
Rich Hornung

www.llnl.gov/CASC/SAMRAI
hornung@llnl.gov

Workshop on Object-Oriented and Component
Technology for Scientific Computing

July 23-25, 2001

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Managing Application Complexity
in the SAMRAI Framework

Fine local mesh

Intermediate local mesh

Coarse global mesh

Structured AMR (SAMR) employs a
dynamically adaptive “patch hierarchy”

l Hierarchy defines nested levels of varying
mesh resolution (space & time)

l Data is stored on patches covering
logically-rectangular regions in index space

SAMRAI: Structured Adaptive Mesh
Refinement Application Infrastructure

l SAMRAI is an object-oriented (C++) software framework
for SAMR multi-physics application development

l Design reflects survey of long-term LLNL AMR interests

l Research base for application, algorithm, numerical,
software, parallel computing issues in SAMR

l Application-software feedback loop is main driver
— SAMRAI team: expertise in SAMR algorithms, numerics, software

— app. collaborators: experts in numerical, physical,... problem issues

— applications push SAMR technology into new problem domains

— new capabilities are folded back into framework

2000λ

NIF Beam

 λ = wavelength (e.g., 0.35µm)8f 2λ

 f = lens f-number (e.g., f = 8)

 f λ

Speckle

Hohlraum

ALPS is an advanced simulation tool for
laser plasma instabilities

Numerical simulations need to
accommodate multiple diverse scales

Locally refined grids resolve
wave interaction where high
accuracy is needed

Understanding instabilities in
laser-plasma interactions is

critical in the design of plasma
physics experiments

Light
Plasma from
exploding foil

Hybrid continuum-DSMC AMR methods
efficiently resolve interface dynamics

Continuum representation
(Euler, Navier-Stokes)

away from interface

fluid A fluid B
shock

DSMC representation
at interface

• interface region grows and
moves as instability evolves

• standard CFD simulation of
turbulent mixing is limited by
finest mesh scale

• particle resolve molecular
behavior but are too
expensive for large domains

Particles resolve fine-scale dynamics of
mixing region in an adaptive calculation

Interface instability problems (e.g., Richtmyer-
Meshkov) involve coarse-scale hydrodynamic
transport and fine-scale molecular diffusion

ALE-AMR combines structured grid ALE
and AMR for shock hydrodynamics

Accurate ALE simulations (e.g.,
detonation fronts) require dynamic

concentration of mesh points

Sedov blast wave density and Lagrangian mesh

• staggered mesh formulation
is challenging in AMR

• coarse and fine meshes
deform at different rates

• Adaptive Laser-Plasma Methods (ALPS) -- Dorr, Garaizar, Hittinger
(CASC/LLNL)

• Continuum-particle hybrid methods -- Hornung (CASC), Garcia (SJSU)

• ALE-AMR -- Pember, Anderson, Elliott (CASC/LLNL)

• Fractures in solids -- Garaizar, Hornung, et al. (CASC/LLNL)

• Radiation diffusion -- Kapfer, Woodward, P. Brown (CASC)

• Ocean current simulation -- Wickett, Hernstein (CASC/LLNL)

• Industrial fire simulation -- Smith, Rawat (Univ. Utah), Wissink (CASC)

• Global Geospace Circulation Model (GGCM) -- Raeder, Wang (UCLA)

SAMRAI is used in diverse adaptive mesh
refinement application research efforts

SAMRAI simplifies complexity
management in SAMR applications

l Software must support evolving understanding of application
and numerical issues (key: proper abstractions)

l Application folks want to do certain things easily:
— quickly focus on numerical routines, solution algorithms
— manage variables between coupled numerical models
— manipulate data on dynamically changing, locally-refined mesh

(data copying, coarsening, refining, time interpolation, …)

l SAMRAI design goals:
— robust code base shared by diverse, complex applications

(“infrastructure” common across apps. factored into framework)
— flexible algorithmic framework to explore new solution methods
— extensible parallel support for general dynamic data configurations

(extensity without recompilation; e.g. via inheritance)

Mesh Management
Adaptive Mesh Generation
Uniform/Nonuniform Load Balancing

Tool Box
Input Database
Restart Database
Performance Timers
Smart Pointers
Container Classes

Hierarchy
Boxes
Patches
Variables
Variable Database

Transfer
Data Coarsen
Data Refine & Boundary Fill
Communication Schedules
Message Streams

Patch Data
Cell
Node
Face
Edge
IndexData
 …

Geometry

Cartesian Grid
Refine/Coarsen Operators
Time Interpolation

Integration Algorithms

Time Refinement Algorithm
Hyperbolic Conservation Laws
Method-of-lines Time Integrator
Implicit Integrator

User view of SAMRAI is a “toolbox” of
classes for application development

~570, 000 lines
~300 classes

Package Interfaces
(PETSc, KINSOL, PVODE)
Vector Kernel Support
Poisson Solver (FAC & hypre)

Solvers

Vizamrai
(visualization tools)

Data manipulation is dictated by solution
algorithm and application needs

physical
boundary

conditions
space, time
interpolate

coarser data

copy data from
adjacent fine patch

destination
patch

For example, before performing numerical operations on a patch,
“ghost cell” data values are set

Typical SAMR data movement involves arbitrary combinations of
variable quantities and operations

l Variable
— defines a data quantity;

centering, type, …
— creates data object instances

(abstract factory)

l Communication algorithm
— describes data transfer phase

of a computation
— expressed using variables,

operators, …
— independent of mesh

l Patch data
— represents data on a “box”
— interface for data

communication (strategy)
— created by factory defined

by variable

l Communication schedule
— manages details of data

movement
— depends on mesh
— created by communication

algorithm

Solution algorithms
tend to be static

Mesh and data objects
tend to be dynamic

SAMRAI abstractions capture application
features and simplify data management

SAMRAI “patches” contain all data living
on a region of the computational mesh

Patch
Box Array<PatchData>

Patch Data
allocate(Box b)
copy(...)
packStream(...)
unpackStream(...)

All patch data
objects

obey the same
interface

NodeCell Face Outerface

IndexSetOuternode Particles
User-defined

types

Communication algorithms describe data
transfers needed for solution method

copy particles

fill continuum
data

For example, integration of particle
regions requires both continuum and
particle boundary data for each patch

• Create algorithm to fill data
 RefineAlgorithm fill_alg;

• Register variable operations with algorithm:
• density refined from coarser, copied from fine, BCs set

 fill_alg.registerRefine(rho_old, // destination
 rho_old, rho_new, // sources
 ..., “CONSERVATIVE_INTERP”);

• particles copied from neighboring patches
 fill_alg.registerRefine(particles, // destination
 particles, // source
 ...);

l Amortize cost of creating send/receive sets over multiple
communication cycles

Communication schedules create and
store data dependencies

Send Set Receive Set

Particles

message buffer

single
MPI sendCell Data (double)

packStream(...);

packStream(...);

l Data from multiple sources is packed into one message stream

• Create schedule to fill data
 RefineSchedule fill_sched =
 fill_alg.createSchedule(
 hierarchy, level, ...);

• Invoke data fill operations
 fill_sched.fillData(time, ...);

Time Refinement
Integrator

Hierarchy
Description

Regridding
Algorithm

Hyperbolic Level
Integrator

CellTagging

Analysis of SAMRAI OO design features...

l Uncoupling variable, data, communication, mesh
provides a lot of flexibility

Euler
Numerical
Routines

Hybrid
Integrator

DSMC
Numerical
Routines

Strategy pattern

“Strategy” supports extensible, specializable algorithms

Time Refinement
Integrator

Hierarchy
Description

Regridding
Algorithm

Hyperbolic Level
Integrator

CellTagging

Analysis of SAMRAI OO design features...

l Uncoupling variable, data, communication, mesh
provides a lot of flexibility

Strategy pattern

“Strategy” supports extensible, specializable algorithms

Hydro
Numerical
Routines

LaserPlasma
Integrator

Light
Model

Electrostatic
Potential

Analysis of SAMRAI OO design features...

Patch

Patch
Descriptor

“Product” class
hierarchy

PatchData
copy(PatchData&)
packStream(…)

DSMCPatchData
copy(PatchData&)
packStream(…)

CellPatchData
copy(PatchData&)
packStream(…)

PatchDataFactory
allocatePatchData()

CellDataFactory
allocatePatchData()

DSMCDataFactory
allocatePatchData()

“Factory” class
hierarchy

“Factory” pattern supports user-defined data types
without recompilation

SAMRAI parallel framework supports new
patch data types without recompilation

l Create a DSMCData subclass and provide virtual functions
class DSMCData : public PatchData
{

void copy(...);
void packStream(...);
int getDataStreamSize(...)

 . . .
};

l Create a DSMCFactory subclass to allocate DSMCData objects
class DSMCFactory : public PatchDataFactory
{

Pointer<PatchData> allocate(...);
. . .

};

l Create DSMCVariable subclass to create DSMCFactory objects
class DSMCVariable : public Variable
{

Pointer<PatchDataFactory> getPatchDataFactory(...);
. . .

};

Analysis of SAMRAI OO design features...

l Design patterns, other OO techniques useful to
manage complexity at a high level
—software architecture easier to understand (e.g.,

strategy, abstract factory ubiquitous)
—inheritance model straightforward for users

l Flexibility comes at a cost
—learning curve: pattern-based design at application

level
—uncoupling requires extra indirection

– keep OO abstractions out of computation
– need to understand where things are in library

— early prototyping, user feedback essential

Auspices Statement

l This work was performed under the auspices of the U.S.
Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-48.

l Document UCRL-PRES-144527

