
Abstract Adaptive mesh refinement (AMR) is an

increasingly important simulation methodology for

many science and engineering problems. AMR has the

potential to generate highly resolved simulations effi-

ciently by dynamically refining the computational mesh

near key numerical solution features. AMR requires

more complex numerical algorithms and programming

than uniform fixed mesh approaches. Software libraries

that provide general AMR functionality can ease these

burdens significantly. A major challenge for library

developers is to achieve adequate flexibility to meet

diverse and evolving application requirements. In this

paper, we describe the design of software abstractions

for general AMR data management and parallel

communication operations in SAMRAI, an object-

oriented C++ structured AMR (SAMR) library

developed at Lawrence Livermore National Labora-

tory (LLNL). The SAMRAI infrastructure provides

the foundation for a variety of diverse application

codes at LLNL and elsewhere. We illustrate SAMRAI

functionality by describing how its unique features are

used in these codes which employ complex data

structures and geometry. We highlight capabilities for

moving and deforming meshes, coupling multiple

SAMR mesh hierarchies, and immersed and embedded

boundary methods for modeling complex geometrical

features. We also describe how irregular data struc-

tures, such as particles and internal mesh boundaries,

may be implemented using SAMRAI tools without

excessive application programmer effort.

Keywords Adaptive mesh refinement Æ
Parallel computing Æ Complex geometry

1 Introduction

In recent years, the availability of large-scale parallel

computing resources has increased and numerical

models and algorithms have advanced substantially. As

a result, computer simulation has become a common

tool for studying many science and engineering prob-

lems. Typical numerical models require the approxi-

mation of governing equations for a physical system on

a discrete domain, or mesh. Mesh spacing is an

important factor determining the accuracy and cost of

a computation. Many problems give rise to numerical

solutions with key features that require very fine me-

shes to resolve adequately. Often, such features reside

in localized regions of a computational domain and are

separated by large regions where the solution may be

adequately represented on a coarser mesh. Adaptive

mesh refinement (AMR) is a simulation methodology

for dynamically increasing spatial (and often temporal)

mesh resolution near key features. By focusing mem-

ory and computational resources, highly resolved

This work was performed under the auspices of the US
Department of Energy by University of California Lawrence
Livermore National Laboratory under contract number W-7405-
Eng-48 and is released under UCRL-JRNL-214559.

R. D. Hornung (&) Æ A. M. Wissink Æ S. R. Kohn
Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory,
P.O. Box 808, L-561, Livermore, CA 94551, USA
e-mail: hornung@llnl.gov

A. M. Wissink
e-mail: awissink@llnl.gov

S. R. Kohn
e-mail: skohn@llnl.gov

Engineering with Computers (2006) 22:181–195

DOI 10.1007/s00366-006-0038-6

123

ORIGINAL ARTICLE

Managing complex data and geometry in parallel structured
AMR applications

Richard D. Hornung Æ Andrew M. Wissink Æ
Scott R. Kohn

Received: 19 April 2005 / Accepted: 1 February 2006 / Published online: 30 August 2006
� Springer-Verlag London Limited 2006

simulations may be achieved more efficiently than if

the entire mesh is refined uniformly.

Despite the potentially large savings in memory and

execution time that AMR offers, the range of com-

puting applications in which it is used routinely is

limited. This is due largely to the complexity of

numerical algorithms that are required and difficulties

in modifying AMR support software to meet new

application requirements. Primary issues involve

managing application data, which often varies for dif-

ferent problems, on irregular, locally-refined mesh

configurations and achieving efficient parallel data

(re)distribution and load balancing.

To support a variety of AMR development, several

software libraries have emerged in recent years. These

efforts have expanded the range of problems to which

AMR is applied. Building a flexible and robust soft-

ware infrastructure requires a substantial investment.

So that the benefits of software reuse surpass the

investment of development, the software must be de-

signed to treat diverse computational problems or

evolving requirements within a particular application

area.

Basic linear algebra subroutines (BLAS) and linear

and nonlinear solver packages are examples of general

software libraries that are important tools in the

numerical simulation community. By providing effi-

cient, reusable algorithms, such libraries increase

developer productivity and application performance.

Typical libraries of this sort provide simulation codes

with callable subroutines that perform specific com-

putational tasks within a larger algorithmic structure.

They impose few restrictions on an application code

and often require simple data structures, such as arrays,

for interoperability. In contrast, AMR libraries are

much more invasive within the structure of an appli-

cation. They control the mesh structure and perform

complicated manipulations of data on the mesh. Thus,

simulation codes are usually built up from data struc-

tures provided by these libraries. When appropriately

designed, however, AMR libraries facilitate a variety

of application development. Substantial decoupling

between general adaptive meshing functionality and

application-specific data and operations is both prac-

tical and beneficial.

In this paper, we describe the object-oriented soft-

ware design and implementation of the data manage-

ment and parallel communication infrastructure at the

core of the SAMRAI structured AMR library devel-

oped at Lawrence Livermore National Laboratory

(LLNL). The SAMRAI framework has achieved sub-

stantial reuse of software design and implementation

across a wide range of applications. We show how

complex geometrical features and irregular user-de-

fined data types may be used in an AMR setting by

describing how recently developed application codes

use SAMRAI. Since new applications often require

new algorithms and software functionality, we

emphasize how SAMRAI can be extended and spe-

cialized to meet application needs.

We begin with a brief overview of the basic aspects

of parallel structured AMR algorithms and support

libraries. Then, we describe the design of the parallel

data management and communication infrastructure in

SAMRAI. Next, we illustrate various ways that

SAMRAI is used by discussing implementation issues

associated with various applications.

2 Structured AMR background

Structured AMR (SAMR) is a particular AMR

methodology in which the computational mesh is

comprised of structured mesh components. Most

SAMR software and many SAMR algorithms are

based on the work of Berger et al. [1, 2]. These

researchers introduced techniques for using conserva-

tive shock capturing methods in the context of SAMR.

This work is the basis for much of the evolution of

SAMR development over the past two decades; see [3]

for a brief survey.

In a typical SAMR code, the mesh consists of a

hierarchy of levels, each of which corresponds to a

single ‘‘uniform‘‘ degree of mesh spacing. Within the

hierarchy, the levels are nested. The coarsest level

covers the entire computational domain and each

successively finer level covers a portion of the interior

of the next coarser level. The mesh on each level is

composed of a disjoint union of logically-rectangular

regions, often called patches or blocks. Commonly,

simulation data are stored in contiguous arrays asso-

ciated with each patch so that the data map directly to

the mesh without indirection. Mesh adaptivity involves

selecting cells to refine on a given level, using some

error estimation or feature detection criteria, and then

clustering those cells into patch regions. These patch

regions are used to form the next finer level in the

hierarchy. Figure 1 shows the sort of mesh that is

generated in a SAMR hydrodynamics calculation with

highly-localized features.

Most SAMR algorithms employ numerical routines

designed to treat data associated with an arbitrary

patch in the mesh hierarchy. The computation is or-

ganized as a collection of numerical operations per-

formed on the distributed patch regions and

communication operations that pass information be-

182 Engineering with Computers (2006) 22:181–195

123

tween those regions; for example, to fill ‘‘ghost cells’’ at

patch boundaries. Numerical operations must account

for internal boundaries between levels properly to

produce an accurate, consistent solution across the

AMR hierarchy. Communication operations must ex-

change data among irregular patch configurations

within a single patch level as well as between different

levels of mesh resolution using data refinement and

coarsening. Multi-physics applications and problems

involving complex geometry introduce additional

complications. These problems typically combine

mesh-based array data and irregular unstructured data

such as particles, and require multiple solution proce-

dures that share data and which use distinct data

communication patterns.

Since the mesh may change frequently in an adap-

tive calculation, computational overheads that cannot

be amortized over an entire simulation are encoun-

tered. Non-adaptive codes usually incur the cost of grid

generation, load balancing, and data communication

dependency construction once. During an SAMR cal-

culation, the mesh and patch configuration must be re-

constructed and re-distributed, and the resulting data

dependencies must be re-computed often. Efficiency of

these operations is paramount so that adaptive grid-

ding overheads are acceptable on large numbers of

processors [4].

3 Structured AMR software libraries

Parallel SAMR applications are sufficiently complex

and costly to develop that a number of libraries have

been built to provide the underlying infrastructure for

SAMR applications. In addition to SAMRAI, some

well-known libraries are: Chombo [6] and BoxLib-

based AMR software [7] from Lawrence Berkeley

National Laboratory, GrACE [8] from Rutgers Uni-

versity, PARAMESH [9] from NASA Goddard, and

Overture [10] from LLNL.

Each of these libraries provides software tools for

treating parallel data decomposition and distribution

on an adaptive patch hierarchy. At a basic level, the

functionality of these libraries is similar. However, they

differ substantially in their design and features, espe-

cially in terms of support for complex geometry and

irregular, non-array data types, and parallel data

communication infrastructure.

In BoxLib, Chombo, SAMRAI, and Overture, the

patch configuration is maintained via integer lattice

index space relationships. With the exception of

Overture, these libraries are similar in the support they

provide for basic SAMR algorithms and distributed

array-based mesh data. Overture, built on P++ [11]

which supports whole array operations on distributed

parallel arrays, provides operations for overlapping

configurations of various mesh types. BoxLib is a pio-

neering SAMR software effort serving as the basis for

an impressive history of algorithm development for

fluid dynamics problems. Support in other SAMR li-

braries for finite difference calculations on logically

rectangular arrays is typically based on concepts found

BoxLib. Chombo represents an extension of BoxLib by

adding facilities for other SAMR calculations such as

those involving embedded boundaries. GrACE and

PARAMESH also employ a hierarchy of logically

rectangular blocks, but use tree-based data structures

to organize the hierarchy. GrACE developers have

extensively researched dynamic partitioning and run-

time management for SAMR calculations [12, 13].

Chombo is perhaps the most similar to SAMRAI

of the aforementioned libraries, although it differs

Fig. 1 An example SAMR
patch configuration used to
resolve an impulsively
sheared contact surface in an
Eulerian hydrodynamics
simulation courtesy of Bob
Anderson [5]. The figure on
the left shows the local
concentration of fine mesh
level patches within the larger
computational domain. The
figure on the right shows finer
detail in a localized region.
The black lines are the finest
level patch boundaries

Engineering with Computers (2006) 22:181–195 183

123

significantly from SAMRAI in its design and imple-

mentation. The main difference that is germane to this

paper involves data management and communication

operations. Chombo provides a container class for data

on a patch hierarchy level that is templated on the

mesh data type [6]. Various classes supply specific in-

terlevel data coarsening or refining operations for the

data associated with a container object. In particular,

parallel data transfers are defined and performed for

each data container object individually. When a new

data coarsening or refining operation is needed, a new

class must be built to perform the interlevel commu-

nication.

In SAMRAI, a patch (rather than a level) is the

fundamental container which holds all data objects

associated with a box region of index space. Interlevel

data communication operations are implemented using

C++ inheritance-based specialization and extension

mechanisms. This allows SAMRAI to support an

arbitrary number of different data types and operations

within a single communication schedule. Also, new

user-defined data types and interlevel transfer opera-

tions can be combined with data types and operations

supplied by SAMRAI without changing the library.

Previously, we have discussed performance over-

heads in AMR due to adaptive meshing and algorithms

we have developed to improve SAMRAI performance

[4], and object-oriented design patterns used in SAM-

RAI and how they enable algorithm reuse across dif-

ferent applications [14]. In the remainder of this paper,

we describe key aspects of the SAMRAI data man-

agement and communication infrastructure and illus-

trate how these capabilities are used in various

applications.

4 SAMRAI data management and communication
infrastructure

In this section, we describe the design and implemen-

tation of software in SAMRAI for managing simula-

tion data and communication. In [14], we discussed

object-oriented software design patterns, such as

Strategy and Factory [15], used in SAMRAI to achieve

a loose coupling between application-specific routines

and more general adaptive meshing and time integra-

tion operations provided by the library. The following

discussion shows how similar design concepts are ap-

plied to achieve a flexible, parallel AMR data com-

munication infrastructure.

Generally, an SAMR simulation consists of a se-

quence of interleaved processes involving numerical

computations on patches and interpatch data commu-

nication. The interpatch data transfers required for

each communication phase are defined by what data is

needed to execute subsequent numerical operations.

Examples of such communication scenarios are: filling

ghost cells at patch boundaries before advancing the

solution on patches, filling new patches after a new

level is created during remeshing, coarsening data be-

tween levels to ensure consistency of the numerical

solution across hierarchy levels, and summing values at

patch boundaries when constructing a finite element

stiffness matrix. SAMRAI is designed to support these

and other data communication patterns within a com-

mon set of C++ classes that are independent of the data

types and interpatch data transfer operations involved.

We note that a key SAMRAI design goal is to ex-

press each data communication phase of a computation

similarly regardless of the types and number of data

quantities involved or the details associated with par-

ticular data movement operations. Rather than com-

municate individual data quantities one-at-a-time,

which is also possible, each communication procedure

in SAMRAI represents an aggregation of all opera-

tions required move all the data involved in a com-

munication phase of a calculation. To this end, each

communication scenario is defined by specifying the

complete set of data quantities involved and the asso-

ciated operations needed (e.g., spatial coarsening,

refining, time interpolation operations, etc.). These

operations typically depend on the mesh coordinate

system, the data type, and the numerical discretization

used in an application. Thus, it is essential that the

underlying software infrastructure be fairly general to

allow such operations to be easily customized. To fix

certain concepts before we describe the SAMRAI

communication framework, we briefly describe essen-

tial mesh and patch data structures used to define a

SAMR patch hierarchy.

4.1 Variable and data objects

The basic structural units of an SAMR patch hierarchy

are: patch, patch level and patch hierarchy objects.

Most, if not all, SAMR software libraries provide these

software concepts, but their implementation and spe-

cific functionality differs among packages. Usually, a

patch hierarchy object maintains a set of patch level

objects. Each patch level object manages a collection

of patch objects distributed across processors on a

parallel machine. Simulation data associated with a

level of mesh resolution in the hierarchy correspond to

the patches that define the level.

A unique design aspect of SAMRAI is that a patch

is a container for all data objects living on a logically

184 Engineering with Computers (2006) 22:181–195

123

rectangular mesh region and that all such data is

accessible via the patch. The flexibility of the SAMRAI

data communication framework relies on the fact that

every patch data type, whether a standard type sup-

plied by the library or a type provided by a user, is

managed by the framework in the same way. For our

purposes, we consider cell-centered or node-centered

array data types, for example, to be standard types

whereas a user-defined type may be something like a

unique particle data representation.

Each patch data object represents the instantiation

of some simulation quantity on the patch region and

each patch data type must obey the interface defined

by the patch data base class. The SAMRAI patch data

interface is a Strategy design pattern that defines the

nominal set of operations required for the data object

to be interoperable with the data management routines

in the library. These operations include: data allocation

over a box, data copying between two boxes on their

intersection, and data packing and unpacking into and

out of a message stream for parallel communication.

Figure 2 illustrates the relationship between a patch

and various patch data types.

There are two principle advantages to requiring the

same creation mechanism and operational interface for

all simulation data objects. First, all SAMRAI library

routines that manipulate data on an AMR patch hier-

archy are independent of the data type and are thus

reusable. Second, a user may build a new application

data type and essentially ‘‘plug it in’’ to the SAMRAI

framework without rewriting or recompiling any li-

brary code [14].

To understand certain aspects of SAMRAI design,

it is useful to distinguish between objects that are

persistent and dynamic in the context of an adaptive

simulation. For example, a computation may employ a

variable, say ‘‘density‘‘, which has a fixed physical

interpretation and numerical approximation. The data

allocated to store density values depends on the mesh

configuration and patch distribution, both of which

may change frequently. Thus, a variable is viewed as

persistent. Typically, it is created during problem ini-

tialization and describes the properties of a simulation

quantity such as the type of the data (e.g., double, float,

integer, etc.), mesh centering (e.g., node, cell, face,

etc.) and its depth (i.e., the number of data values

associated with each mesh point). These properties are

independent of the AMR mesh configuration. The

associated patch data objects that store the data values

are dynamic; they are created and destroyed as the

patch configuration changes. Patches share a patch

descriptor that holds a common description of the data

that may reside on a patch. The patch descriptor

maintains a mapping between variables and the cor-

responding patch data objects. Typically, a variable

creates a patch data object on any given patch using a

Factory mechanism; see [14] for more details.

4.2 User-level data communication abstractions

In Sect. 4, we noted various data communication sce-

narios that may appear in SAMR applications. Such

operations are composed of data transfers between

data objects residing on different patches in a patch

hierarchy. In parallel SAMR implementations, pat-

ches, or similar data containers, are distributed across

processors. Thus, data movement involves interpro-

Fig. 2 A SAMRAI patch
holds all data living on a box
region of the mesh. Each
patch data object represents
the data for a simulation
quantity on the patch. All
patch data objects obey a
common interface that
defines the basic interaction
between the library and the
data

Engineering with Computers (2006) 22:181–195 185

123

cessor data communication in addition to local copy

operations.

Recall that a principle SAMRAI design goal is to

allow users to define communication operations in a

manner that represents all data motion required during

a communication phase of a computation. The reali-

zation of this is that the SAMRAI communication

infrastructure handles multiple data quantities and in-

terlevel operations, including user-defined data and

operations, simultaneously within a single communi-

cation operation. So that the software allows flexibility

in treating user-defined data and interpatch transfer

operations, a general, limited set of basic software

interfaces used within the framework are exposed to an

application developer. The essential elements of the

SAMRAI patch data interface were described in Sect.

1. The mechanism employed by a user when providing

new communication operations similarly uses C++

inheritance from abstract base classes.

A user of SAMRAI interacts with three main soft-

ware abstractions during the process of defining and

performing communication operations. These abstrac-

tions are: a communication algorithm, a communica-

tion schedule, and a patch strategy. Each abstraction

appears in one of two forms indicating how it is used

for inter-level data motion: there are algorithm, sche-

dule, and patch strategy objects for coarsening data

and for refining data. For completeness, we note that

inter-patch communication on a single patch level or

between two patch levels with the same mesh refine-

ment (residing in different patch hierarchies, for

example) is viewed as a special case of a refine oper-

ation.

A communication algorithm describes a data trans-

fer phase of a calculation in terms of high-level math-

ematical concepts, such as variables and coarsen or

refine operators. As such, a communication algorithm

is independent of the SAMR mesh configuration. A

communication schedule computes and stores the

specific data transactions that must be performed to

execute the communication described by the algorithm

on a given patch configuration. Thus, a communication

schedule is dependent on the SAMR mesh configura-

tion. A patch strategy object provides a Strategy pat-

tern interface for a user to supply arbitrarily complex

data coarsening, refining, and physical boundary con-

dition operations on individual patches during the

execution of a communication schedule.

Typically, a communication algorithm is constructed

during the problem setup phase of a simulation when

variables are defined. An application developer creates

the refine and coarsen algorithms needed during the

calculation and registers the necessary data quantities

and associated operations with each algorithm. Each

communication algorithm object is later used to create,

and re-create as necessary due to adaptive meshing,

schedule objects to perform data motion. Coarsen and

refine algorithm classes provide multiple routines for

creating different schedule objects that perform inter-

patch communication on patch levels and patch hier-

archies in various ways. In particular, a single

algorithm can be used to build different schedules each

of which represents a different realization of commu-

nication scenario involving the same set of data quan-

tities and operations.

Note that the communication algorithm and com-

munication schedule abstractions are analogous to the

variable and patch data concepts described earlier.

Like a variable, a communication algorithm persists

throughout the duration of a simulation, typically. The

separation of communication procedures into multiple

abstractions allows an application developer to specify

each distinct communication phase of a computation

once in terms of high-level concepts (i.e., data quanti-

ties and operations). Communication schedules are

created as needed to perform the specified data motion

on a patch hierarchy. Thus, a communication schedule

is a dynamic concept, similar to patch data, since it

must be recreated when the AMR patch configuration

changes. As long as the patch hierarchy remains un-

changed, a schedule may be reused. Thus, the cost of

computing data dependencies on an irregular AMR

mesh is amortized over multiple communication cycles

when possible. The notion of storing data transfer

information in a schedule for parallel processing is not

new. The design of SAMRAI communication sched-

ules is based on extensions of ideas developed in other

work, such as multi-block PARTI [16] and KeLP [17,

18].

The patch strategy abstraction provides an interface

through which application-specific interlevel transfer

operations and boundary conditions may be provided.

This is useful when such operations are complex or

involve functions of multiple simulation variables. For

example, an application may use density and velocity

variables and velocity should be interpolated so as to

conserve momentum, the product of density and

velocity. Arguably, such an operation is best imple-

mented within user code since providing mechanisms

to express general relationships among variables in a

library is difficult to do in way that is both efficient and

flexible. Using C++ inheritance, the patch strategy

provides a simple mechanism for a user to provide

custom interlevel transfer operations which are to be

executed during communication schedule execution.

Setting values at the physical domain boundary, which

186 Engineering with Computers (2006) 22:181–195

123

is intimately tied to the numerical approximation, can

be done similarly through the patch strategy interface.

This scheme offers application developers myriad op-

tions for inter-level data interpolation operations and

boundary conditions. We note that all functions de-

clared in the patch strategy interfaces specify opera-

tions on single patches or transfers between two

patches on the same processor. Thus, application

developers are insulated entirely from the complexity

of formulating data manipulations in parallel.

4.3 Data communication object decomposition

Before we discuss how SAMRAI data management

and communication facilities are employed in appli-

cations, we describe key aspects of object-orientation

employed in SAMRAI to illustrate how communica-

tion operations are extended and specialized. Figure 3

shows the main SAMRAI objects involved in data

refinement. The object decomposition for data coars-

ening is similar.

To define a data refinement communication phase of

a calculation, a developer creates a Refine Algorithm

object and defines its behavior through a sequence of

registration operations. Each registration specifies

simulation data quantities to communicate and corre-

sponding operations, such as inter-level spatial refine-

ment. After the registration process is complete, the

Refine Algorithm object can be used to create various

Refine Schedule objects as needed.

To instantiate a realization of the data refinement

procedures contained in the Refine Algorithm object on

a particular configuration of an SAMR patch hierar-

chy, the developer creates a Refine Schedule object.

This is done by calling one of several schedule creation

methods in the Refine Algorithm class. These methods

are distinguished by their patch level and patch hier-

archy arguments. The schedule object can then be

executed to perform the particular data communica-

tion process on the patch level(s) and/or parts of the

patch hierarchy specified when it was created.

A user can optionally provide Refine Patch Strategy

and Refine Transaction Factory objects to the schedule

creation method. In the figure, the User Patch Strategy

object denotes a user-supplied patch strategy. As de-

scribed earlier, this object provides application-specific

interlevel transfer and boundary condition operations

that are called when the schedule executes. A transac-

tion factory, such as the (Concrete) Transaction Factory

object in the figure, is used to create transactions which

describe individual inter-patch data exchanges.

During its construction, a Refine Schedule computes

interpatch data dependencies needed to perform the

communication operations defined by the Refine

Algorithm on a given patch configuration. Each ‘‘atom-

ic‘‘ data communication operation between two patch

data objects is described by a Transaction object. Such

operations include data copying on an overlap region or

summation to accumulate values at patch boundaries

necessary when constructing a finite element stiffness

matrix, for example. Transaction objects are created for

the Refine Schedule by a concrete transaction factory.

The Factory mechanism used in the creation of inter-

patch data transactions allows the Refine Schedule

abstraction to be adapted to new communication pro-

cedures without modification. Figure 4 illustrates the

Strategy pattern relationship between the abstract

transaction base class and concrete transaction objects.

Fig. 3 Object decomposition associated with a SAMRAI data
refinement communication procedure. The objects with bold
boxes are those seen and used by a typical application developer.
Standard text indicates a concrete object; italicized type indicates
an interface (i.e., an abstract base class). The design pattern
characterizing each instance of inheritance is noted. Arrows

indicate object association. Each arrow points in the direction of
usage; the solid circle indicates that the user owns a reference to
another object. An identifier of ‘‘1’’ indicates ownership of
exactly one object, ‘‘1..*‘‘ indicates ownership of one or more
objects, and ‘‘*’’ indicates ownership of zero or more objects

Engineering with Computers (2006) 22:181–195 187

123

If no transaction factory is provided by the user, then a

default factory that creates RefineCopyTransaction

objects is used.

Transaction objects created are stored in Schedule

objects. The SAMRAI Schedule class is a general

abstraction providing all operations needed for mes-

sage-based communication using MPI. During com-

munication schedule execution, the set of Transaction

objects owned by each Schedule define the data to be

marshaled and un-marshaled for parallel communica-

tion. Actual patch data manipulation operations, such

as local data copies and parallel message stream pack/

unpack operations, are performed by the individual

data objects, including user-defined data types, as-

signed to each transaction. The SAMRAI design fea-

ture whereby all patch data objects obey the same

interface (recall Sect. 1) allows the entire SAMRAI

data management and communication infrastructure to

be generic with respect to the data.

5 New application development

In this section, we discuss several SAMR applications

recently developed using SAMRAI. We use them to

provide concrete illustrations of how aforementioned

SAMRAI features are employed. For more informa-

tion about these applications, we refer interested

readers to the cited references.

5.1 ALE—AMR: moving, deforming meshes

and multiblock AMR

Recently, a unique simulation code that combines

Arbitrary Lagrange-Eulerian (ALE) hydrodynamics

algorithms and structured AMR has been developed

using SAMRAI [5]. An ALE method integrates the

governing hydrodynamic equations using a Lagrangian

formulation. Then, when the mesh is sufficiently de-

formed, it applies mesh relaxation and advection

algorithms to map the solution to a new mesh config-

uration. ALE, by itself, is adaptive since mesh points

follow flow features during the Lagrangian step.

However, typical ALE codes are limited to a fixed

number of mesh points during a computation. The

ALE–AMR approach combines desirable aspects of

ALE with complementary features of AMR. In par-

ticular, ALE–AMR exploits the benefits of ALE for

evolving a multi-material system and uses AMR to

dynamically add and remove mesh points for compu-

tational efficiency and enhanced accuracy. Figure 5

shows an example of a deforming locally-refined mesh

produced by the ALE–AMR approach.

Arbitrary Lagrange-Eulerian methods differ from

Eulerian hydrodynamics approaches, which have be-

come commonplace for SAMR, because the mesh

points themselves are solution variables. Maintaining

consistency of the numerical solution on a SAMR

patch hierarchy where the mesh may deform differ-

ently on different patch levels is the primary issue to

address in the development of the ALE–AMR hybrid

approach. In this section, we provide a brief overview

of how numerical integration and interlevel data

interpolation operations specific to ALE–AMR are

built using the SAMRAI framework.

5.1.1 Integration and data interpolation

Managing the nodal mesh coordinates and simulation

data on a mesh defined by those coordinates is a cen-

tral concern for an ALE method. In SAMRAI, mesh

coordinates are defined by an extensible grid geometry

object hierarchy. Integer index space coordinates are

managed in a general fashion at the lowest level of this

hierarchy. The real-space mesh coordinates are de-

signed to be customized via C++ class inheritance (i.e.,

Strategy design pattern). The ALE–AMR code uses

this mechanism to provide its own spatial mesh coor-

dinates which it represents using node-centered patch

data.

The ALE–AMR code utilizes general adaptive

algorithm and data communication functionality in

SAMRAI and provides operations that are specific to

ALE integration and nodal mesh coordinates. SAM-

RAI manages the time integration process and all

adaptive meshing operations on the patch hierarchy.

ALE–AMR supplies operations for integrating patch

levels, including all patch-based numerical kernels.

Fig. 4 Specific inter-patch
data exchange operations are
provided by concrete
transaction objects which are
derived from the abstract
transaction base class

188 Engineering with Computers (2006) 22:181–195

123

During the execution of an ALE integration timestep,

control is passed between the ALE–AMR code and

the SAMRAI library multiple times, some key points

of which are summarized in Table 1.

SAMRAI coordinates the parallel data communi-

cation operations for the ALE–AMR code. When a

communication schedule is executed (e.g., the fillData()

call in Table 1), SAMRAI performs all the necessary

inter-patch data transfers. Numerical operations that

refine and coarsen solution variables and set boundary

conditions for patch regions defined by their nodal

mesh points are provided by the ALE–AMR code.

These routines are implemented in a patch strategy

class as described in Sect. 2.

5.1.2 Multiblock patch hierarchies

A single logically rectangular index space is insufficient

for some simulation problems, especially those to

which the ALE–AMR code is suited. To support more

flexible spatial geometry descriptions, SAMRAI pro-

vides domains consisting of multiple structured mesh

regions. A multiblock patch hierarchy is comprised of a

set of single-block AMR patch hierarchies, each with

its own logically rectangular index space, and a set of

translation and rotation transformations that describe

the connectivity between the neighboring index spaces.

Such domains may have singularity points, where mesh

cells near block corners have either fewer or more

neighbors than a conventional structured mesh

domain with uniform cell connectivity. Figure 6 shows

a five-block mesh where each mesh cell adjacent to the

singularity point has more neighbor cells than in a

standard logically-rectangular mesh.

The multiblock capabilities in SAMRAI are de-

signed so that data management and communication

operations on a multiblock patch hierarchy are similar

to the single-block patch hierarchy case. Multiblock

versions of patch hierarchy, patch level, and commu-

nication algorithm and schedule classes provide

essentially the same interfaces as their single-block

versions but are implemented by composing single-

block functionality with additional operations for

treating multiple blocks. Patch data transfers within

each block is identical to the case of a single patch

hierarchy. Between multiple blocks, data must be

transformed between index spaces. However, the

extension of single-block communication operations to

multiblock operations required no changes to the

existing SAMRAI communication classes. This is

possible since SAMRAI data communication algo-

rithms do not depend on AMR patch hierarchy struc-

tures and SAMRAI communication schedules can

transfer data between arbitrary patch levels regardless

of whether they reside in the same AMR patch hier-

archy.

The main complexity for a user of SAMRAI mul-

tiblock functionality is to supply routines for filling

internal boundary values near singularity points. This is

done using the multiblock patch strategy interface,

which is similar to the refine patch strategy interface

Table 1 Key interaction points between SAMRAI and the
ALE–AMR code during a time integration step. First, the
ALE–AMR code calls a SAMRAI routine to advance
the solution on the AMR hierarchy. The SAMRAI time
integration algorithm calls ALE–AMR for integrating each

hierarchy level. Data communication operations are managed by
SAMRAI which calls ALE–AMR operations that interpolate
data and set boundary conditions on the mesh defined by nodal
coordinates

Fig. 5 The ALE–AMR code combines moving, deforming ALE
meshes with structured AMR as illustrated in this calculation of
an impulsively-sheared contact surface

Engineering with Computers (2006) 22:181–195 189

123

described earlier, except that it contains an extra

routine for filling ghost data near singularity points.

During communication, all data near a singularity

point is gathered into a special structure which de-

scribes the intersections between conventional patch

ghost cell regions and patches adjacent to a singularity

point. Thus, multiblock functionality may be added to

an existing AMR code by simply adding new opera-

tions to set ghost data for patches with irregular con-

nectivity at corners.

5.2 Complex geometry and embedded boundaries

Many applications of practical engineering interest

require representation of complex geometrical fea-

tures. Constructing such features and meshes for them

can be difficult and time consuming. Building a high

quality mesh and numerical operations on it is partic-

ularly challenging. An emerging methodology for

treating geometrically complex features in aerospace,

geophysics, biology, and other problems areas embeds

irregular geometry information into a Cartesian

SAMR mesh [19–23]. This approach places internal

boundary structures within the mesh by identifying

cells that intersect the boundary. The main advantage

of this approach is the computational speed with which

the geometry representation can be constructed.

Developments in two technologies have contributed to

the popularity of this approach. They include fast

geometry detection algorithms developed primarily for

visualization, and Cartesian adaptive meshing algo-

rithms that allow enhanced resolution near the geom-

etry features. In this section, we describe a SAMRAI-

based application for simulating flow around buildings

in an urban landscape. The application demonstrates

how embedded boundary data is managed in SAMRAI

and how finite element operations are supported by the

SAMRAI communication infrastructure.

Cells that intersect a surface generally form an

irregular pattern on a structured mesh. To exploit the

benefits of structured mesh methods, typical embedded

boundary solution algorithms use conventional struc-

tured Cartesian mesh numerical methods on the entire

mesh, as though the boundary were not present. Then,

in a second step, special numerical operations are ap-

plied in cells near the boundary to correct the solution.

Common correction algorithms use geometry infor-

mation from each cut cell, such as the surface normal

vector, centroid of the flow volume, volume fraction,

and area fractions of the cut plane and surrounding

faces. This additional data must be stored on an

irregular set of cells on a patch; see Fig. 7.

One way to implement an embedded boundary

structure in SAMRAI is to use the IndexData patch

data type supplied by the library. This patch data type

maintains a mapping between an irregular set of cells

on a patch and data associated with those cells. It is a

C++ class template in which the template parameter

defines the data on each cell in the irregular index set.

The IndexData type provides access to the data via

standard cell indices on a patch or as an ordered list of

the data items mapped to the indexed cells. The user-

defined template parameter data is manipulated in

parallel communication operations like any other data

type. Figure 7 shows an example of embedded

boundary patch data defined as IndexData<CutCell>

where the CutCell parameter computes, stores, and

provides access to quantities like the volume fraction,

normal, and centroid of each cut cell.

The IndexData<CutCell> data type has been used to

model building geometries in urban landscapes. Fig-

ure 8 shows an example domain in which a region of

Manhattan containing more than one thousand build-

ings is represented as an embedded boundary within a

SAMR mesh. The starting point for such a geometrical

construction is an engineering-quality triangulated

surface mesh in which buildings are defined by sets of

triangles on a terrain map, or by polygons with an

associated height. Fast computational geometry algo-

rithms, similar to those used in computer graphics,

quickly identify mesh cells that intersect surface tri-

angles or polygons. The cut cells are further processed

Fig. 6 A fluid front traveling through a multiblock domain
consisting of five single-block patch hierarchies. Each mesh cell
adjacent to the shared vertex has more neighbor cells than in a
standard structured mesh. Setting ghost cell values for a patch
near this point requires interpreting the irregular configuration,
shown in the figure on the right, and interpolating values from
each of the neighboring blocks

190 Engineering with Computers (2006) 22:181–195

123

to compute the geometric quantities on those cells [24,

25]. Since algorithms for constructing this information

are fast and require no user intervention, the genera-

tion of the cut cells and AMR mesh required only

about ten minutes on a single processor workstation.

To solve for flow around the buildings, an existing

flow solver, developed at LLNL, was integrated into

the SAMRAI-based application code. The original

flow solver employs a finite element approximation of

the incompressible flow equations. The finite element

method requires communication procedures that

accumulate sums of integrated quantities at nodes and

edges from surrounding elements on neighboring pat-

ches within a single level as well as from patches on

other levels at coarse-fine level boundaries. To imple-

ment the finite element sum communication pattern,

the standard copy transaction is replaced with a sum

transaction in existing SAMRAI communication sche-

dule classes. This extension is implemented using the

transaction factory mechanism described in Sect. 3.

5.3 Hybrid models

Traditional SAMR applications use local mesh refine-

ment to increase resolution in single-physics calcula-

tions. In particular, the same mathematical model and

numerical methods are applied at each mesh level.

Advances in computer systems, numerical algorithms,

and model development are driving increased devel-

opment of multi-physics simulation capabilities. Often,

such models employ hybrid formulations that couple

multiple numerical models each of which represents a

different aspect of the multi-physics system. The hier-

archical structure of SAMR meshes can be a natural

environment for hybrid model development whereby

different numerical models are used on different levels

in the mesh hierarchy.

Fig. 8 An example complex
geometry representation
involving an urban area of
several square blocks around
Madison Square Garden in
Manhattan. Buildings are
represented as embedded
boundaries in a SAMR mesh

Fig. 7 The IndexData template class in SAMRAI manages data
on an irregular set of cell indices on a patch. For example, the
CutCell template parameter holds the data needed to represent
the embedded boundary structure within a cell

Engineering with Computers (2006) 22:181–195 191

123

In this section, we briefly discuss two such applica-

tions built using SAMRAI. One combines a com-

pressible Euler continuum fluid model with a direct

simulation Monte Carlo (DSMC) discrete particle

model to resolve fluid interface dynamics. The other

couples a continuum, incompressible Navier–Stokes

fluid model to an immersed boundary method to sim-

ulate fluid–structure interactions. Figure 9 shows

computations done with each code.

In each case, a continuum fluid model is used on all

levels of the patch hierarchy. On the finest level, the

continuum model is coupled to a different numerical

model representing different physical processes. On

coarser levels, AMR increases the local resolution of

structured mesh-based fluid calculations. At the finest

mesh level, each calculation transitions to a different

numerical model that uses irregular data structures. In

the following sections, we describe key aspects of these

hybrid models that involve implementation of the

irregular data structures on a SAMRAI patch hierar-

chy.

5.3.1 Continuum-particle hybrid model

The study of shock-accelerated interfaces between

multiple fluids, such as the Richtmyer–Meshkov

instability, motivated the development of the Euler–

DSMC hybrid code [26]. Such problems often involve

important physical mechanisms operating over a wide

range of scales from hydrodynamic transport at the

experimental scale (centimeters) to molecular diffu-

sion at the shock thickness scale (nanometers). For

some problems of interest, the standard Euler model is

sufficiently accurate at coarser scales and away from

fluid interfaces. Near those interfaces, a particle model

like DSMC is required for physical accuracy. DSMC

approximates the Boltzmann equation using a repre-

sentative stochastic sampling of motion and collisions

in a collection of fluid molecules [27]. The number of

particles in a given region of the domain is determined

by the local fluid density and stochastic sampling sta-

tistics. Often, the expense of DSMC simulation is

prohibitive for large problem domains of interest. By

using DSMC only on the finest mesh regions, local

mesh refinement concentrates the atomistic calcula-

tions near fluid interfaces where they are needed to

resolve dynamic, fine-scale flow features.

The Euler–DSMC hybrid code was constructed by

merging two independently developed existing codes, a

parallel AMR Euler code built with SAMRAI and a

serial DSMC code that operates on a simple parallel-

epiped domain. The codes were integrated by building

a wrapper class following the Adapter structural design

pattern. The wrapper encapsulates the DSMC data

structures and numerical routines and translates

information between the continuum and particle rep-

resentations. A simple patch data class owns a single

instantiation of the wrapper and accesses the associ-

ated DSMC particle data via the wrapper methods.

Fig. 9 Hybrid AMR applications use the mesh hierarchy to
couple different numerical models in multi-physics simulations. a
A sheared interface between two fluids produced by the Euler–
DSMC code. White boxes are boundaries of patches holding
DSMC particles on the finest mesh level. The continuum Euler
fluid model is applied elsewhere in the domain. b An immersed
boundary representation of elastic tissue fibers in a human heart.
The structures were extracted from the SAMR mesh for clarity

192 Engineering with Computers (2006) 22:181–195

123

The main objects used to manage the DSMC particle

data in the Euler–DSMC application code are illus-

trated in Fig. 10. The result of this implementation is

that the DSMC particles are manipulated by SAMRAI

communication operations just like any other data

type. The DSMC code remains a standalone serial

code. The Euler–DSMC hybrid is parallel and adaptive

and allows multiple DSMC regions to be embedded

within the computational domain. The only modifica-

tions required of the DSMC code were minor exten-

sions to the way in which boundary conditions are

applied.

5.3.2 Immersed boundary heart model

The last example we will present involves an adaptive

mesh refinement immersed boundary application to

simulate human cardiac dynamics by coupling electro-

physiological and mechanical processes [28]. Realistic

simulation of fluid–structure interactions between heart

tissue and blood flow requires treatment of inhomoge-

neous elastic tissue with anisotropic orientation and

moving tissue geometry. The immersed boundary (IB)

approach was introduced by Peskin to study the hemo-

dynamics of heart valve leaflets [29]. Blood flow is

modeled using the viscous incompressible Navier–

Stokes equations in an Eulerian reference frame on a

Cartesian structured computational mesh. Heart fibers

are modeled as viscoelastic structures in a Lagrangian

reference frame on a curvilinear mesh where material

points are coupled based on the structural configuration.

The fluid and tissue models are coupled through terms

representing the exchange of forces.

Adequate resolution of the flow and dynamics in a

cardiac system using the IB method requires large-

scale parallel computing resources. Finely spaced me-

shes are needed on large three-dimensional spatial

domains to resolve narrow action potential fronts in

heart fibers and important fine-scale fluid flow features

near valves. Moreover, slow-moving wave fronts re-

quire long-running simulations, a situation which is

exacerbated by the need for small, numerically-stable

timesteps. Adaptive mesh refinement reduces the

overall size of the calculation by providing fine mesh

resolution near the elastic structures and by allowing

coarser meshes away from the fluid-structure interface

where the flow is smooth. The right side of Fig. 9 shows

the complexity of the elastic structure in an IB simu-

lation where the fibers have been extracted from the

Cartesian mesh for clarity.

In the current implementation, the coupled Euleri-

an–Lagrangian system is advanced in time using a

semi-implicit integration strategy. Each timestep re-

quires solving linear systems of equations on the

Cartesian SAMR mesh. The PETSc [30] library pro-

vides Krylov iterative solvers for SAMRAI mesh data

natively using the PETSc–SAMRAI vector interface;

see [31] for a description of how this interface works.

The preconditioner is a custom FAC solver built for

the SAMR Navier–Stokes discretization [28].

All data associated with the curvilinear IB structure

mesh is stored in a PETSc vector object. The distri-

bution of the PETSc vector data is specified by the

decomposition of IB data among SAMR patches and

the SAMRAI patch-processor mapping. The irregular

IB data is managed similarly to the embedded struc-

ture in the urban dispersion model described in Sect. 2.

In particular, an IndexData<Sentinel> patch data type

is used to couple the Lagrangian IB data and the

Eulerian AMR mesh. The Sentinel template parame-

ter maps between a SAMRAI patch and the PETSc

data structure holding the IB data on the patch region.

The Sentinel class maintains additional indexing

information to make interpolation between IB data

and force and velocity mesh data efficient.

When the patch hierarchy is regenerated during

adaptive mesh refinement, the IB (i.e., PETSc vector)

data is redistributed so that each node of the curvilin-

ear mesh is assigned to the same processor as the

SAMR mesh patch in which it is physically located.

Before remeshing, the sentinel data associated with

each IndexData<Sentinel> object corresponds to the

current curvilinear mesh configuration. Then, the patch

hierarchy is remeshed and the Cartesian mesh data is

Fig. 10 In the Euler–DSMC code, the DSMCPatchData object
provides access to the DSMC particle data and looks like any
other patch data type to SAMRAI. Numerical routines that

translate information between the Euler continuum and the
DSMC particle representations reside in the DSMCWrapper
object

Engineering with Computers (2006) 22:181–195 193

123

redistributed. At this point, IndexData<Sentinel>

patch data objects are created on the new SAMR patch

configuration, but the IB data still resides on the old

mesh configuration. Next, the assignment of the cur-

vilinear IB mesh data to the new patch configuration is

determined. This information is used to setup a PETSc

parallel vector gather/scatter operation which redis-

tributes the IB data to the new patch configuration.

SAMRAI and PETSc parallel data management and

communication facilities are used in concert in this

application without duplication of IB data.

6 Conclusion

Adaptive mesh refinement has matured into an effec-

tive simulation technology for achieving efficient,

highly-resolved calculations for a variety of computa-

tional science and engineering problems. As the range

and sophistication of large-scale parallel applications

increases, we believe that the AMR methods will be-

come even more important. Robust and flexible soft-

ware support libraries are essential for continued

successful development of new applications.

This paper discusses the design and implementation

of software in the SAMRAI library for managing

complex data and communication in parallel for

SAMR calculations. The capabilities have been illus-

trated in the context of several new and unique appli-

cation efforts. The applications involve adaptive,

deforming meshes, embedded boundaries for complex

geometry, immersed boundaries for fluid–structure

interactions, and hybrid coupling of continuum meth-

ods and discrete particle methods for multi-physics

problems. We have shown how application-specific

data can be manipulated in parallel in a straightfor-

ward manner using the general data management and

communication infrastructure in SAMRAI. The

SAMRAI infrastructure not only supports multiple,

diverse application efforts simultaneously, it supports

new data types and integration with existing applica-

tion code and software libraries.

To allow application developers to exploit the soft-

ware flexibility that we have developed, we have cho-

sen to expose a set of powerful software interfaces

through which users can extend and specialize frame-

work capabilities to meet their needs. Object-oriented

design patterns, such as Strategy and Factory, em-

ployed in SAMRAI have aided in achieving a clear

separation of general SAMR functionality and appli-

cation-specific operations. By reducing the imprint of

particular SAMR algorithms and data types on the

core of the library, SAMRAI has addressed new

applications and provided a significant amount of de-

sign and code re-use across those applications. For

example, although several of the applications we have

described involve unique data representations, no

additional code was required to distribute and com-

municate that data in parallel. Thus, both library code

and pre-existing application code was reused.

In our experience, the software design choices we

have made have helped to reduce application devel-

opment time for users and have promoted the explo-

ration of new application opportunities. Typical users

concentrate most of their energy on application-spe-

cific concerns and are freed from the need to under-

stand the complexity of the underlying parallel SAMR

software infrastructure. We have also observed that

software organization principles employed in the

framework have influenced design decisions made by

users during the development of application codes. For

example, design patterns used in SAMRAI to decom-

pose elements of the software are often adopted by

application developers. This design reuse, whereby

users emulate organizational features and software

abstractions found in the framework, has enabled new

algorithm development by increasing the flexibility of

application codes.

In the end, the benefits of using a large, complex

software infrastructure like SAMRAI depend on the

goals of individual application developers. The capa-

bilities of SAMRAI and other SAMR support libraries

reflect the capacity of their developers to anticipate

application requirements and provide good software

solutions for future extensions and enhancements.

Some SAMR algorithms have become commonplace

and support for them may be found in multiple li-

braries. However, new and unique applications force

developers to consider the trade off between creating

code from scratch and the learning curve required to

make productive use of a sophisticated code base built

by others. Using a software library may require one to

consider different ways of conceptualizing the con-

structing an application code. This is often beneficial.

In this paper, we have demonstrated that the advan-

tages of exploiting general software capabilities as well

as providing application-specific specializations when

appropriate can be substantial.

Acknowledgments We gratefully acknowledge the contribu-
tions of our collaborators whose application development work
is discussed in this paper and who provided figures. Boyce
Griffith is developing the immersed boundary AMR code to
model dynamics of the human heart. He has recently completed
his Ph.D. thesis at the Courant Institute at New York University
under the direction of Professor Charles Peskin. Bob Anderson
and others are continuing to develop the ALE-AMR code at

194 Engineering with Computers (2006) 22:181–195

123

LLNL. Noah Elliott is primarily responsible for the multi-block
hierarchy development in SAMRAI. The ability to represent
complex, urban landscapes geometry on a SAMRAI mesh uti-
lizes the Eleven library in the Overture package, with the help of
Kyle Chand (LLNL), and also uses the Cart3d/Cubes package,
with the help of Marsha Berger (Courant Institute, NYU). The
efforts of these individuals and other users of SAMRAI have
creatively demonstrated the utility and flexibility of the library
and their contributions make continued development of SAM-
RAI possible.

References

1. Berger MJ, Colella P (1989) Local adaptive mesh refinement
for shock hydrodynamics. J Comp Phys 82:64–84

2. Berger MJ, Oliger J (1984) Adaptive mesh refinement for
hyperbolic partial differental equations. J Comp Phys
53:484–512

3. Diachin L, Hornung R, Plassman P, Wissink A (2005) Par-
allel adaptive mesh refinement. In: Heroux M, Raghavan P,
Simon H (eds) Frontiers of parallel processing for scientific
computing. SIAM book series on software, environments,
and tools. Society for Industrial and Applied Mathematics,
Philadelphia (in press)

4. Wissink AM, Hysom D, Hornung RD (2003) Enhancing
Scalability of Parallel Structured AMR Calculations. In:
Proceedings of the 17th ACM international conference on
supercomputing (ICS03), San Francisco, pp 336–347

5. Anderson RW, Elliott NS, Pember RB (2004) An arbitrary
Lagrangian–Eulerian method with adaptive mesh refinement
for the solution of the Euler equations. J Comp Phys
199:598–617

6. Colella P, Graves D, Ligocki T, Martin D, Serafini D, Stra-
alen BV (2003) Chombo software package for AMR appli-
cations design document. Report, Applied Numerical
Algorithms Group, NERSC Division, Lawrence Berkeley
National Laboratory, Berkeley

7. Rendleman CA, Beckner VE, Lijewski M, Crutchfield WY,
Bell JB (2000) Parallelization of structured, hierarchical
adaptive mesh refinement algorithms. Comput Vis Sci 3:147–
157

8. Parashar M, Browne JC (2000) System engineering for high
performance computing software: the HDDA/DAGH infra-
structure for implementation of parallel structured adaptive
mesh refinement. In: Baden SB et al (eds) IMA Volume 117:
structured adaptive mesh refinement (SAMR) grid methods.
Springer, Berlin Heidelberg New York, pp 1–18

9. MacNeice P, Olson KM, Mobarry C, deFainchtein R, Packer
C (2000) PARAMESH: a parallel adaptive mesh refinement
community toolkit. Comp Phys Comm 126:330–354

10. Henshaw WD (2002) Overture: an object-oriented frame-
work for overlapping grid applications. In: Proceedings of
the 32nd American Institute for Aeronautics Fluid Dynam-
ics, St. Louis

11. Lemke M, Quinlan D (1992) A C++ virtual shared grids
based programming environment for architecture-indepen-
dent development of structured grid applications. Lecture
Notes in Computer Science. Springer, Berlin Heidelberg
New York

12. Li X, Parashar M (2003) Dynamic load partitioning strate-
gies for managing data of space and time heterogeneity in
parallel SAMR applications. In: Proceedings of the 9th
international Euro-Par conference (Euro-Par 2003), Kla-
genfurt, Austria. Springer, Berlin Heidelberg New York

13. Chandra S, Sinha S, Parashar M, Zhang Y, Yang Y, Hariri S
(2002) Adaptive runtime management of SAMR applica-
tions. In: Sahni S, Prasanna VK, Shukla U (eds) Proceedings
of the 9th international conference on high performance
computing (HiPC 2002). Lecture Notes in Computer Sci-
ence, vol 2552. Springer, Berlin Heidelberg New York,
Bangalore, pp 564–574

14. Hornung RD, Kohn SR (2002) Managing application com-
plexity in the SAMRAI object-oriented framework. Concurr
Comput Pract Exp14:347–368

15. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design
patterns: elements of reusable object-oriented software.
Addison-Wesley Longman, Inc., Menlo Park

16. Saltz J, Berryman H, Wu J (1991) Multiprocessors and run-
time compilation. Concurr Pract Exp 3:573–592

17. Baden SB, Colella P, Shalit D, Van Straalen B (2001) Ab-
stract KeLP. In: Proceedings of the 10th SIAM conference
on parallel processing for scientific computing, Portsmouth

18. Fink SJ, Baden SB, Kohn SR (1996) Flexible communication
schedules for block structured applications. In: Third inter-
national workshop on parallel algorithms for irregularly
structured problems (IRREGULAR ’96), Santa Barbara,
California

19. Aftosmis M, Melton J, Berger M (1995) Adaptation and
surface modeling for cartesian mesh methods. In: Proceed-
ings of the 12th AIAA computational fluid dynamics con-
ference, San Diego. AIAA Paper 95-1725

20. Aftosmis M, Berger M (2002) Multilevel error estimation
and adaptive h-refinement for cartesian meshes with
embedded boundaries. In: Proceedings of the 40th AIAA
aerospace sciences meeting and exhibit, Reno. AIAA Paper
2002-0863

21. Johansen H, Colella P (1998) A cartesian grid embedded
boundary method for poissons equation on irregular do-
mains. J Comp Phys 147:60–85

22. McCorquodale P, Colella P, Johansen H (2001) A cartesian
grid embedded boundary method for the heat equation on
irregular domains. J Comp Phys 173:620–635

23. Zeeuw DD, Powell KG (1993) An adaptively refined carte-
sian mesh solver for the euler equations. J Comp Phys
104:56–68

24. Aftosmis M, Berger M, Melton J (1998) Adaptive cartesian
mesh generation. In: Thompson JF, Soni BK, Weatherill NP
(eds) Handbook of grid generation. CRC Press LLC, Boca
Raton. ISBN 0-8493-2687-7

25. Petersson NA (2003) Rapsodi: geometry preparation and
grid generation. In: Proceedings of the 2nd SIAM conference
on computational science and engineering, San Diego

26. Wijesinghe HS, Hornung RD, Garcia AL, Hadjiconstanti-
nou NG (2004) 3-dimensional hybrid continuum-atomistic
simulations for multiscale hydrodynamics. J Fluid Eng
126:768–777

27. Alexander F, Garcia A (1997) Direct simulation Monte
Carlo. Comput Phys 11:588-593

28. Griffith B, Hornung R, McQueen D, Peskin C (2006) An
adaptive, fornally second-order sccurate version of the im-
mersed boundary method J Comp Phys (to appear)

29. Peskin CS (2002) The immersed boundary method. Acta
Numer 11:479–517

30. Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D,
Knepley MG, Curfman McInnes L, Smith BF, Zhang H
(2004) PETSc users manual. Report, Argonne National
Laboratory, Argonne. ANL-95/11 - Revision 2.1.5

31. Pernice M, Hornung R (2005) Newton-Krylov-FAC methods
for problems discretized on locally-refined grids. Comput Vis
Sci 8(2):107–118

Engineering with Computers (2006) 22:181–195 195

123

	Managing complex data and geometry in parallel structured AMR applications
	Abstract
	Introduction
	Structured AMR background
	Structured AMR software libraries
	Fig1
	SAMRAI data management and communication infrastructure
	Variable and data objects
	User-level data communication abstractions
	Fig2
	Data communication object decomposition
	Fig3
	New application development
	ALE—AMR: moving, deforming meshes �and multiblock AMR
	Integration and data interpolation
	Fig4
	Multiblock patch hierarchies
	Tab1
	Fig5
	Complex geometry and embedded boundaries
	Fig6
	Hybrid models
	Fig8
	Fig7
	Continuum-particle hybrid model
	Fig9
	Immersed boundary heart model
	Fig10
	Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

