (if , jf ) merely requires component-wise division of the fine grid index by the refinement
ratio and rounding down to the nearest integer: (ic, jc) = (bif/2c, bjf/3c).

Generalization of the above example to arbitrary refinement ratios and spatial dimensions is straight-
forward. For an n-dimensional problem with refinement ratio (r1, r2, ..., rn) between two levels, the r1-
by-r2-by-. . .-by-rn block of fine grid cells associated with a coarse grid cell having index (i1c, i2c, . . . , ınc)
is the set of indices {(r1i1c + o1, r2i2c + o2, . . . , rninc + on)}, where oi = 1, 2, . . . , ri − 1, and the index
of the coarse grid cell associated with the fine grid cell at index (i1f , i2f , . . . , inf ) is (i1c, i2c, . . . , inc) =
(bi1f/r1c, bi2f/r2c, . . . , binf/rnc).

In SAMRAI, grid cell indices are represented by the Index class which is essentially an n-dimensional
vector of integers where n is the number of spatial dimensions in the problem. The IntVector class, which
is also a vector of integers, is a closely associated class that is involved in many grid index manipulations and
operations. Intuitively, the distinction Index and IntVector objects is analogous to the difference between
points and vectors in coordinate geometry.

2An alternative choice would be to index grid cells relative to a local origin for each Patch (for instance relative to the lower
corner of the Patch)
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Rectangular Blocks in Index Spaces: The Box Class

For patch-based SAMR simulations, the grid cells on a refinement level are organized into logically rectangular
blocks, which can be uniquely defined by specifying the indices of its lower and upper corners within the
global index space on the refinement level. In SAMRAI, these blocks of grid cells are represented by the Box
class. Boxes are typically used to specify the blocks of grid cells covered by Patches and expansion of these
blocks to include ghost cells.

3.2 Geometry

The geometry of the computational grid is an important component of many numerical simulations. For
instance, geometric information plays a key role when calculating spatial derivatives or imposing certain
types of boundary conditions, such as periodic boundary conditions. For SAMR simulations, the geometry
is also used when refining and coarsening data between refinement levels.

While SAMRAI is designed with a highly extensible geometry infrastructure, SAMRAI cur-
rently only provides direct support for Cartesian grids through the CartesianGridGeometry and
CartesianPatchGeometry classes. The CartesianGridGeometry class stores information about the
physical/computational domain and its boundaries, the coordinate directions that are periodic,
and spatial refinement/coarsening operators3. Each PatchHierarchy object is associated with one
CartesianGridGeometry object that provides the geometry information for the SAMR grid represented
by the PatchHierarchy. The CartesianPatchGeometry class holds information associated with a spe-
cific Patch. Each CartesianPatchGeometry object is associated with a specific Patch and holds infor-
mation about (1) the grid spacing and (2) the spatial coordinates of the lower and upper coordinates
of the Patch. To access CartesianGridGeometry and CartesianPatchGeometry objects, we use the
PatchHierarchy::getGridGeometry() and Patch::getPatchGeometry() methods:

// get pointer to grid geometry object
Pointer< CartesianGridGeometry<2> > grid_geom =
patch_hierarchy->getGridGeometry();

// get pointer to patch geometry object
Pointer< CartesianPatchGeometry<2> > patch_geom =
patch->getPatchGeometry();

Input Parameters

The CartesianGridGeometry class has four input parameters: domain boxes, x lo, x hi, and
periodic dimension. Of these, only periodic dimension is optional. The meanings of these parame-
ters are as follows:

• domain boxes array of boxes representing the index space for the entire domain on the coarsest re-
finement level. Each box is specified by the grid indices of its lower and upper corners. For example,
[(0,0), (2,3)] is a two-by-three rectanglular region of index space corresponding to the indices
0 ≤ i ≤ 2 and 0 ≤ j ≤ 3.

• x lo array of double values representing the spatial coordinates of the lower corner of the computational
domain. If the computational domain is not a parallelipiped, then x lo is taken to be the minimum
over the lower corners of all of the boxes whose union make up the entire computational domain.

• x up array of double values representing the spatial coordinates of the upper corner of the computational
domain. If the computational domain is not a parallelipiped, then x up is taken to be the maximum
over the upper corners of all of the boxes whose union make up the entire computational domain.

3Technically, these pieces of information are stored by the parent classes of CartesianGridGeometry.
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• periodic dimension array of integer values representing the coordinate directions in which the com-
putational domain is periodic. A non-zero value indicates that the direction is periodic; a zero value
indicates that the coordinate direction is not periodic. By default, all coordinate directions are assumed
to be non-periodic.

The input database for a CartesianGridGeometry object might look like the following:

CartesianGeometry {
domain_boxes = [(0,0), (99,99)], [(100,0), (149,49)]
x_lo = 0.0, 0.0
x_up = 1.5, 1.0
periodic_dimension = 0, 0

}

3.3 Simulation Data

Managing and accessing simulation data are central concerns for all numerical simulations. In simple pro-
grams, these tasks require no more than understanding how to create and use data arrays using standard
programming language constructs (e.g., malloc()/free() or new/delete). However, in SAMRAI these
tasks are slightly more complicated as a result of the data structures required for SAMR grids and to allow
for more flexible memory management during SAMR simulations.

Referencing Simulation Data: Data Handles

In SAMRAI applications, each simulation variable is assigned a unique integer data handle. We defer a
detailed discussion of how to define simulation variables and generate data handles to Section 4.2. For
now, it suffices to know that data handles are used to access and manage memory for the simulation data
associated with each simulation variable.

Accessing Simulation Data: The PatchData Class

In SAMRAI, data associated with a simulation variable is managed by concrete subclasses of the PatchData
class. In this primer, we will focus solely on PatchData types that are used to represent grid functions:
CellData (cell-centered), FaceData (face-centered), SideData (face-centered), EdgeData (edge-centered),
and NodeData (node-centered). Specialty data types, such as IndexData, are also available but will not be
discussed here.

Each PatchData object is associated with a single Patch object. To obtain the PatchData object for a
given simulation variable, we use the getPatchData() method from the Patch class passing in the simulation
variable’s data handle as the argument:

// get PatchData for cell-centered a simulation variable
// identified by data_handle
Pointer< CellData<2,double> > patch_data = patch.getPatchData( data_handle );

PatchData objects hold three important pieces of information: the number of components (known as
depth in SAMRAI) associated with the simulation data (e.g., 1 for scalar fields and 3 for vector fields in
three-dimensions), the region of index space covered by the simulation data, and the pointers to actual data
arrays that contain the simulation data. It is important to note that the region of index space covered by
the simulation data need not coincide with that of the Patch that it is associated with. In general, the Box
for a PatchData object is larger than the Box for the Patch because it possesses extra grid cells, known as
ghost cells, which are used to provide data from neighboring patches, coarser refinement levels, or boundary
conditions (see Figure ??).

For a PatchData object named patch data, we obtain the depth of the simulation data via the
getDepth() method:

int depth = patch_data->getDepth();
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The Box that represents the region of index space covered by the simulation data may be determined by
using the getGhostBox() method:

Box<2> ghostbox = patch_data->getGhostBox();

A related method is the getGhostCellWidth() method which returns an IntVector representing the ghost
cell width in each coordinate direction.

We retrieve Pointers to data arrays containing simulation data by using the getPointer() method.
The argument to this function is an integer which indicates the desired component (zero-based numbering)
of the simulation data. For instance,

double* simulation_data = patch_data->getPointer(1);

returns the second component of simulation data managed by patch data. Once we have the pointer to the
actual simulation data, we can proceed with the numerical calculation exactly as we would on a uniform
grid. For a calculation that involves looping over a two-dimensional grid, the following C/C++ code could
be used:

// get dimensions of box that covers interior of Patch
Box<2> interior_box = patch_data->getBox();
const IntVector<2> interior_dims = interior_box.numberCells();

// get dimensions of box that covers interior of Patch plus ghost cells
Box<2> ghostbox = patch_data->getGhostBox();
const IntVector<2> ghostcell_dims = ghostbox.numberCells();
const IntVector<2> ghostcell_width = patch_data->getGhostCellWidth();

// loop over grid
for (int j = 0; j < interior_dims(1); j++) {
for (int i = 0; i < interior_dims(0); i++) {

// compute index into linear data array
// NOTE: the data in simulation_data is stored in Fortran order
int idx = (i+ghostcell_width(0)

+ (j+ghostcell_width(1))*ghostbox_dims(0));

// do some calculations
simulation_data[idx] = ...

}
}

Fortran Ordering of Simulation Data

An important issue when dealing with multidimensional data that are stored in a linear array is how the
data are ordered in the linear array. In SAMRAI, data are assumed to be stored in the Fortran order (also
known as column-major order). The primary reason for this choice is performance. In order to achieve high
programmer performance (i.e., well-designed APIs and high level data structures) while maintaining high
computational performance, SAMRAI advocates a multiple-language approach to simulation development.
High programmer performance is achieved by using C++ to design the programming interfaces; high compu-
tational performance is achieved by using Fortran to implement calculation intensive numerical kernels. For
example, the numerical kernels for refinement/coarsening of data and the example programs are implemented
in Fortran.

It is important to point out, however, that while Fortran may be the language of choice for some de-
velopers, it is perfectly acceptable to write numerical kernels in C/C++. The user need only respect the
Fortran ordering for multi-dimensional data to maintain compatibility with the built-in SAMRAI refinement
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and coarsening operators. The example code in the previous section provides an example of the correct way
to compute the index (idx) into the data array given the grid index (i, j).

For those C/C++ programmers that might balk at the thought of programming in Fortran, it is worth
considering the ease of expressing many mathematical formulae (especially those involving data on multidi-
mensional grids) in the Fortran language. For example, numerical schemes for computing derivatives are very
easy to implement thanks to support for multidimensional indexing into data arrays built into the Fortran
language.

Managing Memory for Simulation Data

In SAMRAI, the memory for simulation data is allocated/deallocated either (1) simultaneously for all of the
Patches on an entire PatchLevel or (2) for each Patch individually. While the former method is convenient,
improved memory usage can often be achieved using the latter method. For example, because computations
on different Patches are decoupled once boundary data has been exchanged between neighboring Patches
and PatchLevels, there is no need to simultaneously allocate data arrays used for intermediate calculations
on all Patches on a PatchLevel.

To allocate memory for a given simulation variable, we use the allocatePatchData() method from the
PatchLevel or Patch classes passing in the simulation variable’s data handle as the argument:

// allocate memory for simulation variable identified by data_handle
// on all of the Patches on the PatchLevel named plevel
plevel.allocatePatchData( data_handle );

// allocate memory for simulation variable identified by data_handle
// on a single Patch named patch
patch.allocatePatchData( data_handle );

Deallocating memory for a simulation variable proceeds in an analogous manner using the
deallocatePatchData() method from the PatchLevel or Patch classes.

For computations involving many simulation variables, it is convenient to group variables together
using the ComponentSelector class. Both the Patch and PatchLevel classes provide versions of the
allocatePatchData() and deallocatePatchData() methods that take a ComponentSelector object as
an argument.

3.4 Pulling It All Together: Computations on Indiviudal Patches

An important principle underlying patch-based SAMR is that the calculations performed on patches should
closely mimic those which would be performed for a numerical simulation on a uniform grid. This principle
motivates the design of the SAMRAI Patch class which acts as a central coordinator for the grid, geometry,
and simulation data required to carry out a computation on a single patch – Patch objects provide access to
all of the information needed for a numerical calculation on the block of uniform grid cells contained within
the Box covered by the Patch.

A typical computation on a Patch begins by determining the index space covered by Patch and the
geometry configuration for the Patch. For a simulation on a Cartesian grid, this information can be obtained
from a Patch object named patch using a variation of the following code:

// get dx and coordinates of lower corner of patch
Pointer< CartesianPatchGeometry<2> > patch_geom = patch.getPatchGeometry();
const double* dx = patch_geom->getDx();
const double* x_lower = patch_geom->getXLower();

// get grid cell indices for the upper and lower corner of the region
// of index space covered by patch
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Box<2> box = patch.getBox();
const Index<2> box_lower = box.lower();
const Index<2> box_upper = box.upper();

Next, the simulation data and the index space associated with it are determined. For example, if we have
cell-centered data with only a single component, we might use the following code:

// get CellData associated with data_handle
Pointer< CellData<2,double> > patch_data = patch.getPatchData( data_handle );

// get grid cell indices for the upper and lower corner of the region
// of index space covered by patch expanded to include the ghost cells
// associated with patch_data
Box<2> ghostbox = patch_data->getGhostBox();
const Index<2> ghostbox_lower = ghostbox.lower();
const Index<2> ghostbox_upper = ghostbox.upper();

// get pointer to actual simulation data
double* simulation_data = patch_data->getPointer();

Finally, we carry out the desired numerical calculation on the simulation data.
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Chapter 4

SAMRAI Setup: The Dirty Work

4.1 Managing the SAMR Grid

Construction and management of the SAMR grid (especially in parallel) are relatively involved processes.
In SAMRAI, these important procedures are coordinated by the GriddingAlgorithm class. This class (in
conjunction with several supporting classes) provides support for creating and initializing data SAMR grids,
dynamic reconfiguration (also known as regridding) of SAMR grids, decomposition of the computational
domain and PatchLevels into Boxes, and distribution of Patches across processors for parallel simulations.

There are three primary objects that each GriddingAlgorithm object relies on to provide its function-
ality: a BergerRigoutsos object, a LoadBalancer object, and a StandardTagAndInitialize object. The
BergerRigoutsos class implements the Berger-Rigoutsos algorithm for generating boxes given a collection
of grid cells which should be covered by the boxes. The LoadBalancer class handles distribution of Patches
across processors in parallel simulations. Finally, the StandardTagAndInitialize class manages initializa-
tion of simulation data on newly generated or reconfigured SAMR grids and tagging (i.e., identification) of
grid cells on a PatchLevel that should be refined.

The procedure for creating a two-dimensional GriddingAlgorithm object is as follows:

Pointer< StandardTagAndInitialize<2> > standard_tag_and_init_obj =
new StandardTagAndInitialize<2>(
"StandardTagAndInitialize", my_application_obj,
input_db->getDatabase("StandardTagAndInitialize"));

Pointer< BergerRigoutsos<2> > box_generator = new BergerRigoutsos<2>();
Pointer< LoadBalancer<2> > load_balancer =
new LoadBalancer<2>("LoadBalancer",

input_db->getDatabase("LoadBalancer"));
Pointer< GriddingAlgorithm<2> > gridding_alg = new GriddingAlgorithm<2>(
"GriddingAlgorithm",
input_db->getDatabase("GriddingAlgorithm"),
standard_tag_and_init_obj,
box_generator,
load_balancer);

The my application obj that is passed as an argument to the constructor for the
StandardTagAndInitialize object is an instance of a user-defined subclass of the
StandardTagAndInitStrategy class (discussed below) that implements application specific initializa-
tion and tagging routines.

Input Parameters

The GriddingAlgorithm, StandardTagAndInitialize, and LoadBalancer can all be configured via param-
eters specified in an input file. In this section, we briefly describe the input parameters that may be used
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for each of these objects.

GriddingAlgorithm

There are three required input parameters for the GriddingAlgorithm class: max levels,
largest patch size, and ratio to coarser. The meanings of these parameters are as follows:

• max levels is the maximum number of levels allowed in the SAMR grid hierarchy

• largest patch size is an array of integer vectors that specify the dimensions of the largest patch
allowed on each level of the SAMR grid hierarchy. The database key for each integer vector has the
form level i where i indicates the number of the PatchLevel and ranges from 0 to (max levels− 1).
For example, if the largest patch size is 50 by 50 on level 0 and 25 by 25 on level 1 (for a 2D simulation),
the input file entry would look like:

largest_patch_size {
level_0 = 50, 50
level_1 = 25, 25

}

If there are fewer entries than the maximum number of levels in the SAMR grid hierarchy, then the
last entry will be used for all levels without a specified input value. If extra entries are given, they will
be ignored.

• ratio to coarser is a set of (max level − 1) integer vectors which indicate the ratio of the index
space of each PatchLevelto the next coarser level. The database key for each integer vector has the
form level i where i indicates the number of the PatchLevel and ranges from 1 to (max levels− 1).
For example, if the ratio of level 1 to level 0 is 2 in each coordinate direction, the input file entry would
look like:

ratio_to_coarser {
level_1 = 2, 2

}

It is an error for there to be fewer entries than (max levels − 1) in the ratio to coarser input
database.

There are also several optional input parameters. For information on these parameters, we refer the reader
to the header file or Doxygen documentation for the GriddingAlgorithm class.

A sample input database for a GriddingAlgorithm object might look like:

GriddingAlgorithm {

max_levels = 3 // Maximum number of levels in hierarchy.

ratio_to_coarser { // vector ratio to next coarser level
level_1 = 4 , 4
level_2 = 4 , 4
level_3 = 4 , 4

}

largest_patch_size {
level_0 = 40 , 40
// all finer levels will use same values as level_0...

}

}
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StandardTagAndInitialize

There are no required input parameters for the StandardTagAndInitialize class. There are, however, a
few optional input parameters which are often used: tagging method and RefineBoxes. The meanings of
these parameters are as follows:

• tagging method is a string specifying the method that should be used to tag cells for refine-
ment. Valid taggging methods include any combination of: GRADIENT DETECTOR, REFINE BOXES,
and RICHARDSON EXTRAPOLATION. If tagging method includes GRADIENT DETECTOR, the “gradient
detection” algorithm implemented in the user-defined applyGradientDetector() is used to tag
cells. Note that the “gradient detection” algorithm need not have anything to do with gradi-
ents of the field variables. If tagging method includes REFINE BOXES, the list of boxes listed
in the RefineBoxes input parameter is used to tag cells. Finally, if tagging method includes
RICHARDSON EXTRAPOLATION, the Richardson extrapolation algorithm implemented in the user-defined
applyRichardsonExtrapolation() is used to tag cells.

• RefineBoxes is a collection of Boxes on each level that should be tagged for refinement. The database
key for each level has the form level i where i indicates the number of the PatchLevel and ranges
from 0 to (max levels− 2). For example, if the Boxes [(0, 0), (9, 15)] and [(10, 10), (16, 16)] on level 0
should be tagged for refinement, the input file entry would look like:

RefineBoxes {
level_0 = [(0,0),(9,15)], [(10,10), (16,16)]

}

Note that the RefineBoxes input parameters are only used if tagging method includes REFINE BOXES.

A sample input database for a StandardTagAndInitialize object might look like:

StandardTagAndInitialize {
tagging_method = "GRADIENT_DETECTOR", "REFINE_BOXES"

RefineBoxes {
level_0 = [(15,30),(74,69)],[(75,50),(94,89)]
level_1 = [(73,150),(199,249)],[(225,225),(349,249)]
level_2 = [(325,650),(399,799)]

}
}

LoadBalancer

There are no required input parameters for the LoadBalancer class. The default parameter values are
usually sufficient. There is, however, one optional input parameter which can be useful: processor layout.
The processor layout is an integer array with size equal to the number of spatial dimensions indicating the
way that the domain should be chopped up along each coordinate direction when a level can be described
as a single parallelipiped region. If no input value is provided, or the product of the processor layout
values does not equal the number of procesors, then the processor layout will be computed automatically by
SAMRAI. A sample input database for the LoadBalancer object might look like:

LoadBalancer {
processor_layout = 2, 8

}

Application Specific Functions/Routines: The StandardTagAndInitStrategy Class

Initialization of simulation data and tagging of grid cells for refinement are always application specific. To
make use of the grid management classes provided by SAMRAI, application developers are required to
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provide implementations for these procedures in a concrete subclass of the StandardTagAndInitStrategy
class. There are three methods that application developers typically need to be concerned with:
initializeLevelData(), resetHierarchyConfiguration(), and applyGradientDetector(). In ad-
dition, for simulations that use Richardson extrapolation to tag grid cells for refinement, ap-
plication developers must provide implementations for the applyRichardsonExtrapolation() and
coarsenDataForRichardsonExtrapolation() methods.

As its name suggests, the initializeLevelData() method is used to initialize1 the simulation
data on a PatchLevel that has been newly added to a PatchHierarchy. The signature for the
initializeLevelData() method is:

void initializeLevelData(const Pointer< BasePatchHierarchy<2> > hierarchy,
const int level_number,
const double init_data_time,
const bool can_be_refined,
const bool initial_time,
const Pointer< BasePatchLevel<2> > old_level =

Pointer< BasePatchLevel<2> >(NULL),
const bool allocate_data = true);

hierarchy is a pointer to a BasePatchHierarchy object. For our purposes, it can just be thought
of as a pointer to a PatchHierarchy object2. level number is the number of the newly added
PatchLevel. init data time is the simulation time at which the data on the PatchLevel is being ini-
tialized. allocate data is a boolean flag indicating whether memory for the simulation data needs to be
allocated. During regridding operations, the new PatchLevel introduced may be replacing a previously
existing PatchLevel. In this case, the old level argument, which is a pointer to the old PatchLevel, is not
null. It is up to the application developer to write the code to transfer data from the old PatchLevel to the
new PatchLevel (e.g., using the data transfer procedure described in Section 4.3). The remaining two argu-
ments are flags indicating whether the new level can be refined (i.e., if the new level has the finest resolution
in the SAMR grid) and whether the current call to initializeLevelData() is at the initial simulation time.
These arguments are provided in case the initialization procedure is different in these situations.

The resetHierarchyConfiguration() method is used to update any aspects of the simulation algorithm
that depend on the configuration of the SAMR grid. For example, the communication schedules used to
transfer data between Patches and PatchLevels are typically recomputed after any changes to the SAMR
grid configuration. The signature of the resetHierarchyConfiguration() method is:

void resetHierarchyConfiguration(
const Pointer< BasePatchHierarchy<2> > hierarchy,
const int coarsest_level,
const int finest_level);

hierarchy is a pointer to a BasePatchHierarchy object. As before, we can just think of it as a pointer
to a PatchHierarchy object. coarsest level and fineest level are the coarsest and finest levels in the
SAMR grid.

The applyGradientDetector() method is used to tag cells for refinement. Its name reflects the original
refinement criterion used by SAMR simulations – grid cells with large gradients in the field variables were
tagged for refinement. However, the application developer is free to choose the criteria used to tag cells for
refinement. The signature for the applyGradientDetector() method is:

void applyGradientDetector(const Pointer< BasePatchHierarchy<2> > hierarchy,
const int level_number,
const double error_data_time,
const int tag_handle,
const bool initial_time,
const bool uses_richardson_extrapolation_too);

1If allocate data is true, then it is also necessary to allocate memory for the simulation data before it is initialized. Memory
management for simulation data is discussed in Section 3.3.

2The BasePatchHierarchy is used to support advanced SAMR simulations.
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hierarchy is a pointer to a BasePatchHierarchy object. As before, we can think of it as a pointer to a
PatchHierarchy object. level number is the number of the PatchLevel on which to tag grid cells for refine-
ment. error data time is the current simulation time. tag handle is the data handle for the cell-centered,
integer data that is used to mark grid cells for refinement. The data associated with tag handle should
be set to 1 in grid cells that are marked for refinement. The remaining two arguments are flags indicating
whether the current call to applyGradientDetector() is at the initial simulation time and whether the
Richardson extrapolation is also being used to identify grid cells that need to be refined. These arguments
are provided in case the tagging procedure is different in these situations.

Initializing the SAMR Grid and Simulation Data

Once the GriddingAlgorithm object has been set up, it is straightforward to construct the SAMR grid and
initialize simulation data on it. The GriddingAlgorithm class provides two methods that are used to create
the PatchLevels in the PatchHierarchy: makeCoarsestLevel() and makeFinerLevel(). As its name sug-
gests, makeCoarsestLevel() is used to create the coarsest level (typically level zero) in the PatchHierarchy.
makeFinerLevel() is used to create all finer levels in the PatchHierarchy. When initializing the SAMR
grid and simulation data at the beginning of a simulation, the following procedure can be used:

// create and initialize coarsest level of PatchHierarchy
gridding_alg->makeCoarsestLevel(patch_hierarchy, time);

// create and initialize all finer levels
bool initial_time = true;
int tag_buffer = 0;
for (int level_num = 0;

gridding_alg->levelCanBeRefined(level_num);
level_num++) {

gridding_alg->makeFinerLevel(patch_hierarchy, time,
initial_time, tag_buffer);

}

The initial time argument to makeFinerLevel() indicates that the fine level is being added at the initial
simulation time. The tag buffer argument indicates the minimum number of grid cells between tagged
grid cells and the edge of the newly created PatchLevel. The buffer is important in order to ensure that
features that require high grid resolution remain on the fine grid until the PatchHierarchy is regridded.
The number of PatchLevels in the PatchHierarchy depends on the input parameters used to construct the
GriddingAlgorithm object. Note that when makeFinerLevel() is invoked, no finer level will be created if
no regions on the current finest level in the PatchHierarchy require refinement.

Reconfiguring the SAMR Grid

As a simulation progresses, the regions of space that require higher grid resolution may move through the com-
putational domain. As a result, the SAMR grid may need to be periodically reconfigured to reflect changes
in the resolution requirements of the solution. In SAMRAI, the regridAllFinerLevels() method in the
GriddingAlgorithm class manages the regridding process. The signature for the regridAllFinerLevels()
method is:

void regridAllFinerLevels (Pointer< BasePatchHierarchy<2> > hierarchy,
const int level_number,
const double regrid_time,
const Array<int> &tag_buffer,
Array<double> regrid_start_time=Array<double>(),
const bool level_is_coarsest_to_sync=true);
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hierarchy is a pointer to a BasePatchHierarchy object, which we continue to think of as a pointer
to a PatchHierarchy object. level number is the level number of the coarsest PatchLevel in the
PatchHierarchy that will be regridded. regrid data time is the simulation time at which regridding
is taking place. tag buffer is an array of integers indicating the minimum number of grid cells between
tagged grid cells and the edge of each newly regridded PatchLevel. The i-th element tag buffer speci-
fies the width of the buffer the i-th PatchLevel. The remaining two arguments are for advanced SAMR
applications, so it is usually safe to just accept the default values.

4.2 Creating Simulation Variables

In simple programs, simulation variables are defined by the variable names given to the data arrays within the
program. In SAMRAI, this direct connection between simulation variables and variable names in programs
is broken in order to support general SAMR calculations. Instead, each simulation variable is assigned a
unique integer data handle3 which is used to provide a consistent way of accessing information associated
with a simulation variable throughout the computation. SAMRAI’s approach to variables also makes it
easier to manage large, complex simulations because it allows the application developer to think in terms of
physical/mathematical variables rather than program variables.

Management of simulation variables is primarily handled by the VariableDatabase class. An impor-
tant property of the VariableDatabase class is that it is a singleton class, which means that only one
VariableDatabase object can exist at a time. A pointer to the singleton VariableDatabase object can be
obtained by using the static getDatabase() method in the VariableDatabase class:

// get pointer to VariableDatabase object for 2D simulation
VariableDatabase<2>* variable_db = VariableDatabase<2>::getDatabase();

The concept of a simulation variable in SAMRAI is a combination of two notions: (1) a physi-
cal/mathematical variable and (2) the context in which the variable is used in the simulation. The context
for a physical/mathematical variable can be thought of as a label attached to the variable. For instance, the
different stages of a time-integration scheme (e.g., “CURRENT” and “NEXT”) can be thought of as different
contexts. Different contexts might also be used if the physical/mathematical variable appears in different
parts of a multi-physics computation (e.g., “FLUID FLOW” and “TRANSPORT”). In SAMRAI, physi-
cal/mathematical variables and contexts are represented by the Variable and VariableContext classes,
respectively. Each Variable-VariableContext pair uniquely defines a SAMRAI simulation variable.

As with PatchData, there are several subclasses of the Variable class that reflect the type of data that
the Variable represents. We will focus solely on those data types that are used to represent grid functions:
CellVariable (cell-centered), FaceVariable (face-centered), SideVariable (face-centered), EdgeVariable
(edge-centered), and NodeVariable (node-centered). In addition to specifying the centering of the data
for a simulation variable, each Variable object has a depth and name associated with it. Because
VariableContext objects are essentially labels for Variable objects, each VariableContext object only
has a name associated with it.

To define a SAMRAI simulation variable (including any temporary variables for intermediate calcula-
tions), we use the following procedure:

1. Create a Variable object with the desired “centering”, data type, depth and name. For example,
for a scalar, cell-centered, double-precision variable, we would create a CellVariable<double> object
named “temperature” with a depth of 1:

// create 2D CellVariable named "temperature" with type "double" and depth 1
Pointer< CellVariable<2,double> > temperature_variable =
new CellVariable<2,double>("temperature",1);

3Within the SAMRAI library, data handles go by the name of PatchData indices. In this primer, we have adopted the data
handle terminology because (1) the origin of the name PatchData index is not readily transparent to users not familiar with
the internal implementation details of the SAMRAI library and (2) the term index is already overloaded for grid indices and
indices into data arrays.
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Note that creation of a simulation variable does not require any information about the memory re-
quirements for the computational grid. In SAMRAI, the notion of a simulation variable is completely
independent of the memory required to store the associated simulation data.

Alternatively, if a variable has already been registered with the VariableDatabase, a pointer to it can
be retrieved by using the getVariable() method:

// get pointer to 2D CellVariable named "temperature"
Pointer< CellVariable<2,double> > temperature_variable =
variable_db->getVariable("temperature");

2. Create a VariableContext object with the desired name using the getContext() method from the
VariableDatabase class:

// get "CURRENT" VariableContext from the VariableDatabase
Pointer< VariableContext > current_context = variable_db->getContext("CURRENT");

3. Register Variable-VariableContext pair with VariableDatabase using the
registerVariableAndContext() method. This method also takes an IntVector that specifies
the ghost cell width required by the Variable-VariableContext pair in each coordinate direction.
For example, if we want to register a Variable-VariableContext pair with a ghost cell width of one
in all coordinate directions, we could use the following code:

// set the number of ghostcells for data to 1 in all directions
IntVector<2> one_ghostcell(1);

// register variable-context pair (with specified ghostcell width)
// with the VariableDatabase to get data handle
data_handle = variable_db->registerVariableAndContext(
temperature_variable, current_context, one_ghostcell);

Note that is it how the Variable is used that determines the memory/storage requirements, which is
why this information is only specified when a Variable-VariableContext pair is registered.

When registering Variable-VariableContext pairs with the VariableDatabase, there are a few im-
portant programming details to keep in mind. The VariableDatabase object does not create a deep
copy of Variable and VariableContext objects that are registered with it. As a result, all Variable
and VariableContext objects must be dynamically allocated. Otherwise, errors may occur when
the VariableDatabase tries to access those objects later in in the simulation. Freeing Variable and
VariableContext objects registered with the VariableDatabase will lead to the same problem. To avoid
these problems, it is best, in general, to use smart-pointers (see Section ??) when dealing with Variable
and VariableContext objects.

Occasionally, it may be necessary to recover the Variable and/or VariableContext associated with
a data handle. The mapIndexToVariable() and mapIndexToVariableAndContext() methods in the
VariableDatabase class are available for this purpose.

4.3 Moving Data Between Patches and PatchLevels

There are many stages in parallel and SAMR simulations where data needs to be transferred between Patches
and PatchLevels. In this section, we discuss the most common situations which require data transfer: (1)
filling ghost cells (i.e., boundary data) from neighboring patches and coarser levels, (2) copying data from
one simulation variable to another on the overlap between patches (e.g., when the SAMR grid is updated),
and (3) computing a consistent representation of the solution across levels of the SAMR grid hierarchy.

The general procedure for all data transfer operations in SAMRAI can be broken down into three steps.
First, we specify the simulation variables involved in the data transfer (i.e., source, destination, and scratch
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space data handles). At this point in time, we also select the desired coarsen/refinement operator to use
when interlevel data transfer is required. Next, we construct the communication schedules that manage
the transfer of data between patches (possibly between processors). Finally, we execute the communication
schedules to actually move the data between patches (again, possibly between processors).

Filling Ghost Cell Data

Ghost cell data for individual patches is filled in one of three ways:

1. by copying data from neighboring Patches on the same PatchLevel,

2. by refining data from next coarser PatchLevel when there is no neighboring Patch on the same
PatchLevel, or

3. by calling user-defined routines that impose boundary conditions at the boundaries of the computa-
tional domain.

SAMRAI provides direct support for the first two of these via the RefineAlgorithm and RefineSchedule
objects. Setting ghost cells based on boundary conditions is also managed by these objects but only to the
extent that they call user-defined functions for ghost cells that are outside of the computational domain.
Ultimately, it is the user’s responsibility to correctly set the values for these ghost cells. Setting boundary
conditions is discussed in further detail in Section 4.4.

To fill ghost cell data for one or more simulation variables, we use the following procedure:

1. Create a RefineAlgorithm object using the default constructor. For example, to create a
RefineAlgorithm object named refine alg, we use:

Pointer< RefineAlgorithm<2> > refine_alg = new RefineAlgorithm<2>;

2. For each simulation variable whose ghost cells need to be filled, use the
RefineAlgorithm::registerRefine() method to specify the data handles for the source, des-
tination and scratch simulation variables. When filling ghost cell data, it is not uncommon for these
three data handles to be the same. In addition, the user must specify the refinement operator to use
when data from coarser levels must be used to fill ghost cell data. The refinement operators provided
by SAMRAI are discussed in more detail in Section 4.3.

For example, to set up the RefineAlgorithm refine alg to fill the ghost cells of the simulation variable
associated with data handle using the specified refine op, we could use the following code:

refine_alg->registerRefine(
data_handle, // destination data handle
data_handle, // source data handle
data_handle, // scratch space data handle
refine_op);

If refine op is NULL, no interpolation will be used to fill destination data that requires refinement
of data from coarser levels (i.e., “constant” refinement will be used). Notes that in order to use
data handle as the scratch space, the PatchData associated with data handle must have enough
ghost cells to carry out the requested refinement operation.

3. For each level in the SAMR grid hierarchy, use one of the versions of the createSchedule() method
in the RefineAlgorithm class that creates a communication schedule for copying data from interiors
of source data to the interior and ghost cells of destination data.

• When the source data required to fill the interior and ghost cells of the destination data reside on
the current and next coarser PatchLevels, we use the version of createSchedule() that takes as
arguments a pointer to the current PatchLevel, the level number of the next coarser PatchLevel,
a pointer to the PatchHierarchy containing the current and next coarser PatchLevels, and a
pointer to a user-defined concrete subclass of the RefineStrategy class:
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Pointer< RefineSchedule<2> > refine_schedule = refine_alg->createSchedule(
level, // pointer to PatchLevel
next_coarser_level_num, // level number of next coarser PatchLevel
hierarchy, // pointer to PatchHierarchy
refine_strategy); // pointer to user-defined subclass of

// RefineStrategy class

When this version of createSchedule() is used, interpolation from data on the next coarser
PatchLevel is used to fill destination data when source data is not available on the current
PatchLevel.

• When the source and destination data for all reside on the same PatchLevel (or there is no need
to fill destination data on grid cells that are not available on the current PatchLevel), we use
the version of createSchedule() that takes as arguments a single pointer to a PatchLevel and
a pointer to a user-defined concrete subclass of the RefineStrategy class:

Pointer< RefineSchedule<2> > refine_schedule = refine_alg->createSchedule(
level, // pointer to PatchLevel
refine_strategy); // pointer to user-defined subclass of

// RefineStrategy class

In both cases, the user-defined subclass of the RefineStrategy class provides support for imposing
boundary conditions at the boundaries of the computational domain.

4. Fill the ghostcells (and interiors if the source and destination data handles are not the same) using the
RefineSchedule::fillData() method. For example, to fill ghost cell data at time, we could use the
following code:

refine_schedule->fillData(time, true);

The second argument is set to true when boundary conditions at the boundaries of the computational
domain should be imposed. When it is not necessasry to impose the boundary conditions, the second
argument should be set to false.

Note that the first and second steps only depend on data that are being moved and are independent of
the configuration of the SAMR grid. As a result, they typically are only done once when setting up the
simulation. The third step depends on the current configuration of the SAMR grid hierarchy, so it needs to
be done every time the hierarchy is reconfigured. Finally, the last step needs to be done any time the actual
simulation data has changed.

Copying Data Between Simulation Variables

To copy data between simulation variables, we follow the same general procedure as when we fill ghost cell
data. In fact, when source data for grid cells that do not require refinement of data from the next coarser
PatchLevel resides on the same PatchLevel as the destination data, the procedure is exactly same as when
we fill ghost cell data (see Section 4.3). Whenever the SAMR grid is reconfigured, however, data needs to
be transferred between two different PatchLevels (in addition to refining data from coarser levels where
necessary). In this situation, the third step in the procedure described in Section 4.3 is modified to use one
of the following two versions of the createSchedule() method that takes two pointers to PatchLevels as
arguments, one for the source data and one for the destination data.

• When source data required to fill the destination data on the destination PatchLevel come from the
source and the next coarser PatchLevels, we use the version of createSchedule() that takes as
arguments a pointer to the destination PatchLevel, a pointer to the source PatchLevel, the level
number of the next coarser PatchLevel, a pointer to the PatchHierarchy containing the current and
next coarser PatchLevels, and a pointer to a user-defined concrete subclass of the RefineStrategy
class:
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Pointer< RefineSchedule<2> > refine_schedule = refine_alg->createSchedule(
dst_level, // pointer to destination PatchLevel
src_level, // pointer to source PatchLevel
next_coarser_level_num, // level number of next coarser PatchLevel
hierarchy, // pointer to PatchHierarchy
refine_strategy); // pointer to user-defined subclass of

// RefineStrategy class

When this version of createSchedule() is used, interpolation from data on the next coarser
PatchLevel is used to fill destination data when source data is not available on the source PatchLevel.

• When all of the source data required to fill the destination data resides on the source PatchLevel
(or there is no need to fill destination data on grid cells that are not available on the source
PatchLevel), we use the version of createSchedule() that takes as arguments a pointer to the
destination PatchLevel, a pointer to the source PatchLevel, and a pointer to a user-defined concrete
subclass of the RefineStrategy class:

Pointer< RefineSchedule<2> > refine_schedule = refine_alg->createSchedule(
dst_level, // pointer to destination PatchLevel
src_level, // pointer to source PatchLevel
refine_strategy); // pointer to user-defined subclass of

// RefineStrategy class

Coarsening Data

The procedure for coarsening data in SAMRAI is similar to the procedure for filling ghost cell data and copy-
ing data between simulation variables. The main difference is that RefineAlgorithm and RefineSchedule
objects are replaced by CoarsenAlgorithm and CoarsenSchedule objects. Coarsening data is relatively
straightforward compared to refining/copying data because there is only one type of communication sched-
ule that can be created.

To coarsen data for one or more simulation variables, we use the following procedure:

1. Create a CoarsenAlgorithm object using the default constructor. For example, to create a
CoarsenAlgorithm object named coarsen alg, we use:

Pointer< CoarsenAlgorithm<2> > coarsen_alg = new CoarsenAlgorithm<2>;

2. For each simulation variable whose data needs to be coarsened, use the
CoarsenAlgorithm::registerCoarsen() method to specify the data handles for the source
and destination simulation variables. When coarsening data, it is not uncommon for these two data
handles to be the same. In addition, the user must specify the coarsening operator that should be
used to coarsen data from the coarse to the fine level. The coarsening operator provided by SAMRAI
is discussed in more detail in Section 4.3.

For example, to set up the CoarsenAlgorithm coarsen alg to coarsen the data for the simulation
variable associated with data handle using the specified coarsen op, we could use the following code:

coarsen_alg->registerCoarsen(
data_handle, // destination data handle
data_handle, // source data handle
coarsen_op);

In special situations, it may be necessary to fill ghost cell regions on the coarse level using data from the
ghost cell regions of the fine level. In this case, the optional fourth argument of registerCoarsen()
should be set to an IntVector which indicates the number of ghost cells on the coarse level that need
to be filled. Note that the fine level must have enough ghost cells to cover the entire ghost cell region
of the coarse level.
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3. For each level except the coarsest level in the SAMR grid hierarchy, create a communication schedule
for coarsening data from the level to the next coarser level:

Pointer< CoarsenSchedule<2> > coarsen_schedule = coarsen_alg->createSchedule(
coarse_level, // pointer to coarse (destination) PatchLevel
fine_level); // pointer to fine (source) PatchLevel

4. Coarsen the data using the CoarsenSchedule::coarsenData() method:

coarsen_schedule->coarsenData();

The first and second steps only depend on data that are being moved and are independent of the configuration
of the SAMR grid, so they typically are only done once when setting up the simulation. The third step
depends on the current configuration of the SAMR grid hierarchy, so it needs to be done every time the
hierarchy is reconfigured. Finally, the last step needs to be done any time the actual simulation data has
changed.

Coarsen and Refinement Operators

Because many data transfer operations require data to be coarsened from finer levels or interpolated from
coarser levels, the user must specify which coarsen or refinement operator to use should interlevel data
transfer be required. SAMRAI provides the lookupCoarsenOperator() and lookupRefineOperator()
methods in the CartesianGridGeometry class to obtain pointers to coarsen and refinement operators. Both
of these methods take two arguments: a pointer to a SAMRAI Variable object and the name of the
coarsen/refinement operator.

For example, to get a pointer to a linear refinement operator and a conservative coarsen operator for
variable, we could use the following code:

// lookup refine operator
string refine_op_name = "LINEAR_REFINE";
Pointer< RefineOperator<DIM> > refine_op =
grid_geometry->lookupRefineOperator(variable, refine_op_name);

// lookup coarsen operator
string coarsen_op_name = "CONSERVATIVE_COARSEN";
Pointer< CoarsenOperator<DIM> > coarsen_op =
grid_geometry->lookupCoarsenOperator(variable, coarsen_op_name);

For most of the standard data centerings supported by SAMRAI, the following two refinement operators
are provided: LINEAR REFINE and CONSERVATIVE LINEAR REFINE. Only one coarsen operators is provided:
CONSERVATIVE COARSEN.

4.4 Imposing Boundary Conditions

While there are many ways to impose boundary conditions within the SAMRAI framework, boundary
conditions are typically imposed by appropriately filling ghost cells that lie outside of the computational
domain. These ghost cells are filled by invoking the user-overridden setPhysicalBoundaryConditions()
method in the RefinePatchStrategy class as the last stage of the RefineSchedule::fillData() method.

Each Patch is associated with a CartesianPatchGeometry object which stores information about the
intersection of the Patch boundaries with boundaries of the computational domain. To obtain a pointer
to the CartesianPatchGeometry object associated with a Patch patch, we use the getPatchGeoemtry()
method:

// get pointer to patch geometry
Pointer< CartesianPatchGeometry<2> > patch_geom = patch->getPatchGeometry();
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The first step to take when imposing boundary conditions is to determine whether or not a Patch touches
the boundary of the computational domain. For this step, we use the getTouchesRegularBoundary()
and getTouchesPeriodicBoundary() methods from the CartesianPatchGeometry class. Once it has been
determined that a Patch touches the boundary of the computational domain, we fill the ghost cells outside
of the computational domain by using the following procedure:

1. Use the getFaceBoundary(), getEdgeBoundary(), and getNodeBoundary() methods to get the
BoundaryBoxes associated with the Patch. Note that face, edge, and node correspond to two-, one-,
and zero-dimensional boundaries, respectively. For example, face boundaries are only present in 3D
simulations.

2. For each BoundaryBox, determine the location of the boundary by using the getLocationIndex()
method. The convention for the meaning of the location index is as follows:

• 1D

– node (codimension 1):
x lo : 0
x hi : 1

• 2D

– edge (codimension 1):
x lo: 0
x hi: 1
y lo: 2
y hi: 3

– node (codimension 2):
x lo, y lo: 0
x hi, y lo: 1
x lo, y hi: 2
x hi, y hi: 3

• 3D

– face (codimension 1):
x lo: 0
x hi: 1
y lo: 2
y hi: 3
z lo: 4
z hi: 5

– edge (codimension 2):
y lo, z lo: 0
y hi, z lo: 1
y lo, z hi: 2
y hi, z hi: 3
x lo, z lo: 4
x lo, z hi: 5
x hi, z lo: 6
x hi, z hi: 7
x lo, y lo: 8
x hi, y lo: 9
x lo, y hi: 10
x hi, y hi: 11

– node (codimension 3):
x lo, y lo, z lo: 0
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x hi, y lo, z lo: 1
x lo, y hi, z lo: 2
x hi, y hi, z lo: 3
x lo, y lo, z hi: 4
x hi, y lo, z hi: 5
x lo, y hi, z hi: 6
x hi, y hi, z hi: 7

3. Use the getBoundaryFillBox() method to compute the Box of ghost cells that needs to be filled to
impose the boundary conditions.

4. Loop over the “boundary” ghost cells and set their value to impose the desired boundary conditions.

It is worth mentioning that the above procedure need not be executed within the
setPhysicalBoundaryConditions() method and can be modified to impose boundary conditions
without setting the values in ghost cells.



32 CHAPTER 4. SAMRAI SETUP: THE DIRTY WORK



Chapter 5

SAMRAI Extras: I/O, Restart,
Utilities and Other Fun Stuff

5.1 Using Input Files

The SAMRAI InputManager and InputDatabase classes provide a convenient way to pass parameters into
a simulation via an input file. The InputManager class takes care of parsing the input file and loading the
parameters into the InputDatabase:

// create input database (named "input_db") and parse data
// from input file with name specified by input_filename
Pointer<InputDatabase> input_db = new InputDatabase("input_db");
InputManager::getManager()->parseInputFile(input_filename, input_db);

Note that the InputManager can only be accessed via the static getManager() method1.
Accessing the input parameters from the InputDatabase is simply a matter of using the appropriate

“get” method. For example, to get a integer parameter of named “num obstacles”, we would use:

int num_obstacles = input_db->getInteger("num_obstacles");

For a full list of the accessor methods provided by InputDatabase (or Database), see the header file or the
Doxygen documentation.

In addition to storing simple data types, the InputDatabase can hold sub-databases. In the input file,
sub-databases are delimited by a set of open and close braces. For example, a sub-database named “Main”
would appear in the input file as:

Main {
// some input parameters
input_parameter_1 = 1
input_parameter_2 = 2.345

NestedSubDatabase {
// some more input parameters
nested_input_parameter_1 = 6
nested_input_parameter_2 = 7.890

}
}

Notice that sub-databases can be nested. This feature can be useful for organizing input parameters. To
get a pointer to a sub-database, we use the getDatabase() method. For instance, to access the “Nested-
SubDatabase”, we use the following code:

1InputManager objects cannot be directly created because they are singleton classes.
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// get pointer to nested sub-database
Pointer<Database> = input_db->getDatabase("NestedSubDatabase");

Note that getDatabase() returns a pointer to a Database object, not an InputDatabase object. The
interface for accessing data within a Database object is identical to the interface for an InputDatabase
object2.

5.2 Check-point and Restart Capabilities

Restart capabilities in SAMRAI are supported by the RestartManager and Serializable classes. The
RestartManager class manages access to restart files and registration of classes for check-pointing. The
Serializable class defines the interface that any class that requires check-pointing must implement. Note
that like the InputManager class, RestartManager objects can only be accessed via the static getManager()
method3.

Instrumenting a user-defined class with restart capabilities requires only the following simple steps:

• Override the putToDatabase() method in the Serializable class. To place data into SAMRAI
Database objects, we use “put” methods. For example, to insert a double into the database, we use
the putDouble() method:

// put double into Database
string key = "some_data_member";
double value = 5.0;
db->putDouble(key, value);

For a full list of the accessor methods provided by the Database, see the header file or the Doxygen
documentation.

• Register the class for check-pointing using the registerRestartItem() method in the
RestartManager class (usually done in the constructor for the user-defined class):

// register user-defined object for restart
string object_name = "User-Defined Object"
RestartManager::getManager()->registerRestartItem(object_name, this);

• Unregister the class for check-pointing in the destructor of the user-defined class:

// unregister object as a restart item
RestartManager::getManager()->unregisterRestartItem(object_name);

• It is convenient to write a getFromRestart() method that restores the state of the object using the
data in the restart file. Typically, this method will begin by opening the root restart database and
extracting the sub-database corresponding to the object name used to register the object for check-
pointing:

// open restart file
Pointer<Database> root_db =
RestartManager::getManager()->getRootDatabase();

// extract sub-databse for user-defined class
Pointer<Database> object_db = root_db->getDatabase(object_name);

2In fact, the Database class is the general parent class for the InputDatabase class.
3RestartManager objects cannot be directly created because they are singleton classes.
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If the data for a simulation variable needs to be check-pointed, it must be registered for restart by using the
registerPatchDataForRestart() method in the VariableDatabase class:

// get pointer to VariableDatabase object
VariableDatabase<2>* variable_db = VariableDatabase<2>::getDatabase();

// register simulation variable associated with data_handle for restart
variable_db->registerPatchDataForRestart(data_handle);

Within the main program, the RestartManager manages opening, closing, and writing restart files. If a
simulation is to be started from a check-point/restart file, we use the following code:

// Get the restart manager and root restart database. If run is
// from restart, open the restart file.
RestartManager* restart_manager = RestartManager::getManager();
if (is_from_restart) {
restart_manager->

openRestartFile(restart_read_dirname, restore_num,
tbox::MPI::getNodes() );

}

Here, restart read dirname is the name of a directory containing restart files, restore num is the integer
label for the restart file that should be opened, and tbox::MPI::getNodes() gets the number of processors
used for the current run. Note that SAMRAI currently only provides built-in support for restarting simula-
tions with the same number of processors as were used when the check-point files were written. To prevent
problems writing new restart files, it is a good idea to close check-point files before the main calculation:

restart_manager->closeRestartFile();

Writing restart files simply requires a call to the writeRestartFile() method with the name of the directory
where check-point files should be written and an integer label for the restart file (using the value of a loop
variable is a good way to avoid accidentally over-writing restart files):

restart_manager->writeRestartFile(restart_write_dirname, count);

5.3 Visualization

While the user is free to output simulation data in any visualization format, SAMRAI provides built-in
support for writing simulation data to HDF5 files in a format that can be read by VisIt [7], a freely available
visualization software developed at Lawrence Livermore National Laboratory. To output VisIt data files, we
follow this simple procedure:

1. Create a VisItDataWriter object. The constructor takes three arguments: a string name for the
data writer (this name can be arbitrary), the name of the directory where visualization files are to be
written, and the number of processors whose data should be written to each VisIt file (it is safest to
use 1 here).

2. Register the simulation variables whose data should be output to the visualization file using the
registerPlotQuantity() method in the VisItDataWriter class. See the documentation for the
VisItDataWriter class for the arguments of this method.

3. Output the visualization data at desired points during the simulation using the writePlotData()
method. See the documentation for the VisItDataWriter class for the arguments of this method.

5.4 Design Patterns

There are a few design patterns [6] that are used throughout the SAMRAI library. It is useful to be aware
of these when using SAMRAI.
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Singleton Classes

Singleton classes only allow a single instantiation of the class to exist during program execution. This
property is important for objects which must manage global state information for the program (e.g.,
RestartManager). To enforce the singleton property, singleton classes cannot be directly created using
the constructor. Instead, pointers to the singleton object may be obtained via static accessor methods, such
as RestartManager::getManager(). Because the memory for singleton classes is not controlled by the user,
they should never be explicitly deleted.

Smart Pointers

Smart pointers are designed to help manage the memory allocated for objects. Essentially, they keep a count
of the number of times an object is referenced and automatically delete the object when the object is no
longer referenced. For this system to work for object obj, it is important that only smart pointers are used
to point to obj; otherwise, the reference count will be incorrect and the object may be accidentally deleted
while it still has active references to it.

Occasionally, it may be necessary to create a smart pointer in an “unmanaged” state to avoid unmalloc-
types of errors. This error can arise when the software design forces us to use two different smart pointers
for the same object. To create an unmanaged smart pointer, we set the optional second argument in the
constructor of the smart pointer to false:

Object* obj_ptr = new Object; // bare pointer to Object
Pointer< Object > obj_smart_ptr =
Pointer< Object >(obj_ptr, false);

It is worth mentioning that smart pointers should not be used for singleton classes because singleton
classes manage their own memory. Using smart pointers with singleton classes can lead to errors related to
premature memory deallocation.

Strategy Pattern

The strategy design pattern is used throughout the SAMRAI library, so it is good to have an understanding
of its structure and purpose. The strategy design pattern is used to define a common interface for a family of
algorithms so that they can be used interchangeably. For instance, the strategy pattern is useful in situations
where a computation that needs to be carried out is problem specific. By using the strategy pattern, it is
possible to implement a numerical algorithm in a general and flexible manner. To carry out problem specific
calculations, the numerical algorithm need only invoke methods from the strategy class. The problem specific
calculations themselves are implemented by the user in a concrete subclass of the strategy class. In essence,
the strategy pattern allows us to decouple implementation of general numerical algorithms and problem
specific numerical kernels.
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Sample SAMRAI main Program

/**********************************************************************
* sample_main.cc
**********************************************************************/

// header file for SAMRAI Configuration
#include "SAMRAI_config.h"

// header files for basic SAMRAI classes
#include "tbox/Database.h"
#include "tbox/InputDatabase.h"
#include "tbox/InputManager.h"
#include "tbox/MPI.h"
#include "tbox/PIO.h"
#include "tbox/Pointer.h"
#include "tbox/RestartManager.h"
#include "tbox/SAMRAIManager.h"
#include "tbox/Utilities.h"

// header files for geometry and patch hierarchy
#include "CartesianGridGeometry.h"
#include "PatchHierarchy.h"

// header files for grid generation and load balancing
#include "BergerRigoutsos.h"
#include "GriddingAlgorithm.h"
#include "LoadBalancer.h"
#include "StandardTagAndInitialize.h"

// header files for variables and variable management
#include "CellVariable.h"
#include "VariableDatabase.h"

// header file for VisIt data writer
#include "VisItDataWriter.h"

// user-implemented classes
#include "MyApplicationClass.h"

// standard namespace
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using namespace std;

// SAMRAI namespaces
using namespace SAMRAI;
using namespace appu;
using namespace geom;
using namespace hier;
using namespace mesh;
using namespace tbox;

// helper functions
void initializePatchHierarchy(
Pointer< PatchHierarchy<2> > patch_hierarchy,
Pointer< GriddingAlgorithm<2> > gridding_alg,
double time);

int main(int argc, char *argv[])
{
/**********************************************************************
* Initialize MPI and SAMRAI, enable logging, and process command line.
**********************************************************************/
tbox::MPI::init(&argc, &argv);
tbox::MPI::initialize();
SAMRAIManager::startup();

string input_filename;
string restart_read_dirname;
int restore_num = 0;

bool is_from_restart = false;

if ( (argc != 2) && (argc != 4) ) {
pout << "USAGE: " << argv[0] << " <input filename> "

<< "\n"
<< "<restart dir> <restore number> [options]\n"
<< " options:\n"
<< " none at this time"
<< endl;

tbox::MPI::abort();
return (-1);

} else {
input_filename = argv[1];
if (argc == 4) {
restart_read_dirname = argv[2];
restore_num = atoi(argv[3]);
is_from_restart = true;

}
}

/**********************************************************************
* Create input database and parse all data in input file.
**********************************************************************/

Pointer<Database> input_db = new InputDatabase("input_db");
InputManager::getManager()->parseInputFile(input_filename, input_db);
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// Read in the input from the "Main" section of the input database.
Pointer<Database> main_db = input_db->getDatabase("Main");

/**********************************************************************
* Set base for all name strings in program
**********************************************************************/
string base_name = "my_SAMRAI_program";

/**********************************************************************
* Set up restart
**********************************************************************/
// from restart, open the restart file.
RestartManager* restart_manager = RestartManager::getManager();
if (is_from_restart) {
restart_manager->

openRestartFile(restart_read_dirname, restore_num,
tbox::MPI::getNodes() );

}

int restart_interval = main_db->getInteger("restart_interval");
string restart_write_dirname = base_name + ".restart";
const bool write_restart = (restart_interval > 0);

// Get the restart manager and root restart database. If run is
/**********************************************************************
* Set up logging
**********************************************************************/
const string log_file_name = base_name + ".log";
bool log_all_nodes = false;
log_all_nodes = main_db->getBoolWithDefault("log_all_nodes", log_all_nodes);
if (log_all_nodes) {

PIO::logAllNodes(log_file_name);
} else {

PIO::logOnlyNodeZero(log_file_name);
}

// log the command-line args
plog << "input_filename = " << input_filename << endl;
plog << "restart_read_dirname = " << restart_read_dirname << endl;
plog << "restore_num = " << restore_num << endl;

/**********************************************************************
* Create objects required for computation
**********************************************************************/
// create geometry object
Pointer< CartesianGridGeometry<2> > grid_geometry =
new CartesianGridGeometry<2>("CartesianGeometry",

input_db->getDatabase("CartesianGeometry"));

// create patch hierarchy object
Pointer< PatchHierarchy<2> > patch_hierarchy =
new PatchHierarchy<2>("PatchHierarchy", grid_geometry);
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// create application specific data objects
MyApplicationClass* my_application_obj= new MyApplicationClass;

// create grid management objects
Pointer< StandardTagAndInitialize<2> > standard_tag_and_init_obj =
new StandardTagAndInitialize<2>(
"StandardTagAndInitialize", my_application_obj,
input_db->getDatabase("StandardTagAndInitialize"));

Pointer< BergerRigoutsos<2> > box_generator = new BergerRigoutsos<2>();
Pointer< LoadBalancer<2> > load_balancer =
new LoadBalancer<2>("LoadBalancer",

input_db->getDatabase("LoadBalancer"));
Pointer< GriddingAlgorithm<2> > gridding_alg = new GriddingAlgorithm<2>(
"GriddingAlgorithm",
input_db->getDatabase("GriddingAlgorithm"),
standard_tag_and_init_obj,
box_generator,
load_balancer);

/**********************************************************************
* Set up visualization
**********************************************************************/
// set up visualization write interval
int viz_write_interval = main_db->getInteger("viz_write_interval");
const bool write_viz = (viz_write_interval > 0);

// set up VisIt parameters
int visit_number_procs_per_file =
main_db->getInteger("visit_number_procs_per_file");

// get PatchData handles from application specific classes
// for visualization purposes
int data_handle = my_application_obj->getPatchDataHandle();

// creqate VisIt data writer object
Pointer<VisItDataWriter<2> > visit_data_writer = 0;
string visit_data_dirname = base_name + ".visit";
visit_data_writer = new VisItDataWriter<2>("VisIt Writer",

visit_data_dirname,
visit_number_procs_per_file);

// register level set functions and velocity fields for plotting
visit_data_writer->registerPlotQuantity(
"data", "SCALAR", data_handle, 0, 1.0, "CELL");

/**********************************************************************
* initialize data on PatchHierarchy
**********************************************************************/
double time = 0.0;
initializePatchHierarchy(patch_hierarchy, gridding_alg, time);

/**********************************************************************
* Close restart file before starting main time-stepping loop.
**********************************************************************/
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restart_manager->closeRestartFile();

/**********************************************************************
* Main simulation loop
**********************************************************************/
int count = 0;
int max_num_time_steps = main_db->getInteger("max_num_time_steps");
while ( count < max_num_time_steps ) {

// do simulation work . . .

// output restart data
if ( write_restart && (0 == count%restart_interval) ) {

restart_manager->writeRestartFile(restart_write_dirname, count);
}

// output visualization data
if ( write_viz && (0 == count%viz_write_interval) ) {
visit_data_writer->writePlotData(patch_hierarchy, count, count);

}

// update count
count++;

}

/**********************************************************************
* Explicitly free memory used for objects that are NOT managed
* by smart-pointers
**********************************************************************/

delete my_application_obj;

/**********************************************************************
* Shutdown SAMRAI and MPI
**********************************************************************/

SAMRAIManager::shutdown();
tbox::MPI::finalize();

return(0);
}

void initializePatchHierarchy(
Pointer< PatchHierarchy<2> > patch_hierarchy,
Pointer< GriddingAlgorithm<2> > gridding_alg,
double time)

{
// create and initialize coarsest level of PatchHierarchy
gridding_alg->makeCoarsestLevel(patch_hierarchy, time);

// create and initialize all finer levels
bool initial_time = true;
int tag_buffer = 0;
for (int level_num = 0;

gridding_alg->levelCanBeRefined(level_num);
level_num++) {
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gridding_alg->makeFinerLevel(patch_hierarchy, time,
initial_time, tag_buffer);

}
}
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Sample Subclass of SAMRAI
StandardTagAndInitStrategy Class

/************************************************************************
* MyApplicationClass.h
************************************************************************/

#ifndef included_MyApplicationClass
#define included_MyApplicationClass

#include "SAMRAI_config.h"
#include "BoxArray.h"
#include "IntVector.h"
#include "BasePatchHierarchy.h"
#include "BasePatchLevel.h"
#include "StandardTagAndInitStrategy.h"
#include "tbox/Array.h"
#include "tbox/Pointer.h"

using namespace SAMRAI;
using namespace hier;
using namespace mesh;
using namespace tbox;

/*!
* Class MyApplicationClass implements a concrete subclass of
* TagAndInitializeStrategy (for DIM equals 2) that defines very
* simple versions the pure virtual methods in that class for
* illustration purposes.
*/

class MyApplicationClass:
public StandardTagAndInitStrategy<2>

{
public:
/*!
* Sets up data variables.
*/
MyApplicationClass();
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/*!
* Empty destructor for MyApplicationClass.
*/
virtual ~MyApplicationClass();

/*!
* Returns the PatchData handle for the cell-centered demonstration data.
*/
virtual int getPatchDataHandle();

/*!
* Initialize data on a new level added to the PatchHierarchy by the
* GriddingAlgorithm. The value of the data on the new level is set
* to be a constant value equal to the level number.
*
* Arguments:
* - hierarchy: pointer to PatchHierarchy containing new level
* - level_number: level number of new level
* - init_data_time: current simulation time
* - can_be_refined: true if the new level is the finest refinement level
* allowed in the hierarchy; false otherwise.
* - initial_time: flag indicating whether init_data_time is the
* initial time in the simulation. If true, the
* level should be initialized with initial simulation
* values. Otherwise, it is assumed that
* init_data_time is at some point after the start
* of the simulation. In this case, the
* initialization of the new level is handled
* differently.
* - old_level: pointer to old level that resided in the
* hierarchy before the new level was introduced
* (default = NULL)
* - allocate_data: flag indicating whether the memory for data on
* the new level needs to be allocated before
* the data is initialized. true indicates that
* memory needs to be allocated; falst indicates
* that the memory is already allocated
* (default = true)
*
* Return value: none
*
*/
virtual void
initializeLevelData(const Pointer< BasePatchHierarchy<2> > hierarchy,

const int level_number,
const double init_data_time,
const bool can_be_refined,
const bool initial_time,
const Pointer< BasePatchLevel<2> > old_level =

Pointer< BasePatchLevel<2> >(NULL),
const bool allocate_data = true);

/*!
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* After hierarchy levels have changed and data has been initialized on
* the new levels, this routine resets any information needed by the
* solution method that is particular to the hierarchy configuration.
*
* For this class, the resetHierarchyConfiguration() method is empty
* because this class does not actually carry out any calculations
* that depend on the hierarchy configuration.
*
* Arguments:
* - hierarchy: pointer to PatchHierarchy to be reset
* - coarsest_level: coarsest level in hierarchy that has changed
* - finest_level: finest level in hierarchy that has changed
*
* Return Value: none
*
*/
virtual void
resetHierarchyConfiguration(
const Pointer< BasePatchHierarchy<2> > hierarchy,
const int coarsest_level,
const int finest_level);

private:

// PatchData handle for data
int d_patch_data_handle;

// The following are not implemented:
MyApplicationClass( const MyApplicationClass&);
void operator=(const MyApplicationClass&);

};

#endif

#ifdef INCLUDE_TEMPLATE_IMPLEMENTATION
#include "MyApplicationClass.cc"
#endif

/************************************************************************
* MyApplicationClass.cc
************************************************************************/

#ifndef included_MyApplicationClass_cc
#define included_MyApplicationClass_cc

#include "CellData.h"
#include "CellVariable.h"
#include "VariableContext.h"
#include "VariableDatabase.h"
#include "tbox/Utilities.h"

#include "MyApplicationClass.h"
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using namespace SAMRAI;
using namespace pdat;

MyApplicationClass::MyApplicationClass()
{
// get pointer to VariableDatabase
VariableDatabase<2>* variable_db = VariableDatabase<2>::getDatabase();

// create 2D CellVariable with type "double" and depth 1
Pointer< CellVariable<2,double> > data_variable =
new CellVariable<2,double>("data_variable",1);

// get context for variable from VariableDatabase
Pointer< VariableContext > variable_context =
variable_db->getContext("CURRENT");

// set the number of ghostcells for data to zero
IntVector<2> zero_ghosts(0);

// register variable-context pair (with specified ghostcell width)
// with the VariableDatabase to get PatchData handle, which is used
// to access data
d_patch_data_handle = variable_db->registerVariableAndContext(
data_variable, variable_context, zero_ghosts);

}

MyApplicationClass::~MyApplicationClass()
{
}

int MyApplicationClass::getPatchDataHandle()
{
return d_patch_data_handle;

}

void MyApplicationClass::initializeLevelData(
const Pointer< BasePatchHierarchy<2> > base_hierarchy,
const int level_number,
const double init_data_time,
const bool can_be_refined,
const bool initial_time,
const Pointer< BasePatchLevel<2> > old_level,
const bool allocate_data)

{
// get pointer to new level
Pointer<PatchHierarchy<2> > hierarchy = base_hierarchy;
Pointer<PatchLevel<2> > level = hierarchy->getPatchLevel(level_number);

// allocate memory for data (if required)
if (allocate_data) {
level->allocatePatchData(d_patch_data_handle);

}
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// loop through the Patches on the new level and set all of the
// data to be equal to the level number
for (PatchLevel<2>::Iterator p(level); p; p++) {
Pointer<Patch<2> > patch = level->getPatch(p());

// get PatchData
Pointer< CellData<2,double> > patch_data =
patch->getPatchData(d_patch_data_handle);

patch_data->fillAll(level_number);
}

}

void MyApplicationClass::resetHierarchyConfiguration(
const Pointer< BasePatchHierarchy<2> > hierarchy,
const int coarsest_level,
const int finest_level)

{
// FOR THIS CLASS, THIS METHOD DOES NOTHING.

}

#endif
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Appendix C

Migrating From A Uniform Grid
Code To SAMRAI Code

1. Decompose the numerical algorithm into small numerical kernels that operate on a single patch. It
is convenient for the numerical kernels to take pointers to all of the required data and all required
parameters as arguments.

2. Implement a concrete subclass of the StandardTagAndInitStrategy (Section 4.1). class to manage
creation of simulation variables, communication of data between Patches (and processors), and ini-
tialization of simulation data.

(a) Create a simulation variable (Section 4.2) for each piece of simulation data in the serial code. It
may also be necessary to create simulation data for temporary/scratch data.

(b) Construct communication schedules for data that needs to be transferred between Patches (Sec-
tion 4.3).

(c) Override the initializeLevelData() method to initialize simulation data using the SAMRAI
idiom described in Section 3.4.

3. Write SAMRAI main program that will act as the framework for constructing the SAMR grid (with
only one PatchLevel) and managing the numerical algorithm at a high-level (see Section 4.1).
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