Nuclear Engineering Laboratory Doc. ID: LIN-MO02.1.2007
MONTECUCCOLINDO Subject: Subversion scratchbook

memorandum Date: December 20, 2007

Nuclear Reactor Physics .
Author: Giacomo Grasso

Phone: +39-051-6441708
e-mail: glacomo.grasso@mail.ing.unibo.it

Department of Energetic and Nuclear Engineering
and of Environmental Control (DIENCA)
University of Bologna

Subversion Quick reference guide

Subversion is a free/open-source version control system. That is, Subversion manages all data
contained in a project over time, remembering every change ever made to its files and directories.
This allows every user accessing the repository to recover older versions of the data, or examine
the history of how data changed. In this regard, many people think of a version control system as
a sort of time machine.

Subversion stores all versioned data in a central repository, i.e. a central common folder. This
directory contains (among other things) a collection of database files. Subversion has no concept
of a project. The repository is therefore just a virtual versioned filesystem, a large tree that can
hold anything at wish.

Currently, the subversion package does not set up a repository, so it is needed to set up it manually.
One possible location for a repository is in /var/local/repos (this is just a sample location; to keep
general configuration about it from here on the repository location will be addressed as <repos>).
To set up the central repository, the Subversion command is:

$ svnadmin create <repos>

It is interesting to notice that it is possible to make the repository writable by a web server, by
setting:

$ chown -R www-data:www-data <repos>

To allow access to the repository via user authentication, it is then needed to add (or uncomment)
the following lines in /etc/apache2/mods-available/dav_svn.conf (config file location refers to
Apache2 web server):

<Location /repos>
DAV svn
SVNPath <repos>
AuthType Basic
AuthName "Subversion repository"
AuthUserFile /etc/subversion/passwd
<LimitExcept GET PROPFIND OPTIONS REPORT>

Require valid-user

</LimitExcept>
</Location>

and create the user authentication file with the command:
$ htpasswd2 -c /etc/subversion/passwd some-username

Restarting Apache2 the new Subversion repository will be accessible via the <remote_repos>
http://hostname/repos URL.

To import any sort of project (a collection of files and directories) into the Subversion repository,
it is first needed to organize all the related elements into a single directory called myproject within
the <local> path. Once the tree of data is ready to go, it can be imported into the repository with
the svn import command:

$ svn import <local>/myproject file://<repos>/myproject -m "Initial log message"
Adding <local>/myproject/filel

ééﬁmitted revision 1.

or, via the web server:

$ svn import <local>/myproject <remote_repos>/myproject -m "Initial log message"
How can be seen, the

file://<repos>

and the

<remote_repos>

syntaxes are equivalent each other, and both referring the same physical repository.

Now the repository contains this tree of data. The committed files cannot be accessed by directly
peeking into the repository; they’re all stored within a database. But the repository’s imaginary
filesystem now contains a top-level directory named myproject, which in turn contains the project
data. It is important to note that the original <local> /myproject directory is unchanged; Subversion
is unaware of it (in fact, it is even possible to delete that directory at all!). In order to start
manipulating repository data, it is therefore needed to create a new working copy of the data, a
sort of private workspace, asking Subversion to check out a working copy of the myproject directory
in the repository:

$ svn checkout file://<repos>/myproject workdir

A myproject/filel

Checked out revision 1.

To publish the new changes to other users, the project must be committed back to the repository
by means of the Subversion’s commit command:

$ svn commit filestocommit
Sending filetocommitl

Transmitting file data.
Committed revision revhlN.

When a new Subversion repository is created, it begins its life at revision zero and each successive
commit increases the revision number by one. After every commit completes, the Subversion client
informs the user of the new revision number revN. The svn commit command sends all the new
changes to the repository. When committing a change, the user is therefore forced to supply a log
message, describing the changes brought to the project. Such a log message will be attached to
the new revision created. If the log message is brief, it can be easily supplied on the command line
using the —message (or -m) option:

$ svn commit --message "New version log message"
Sending filetocommitl

Transmitting file data.
Committed version revhlN.

However, if a more exhaustive log message has been composed, it is possible to tell Subversion to
get the message from a file by passing the filename with the —file switch:

$ svn commit --file logmsgfile

To prevent uncommented development of the project, if the user fails to specify either the —message
or —file switch, then Subversion will automatically launch the user’s favorite editor for composing
a log message. To retrieve informations about the history of a file or directory, it is possible to use
the svn log command. svn log will provide a record of users’ related changes to a file or directory,
at what revision it changed, the time and date of that revision, and, if it was provided, the log
message that accompanied the commit.

rrevN | user | date time permissions | N line
log message of reviston reulN

The typical work cycle looks like this:

e Update the working copy

— svn update

Make changes
— svn add
— svn delete
— svn copy

— SvIl 1move

Examine changes
— svn status

— svn diff

— svn revert

Merge others’ changes into the working copy
— svn update
— svn resolved

e Commit changes

— svn commit

